MNC: Structure-Exploiting Sparsity Estimation for
Matrix Expressions

Johanna Sommer
IBM Germany

Berthold Reinwald
IBM Research — Almaden

ABSTRACT

Efficiently computing linear algebra expressions is central to
machine learning (ML) systems. Most systems support sparse
formats and operations because sparse matrices are ubiqui-
tous and their dense representation can cause prohibitive
overheads. Estimating the sparsity of intermediates, however,
remains a key challenge when generating execution plans
or performing sparse operations. These sparsity estimates
are used for cost and memory estimates, format decisions,
and result allocation. Existing estimators tend to focus on
matrix products only, and struggle to attain good accuracy
with low estimation overhead. However, a key observation is
that real-world sparse matrices commonly exhibit structural
properties such as a single non-zero per row, or columns with
varying sparsity. In this paper, we introduce MNC (Matrix
Non-zero Count), a remarkably simple, count-based matrix
synopsis that exploits these structural properties for efficient,
accurate, and general sparsity estimation. We describe esti-
mators and sketch propagation for realistic linear algebra
expressions. Our experiments—on a new estimation bench-
mark called SPARSEsT—show that the MNC estimator yields
good accuracy with very low overhead. This behavior makes
MNC practical and broadly applicable in ML systems.

ACM Reference Format:

Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski,
Berthold Reinwald, and Peter J. Haas. 2019. MNC: Structure-
Exploiting Sparsity Estimation for Matrix Expressions. In 2019 In-
ternational Conference on Management of Data (SIGMOD °19), June
30-Fuly 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3299869.3319854

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD 19, June 30-Fuly 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06....$15.00
https://doi.org/10.1145/3299869.3319854

Matthias Boehm
Graz University of Technology

Alexandre V. Evfimievski
IBM Research — Almaden

Peter J. Haas
UMass Amherst

1 INTRODUCTION

Modern machine learning (ML) systems aim to provide high-
level languages with physical data independence, and au-
tomatically generate efficient execution plans to increase
the productivity of data scientists and simplify deployment
[10, 33, 65]. This separation of concerns hides the complex-
ity of execution plans, local and distributed operations, as
well as dense and sparse data layouts [21]. Language ab-
stractions of these systems commonly rely on linear algebra
such as matrix multiplications, reorganizations, aggregations,
element-wise operations, and statistical functions, allowing
users to create and customize ML algorithms and models.
Sources of Sparse Matrices: ML systems often sup-
port sparse matrix formats and operations because sparse
matrices—with small ratio of non-zero values to matrix cells—
are ubiquitous in many domains. Examples are natural lan-
guage processing (NLP), graph analytics, recommender sys-
tems, and scientific computing, which often deal with ultra-
sparse matrices of sparsity between 107> and 1078, Apart
from sparse input data, there are other sources of sparse
matrices. First, data pre-processing like one-hot encoding—
which transforms a categorical feature of domain cardinality
d into d 0/1 features—introduces correlated sparse columns
[21]. Second, many element-wise operations can produce
sparse intermediates even for dense inputs (e.g., selection
predicates, or dropout layers). Third, transformation matrices
like permutation and selection matrices—as used for random
reshuffling and sampling via matrix products—are also huge,
ultra-sparse matrices. Processing such ultra-sparse matri-
ces using dense formats and operations would introduce
prohibitively large storage and computation overheads. For
this reason, open source systems like Julia [9], Spark ML-
lib [66], SystemML [10], and numerous prototypes [33, 65]
automatically dispatch sparse operations when beneficial.
Problem of Sparsity Estimation: Estimating the spar-
sity of matrix expressions is an import yet challenging prob-
lem [43]. First, sparsity estimates are used during operation
runtime for output format decisions and memory prealloca-
tion. Wrong decisions might largely impact memory require-
ments (e.g., wrong dense allocation of truly sparse outputs)
and operation efficiency (e.g., wrong sparse allocation and

https://doi.org/10.1145/3299869.3319854
https://doi.org/10.1145/3299869.3319854

W (dim v)

Word
Embeddings
Distinct
Tokens [—
1 | S
! || *
! N v * max
Token ;D YT eshape sentence length
1 Sentence
(padded) § 1 q I
i |
i |
S i sparse

Figure 1: Example NLP Sentence Encoding.

updates of truly dense outputs). Second, sparsity estimates of
matrix expressions are used during compilation for memory
and cost estimates. Therefore, the accuracy of these esti-
mates affect decisions on local versus distributed operations
[10], matrix product chains [17], resource allocation [34], as
well as rewrites and operator fusion [12, 20]. However, exist-
ing estimators have either prohibitive overheads or limited
support for structural properties and thus, low accuracy.
Example Structural Properties: As an example of a
sparse matrix product, Figure 1 shows an NLP scenario of en-
coding a sequence-of-words representation into word embed-
dings, as commonly used for deep learning. Input sentences
are padded to the maximum sentence length and represented
in a token sequence matrix S. Ones in this matrix map a se-
quence position (i.e., row) to a distinct token (i.e., column).
The last column of S represents unknowns such as pads and
tokens that are not in the dictionary. Thus, S is typically very
large and ultra sparse, due to skew of sentence lengths and
large dictionaries. We multiply S with a pre-trained! word
embeddings matrix W to yield an encoded token sequence.
Finally, we reshape this matrix row-wise into the padded
sentence representation which can be directly used for train-
ing or scoring of models like SentenceCNN [42]. The matrix
product SW has the special structural property that rows in
S have exactly one non-zero. Similar structural properties
are very common for selection matrices (e.g., for sampling)
and permutation matrices (e.g., for random reshuffling). We
shall show that these properties can be exploited to infer the
exact output sparsity in this specific scenario, and generally
improve the accuracy of sparsity estimation.
Contributions: Our primary contribution is a systematic
exploitation of structural properties for better sparsity esti-
mation of matrix products and other operations. To this end,
we introduce the Matrix Non-zero Count (MNC) sketch and
estimator, whose size is linear in the matrix dimensions. Com-
pared to existing sparsity estimators [5, 10, 16, 39, 49, 65], we
aim to achieve—as shown in Figure 2—high accuracy (with

!Word embeddings are commonly pre-trained—in an application-agnostic
manner—with word2vec [25, 54, 55] over the Wikipedia corpus.

Bitset

* MNC Sketch

Accuracy Layered
Graph

Density
Map

Meta Data

Sampling

Efficiency
Figure 2: Accuracy/Efficiency Goal of the MNC Sketch.

exact results for special cases) with modest construction and
estimation overhead. Our detailed contributions are:

e Analysis of Sparsity Estimators: We survey existing
sparsity estimators in terms of their space and time
complexity as well as potential bias in Section 2.

o MNC Sketch: We then introduce our novel MNC sketch
and estimators for matrix products chains in Section 3.
This also includes estimators for additional reorgani-
zation and element-wise operations in Section 4.

o Sparsity Estimation Benchmark: As a basis for our
evaluation, we define a new benchmark for sparsity
estimators—including a realistic mix of operations and
matrices with structural properties—in Section 5.

e Experiments: Finally, in Section 6, we report on ex-
tensive experiments that compare MNC with existing
estimators in terms of space efficiency, construction
and estimation overhead, and estimation accuracy.

2 EXISTING SPARSITY ESTIMATORS

In this section, we briefly survey existing sparsity estimators
for matrix products and product chains. Given an m X n
matrix A with sparsity s4 = nnz(A)/(mn)—where nnz(A)
is the number of non-zeros in A—and an n X [matrix B
with sparsity sg, we aim to estimate the sparsity S¢ of the
matrix product C = AB. Further, let d = max(m, n,[) be
the maximum dimension. Similarly, for a chain of matrix
products MW M® . M®) we are interested in sparsity
estimates s;; for subchains MO MY with1<i<j<k.

Assumptions: All existing estimators as well as our MNC
estimator make—implicitly or explicitly—the following two
simplifying but reasonable assumptions:

e A1: No Cancellation Errors: Positive and negative val-
ues could cancel each other to zero on aggregation.
Similarly, multiplying very small values may create
zeros due to round-off errors.

e A2: No Not-A-Number (NaN) Values: NaNs are challeng-
ing for sparsity estimation and sparse linear algebra
in general because NaN - 0 = NaN [43].

2.1 Naive Estimators

The naive estimators are extremes in a spectrum of potential
estimators with different runtime and accuracy tradeoffs.

1
1
2 1 11 \b
1 1 111 B
1 1 e
1 1 1 1 1 1 1 1 1 |:|
1 1 1 bC

(a) Matrix Product C = AB

(b) Bitset Estimator

1/9) 2/9 1 2/9 |0| 3 1 11

9! 0 ! 19 10 A i

A S

R
>
o
=

-
T N

19 14/9 | 1/9 1

sc = max(0,9,2)/90

191 0 1 1/9 1
1 =0.1

2/9 12/9 1 2/9 1 1| 1
1

(c) Density Map Estimator (d) Sampling-based Estimator

Figure 3: Examples of Existing Sparsity Estimators.

Naive Metadata Estimators: The naive metadata esti-
mators (e.g., in SystemML) derive the output sparsity solely
from the sparsity of the input matrices [10, 16, 39, 65]. These
estimators are best-effort choices because the metadata is
readily available during compilation without additional run-
time overhead. In detail, we distinguish two types. First, the
unbiased, average-case estimator E,. [10] is

Sc=1-(1—-s4"s8)", (1)

which assumes uniformly distributed non-zeros, and esti-
mates the output sparsity as the complementary probability
of an output cell being zero?. In contrast, the worst-case es-
timator Ey,. [10]—that aims to provide an upper bound for
worst-case memory estimates—is

Sc = min(1, nnz(A)/m) - min(1, nnz(B)/I)
= min(1, sa - n) - min(1, sg - n),

which assumes an adversarial pattern where A and B have
aligned column and row vectors of non-zeros, respectively.

