
Noname manuscript No.
(will be inserted by the editor)

SystemML
Declarative Large-Scale Machine Learning

Matthias Boehm

Received: date / Accepted: date

1 Definition

Apache SystemML [4,9] is a system for declarative,

large-scale machine learning (ML) that aims to increase

the productivity of data scientists. ML algorithms are

expressed in a high-level language with R- or Python-

like syntax and the system automatically generates ef-

ficient hybrid execution plans that are composed of

single-node CPU or GPU operations, as well as dis-

tributed operations on data-parallel frameworks such as

MapReduce [6] or Spark [14]. This high-level abstrac-

tion provides the necessary flexibility of specifying cus-

tom ML algorithms, while ensuring physical data inde-

pendence, independence of the underlying runtime op-

erations and technology stack, and scalability for large

data. Separating the concerns of algorithm semantics

and execution plan generation is essential because it al-

lows for the automatic optimization with regard to dif-

ferent data and cluster characteristics, without the need

for algorithm modifications in different deployments.

2 Overview

In SystemML [4,9], data scientists specify their ML

algorithms in a language with R- or Python-like syn-

tax, using abstract data types for scalars, matrices and

frames, and operations such as linear algebra, element-

wise operations, aggregations, indexing, and statistical

operations but also control structures such as loops,

branches, and functions. These scripts are then parsed

into a hierarchy of statement blocks and statements,

where control flow delineates the individual blocks. For

Matthias Boehm
IBM Research – Almaden; San Jose, CA, USA
matthias.boehm1@ibm.com

each block of statements, the system then compiles

DAGs (directed acyclic graphs) of high-level operators

(HOPs), which is the core internal representation of

SystemML’s compiler. Size information such as matrix

dimensions and sparsity are propagated via intra- and

inter-procedural analysis from the inputs through the

entire program. This size information is then used to

compute memory estimates per operation and accord-

ingly select physical operators, resulting in a DAG of

low-level operations (LOPs). These LOP DAGs are fi-

nally compiled into executable instructions.

Example: As an example, consider the following

script for linear regression via a closed-form method

that computes and solves the normal equations:

1: X = read($X);

2: y = read($Y);

3: intercept = $icpt; lambda = 0.001;

4: if(intercept==1)

5: X = cbind(X, matrix(1, nrow(X), 1));

6: I = matrix(1, ncol(X), 1);

7: A = t(X) %*% X + diag(I) * lambda;

8: b = t(X) %*% y;

9: beta = solve(A, b);

10: write(beta, $B);

This script reads the feature matrix X and labels y,

optionally appends a column of 1s to X for comput-

ing the intercept, computes the normal equations, and

finally solves the resulting linear system of equations.

SystemML then compiles, for example for lines 6-10, a

HOP DAG that contains logical operators such as ma-

trix multiplications for X>X and X>y. Given input

meta data (e.g., let X be a dense 107 × 103 matrix),

the compiler also computes memory estimates for each

operation (e.g., 80.08 GB for X>y). If the memory es-

timate of an opeation exceeds the local driver memory

2 Matthias Boehm

budget, this operation is scheduled for distributed exe-

cution and appropriate physical operators are selected

(e.g., mapmm as a broadcast-based operator for X>y).

Static and Dynamic Rewrites: SystemML’s op-

timizer applies a broad range of optimizations through-

out its compilation chain. An important class of opti-

mizations with high performance impact are rewrites.

SystemML applies static and dynamic rewrites [3].

Static rewrites are size-independent and include tradi-

tional programming language techniques—such as com-

mon subexpression elimination, constant folding, and

branch removal—algebraic simplifications for linear al-

gebra, as well as backend-specific transformations. For

instance in the above example, after constant propaga-

tion, constant folding, and branch removal, the block

of lines 4-5 is removed if $icpt=0, which further allows

unconditional size propagation and the merge of the

entire program into a single HOP DAG. Furthermore,

the expression ’diag(matrix(1,ncol(X), 1))� lambda’ is

simplified to ’diag(matrix(lambda,ncol(X), 1))’, which

avoids unnecessary operations and intermediates. Sys-

temML’s rewrite system contains hundreds of such

rewrites some of which even change the asymptotic be-

havior (e.g., trace(X Y)→ sum(X�Y>)). Additional

dynamic rewrites are size-dependent because they re-

quire sizes for cost estimation or validity constraints.