Naive Bitset Estimator: The other extreme is the naive
bitset estimator Epmp, (e.g., in NVIDIA cuSPARSE and Intel
MKL [49], and similarly in SciDB [61]) that constructs—as
shown in Figure 3(b)—boolean matrices ba and bg and per-
forms an exact boolean matrix multiply bc = ba bg. Such a
product can be efficiently computed via bitwise AND (multi-
ply) and OR (sum). The exact sparsity estimate is

sc = $c¢ = bitcount(bc)/(ml), (3)

where bitcount(bc) is the number of set bits in the output. Al-
though the size is 64x smaller than in dense double precision,
this estimator adds significant size and runtime overhead.

2.2 Density Map Estimator

To account for sparsity skew with configurable runtime over-
head, the density map estimator Egy, creates density maps
dmy and dmg for the input matrices A and B [39]. Such a
density map imposes a block size b (by default, b = 256) and
stores the sparsity of individual b X b blocks. The density

2 An even simpler estimator for ultra-sparse inputs is $c = sasgn [16].

map of the output dmc is computed via a pseudo-matrix-
multiplication over density maps dma dmg as follows:

dmc,, = @" E,c(dma,,, dmg,) @
with sagp = sS4 + S — SASB,

which replaces multiply with the average-case estimator E,.
and plus with a formula for probabilistic propagation. Finally,
we obtain the output sparsity $¢ from the total number of
non-zeros in dmg (i.e., scaled density map by block cells). For
example, assuming the example matrices from Figure 3(a),
we construct the density maps shown in Figure 3(c) and
compute the output density map accordingly.

Effect of Block Size: Intuitively, the block size b allows
a trade-off between accuracy and runtime overhead [39].
Moreover, the density map is a generalization of the naive
estimators because for b = 1 it is equivalent to the bitset
estimator (Egqy, = Epmm), while for b = d it is equivalent to
the average-case estimator (Eqy, = E,). However, during our
experiments we made the interesting observation that—for
special structural properties—smaller block sizes can lead to
higher errors. For example, consider a 200 X 100 matrix A
with 50 non-zeros arranged as a column vector (s4 = 0.0025)
and a dense 100 X 100 matrix B (sg = 1). The true number of
non-zeros is 5,000 but with block sizes b = 200, b = 100, and
b = 50, we estimate 4,429, 3,942, and 3,179. In this scenario,
there are no collisions but the smaller the block size, the
higher the estimated probability of collisions.

Dynamic Block Sizes: The fixed block size is problem-
atic for ultra-sparse matrices because a moderate default
can render the density map larger than the input. A natural
extension would be dynamic density maps that adapt local
block sizes to the non-zero structure, for example, via a re-
cursive quad tree partitioning as done in the AT-Matrix [40]
for NUMA-aware partitioning. However, the non-aligned
blocks in dma and dmp would complicate the estimator.

2.3 Sampling-based Estimators

The sampling-based estimator E¢pyp) also aims to account
for sparsity skew [65]. In contrast to the density map, this

Level 3: columnsin B

. construction
rows in B/
Level 2: . and r vector
columns in A .
propagation
Level 1:

rows in A @ 6
r

Figure 4: Example Existing Graph-based Estimator.

estimator draws a random and uniformly distributed sample
S of columns from A and aligned rows from B. For example,
Figure 3(d) shows a sample of three columns and rows from
A and B. The output sparsity is then estimated as

Sc = max (nnz(A.) - nnz(By.))/(m). ®)

Intuitively, this estimator views a matrix product as the sum
of outer products A.x By. and uses the sparsity of the largest
outer product as its estimate. Hence, Egyp; is biased in terms
of being a strict lower bound of the true output sparsity,
which has the undesirable property of not converging to the
true sparsity sc, even if |S| = n. Appendix A describes an
inexpensive extension to overcome these issues, as well as a
hybrid estimator [5] that relies on hashing and sampling.

2.4 Graph-based Estimators

In a seminal paper on estimating the non-zero structure of
matrix product chains, Cohen introduced a so-called layered
graph to estimate the number of non-zeros per rows and
columns in the output [16]. This algorithm is a specialized
variant of estimating the size of the transitive closure [15].

Layered Graph: The layered graph G of a chain of ma-
trices (M, My, ..., Mg) has k + 1 levels. Nodes in level 1
refer to rows in My, level 2 to columns in M; and rows in
M_, level 3 to columns in M, and rows in Ms, etc. Edges rep-
resent the position of non-zeros in M; by connecting their
specific row to column nodes. For example, Figure 4 shows
the layered graph for our product C = A B from Figure 3(a),
where unreachable nodes (shown in white) are discarded.

Sparsity Estimate: The graph-based estimator Egpp, then
assigns r-vectors—of configurable size—drawn from the ex-
ponential distribution with A = 1 to all leaf nodes in level
1. The r-vectors are propagated bottom-up through G by
computing r of an inner node as the element-wise minimum
of the r-vectors of its inputs. The final estimate is then

fe = (> #(rl)) Jmi), ©
VE roots v

which estimates the non-zeros per output column, as well

as aggregates and scales them to the overall output spar-

sity. Note that for matrix product chain optimization, the

estimated column and row counts can be directly used to

compute sparsity-aware costs of subchains [16].

Table 1: Analysis of Existing Sparsity Estimators.

Estimator Space Time % [Bias
MetaAC E,c o(1) o(1) v
MetaWC Ey, o@) o) v | s¢
Bitset Eppyn | O(mn + nl + ml) O(mnl) v

DMap Eg | O(ZipFmL) ozl v
Sample Egpp) o(S) O(IS|(m + 1)) sc
LGraph Egpp, | O(rd + nnz(A, B)) | O(r(d + nnz(A, B))) | v/
MNC Eppc o(d) O(d +nnz(A,B)) |V

2.5 Discussion and Analysis

Finally, we summarize the existing estimators, and discuss
the relationship to join cardinality estimators.

Analysis of Sparsity Estimators: Table 1 summarizes
the surveyed sparsity estimators, which all—except the
sampling-based estimator—apply to both matrix products
and matrix product chains (%). Overall, these estimators
cover a spectrum that trades runtime efficiency and estima-
tion accuracy. First, the constant-time average- and worst-
case estimators E,. and Ey, are extremely cheap to compute
if overall sparsity is readily available. However, E,. assumes
uniformity and independence, which rarely hold in prac-
tice, while E, uses a conservative estimate that is biased to
over-estimation (upper bound). Second, the bitset and den-
sity map estimators Epy,y, and Egy, require space and time
proportional to dense input sizes. While Epp,, provides a
constant reduction of 64 (compared to double precision), Eqp,
reduces space and time requirements by b? and b* with con-
figurable block size b. However, both can quickly exceed
the space requirements of ultra-sparse inputs. Third, the
sampling-based estimator is relatively inexpensive but only
applies to single matrix products, can cause repeated ma-
trix multiplication for lazily evaluated distributed operations,
and is biased to under-estimation (lower bound). Fourth, the
graph-based estimator Egpy, is able to estimate the non-zero
structure of matrix product chains and thus, provides very
good accuracy. However, the graph construction and usage is
linear in the number of non-zeros (times the size of r-vectors)
which can cause significant runtime overhead, compared to
well-optimized matrix multiplication kernels.

Join Cardinality Estimation: Assuming matrices A;i,,
and By, are given as 3-column relations of row indexes,
column indexes, and values, sparsity estimation of the prod-
uct AB is equivalent to estimating the cardinality of the
join-group-by query y;;(A > B). Hence, existing cardinal-
ity estimators directly apply. For example, the recently pro-
posed index-based join sampling [45] is very similar to the
sampling-based estimator (see Section 2.3) that systemati-
cally samples related rows from A and columns from B. How-
ever, existing cardinality estimators largely ignore—similar
to existing sparsity estimators—structural properties.

Error Propagation: Given the close relationship to car-
dinality estimation, a natural question is if errors propagate
similarly. Ioannidis and Christodoulakis established that car-
dinality estimation errors propagate exponentially through
joins [35]. We use a similar maximum error argument. As-
sume a matrix product chain (M, My, ..., M) of n X n ma-
trices and constant sparsity s. Considering uniformly dis-
tributed non-zeros, and 1 — (1 — sp,, - Sm,)" from Equation (1)
together with a constant error of €, we substitute sy,, with
(1+€) - sm,,- Then, we see that € propagates exponentially
in the dimension n and in the number of products k — 1.
Despite this exponential propagation, sparsity estimation is
feasible in practice because matrix expressions often exhibit
structural properties that can be exploited.

3 MNC SKETCH

We now introduce the matrix non-zero count (MNC) sketch
by describing the main data structure, as well as estimators
for matrix products and product chains. Motivated by our
experience with sparse matrices in practice, and inspired
by several aspects of Cohen’s estimator [16], we base our
MNC framework on count-based histograms of the number
of non-zeros (NNZ) per row and column, as well as additional
metadata to encode common structural properties.

3.1 MNC Framework

Data Structure: The MNC sketch hp of an m X n matrix A
comprises the following information, where we use h as a
shorthand whenever the context is clear.

e Row/Column NNZs: Count vectors h” = rowSums(A #
0) and h® = colSums(A # 0) indicate the NNZs per
row and column, where h is the count of the ith row.

o Extended Row/Column NNZs: Count vectors h®” =
rowSums((A # 0) - (h® = 1)) and h®® = colSums((A #
0) - (h" = 1)) indicate the NNZs per row/column that
appear in columns/rows with a single non-zero.

o Summary Statistics: Metadata includes the maximum
NNZ per row max(h") and column max(h®), the num-
ber of non-empty rows nnz(h”) and columns nnz(h€),
the number of half-full rows |h" > n/2| and columns
|h® > n/2|, as well as flags for diagonal matrices.

Construction and Analysis: The construction of the
count vectors h” and h¢ is done in a single scan over the
non-zeros of A, where we aggregate the respective row and
column counts. Sparse representations such as the row-major
CSR (compressed sparse rows) readily provide h" as meta-
data, which makes the construction slightly more efficient.
We then materialize the summary statistics in a single pass
over h” and he. Finally, if max(h”) > 1 or max(h®) > 1,
we construct the extended count vectors h®” and h®¢ in a
second scan over the non-zeros of A with filter conditions

column NNZ

MNC Sketch hg
counts h°¢

0011201100

MNC Sketch h, @T22311271 h° 0 T
hee ollo
1/[o0 1 1((0 1
row NNZ |3/1|| 1 1 3/(1 1 11
counts hr |3/ |3 111 e ale 1
10| 1 1|1 1
1(|0 1 hs |[1]l0 1
summar 2111 1
mary 3" 171 1] B
statistics [ha |[1]l1 1 row NNZ in
hr her A columns with he=1

Figure 5: Example MNC Sketches.

h® = 1and h" = 1, respectively. Similar to histogram con-
struction during data ingestion [2], the MNC construction
can be piggybacked on the read of matrices, which often uses
two passes as well (e.g., multi-threaded CSV read, or sparse
binary read). To summarize, the MNC sketch construction
requires O(nnz(A) + m + n) time® (linear in the non-zeros
and dimensions of A), while the size of an MNC sketch is
O(m+n) (linear in the dimensions of A). The small size of hp
also makes it amenable to large-scale ML, where the sketch
can be computed via distributed operations and subsequently,
collected and used in the driver for compilation.
Examples: Figure 5 shows the sketches hy and hg for our
running example matrix product C = A B. We observe that
the non-zero structure is captured in a fairly fine-grained
manner while bounding the size overhead to the size of the
dimensions. Similarly, the MNC sketch for our introductory
example from Figure 1, would capture the structural property
max(h”) = 1 and individual row and column NNZ counts,
which are important for accurate sparsity estimation.

3.2 Sparsity Estimation

Having defined the structure of MNC sketches, we now dis-
cuss how these sketches are used for sparsity estimation.
We first present individual components and their underlying
foundations before synthesizing the final sparsity estimator.

Basic Sparsity Estimation: In general, an MNC sketch
ha can be viewed as a special density map with overlapping
blocks covering rows and columns in A but by encoding non-
zero counts of rows and columns separately, it is better suited
to handle sparsity skew across columns [21]. Accordingly,
we can directly apply Eqn, as a fallback estimator over h§ and
hg (i.e., with m x I output block size)*. Additionally, however,
we exploit structural properties as follows.

THEOREM 3.1. Given MNC sketches ha and hg for matrices
A and B, the output sparsity sc of the matrix productC = AB
can be exactly computed under the assumptions A1 and A2 via
a dot product of h§ andhg:

sc = Sc = hj hg/(ml) if max(h}) <1V max(thg) <1. (7)

3Dense formats require a scan over all mn cells but these formats are only
usedif s4 > 0.4 (i.e., nnz(A) > 0.4mn).

4 Alternatively, we could also use Egy, over h} and hy (with 1 X 1 output
block size) but this would increase the estimation costs from O(n) to O(ml).

Proor. Under the assumptions Al and A2, the sparsity
sc of C = AB is equal to the sparsity of a boolean matrix
product (A # 0)(B # 0). Such boolean products can be
represented as Z = | i A; x B;, where Aj; are row indexes of
column (A.; # 0) and B; are column indexes of row (B;. # 0)
[5]. For max(h},) < 1, each row index appears in at most one
Aj. Similarly, for max(hg) < 1, each column index appears
in at most one $B;. Hence, the union Z is distinct. The size of
A;jxBjis hgj ~h]gj. Since the union is distinct, we have |Z| =
2j|A; x B;|. Combining these facts, we get sc = |Z]/(ml) =
(2; hfsj . hgj)/(ml), which is exactly h{ hy /(ml). O

Exploiting Extended NNZ Counts: Theorem 3.1 only
applies if all rows or columns contain at most one non-zero.
In practice, we also encounter matrices with a subset® of qual-
ifying rows or columns. We aim to exploit these properties
by fine-grained extended row and column NNZ counts:

Sc = (W5 hy + (hy —hi")hy’

+Eqm(hg —hi" hy —hi', p) - p)/(ml),
where the first term h{® hy + (h§ —h§) hf" represents the
non-zeros that are exactly known, while the second term is a
generic estimator of the remaining quantities. There are no
side effects between these terms because both sets of non-
zeros are disjoint. For this reason, we use for the remaining
quantities—instead of ml—a reduced output size p:

p=(m—1hy =1))- (I - |hg = 1)), ©

where |h}, = 1| is the number of rows with one non-zero.
Additional Lower and Upper Bounds: In addition to
the aforementioned basic and extended estimators, we es-
tablish lower and upper bounds that guard against low accu-

racy for matrix products with adversarial non-zero structure.
Here, nnz(h),) denotes the number of non-empty rows in A.

(®)

THEOREM 3.2. Given MNC sketches hp and hg for matrices
A and B, the output sparsity sc of the matrix productC = AB
is bounded under the assumptions A1 and A2 by:

sc = |hy > n/2| - |hg > n/2|/(ml)
sc < nnz(h}) - nnz(hg)/(ml).

(10)

Proor. Under assumptions Al and A2, we have again a
boolean matrix product Z = | J; A; x B;. First, the quantities
nnz(h),) and nnz(hg) determine the number of distinct row
indexes [J; A; and distinct column indexes | J; 8;. Hence,
sc = |Z|/(ml) is upper bounded by nnz(h},) - nnz(hg)/(ml).
Second, any pair of rows in A;. and columns in B;; with
nnz(A;.) > n/2Annz(B;j) > n/2 is guaranteed to yield a non-
zero cell C;; because at least one element-wise multiplication
Aji -Byj with 1 < k < nwill be (A # 0) - (Bg; # 0). Hence,
sc is lower bounded by |h}, > n/2| - |hg > n/2|/(ml). O

SFor example, as of 2019/04/04, 25,800,660 (89%) of the 28,929,182 public
GitHub repositories have 0 or 1 stars (estimates obtained via is:public).

Algorithm 1 MNC Sparsity Estimation

Input: MNC sketches hp and hp for matrices A and B
Output: Output sparsity sc
: // a) basic and extended sparsity estimation, incl upper bound
- if max(h}) < 1V max(hg) < 1 then // see Theorem 3.1
nnz < h§ hy
- else if exists(hy") V exists(hy") then // extended NNZ counts

1

2

3

4 B

5. nnz « hihp + (hg —hi*)hg" // exact fraction
6 // #cells
7

8

9

p o (anz(hy) ~ [= 1)) - (nn(hy) - g = 1])
nnz < nnz + Eqn(hg —h§¢ hy —h{".p)-p // generic rest
: else // generic fallback estimate
p < nnz(h},) - nnz(hy) // #cells
10: nnz < Eqn(hg, hp,p)-p
11: // b) apply lower bound, see Theorem 3.2
12: nnz « max(nnz, |h}, > n/2|- |hg > n/2|)
13: return sc < nnz/(ml)

// lower bound

Sparsity Estimator: Putting it altogether, Algorithm 1
shows our MNC sparsity estimator Epp, which requires O(n)
time (linear in the common dimension of A B). First, in lines 1-
10, we apply the basic and extended estimators. The first two
cases exploit coarse- or fine-grained structural properties,
but if unavailable, we fall back to a density-map-like esti-
mator over column and row counts. Entries of non-existing
extended count vectors are treated as zeros. The upper bound
is imposed via a modified output size p = nnz(h}) - nnz(hg),
which also improves the estimation of collisions. Second, in
lines 11-13, we impose the lower bound and return sc as the
estimated NNZ scaled by the output size ml.

3.3 Sketch Propagation

So far we only discussed sparsity estimation for a single
matrix product. However, for chains of matrix products, we
need to derive sketches for intermediates as well, to allow
for recursive sparsity estimation of arbitrary subchains.
Basic Sketch Propagation: Figure 6 gives an overview
of our sketch propagation—which requires O(d) time—for
deriving a sketch h¢ from input sketches hy and hg. First,
we compute the output sparsity $¢ as described in Section 3.2.
Second, we derive row and column histograms from A and
B by scaling them with the relative change of NNZ from
A to C and from B to C as shown in Equation(11). This
ensures consistency regarding » hy, ~ Scml and } h{ ~

MNC h¢

Sketch hg hee

=

= i \hc
21 B E—

MNC f3lls output
Sketch h, [3[9 sparsity sc Scaled
HIk MNC
gl A Sketch hc
hr hr
her

Figure 6: Basic Sketch Propagation.

Scml but assumes that the distribution of non-zeros per row
and column propagate over the matrix product.

hf, = round(h}, - scml/)" h}),
hé = round(h§ - §le/Z hS).

Probabilistic Rounding: For ultra-sparse matrices, basic
rounding can introduce significant bias. For example, con-
sider a special case where every entry in h{, (without round-
ing) is 0.4. With rounding, we get 0.0 non-zeros for all rows,
which leads to the wrong assumption of an empty intermedi-
ate and thus, empty final output. Hence, we use probabilistic
rounding with probabilities hy, — | h(.| of rounding entries
in h{, up. This approach ensures unbiased propagation with
minimal variance, which worked well in practice.

Exact Sketch Propagation: Additionally, we exploit the
metadata for exact sketch propagation. If either A or B is fully
diagonal (all non-zeros and no zero on diagonal) and square,
we propagate the full sketch of the other input because the
output characteristics are guaranteed identical:

(11)

(12)

he = h, if B is diagonal
7 \hg ifA is diagonal.

Implementation Details: With these techniques, we are
able to compute sketches and the output sparsity of DAGs of
matrix products. These DAGs are given in an intermediate
representation (IR) where nodes are input matrices (leafs) or
operations, edges are data dependencies, and we are inter-
ested in estimating the sparsity of—potentially multiple—root
nodes of the DAG. The MNC sketches of leaf nodes are built
from the input matrices, which can be done as part of re-
optimization similar to MatFast [65] or SystemML [10]. Then,
we compute and propagate sketches bottom-up through the
DAG, with three simple yet effective improvements. First, we
memoize—i.e., materialize and reuse—intermediate sketches
because nodes might be reachable over multiple paths. Sim-
ilarly, in the context of matrix multiplication chain opti-
mization, we reuse intermediate sketches across overlapping
sub-problems (see Appendix C). Second, we do not propagate
sketches to the root nodes but directly estimate their sparsity.
Third, we use special cases for matrix self-products to avoid
unnecessary sketch construction.