Examples are matrix multiplication chain optimiza-

tion as well as dynamic simplification rewrites such as

sum(X2) → X>X | ncol(X) = 1. The former exploits

the associativity of matrix multiplications and aims to

find an optimal parenthesization for which SystemML

applies a textbook dynamic programming algorithm [3].

Operator Selection and Fused Operators: An-
other important class of optimizations is the selec-

tion of execution types and physical operators [4]. Sys-

temML’s optimizer analyzes the memory budgets of

the driver and executors, and selects—based on worst-

case memory estimates [5]—local or distributed exe-

cution types. Besides data and cluster characteristics

(e.g., data size/shape, memory, and parallelism), the

compiler also considers matrix and operation prop-

erties (e.g., diagonal/symmetric matrices, sparse-safe

operations) as well as data flow properties (e.g., co-

partitioning, and data locality). Depending on the cho-

sen execution types, different physical operators are

considered with a selection preference from local or

special-purpose to shuffle-based operators. For exam-

ple, the multiplication X>X from line 7, allows for

a special transpose-self operation (tsmm), which is an

easily parallelizable unary operator that exploits the

output symmetry for less computation. For distributed

operations, this operator has a blocksize constraint be-

cause it requires access to entire rows. If special-purpose

or broadcast-based operators do not apply, the compiler

falls back to the shuffle-based cpmm and rmm operators

[9]. Additionally, SystemML replaces special patterns

with hand-coded fused operators to avoid unnecessary

intermediates [7,10] and unnecessary scans [2,3,7], as

well as to exploit sparsity across chains of operations [4,

7]. For example, computing the weighted squared loss

via sum(W � (X −UV>)2), would create huge dense

intermediates. In contrast sparsity-exploiting operators

leverage the sparse driver (i.e., the sparse matrix W

and the sparse-safe multiply �) for selective computa-

tion that only considers non-zeros in W.

Dynamic Recompilation: Dynamic rewrites and

operator selection rely on size information for mem-

ory estimates, cost estimation, and validity constraints.

Hence, unknown dimensions or sparsity lead to conser-

vative fallback plans. Example scenarios are complex

conditional control flow or function call graphs, user-

defined functions, data-dependent operations, com-

puted size expressions, and changing sizes and sparsity

as shown in the following example:

1: while(continue) {

2: parfor(i in 1:n) {

3: if(fixed[1,i] == 0) {

4: X = cbind(Xg, Xorig[,i]);

5: AIC[1,i] = linregDS(X,y); }}

6: #select & append best to Xg }

7: }

This example originates from a stepwise linear regres-

sion algorithm for feature selection that iteratively se-

lects additional features and calls the previously intro-

duced regression algorithm. SystemML addresses this
challenge of unknown sizes via dynamic recompila-

tion [3] that recompiles subplans—at the granularity of

HOP DAGs—with exact size information of intermedi-

ates during runtime. During initial compilation, opera-

tions and DAGs with unknowns are marked for dynamic

recompilation, which also includes splitting DAGs after

data-dependent operators. During runtime, the recom-

piler then deep copies the HOP DAG, updates sizes, ap-

plies dynamic rewrites, recomputes memory estimates,

and finally generates new runtime instructions. This ap-

proach yields good plans even with initial unknowns.

Runtime Integration: At runtime level, Sys-

temML then interprets the generated instructions.

Single-node and Spark operations directly map to in-

structions, whereas for the MapReduce backend, in-

structions are packed into a minimal number of MR

jobs. For distributed operations, matrices (and similarly

frames) are stored in a blocked representation of pairs

of block indexes and squared blocks with fixed block-

size, where individual blocks can be dense, sparse, or

SystemML 3

ultra-sparse. In contrast, for single-node operations the

entire matrix is represented as a single block, which al-

lows reusing the block runtime across backends. Data

transfers between the local and distributed backends as

well as driver memory management are handled by a

multi-level buffer-pool [4] that controls local evictions,

parallelizes and collects RDDs, creates broadcasts, and

reads/writes data from/to the distributed file system.