4 ADDITIONAL OPERATIONS

Chains of pure matrix products rarely exceed a length of five
in real numerical computing and ML workloads. Much more
common are chains of matrix products interleaved with re-
organization operations such as transpose or reshape, and
element-wise matrix operations. In this section, we, there-
fore, extend the MNC Sketch and related sketch propagation
techniques for these additional operations. Except for naive

metadata estimators in Matlab [24] and SystemML [10], this
problem has not been addressed in the literature.

Scope of Supported Operations: In addition to ma-
trix products, we support reorganization operations that
change the position of values, and element-wise operations.
First, reorganizations include transpose (matrix transposi-
tion), reshape (row-wise change of dimension sizes), diag
(vector placement/extraction onto/from the diagonal), and
rbind/cbind (row-/column-wise concatenation of matrices).
Furthermore, this includes the comparisons A = 0 and A # 0
that extract the zero or non-zero structure. Second, we also
support element-wise addition A+B and multiplication A®B.

4.1 Sparsity Estimation

Similar to Section 3, we first investigate the simpler problem
of estimating sparsity of a single operation. To simplify no-
tation, we use s(x, m, n) = x/(mn) to compute the sparsity
from non-zeros x and dimensions m X n.

Reorganization Operations: Sparsity estimation for re-
organizations is straightforward because they allow—with
few exceptions—for exact inference of the number of non-
zeros and thus, sparsity from metadata. For transpose, re-
shape, and A # 0, we have sc = sa, while for diag (vector-
matrix) we have sc = s(nnz(A), m, m). Similarly, the spar-
sity sc for rbind, cbind, and A = 0 is exactly computed via
s(nnz(A)+nnz(B), ma +mg, na), s(nnz(A)+nnz(B), ma, na +
np), and 1 — sa, respectively.

Element-wise Operations: Element-wise addition and
multiplication are more challenging. A baseline solution
would pick the row or column dimension, and apply per slice
the average case estimates sa; + sp; — Sa; - Sp; and sa; - s; for
addition and multiplication. However, this approach would
not fully exploit the structural information of the entire MNC
sketch. Instead, we use both row and column count vectors
h” and h° of both A and B as follows:

sc = ——
m-n

1 { izy (by; +hy; —hy, by, - 1)+
ity (h; -hg, - A

i (hy; - by, - 4) 3
where A = Z (hgj . hfsj) /(nnz(A) - nnz(B)).

Jj=0

Intuitively, we aggregate row-wise estimates of non-zeros
but scale them by A, which represents collisions of non-zeros,
computed from column counts. This computation is alge-
braically symmetric, so aggregating column-wise estimates
and scaling by row collisions yields the exact same result.

4.2 Sketch Propagation

For estimating sparsity of entire chains of operations, we
need to propagate sketches over these operations too. Sketch

propagation is more involved as we need to preserve indi-
vidual row and columns counts. In this context, we always
propagate count vectors, but we propagate extension vectors
only when they are known to be exactly preserved.

Reorganization Operations: Several reorganizations
still allow retaining valuable structural properties when prop-
agating MNC sketches. First, for C = A # 0, we simply prop-
agate hc = ha. Second, transpose, rbind (and symmetrically
cbind), diag (vector-to-matrix-diag), and A = 0 can also be
exactly derived with the following formulas:

transpose: he = hi, hy" = h{°, hi =h), hi" = hy’
rbind: h, = rbind(h}, hy), hd =0
h =h{ +hg, h& =h§" + hi’ (14)
diag: hi = h{" = h¢ = h{’ = h)
A=0hi=n-h},hi =m-h;, hi =hi" =0

Third, reshaping an m X n matrix A into a k X [matrix
C requires a more fine-grained approach. For the sake
of a simple presentation, we focus on row-wise reshap-
ing where m mod k = 0, that is, where multiple in-
put rows are concatenated to a single output row. In a
first step, we compute h(, by aggregating every m/k row
counts, which—at conceptual level—is equivalent to hy, =
rowSums(matrix(h’,, k, m/k)). In a second step, we then
scale and replicate column counts to compute h¢,, which is
similar to h¢, = rep(round(hy /(m/k)), m/k). Finally, remain-
ing operations such as matrix-to-vector diag are handled in a
best-effort manner, which is sufficient for practical purposes
as the output is a vector.

Element-wise Operations: Propagating MNC sketches
for element-wise addition and multiplication follows the
same approach as described for Equation (13) in Section 4.1,
but now we materialize individual row/column estimates. To
enable this symmetric computation, we first prepare both
scaling factors A" and A¢ and then compute the output MNC
sketch—but only for count vectors—as follows:

+:hf = round(h}y + hy —h - hj - 1),
h¢. = round(h§ +h§ —h - h§ - 1) (15)
©: h{ = round(h}, - h; - 1), h¢ = round(h§ - h§ - 1")

Similar to sketch propagation for matrix products, we apply
probabilistic rounding to guard against systematic bias.
Implementation Details: Efficient sketch propagation
further draws from a careful implementation. First, we use
shallow copies of sketches and internal arrays whenever
sketch components directly propagate to avoid unnecessary
copies and garbage collection overhead. Examples are trans-
pose, diag, X # 0, and special cases of matrix multiplications.
Second, we also derive the summary metadata, and only fall-
back to recomputation over h, and h, if this is not possible.

5 SPARSITY ESTIMATION BENCHMARK

As a basis for a systematic evaluation, we define the SPARSEST
benchmark for sparsity estimation of matrix operations and
matrix expressions that covers existing and new use cases.
In the interest of reproducibility, we base this benchmark
solely on synthetic and publicly available real datasets.
Benchmark Metrics: Existing sparsity estimators trade
off accuracy and runtime as visualized in Figure 2. Hence, we
made the design choice of including both aspects separately:

e M1 Accuracy: A common accuracy metric is the ab-
solute ratio error (ARE) defined as [Sc — sc|/sc [8, 26,
29]. This metric is asymmetric as it penalizes over-
estimation more than under-estimation. Hence, we use
the relative error® defined as max(3c, sc)/min(Sc, sc)
[14]. For multiple experiments, we additively aggre-
gate S¢ = 2.7 Sci (or equivalently non-zeros) and com-
pute the final error as max(Sc, scn)/ min(Sc, sch).

e M2 Estimation Time: The runtime metric is the total
estimation time covering both sketch construction and
estimation, which can be reported separately.

An additional useful but optional metric is the M3 Total Run-
time—including sketch construction, estimation, and plan
execution—because sparsity estimation influences plan costs
and the sketches could be exploited during runtime. How-
ever, the exploitation of matrix sketches during optimization
and runtime is beyond the scope of this paper.
Benchmark Use Cases: In detail, our benchmark suite
consists of the following three major groups of use cases.

e BI Structured Matrix Products (STRUCT): Synthetic ma-
trix products with specific structural properties.

o B2 Real Matrix Operations (REAL): Real sparse matrix
operations from NLP, graphs, and pre-processing.

e B3 Real Matrix Expressions (CHAIN): Pure and mixed
chains of matrix products and other operations.

The categories B1 and B2 apply to all sparsity estimators,
no matter if matrix product chains or other operations are
supported. Chaining these operations further allows for a
simple evaluation of how errors propagate.

B1 Structured Matrix Products (STRUCT): The cate-
gory STRUCT aims to test—using synthetically generated
data (Syn)—specific structural properties that commonly oc-
cur in practice or constitute challenging special cases. First,
B1.1 represents the NLP sentence encoding scenario from
Figure 1, where W is dense except an empty last row and X
is a 0/1 matrix whose NNZ per column are generated from a
power law distribution, except the last column that contains
a fraction @ non-zeros. Thus, the output sparsity is (1 — a)
independent of the dimensions of X and W. Second, B1.2 and
B1.3 emulate the scaling and random reshuffling of a matrix,

%A similar normalization for the ARE is |$c — sc|/min(Sc, sc).

Table 2: Overview of Benchmark Use Cases.

Structured Matrix Products (STRUCT) Real Matrix Products (REAL) Real Matrix Product Chains (CHAIN)
Name Expression Data Name Expression Data Name Expression Data
B1.1 NLP XW Syn1 B2.1 NLP XW AMin A B3.1 NLP reshape(X W) AMin A
B1.2 Scale diag(1) X Syn2 B2.2 Project XP Cov B3.2 S&S ST XT diag(w) XSB | Mnistim
B1.3 Perm | table(s1,s2) X Syn2 B2.3 CoRefG GGT AMin R || B3.3 Graph PGGGG AMin R
B1.4 Outer CR Syn3/Syn4 || B2.4 EmailG GG Email B3.4 Rec (PX#0)©(PLRT) | Amazon
B1.5 Inner RC Syn4/Syn3 B2.5 Mask MoX Mnistlm || B3.5Pred | XO((RO®S+T)+#0) | Mnistlm

which are key primitives. Since the left-hand-side matrices
are a fully diagonal and a random permutation matrix, the
output sparsity is equivalent to the input X. Third, B1.4 and
B1.5 represent special cases [39] with square matrices C and
R that contain a single dense column and aligned row (and
vice versa), and thus, result in a fully-dense or almost empty
(single non-zero) matrix, respectively.

B2 Real Matrix Operations (REAL): Furthermore, the
second category REAL investigates real matrix products
and element-wise operations. First, B2.1 encodes—similar
to B1.1—the AMin A dataset of paper abstracts. Second, B2.2
projects columns of the Covertype dataset that is known to
have columns with varying sparsity [21]. This column pro-
jection is a common operation in feature selection workloads.
Third, B2.3 performs co-reference counting via a matrix prod-
uct of AMin R with its transposed representation. Fourth,
B2.4 is a simple self matrix product for email network anal-
ysis. Fifth and finally, B2.5 performs image masking on the
Mnist dataset via an element-wise multiplication.

B3 Real Matrix Expressions (CHAIN:) The category B3
further represents several interesting, real matrix expressions
that are composed of matrix products and other operations.
First, B3.1 extends our NLP example from B1.1 and B2.1
by matrix reshaping from token-embeddings to sentence-
embeddings as used in our introductory example in Figure 1.
Second, B3.2 shows a matrix product chain for scaling and
shifting of X as used in the inner loops of regression and
classification algorithms to avoid densifying sparse matrices
via shifting upfront. Here, S is a special scale and shift matrix
of dimensions n X n with dense diagonal and last row, where
n is the number of features of X. Third, B3.3 investigates—
similar to existing benchmarks [16, 39, 57]—a chain of matrix
self-products (also known as matrix powers) as used for
reachability queries, and other graph analytics [38]. The
matrix P is a constructed selection matrix. Fourth, B3.4 shows
the computation of recommendations for known ratings of
selected users P via a learned low rank factorization L and
R. Fifth, B3.5 uses only element-wise operations to apply a
complex predicate for image masking. This combined mask
selects all X;; where (R;; AS;j) v T;; evaluates to true. This is
a common pattern found in spatial data processing via linear
algebra, where © replaces A, + (or max) replaces V, and # 0
ensures a 0/1 indicator matrix for value extraction.

Table 3: Overview of Used Datasets.

Name Rows m | Columns n | Nnz ||X]|, | Sparsity sx
Amazon [52] M 2.3M 22.4M 0.0000012
AMin A [4] 25.1M 2.5M 25.1M 0.00000039
AMin R[4] 3.1M 3.1M 25.2M 0.0000026
Cov [48] 581K 54 6.9M 0.22
Email [46] 265K 265K 420K 0.000006
Mnist1m [13] M 784 202M 0.25

Datasets: Table 3 summarizes the used datasets, which
come from a mix of different domains and exhibit diverse
data characteristics. First, Amazon [30, 52], Cov [48], and
Mnistlm [13, 50], are the well-known Amazon books re-
view datasets, UCI Covertype, and the Mnist dataset of
hand-written digits with 1M rows. Second, AMin [4, 60, 62]
refers to the AMiner dataset, specifically the DBLP-Citation-
network (V10, October 2017). From this publication dataset,
we created (1) AMin R, the paper reference matrix, and (2)
AMin A, a token-sequence matrix of paper abstracts. For
AMin A, we extracted all 17,646,972 sentences with a total of
374,677,894 tokens, padded the sentences to the maximum
length of 2,508 tokens, and encoded the tokens as column po-
sitions regarding a Wikipedia embeddings dictionary of size
2,518,950. For handling purposes, we selected a subset of 10K
sentences. Third, Email [46, 47] is an Email network from an
EU research institution, covering 18 months and 3,038,531
emails between 287,755 (1,258 local) email addresses.

6 EXPERIMENTS

Our experiments study the MNC sketch in comparison to
existing sparsity estimators with regard to (1) construction
and estimation overheads, (2) accuracy for matrix products,
and (3) accuracy for chains of matrix products and other
operations. In this context, we aim to explore a variety of
data characteristics, parameter configurations, and operation
workloads utilizing the introduced SPARSEST benchmark.

6.1 Experimental Setup

HW and SW Setting: We ran our experiments on a 2+10
node cluster of two head nodes, and ten worker nodes.
All nodes have two Intel Xeon E5-2620 CPUs @ 2.10 GHz-
2.50 GHz (24 virtual cores), 128 GB DDR3 RAM, a nominal
peak memory bandwidth of 2 X 43 GB/s, and run CentOS

1000

1000

- O Sample O DMap B LGraph E MNC @ Bitset O Sample O DMap B LGraph
> 100 4 B MNC @ Biset H MM %= 100 { @ DMap ™ LGraph — 100 4/ @ MNC @ Bitset
E] -
£ 10 o Dims: 20K x 20K E 10 4 Dims: 20K x 20K 2 10 4 Dims: 20K x 20K
§ =1 =
Z g s
& 01 Z 01~ E o1
— = @
8 S 2
S 001 © 001 0.01

0.001 0.001 0.001

0.001 0.01 0.1 0.99 0.001 0.01 0.1 0.99 0.001 0.01 0.1 0.99
Sparsity Sparsity Sparsity
(a) Total Estimation Time (M2) (b) Construction Time (c) Estimation Time
Figure 7: Construction and Estimation Runtime for Varying Sparsity.
100 100) 100
—_ O Sample O DMap M LGraph B MNC [Bitset O Sample O DMap B LGraph
Z o B MNC B Bist W MM Z 1o O DMap B LGraph — o ® MNC B Bitt
£ ' P =
fis) Output Dims: 10K x 10K £ . g Output Dims: 10K x 10K
g 1 Z 1 — Output Dims: 10K x 10K = 1
g g &
£ ol Z 01 g o
£ o001 S 001 =001
s
0.001 — 0.001

e
=3
=1

1K /0.1

1K /0.1

10K /0.01 100K /0.001 1M/le—4
Common Dimension / Sparsity

(a) Total Estimation Time (M2)

10K /0.01
Common Dimension / Sparsity

(b) Construction Time

1K /0.1

10K /0.01 100K /0.001 1M/ le—4
Common Dimension / Sparsity

100K /0.001 1M/ le—4

(c) Estimation Time

Figure 8: Construction and Estimation Runtime for Varying Dimensions.

Linux 7.2. We used OpenJDK 1.8.0_151, and HDP 2.5 with
Apache Hadoop 2.7.3. All experiments ran as single-node
YARN applications with 80 GB max and initial JVM heap
sizes, which allowed us to parallelize up to ten experiments.
Unless otherwise stated, we report the mean of 20 repetitions.

Baselines: For the sake of a fair comparison, we imple-
mented all sparsity estimators’ from Section 2 in the same
framework, and extended these estimators—if necessary and
feasible—for all operations and sketch propagation. To obtain
the ground truth output sparsity, we execute FP64 matrix
operations with internal dispatch of dense and sparse opera-
tions. These operations also serve as an additional baseline
in terms of efficiency, because any sketch construction and
estimation overhead should be well below the operation run-
time. We consistently use multi-threaded FP64 matrix multi-
plications (MM), but single-threaded sketch construction and
estimation. While our MNC sketch is trivial to parallelize
over row or column partitions, multi-threading would put
more complex baselines such as the layered graph at a disad-
vantage. Internally, the density map is implemented via our
default FP64 matrix, while the bitset estimator, uses either a
linearized long array—to facilitate cache blocking—or Java’s
BitSet implementation per row, as well as bitwise OR’s of
64 values at a time in the inner loop. Finally, for the density
map, layered graph, and sampling-based estimators, we use
by default a block size b = 256, an r-vector length 32, and a
sample fraction f = 0.05 unless otherwise stated.

7MNC and the baselines are open source at gi thub. com/apache/systemml.
We also considered specialized baselines for encoding word embeddings,
but primitives in TensorFlow [1] and PyTorch [58] return dense tensors.

6.2 Construction and Estimation

In a first series of experiments, we investigate the construc-
tion and estimation overhead in terms of runtime and syn-
opsis size of the various sparsity estimators. Recall from
Figure 2, our MNC sketch is designed to reach efficiency
close to sampling, but significantly better than the bitset,
density map, and layered graph. We measure the total run-
time of sparsity estimation, which assumes in-memory input
matrices with basic metadata, and includes input sketch con-
struction if necessary. Note that we exclude the metadata
estimators Ey,. and E,. because they only require few scalar
floating-point operations, independent of the data size.
Runtime with Varying Sparsity: Figure 7 shows the
estimation runtime for a product of two random matrices
with fixed dimension of 20K X 20K and varying sparsity in
[1073,0.99] and thus, increasing number of non-zeros. We
avoid a sparsity of 1.0 because special cases for fully dense
matrix products would apply. Figure 7(a) shows the total
estimation time—including construction and estimation—for
all estimators. On one side of the spectrum, the metadata es-
timators are of course by far the fastest estimators and hence,
excluded from the plot. MNC then comes close to sampling
and generally outperforms the density map. On the other side
of the spectrum, we have the bitset and layered graph, where
the layered graph has advantages with low sparsity because
it requires time proportional to the number of non-zeros.
Despite single-threaded construction and estimation, all es-
timators rarely exceed the runtime of multi-threaded matrix
multiplications. Figures 7(b) and 7(c) separately show the
construction and estimation overheads, where E¢pp| requires

10000 <= Bitset - DMap 199 u Bitset
. —6— LGraph—4— MNC . —6— LGraph
E B le6 4—=— DMap
5 100 | = 4 MNC
N N
s % 1000
Z Z
G s 1

0.01 0.001 —

le=8 le=6 le-4 001 1 1es le6 le7 le8 1e9
Sparsity Dimension N

(a) Varying Sparsity (b) Varying Dimensions

Figure 9: Analytical Synopses Size Overhead.

no construction because the sample is not materialized. The
bitset and density map spent—proportionally to their total
runtime—less time in construction because they are dom-
inated by matrix-product-like estimation with cubic com-
plexity. All estimators exploit—independent of their sketch
representation—sparsity to prune unnecessary operations.

Runtime with Varying Dimensions: In contrast to the
previous experiment, Figure 8 shows the runtime with fixed
number of non-zeros (1M) and output dimensions (10K x
10K) but varying common dimension and sparsity. Apart
from similar trends, there are three observations. First, with
increasing sparsity, the bitset and density map become less
competitive even compared to a full matrix multiplication.
Second, both sampling and MNC show similar scaling as
their estimation time depends on the common dimension.
Third, MNC’s construction time scales slightly worse than
the density map in this scenario with rectangular dimensions
and high sparsity because its size reduction per row (10K) is
smaller than the density map’s 2562 = 64K reduction.