For example, a single-node instruction first pins its in-

puts into memory—which triggers reads from HDFS

or RDDs if necessary—performs the block operation,

registers the output in the buffer pool, and finally un-

pins its inputs. Many block operations and the I/O sys-

tem for different formats are multi-threaded to exploit

parallelism in scale-up environments. For compute-

intensive deep learning workloads, SystemML further

calls native CPU and GPU libraries for BLAS and

DNN operations. In contrast to deep learning frame-

works, SystemML also supports sparse neural network

operations. Memory management for the GPU device

is integrated with the buffer pool allowing for lazy data

transfer on demand. Finally, SystemML uses numerical-

stable operations based on Kahan addition for descrip-

tive statistics and certain aggregation functions [13].

3 Key Research Findings

In additional to the compiler and runtime techniques

described so far, there are several advanced techniques

with high performance impact.

Task-Parallel ParFor Loops: SystemML pri-

mary focus is on data parallelism. However, there are

many use cases such as ensemble learning, cross vali-

dation, hyper-parameter tuning, and complex models

with disjoint or overlapping data that are naturally ex-

pressed in a task-parallel manner. These scenarios are

addressed by SystemML’s parfor construct for parallel

for loops [5]. In contrast to similar constructs in high-

performance computing (HPC), parfor only asserts the

independence of iterations and a dedicated parfor op-

timizer reasons about hybrid parallelization strategies

that combine data- and task-parallelism. Reconsider

the stepwise linear regression example. Alternative plan

choices include (1) a local, i.e., multi-threaded, parfor

with local operations, (2) a remote parfor that runs

the entire loop as a distributed Spark job, or (3) a local

parfor with concurrent data-parallel Spark operations

if the data does not fit into the driver.

Resource Optimization: The selection of execu-

tion types and operators is strongly influenced by mem-

ory budgets of the driver and executor processes. Un-

fortunately, finding a good static cluster configuration

that works well for a broad range of ML algorithms is a

hard problem. SystemML addresses this challenge with

a dedicated resource optimizer for automatic resource

provisioning [10] on resource negotiation frameworks

such as YARN or Mesos. The key idea is to optimize re-

source configurations via an online what-if analysis with

regard to the given ML program as well as data and

cluster characteristics. This framework optimizes per-

formance without unnecessary over-provisioning, which

can increase throughout in shared on-premise clusters

and save money in cloud environments.

Compressed Linear Algebra: Furthermore,

there is a broad class of iterative ML algorithms that

use repeated read-only data access and I/O-bound

matrix-vector multiplications to converge to an optimal

model. For these algorithms it is crucial for performance

to fit the data into available single-node or distributed

memory. However, general-purpose, lightweight and

heavyweight compression techniques struggle to achieve

both good compression ratios and fast decompression

to enable block-wise uncompressed operations. Com-

pressed linear algebra (CLA) [8] tackles this chal-

lenge by applying lightweight database compression

techniques—for column-wise compression with hetero-

geneous encoding formats and co-coding—to matrices,

and executing linear algebra operations such as matrix-

vector multiplications directly on the compressed rep-

resentation. CLA yields compression ratios similar to

heavyweight compression and thus allows fitting large

datasets into memory, while achieving operation per-

formance close to the uncompressed case.

Automatic Operator Fusion: Similar to query

compilation and loop fusion in databases and HPC, the

opportunities for fused operators—in terms of fused

chains of operations—are ubiquitous. Example bene-

fits are a reduced number of intermediates, reduced

number of scans, and sparsity exploitation across op-

erations. Despite their high performance impact, hand-

coded fused operators are usually limited to few op-

erators and incur a large development effort. Auto-

matic operator fusion via code generation [7] overcomes

this challenge by automatically determining valid fu-

sion plans, and generating access-pattern-aware opera-

tors in the form of hand-coded skeletons with custom

body code. In contrast to existing work on operator

fusion, SystemML introduced a cost-based optimizer

framework to find optimal fusion plans in DAGs of lin-

ear algebra programs for dense, sparse, and compressed

data as well as local and distributed operations.

4 Examples of Application

SystemML has been applied in a variety of ML ap-

plications ranging from traditional statistics, classifica-

4 Matthias Boehm

tion, regression, clustering problems, over matrix fac-

torization and survival analysis, to deep learning. In

contrast to specialized systems for graph analytics like

GraphLab [12] or deep learning like TensorFlow [1], Sys-

temML provides a unified system for small to large-

scale problems with support for dense, sparse, and

ultra-sparse data. Accordingly, SystemML’s primary

application area is an environment with diverse ML al-

gorithms, data characteristics, and deployments.