Size Overhead: To better understand the estimation and
construction runtimes, Figure 9 shows analytical results for
the size overhead of estimators with synopses. Asymptoti-
cally, the bitset and density map are dense sketches of size
proportional to the number of matrix cells, whereas MNC
and the layered graph are of size O(d) (in the dimensions)
and O(d + nnz(A, B)) (in the dimensions and non-zeros), re-
spectively. However, we aim to show the absolute factors
that matter in practice. First, Figure 9(a) shows the results
for constant dimensions m = n = 1M and varying sparsity
in [107%, 1]. MNC requires 2 - 4 - 1M - 4B = 32 MB, while
bitset and density map require 125 GB and 122 MB. The large
difference between bitset and density map originate from
the 64x versus 256%x size reduction. The layered graph has a
more complex behavior. For small sparsity, it is dominated by
the size of nodes (in the size of dimensions) with each node
having an r-vector of size 32. As the sparsity increases, how-
ever, the size gets dominated by the edges (in the number of
non-zeros) even exceeding the size requirements of the bitset.
Second, Figure 9(b) shows the results for a constant num-
ber of non-zeros (1G) and increasing dimensions and thus,

B MetaWC 1e3 les 4
B MetaAC ” led -
O Sample EIOO 2
B MNC Basic f ‘-;ICS —
B MNC 2 £]
O DMap <10 5100
| Bitset ~ =10
B LGraph 1 .
(a) Legend (b) B1.1 NLP (c) B1.2 Scale
les les lel0 |
=le4 = led 5
£ g g
Hle3 Hle3 s
2 2 2le5 o
£100 Z100 K| icg B
S 5 S 163 |
Z 0 Z 10 =100
10
1 1 X 1 -

(d) B1.3 Perm (e) B1.4 Outer (f) B1.5 Inner

Figure 10: Accuracy Results for B1 STRUC.

decreasing sparsity. Here, we see the expected asymptotic be-
havior with several interesting break-even points. However,
only the MNC sketch ensures very low size overhead—note
that a single y-axis tic represents three orders of magnitude—
across the entire spectrum of scenarios.

6.3 Accuracy for Matrix Products

In a second set of experiments, we investigate the estimation
accuracy for matrix products on SparsEst B1 and B2. We
report the relative error, which is bounded by [1, o). Appen-
dix A includes further experiments that compare MNC with
additional sampling-based estimators.

Accuracy B1 STrRuUcT: Figure 10 shows the relative error
of all baselines for B1. We also include MNC Basic, which is
the MNC estimator without extension vectors and bounds.
In detail, we configured these benchmarks as follows:

e B1.1 NLP: A 100K X 100K token matrix, a fraction of
0.001 known tokens, 300-dimensional embeddings.

e B1.2Scale: A diagonal 100Kx 100K matrix and 100Kx2K
matrix with sparsity 0.01.

e B1.3 Perm: A random 100K X 100K permutation matrix
and 100K x 2K matrix with sparsity 0.5.

e B1.4/B1.5: Matrices R and C of size 100K X 100K.

For these structured matrix inputs, we observe that the
metadata estimators, sampling, and density map generally
show large errors. The Ey,. estimator typically performs—
due to its conservative approach—worse than E,.. B1.4 is
the only exception where Ey, outperforms E,. because two
ultra-sparse matrices produce a fully dense output. Further-
more, the sampling-based estimator Egyp suffers from its
bias, which—except for B1.5—does not hold. On B1.4 Egyp
computed 10'%/0 = oo because with sample fraction of 0.05
only 2 out of 20 repetitions sampled the dense C and R vec-
tors. While the density map performs good on uniformly
distributed sparsity (e.g., B1.2 and B1.3), it shows large errors
for structured matrices like B1.1, B1.4, and B1.5 because the

B MetaWC 100 100 -

B MetaAC = ,_

O Sample 2 2

W MNC Basic "j [j

B MNC 210 210+

O DMap 3 3

E Bitset = =

B LGraph 1 1 - X

(a) Legend (b) B2.1 NLP (c) B2.2 Project

le3 le3

100

Relative Error
— =
=) S
Relative Error
|

Relative Error

=)

1 X 1

(d) B2.3 CoRefG (e) B2.4 EmailG (f) B2.5 Mask

Figure 11: Accuracy Results for B2 REAL.

square blocks are not able to preserve row and column-wise
structure. In contrast, the layered graph is very accurate with
a maximum observed error of 1.61 (average 1.22) for B1.1.
However, only bitset and MNC yielded exact results for all
B1 scenarios; B1.5 is an example where MNC relied on its
upper bound nnz(h},) - nnz(hg) to accomplish that.

Accuracy B2 ReAL: In addition, Figure 11 shows the
accuracy results of all baselines for the matrix products B2.1-
B2.4. We used the real input datasets as described in Section 5,
and the projection matrix P for B2.2 extracts columns of the
range [11, 50], which are all dummy coded and thus, ultra-
sparse. The metadata estimators, sampling, and the density
map show again relatively large errors because they struggle
to encode the structure of these matrices. For example, the
density map fails to recognize the varying sparsity in B2.2
because the block size of 256 X 256 is too coarse-grained
for the Cov dataset with 54 columns. In contrast, MNC com-
putes the exact sparsity for B2.1 and B2.2, and shows even
for co-reference counting and email graph analysis small
errors of 1.17 and 1.09, respectively. The layered graph also
consistently yields low errors, and outperforms MNC on
co-reference counting. Although the bitset estimator always
computes the exact sparsity, it fails for B2.1 and B2.3 because
its size exceeds the available memory. For example, creating
a bitset for AMin A for B2.1 would require ~ 8 TB.

MNC Extension Vectors: While the impact of MNC ex-
tension vectors was negligible for B1 and B2, we observed
improvements of up to 48.1% on other datasets.

6.4 Accuracy for Other Operations

The final scenario of B2 REAL is a pure element-wise multi-
plication B2.5 for image masking, which does not apply to
the layered graph so we exclude this estimator. Figure 11(f)
shows the accuracy of the remaining estimators. We used
Mnistlm and applied a mask M that selects the 14 X 14 center
of all 28 x 28 images. This can be seen as an adversarial mask,

3.5 o 1.4 o
—6— LGraph
3.0 H

—4— MNC
2.5

—6— LGraph
—A— MNC

2.0

Relative Error
Relative Error

default
default !

: 1.0 :
T T T T T T T T

2 8 32 128 2 8 32 128
Number of Rounds r Number of Rounds r

(a) LGraph B2.1 (b) LGraph B2.2

= DMap . DMap
—— MNC —A+— MNC
10 —
‘g‘ 54 default E default
) .)
° 88 —a—8—8 ° 5 .
B H B H
£ i z |
£ 2 :] :
2]
14 4 1 a A A A
T T T T T T T T
16 64 256 1024 16 64 256 1024
Block Size b Block Size b

(c) DMap B2.4 (d) DMap B2.2

Figure 12: Accuracy with Varying Parameters.

because most non-zeros appear in the center region. Simi-
lar to most other image datasets, Mnist represents images
as rows in matrix X. Thus, pixel masking is a column-wise
operation. Exploiting this structure, MNC again yields the
exact result. In contrast, both the density map and sampling
have a relative error of ~ 1.76. Given the adversarial pattern,
MetaWC—with its worst-case guarantee—also performs very
well with a relative error of 1.13.

6.5 Baseline Parameter Configurations

One strength of our MNC sketch is that it does not require
parameters to trade-off between estimation overhead and
accuracy. However, to better understand the default configu-
rations of the baseline estimators, we conduct a systematic
evaluation of the layered graph and density map.

Layered Graph: The layered graph uses r-vectors to hold
random numbers—drawn from an exponential distribution—
for each node. Increasing the vector length (the number of
“rounds”), decreases the relative error in expectation, but
also linearly increases the estimation runtime. Figures 12(a)
and 12(b) show the resulting relative error with varying
number of rounds for B2.1 and B2.2 for which MNC yields
exact results. We see knees that are data-dependent but the
default of 32 usually attains very good accuracy. Note that on
datasets like AMin A—with significant structure—the relative
error differences can be quite large.

Density Map: Similarly, the density map’s block size b
determines the granularity of the retained sparsity structure
because sparsity is maintained for bxb blocks. Increasing the
block size leads to more aggregation and thus, likely lower
accuracy but also significantly decreased overhead due to the

50 4 B MetaAC B MNC Basic O DMap
B MNC B LGraph

Relative Error

PG PGG PGGG PGGGG

Figure 13: Accuracy Results for B3.3 Graph.

quadratic influence. Figures 12(c) and 12(d) show the relative
error with increasing block size for B2.4 and B2.2. Here, B2.4
replaces B2.1 because, with small block sizes, the density map
ran out of memory for the large B2.1 NLP matrix AMin A.
Overall, we see a rather small influence on the resulting error.
Note that for B2.2, only block sizes 16 and 32 can exploit
the column structure for Cov with 54 columns. Since, the
density map requires matching block sizes of all inputs for
matrix products and other operations, this data-dependent
configuration becomes a real challenge for arbitrary DAGs of
matrix operations with unknown sparsity of intermediates.

6.6 Accuracy for Chains of Operations

In a last set of experiments, we study the accuracy of MNC
and other estimators for entire matrix expressions using
the benchmark category B3 CHAIN. We start by showing a
negative result for matrix powers and then discuss the results
of more realistic matrix expressions.

Matrix Powers (B3.3): The benchmark query B3.3 con-
sists of a pure chain of matrix products PG G G G including
the fourth matrix power. Matrix powers is a common bench-
mark [16, 39, 57]—although closed-form solutions via inverse
exist [38]—and thus, it applies to all existing estimators, ex-
cept the bitset because a boolean matrix of G exceeds the
available memory. In detail, we constructed a selection ma-
trix P to extract the top 200 papers by number of references
from G. Then, we perform three more products with G to
determine transitively referenced papers over three hops.
Figure 13 shows the accuracy results for all intermediates
and the final output. There are four interesting observations.
First, the layered graph yields very good accuracy with only
slightly increasing errors, but at the cost of impractical over-
head as shown in Figures 7 and 8. Second, MNC computes the
exact sparsity for the initial selection, whereas the MetaAC
and density map estimators assume uniformity and thus,
fail to capture the structure of extracted rows. Third, maybe
surprising for a reader, MetaAC and density map show de-
creasing errors with increasing chain length. The reason is
that matrix powers are densifying operations that system-
atically increase the number of non-zeros and uniformity.
In contrast, our MNC estimator shows increasing errors for
longer chains and thus, is outperformed by both MetaAC
and density map. Our sketch propagation aims to propagate

MetaWC
MetaAC
MNC Basic
MNC
DMap
Bitset

10000 —

1000 —|

100 4

[SEupey N N |

Relative Error

B3.1 B3.4 B3.5

Figure 14: Accuracy Results for B3 CHAIN.

structure as much as possible, which is counter-productive
in scenarios like this with vanishing structure. Fourth, MNC
outperforms MNC basic (14.3 vs. 15.8) because the upper
bound helps determining the feasible output size p.

Mixed Expressions: The benchmark queries B3.1, B3.4,
and B3.5 include a mix of matrix products, element-wise
operations, and reorganizations. Hence, these benchmarks
do not apply to the layered graph. Furthermore, the bitset es-
timator failed to represent the ultra-sparse matrices in B3.1
and B3.4, which would require 7.8 TB and 2.3 TB, respec-
tively. Figure 14 shows the accuracy results for the remaining
estimators. First, B3.1 extends the NLP scenario from B2.1
with an additional reshape operation. Since this operation is
sparsity-preserving, the results are similar to B2.1. Second,
B3.4 computes predicted recommendations for known rat-
ings of a selected set of users. We constructed a selection
matrix P to extract the top 10K users according to their num-
ber of ratings, and random factors L and R with sparsity of
0.95 and 0.85, respectively. The element-wise multiplication
has exactly aligned non-zeros and thus, MNC computes the
exact sparsity, while MetaAC and the density map fail to rec-
ognize this structure. Third, B3.5 applies a boolean predicate
of masks X ® (R©® S + T) # 0) to the Mnistlm dataset X.
Here, R is the center mask from B2.5, S is a random mask
with sparsity 0.1 and T is a data-dependent mask X = 255 for
high-intensity pixels. Thus, we select all fully black pixels
and a fraction of 0.1 non-zeros in the center area. Although
MNC does not yield the exact sparsity, its error of 1.33 is
significantly lower then the errors of MetaWC, MetaAC, and
density map with 2.13, 2.87, and 2.71, respectively.

All Intermediates for B3.2: The final output of bench-
mark query B3.2—as used for deferred scaling and shifting—is
typically small and dense. However, for matrix chain opti-
mization, the error of all intermediates matters. Disregarding

ST XT diagw) X s B ST

XT diagw) X S B
(b) MNC Relative Errors

(a) DMap Relative Errors

Figure 15: Accuracy of All Intermediates for B3.2.

the leaf node reorganizations, we have five matrix products
and hence 15 intermediates (i.e., sub chains). Figure 15 com-
pares the accuracy of the density map and MNC for all in-
termediates. We use Mnistlm as input X with appended
column of ones and left-deep estimation per intermediate.
The density map struggles with the special scale-and-shift
matrix, resulting in a large final relative error of 98.6. Also,
mistakenly estimating X S B as sparse could lead to a disas-
trous plan. In contrast, MNC yields the exact sparsity for
many intermediates and a very small final error of 1.002. We
observed a similar behavior for B3.2 with Cov as input, with
errors up to 13,750 for the density map and 2.35 for MNC.

7 RELATED WORK

We review related work from the areas of cardinality estima-
tion, sparsity estimation for matrix products, and advanced
optimizations in ML systems that aim to exploit sparsity.

Join Cardinality Estimation: Query cardinality estima-
tion is a well-studied problem, which relates to estimating
the number of distinct items or the cardinality of selection,
join, and grouping operators. First, distinct item estimation
typically relies on sampling [14, 28], or scan-based synopses
[8, 31, 36]. Examples for scan-based synopses are Hyper-
LogLog [31] and KMV [8], which have proven accurate but
do not directly apply to intermediates. However, the AKMV
synopsis (KMV synopsis with counters) allows composing
synopses for union, intersection, and difference [8]. Second,
join cardinality estimation via sampling [27, 44, 63] faces
the challenge that large queries might produce empty re-
sults for many distinct items. Other work tackles this chal-
lenge via linked synopses [23], correlated sampling [64],
or index-based join sampling [45]. Recent work further
combines sampling with HyperLogLog sketches for multi-
column estimates [22]. Another alternative to sampling is
the maintenance of histograms for attributes of base rela-
tions [18, 37]. However, to the best of our knowledge, none
of these techniques addresses chains of join-group-by pairs
(or join-project with set semantics [6]) that could emulate
matrix product chains and other operations.

Matrix Product Sparsity Estimation: Apart from the
sparsity estimators [5, 10, 16, 39, 49, 65] discussed in Sec-
tion 2, there is also work on propagating size information
and other matrix properties through linear algebra programs.
First, similar to constant and type propagation, existing work
in Matlab and SystemML propagates constant matrix dimen-
sions according to operation semantics through operator
DAGs and conditional control flow [10, 19]. However, these
works do not deal with sparsity or rely on conservative worst-
case estimates to guarantee memory constraints. Second,
based on similar propagation techniques, Sparso [59] also
propagates structural properties such as knowledge about

symmetric, triangular, and diagonal matrices, which can be
exploited by subsequent, data-dependent operations. Third,
existing work has already shown that sparsity estimation is
crucial for finding good orders during matrix multiplication
chain optimization [16, 39]. However, none of these works
composes estimates from exact and approximate fractions.
Furthermore, the MNC sketch offers a unique balance be-
tween good accuracy—especially in the presence of structural
properties—and guaranteed low overhead.

Sparsity Estimation in Compressed Sensing: Com-
pressed sensing studies the reconstruction of a sparse matrix
X from few samples. Since many techniques require the spar-
sity of X as a parameter, Lopes introduced an estimator of a
stable sparsity measure that constitutes a lower bound of the
real sparsity [51]. To apply this or similar techniques (e.g., fill
estimation for blocked sparse formats [3]) in our context, we
would sample cells of X;; = AB and compute dot products
A; B; to estimate the sparsity sc. However, similar to Egpp,
this approach does not apply to chains of matrix operations.

Advanced Optimization in ML Systems: Compilation
techniques in large-scale ML systems increasingly leverage
sparsity for better cost estimation and more efficient runtime
plans. Existing techniques include (1) sparsity-exploiting
operators in Cumulon [33], SystemML [11], and MatFast [65],
(2) automatic operator fusion for sparse operator pipelines
[12, 20], and (3) worst-case optimal semi-join reductions [41].
Estimating sparsity for matrix products and element-wise
operations also relates to holistic sum-product optimizations
[20, 53] of linear algebra programs. Therefore, practical—i.e.,
accurate and low-overhead—techniques for estimating the
sparsity of realistic matrix expressions are widely applicable.

8 CONCLUSIONS

To summarize, after an analysis of existing sparsity estima-
tors, we introduced the very simple, count-based MNC sketch
that exploits structural properties for better sparsity estima-
tion. We described estimation algorithms for matrix products,
other common operations, and the propagation of sketches
for entire DAGs of these operations. Furthermore, we intro-
duced a sparsity estimation benchmark to simplify compari-
son and foster further improvements. Our experiments have
shown that the MNC sketch offers good accuracy—especially
in the presence of structural properties—while requiring only
modest construction and estimation overhead. In conclusion,
the MNC sketch is a versatile tool—which is broadly appli-
cable in modern ML systems—for decisions on formats and
preallocation, as well as cost-based, sparsity-aware optimiza-
tion of DAGs of linear algebra operations. Interesting future
work includes (1) MNC sketches in advanced optimizers,
(2) confidence intervals, (3) additional operations, and (4)
support for distributed matrices and operations.

A EXTENDED SAMPLING-BASED
ESTIMATOR

In this appendix, we extend the biased, sampling-based esti-
mator from [65] to yield an unbiased estimator with higher
accuracy at similar costs. Furthermore, we briefly describe a
more expensive hybrid estimator that relies on hashing and
sampling [5], and provide experimental results on how these
sampling-based estimators compare.

Unbiased Sampling-based Estimator: The idea is to
compute the expected number of non-zeros resulting from
element-wise additions of the k sampled outer products as
ml(1 — [Ties(1 — vi)), where vy = nnz(Ax) - nnz(Bg.)/ml.
We now assume that the remaining n — |S| outer products
are each probabilistically generated according to the empiri-
cal distribution of the |S| observed outer products. That is,
the probability that a non-zero appears in any matrix cell
in a remaining outer product will be © = (1/|S]) D res Vk-
Putting all of this together, our sparsity estimate is

Se=1-01-97[|1 -wp), (16)

keS

where g = n — |S|. For a chain of matrix products, we take
nnz(M:(]];)) = mjs; when computing s;.; here s; is the spar-
sity estimate for MY) and m ; is the number of rows in MO,
Interestingly, for n = |S|, this approach is equivalent to the
MNC fallback case shown in Algorithm 1, line 10.
Hashing- and Sampling-based Estimator [5]: The
hash-based estimator [5] extends ideas from KMV (k min-
imum values) synopses [7, 8]—that maintain the k = 1/¢?
minimum hash values to derive an estimate for the number
of distinct items—by the use of pairwise independent hash
functions and sampling. Similar to the KMV estimator, this
hash-based sparsity estimator is scan-based; it iterates over
all columns in A.; and rows B;., hashes row and column in-
dexes, samples rows and columns whose hash is below the
sample fraction, and maintains a buffer of the k minimum
pair hashes. Hence, its time complexity is O(d + nnz(A, B)).
Additional Experimental Results: Finally, Table 4
shows the resulting accuracy—in terms of the relative error
in [1, oo)—of the extended (i.e., unbiased) estimator as well as
the hash-based estimator [5] for all single matrix operations.
We observe that the unbiased estimator generally performs
very well but is still worse than the more expensive hash-
based estimator and much worse than our MNC estimator.
Additionally, there are three noteworthy special cases. First,
for B1.5, the biased estimator computes the exact result due
to its lower-bound assumption, whereas the unbiased estima-
tor fails to recognize the structure and vastly overestimates.
Second, the unbiased estimator still struggles to estimate the
column projections in B2.2 due to varying sparsity across

Table 4: Accuracy of Sampling-based Estimators.