Example deployments include large-scale computa-

tion on top of MapReduce and Spark, and program-

matic APIs for notebook environments or embedded

scoring. Thanks to deployment-specific compilation,

ML algorithms can be reused without script changes.

This flexibility enabled the use in a range of systems

with different architectures. For example, SystemML

has been shipped as part of the open source project

R4ML and the IBM products BigInsights, Data Science

Experience (DSX), and multiple Watson services.

5 Future Directions for Research

Given the goal of a unified system for ML applications

and recent algorithm and hardware trends, there are

many direction for future research throughout the stack

of SystemML and similar systems [11]:

Specification Languages: SystemML focuses on

optimizing fixed algorithm specifications. However,

end-to-end applications would benefit from extensions

regarding feature engineering, model selection and life

cycle management in general. A promising direction is

a stack of declarative languages that allows for reuse.

Optimization Techniques: Regarding the auto-

matic optimization of ML programs, further work is

required regarding size and sparsity estimates, adap-

tive query processing and storage (as an extension of

dynamic recompilation), and principled approaches to

automatic rewrites and automatic operator fusion.

Runtime Techniques: A better support for deep

learning and scientific applications requires the exten-

sion from matrices to dense/sparse tensors of different

data types and their operations. Additionally, further

research is required regarding the automatic exploita-

tion of accelerators and heterogenous hardware.

Benchmarks: Finally, SystemML—but also the

community at large—would benefit from dedicated

benchmarks for the different classes of ML workloads

and different levels of specification languages.

References

1. M. Abadi et al. TensorFlow: A System for Large-Scale
Machine Learning. In OSDI, 2016.

2. A. Ashari, S. Tatikonda, M. Boehm, B. Reinwald,
K. Campbell, J. Keenleyside, and P. Sadayappan. On
Optimizing Machine Learning Workloads via Kernel Fu-
sion. In PPoPP, 2015.

3. M. Boehm, D. R. Burdick, A. V. Evfimievski, B. Rein-
wald, F. R. Reiss, P. Sen, S. Tatikonda, and Y. Tian.
SystemML’s Optimizer: Plan Generation for Large-Scale
Machine Learning Programs. IEEE Data Eng. Bull.,
37(3), 2014.

4. M. Boehm, M. Dusenberry, D. Eriksson, A. V. Ev-
fimievski, F. M. Manshadi, N. Pansare, B. Reinwald,
F. Reiss, P. Sen, A. Surve, and S. Tatikonda. SystemML:
Declarative Machine Learning on Spark. PVLDB, 9(13),
2016.

5. M. Boehm, S. Tatikonda, B. Reinwald, P. Sen, Y. Tian,
D. Burdick, and S. Vaithyanathan. Hybrid Paralleliza-
tion Strategies for Large-Scale Machine Learning in Sys-
temML. PVLDB, 7(7), 2014.

6. J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

7. T. Elgamal, S. Luo, M. Boehm, A. V. Evfimievski,
S. Tatikonda, B. Reinwald, and P. Sen. SPOOF: Sum-
Product Optimization and Operator Fusion for Large-
Scale Machine Learning. In CIDR, 2017.

8. A. Elgohary, M. Boehm, P. J. Haas, F. R. Reiss, and
B. Reinwald. Compressed Linear Algebra for Large-Scale
Machine Learning. PVLDB, 9(12), 2016.

9. A. Ghoting, R. Krishnamurthy, E. P. D. Pednault,
B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian,
and S. Vaithyanathan. SystemML: Declarative Machine
Learning on MapReduce. In ICDE, 2011.

10. B. Huang, M. Boehm, Y. Tian, B. Reinwald,
S. Tatikonda, and F. R. Reiss. Resource Elasticity for
Large-Scale Machine Learning. In SIGMOD, 2015.

11. A. Kumar, M. Boehm, and J. Yang. Data Management in
Machine Learning: Challenges, Techniques, and Systems.
In SIGMOD, 2017.

12. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Distributed GraphLab: A Frame-
work for Machine Learning in the Cloud. PVLDB, 5(8),
2012.

13. Y. Tian, S. Tatikonda, and B. Reinwald. Scalable and
Numerically Stable Descriptive Statistics in SystemML.
In ICDE, 2012.

14. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Sto-
ica. Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing. In NSDI,
2012.

Cross References

TODO

	1 Definition
	2 Overview
	3 Key Research Findings
	4 Examples of Application
	5 Future Directions for Research