Name Biased [65] | Unbiased | Hash [5] | MNC
B1.1 NLP 84.0 1.55 1.78 1.0
B1.2 Scale 53,560 1.01 1.13 1.0
B1.3 Perm 92,535 1.27 1.17 1.0
B1.4 Outer INF INF 1.0 1.0
B1.5 Inner 1.0 99,999 INF 1.0
B2.1 NLP 44.2 1.60 1.10 1.0

B2.2 Project INF 2.95 1.45 1.0
B2.3 CoRefG 54.4 1.80 1.04 1.17
B2.4 EmailG 91.8 1.37 1.01 1.09

B2.5 Mask 1.76 1.76 N/A 1.0

columns. Third, B2.5 refers to element-wise multiplication,
for which we implemented unbiased estimators and thus,
there are no differences.

B MULTI-THREADED BITSET
ESTIMATOR

The experiments in Section 6 used single-threaded sketch
construction and estimation to ensure a fair comparison of
estimators and reflect their use during compilation. How-
ever, a natural question is if the exact, compute-bound bitset
estimator would benefit from multi-threading more than the
other estimators (like MNC), which are memory-bandwidth
bound. In favor of the dense bitset, we use a dense product
of two random 20K X 20K matrices with sparsity 0.99 (see
Figure 7(a)). Multi-threading improves the total bitset esti-
mation runtime (construction and estimation) from 128.2's
to 11.7 s (using 12 physical cores), which is a speedup of
almost 11x. However, even the single-threaded MNC Basic
and MNC still outperform the bitset with 3.2 s and 5.1, re-
spectively. Most importantly, the MNC sketch exhibits much
better asymptotic behavior for large or very sparse matrices.
Unlike the bitset, the MNC runtime is also mostly dominated
by sketch construction not estimation, which is important
because input sketches can be constructed once and used
many times for estimating alternative plans.

C OPTIMIZER INTEGRATION

Although not the focus of this paper, in this section, we
present a proof-of-concept integration into SystemML'’s op-
timizing compiler. We introduced an additional dynamic
rewrite for sparsity-aware matrix multiplication chain opti-
mization, which is still disabled by default.

MMChain Rewrite: Matrix multiplication chain opti-
mization of n matrices (MM, M®, ..., M(™) aims to find the
optimal parenthesization of these associative matrix prod-
ucts. The number of alternative plans is computed by the
Catalan number C,_; = (2n — 2)!/(n!(n — 1)!). However,
this problem can be solved efficiently via dynamic program-
ming [17]. In SystemML, we use a textbook algorithm [17]

“|~e— 100K Random Plans
—&— Dense mmchain opt
—A— Sparse mmchain opt

=
=
I

Frequency

100 —

1 -

1 10 100 1K 10K 100K M
Slowdown over Best Plan

Figure 16: Optimized vs. 100,000 Random Plans.

with cubic time and quadratic space complexity (although an
O(nlog n) algorithm exists [32]) due to its simplicity and the
rarity of long chains of pure matrix products. This algorithm
uses an n X n cost matrix C for memoizing optimal costs
of subchains, as well as an n X n matrix S to keep track of
related optimal splits. Our sparsity-aware algorithm is a sim-
ple extension by an additional n X n matrix E for memoizing
sketches of optimal subchains. Instead of computing dense
costs, we compute the cost of a subchain by

C,'»j = mll’l (Ci,k + Ck+1,j + Ei’k.hc Ek_,_l’j.hr) s (17)

keli,j-1]

because the number of non-zero pairs—computed via the
dot product h® h" —represents the number of floating point
operations of a sparse matrix multiplication (independent of
the output sparsity) [16]. For the optimal subplan, we finally
perform sketch propagation and store the sketch in E; ;.

Experimental Results: Inspired by recent work on op-
timizing large join queries [56], we create a matrix product
chain of n = 20 matrices with dimensions 10, 103, 104, 104,
103, 10, 10, 1, 10%, 10 (repeated twice), and 1, as well as
random sparsity in [107%, 1] for every third matrix and 0.1
otherwise. Figure 16 plots the distribution of min-normalized
costs of 100,000 random plans (of Cy9 = 1,767,263,190 pos-
sible plans). Due to uniformly distributed non-zero values,
the estimation errors are negligible. We observe that the cost
difference between the worst and best plans is more than six
orders of magnitude, and that the default dynamic program-
ming algorithm—which is unaware of the sparsity—yields a
plan that is 99.1x worse than the best plan. In contrast, our
extended rewrite finds the optimal plan. However, this is
merely a proof of concept because in practice long chains of
matrix products are rare. Instead there is a need for extended
algorithms that optimize matrix products and other oper-
ations together. We believe this is an interesting direction
for future work and our MNC sketch allows computing the
necessary sparsity-aware costs.

ACKNOWLEDGMENTS

We thank the authors of the hash-based estimator [5] for pro-
viding their source code as well as our anonymous reviewers
for their valuable comments.

REFERENCES

[1] Martin Abadi et al. 2016. TensorFlow: A System for Large-Scale Ma-

chine Learning. In OSDL 265-283.

Ildar Absalyamov, Michael J. Carey, and Vassilis J. Tsotras. 2018. Light-

weight Cardinality Estimation in LSM-based Systems. In SIGMOD.

841-855.

Peter Ahrens, Helen Xu, and Nicholas Schiefer. 2018. A Fill Estimation

Algorithm for Sparse Matrices and Tensors in Blocked Formats. In

IPDPS. 546-556.

AMiner. 2017. Citation Network Dataset.

lab-datasets/citation/dblp.v10.zip.

Rasmus Resen Amossen, Andrea Campagna, and Rasmus Pagh. 2014.

Better Size Estimation for Sparse Matrix Products. Algorithmica 69, 3

(2014), 741-757.

Rasmus Resen Amossen and Rasmus Pagh. 2009. Faster Join-Projects

and Sparse Matrix Multiplications. In ICDT. 121-126.

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca

Trevisan. 2002. Counting Distinct Elements in a Data Stream. In

RANDOM. 1-10.

Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and

Rainer Gemulla. 2007. On Synopses for Distinct-Value Estimation

Under Multiset Operations. In SIGMOD. 199-210.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017.

Julia: A Fresh Approach to Numerical Computing. SIAM Review 59, 1

(2017).

[10] Matthias Boehm, Douglas R. Burdick, Alexandre V. Evfimievski,
Berthold Reinwald, Frederick R. Reiss, Prithviraj Sen, Shirish
Tatikonda, and Yuanyuan Tian. 2014. SystemML’s Optimizer: Plan
Generation for Large-Scale Machine Learning Programs. IEEE Data
Eng. Bull. 37,3 (2014), 52-62.

[11] Matthias Boehm, Michael Dusenberry, Deron Eriksson, Alexandre V.
Evfimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Rein-
wald, Frederick Reiss, Prithviraj Sen, Arvind Surve, and Shirish
Tatikonda. 2016. SystemML: Declarative Machine Learning on Spark.
PVLDB 9, 13 (2016), 1425-1436.

[12] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen,
Alexandre V. Evfimievski, and Niketan Pansare. 2018. On Optimizing
Operator Fusion Plans for Large-Scale Machine Learning in SystemML.
PVLDB 11, 12 (2018), 1755-1768.

[13] Léon Bottou. [n. d.]. The infinite MNIST dataset.
bottou.org/projects/infimnist.

[14] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek R.
Narasayya. 2000. Towards Estimation Error Guarantees for Distinct
Values. In PODS. 268-279.

[15] Edith Cohen. 1994. Estimating the Size of the Transitive Closure in
Linear Time. In FOCS. 190-200.

[16] Edith Cohen. 1998. Structure Prediction and Computation of Sparse
Matrix Products. J. Comb. Optim. 2, 4 (1998), 307-332.

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2009. Introduction to Algorithms. MIT Press.

[18] Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris
Jermaine. 2012. Synopses for Massive Data: Samples, Histograms,
Wavelets, Sketches. Foundations and Trends in Databases 4, 1-3 (2012),
1-294.

[19] Luiz A. DeRose. 1996. Compiler Techniques for MATLAB Programs.
Technical Report.

[20] Tarek Elgamal, Shangyu Luo, Matthias Boehm, Alexandre V. Ev-
fimievski, Shirish Tatikonda, Berthold Reinwald, and Prithviraj Sen.
2017. SPOOF: Sum-Product Optimization and Operator Fusion for
Large-Scale Machine Learning. In CIDR.

[2

—

3

[t

(4 static.aminer.cn/

—

(5

—_

(6

—

[7

—

8

—

[9

—

http://leon.

[21] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss,

[22

[28

[29

(30

[31

(32
(33

(34

(35
[36
(37
(38

(39

[40

[41
[42

(43

(44

—

—

]

=

—

]

[lan i

e Gl

]

]

—

]
]

=

and Berthold Reinwald. 2016. Compressed Linear Algebra for Large-
Scale Machine Learning. PVLDB 9, 12 (2016), 960-971.

Michael J. Freitag and Thomas Neumann. 2019. Every Row Counts:
Combining Sketches and Sampling for Accurate Group-By Result
Estimates. In CIDR.

Rainer Gemulla, Philipp Résch, and Wolfgang Lehner. 2008. Linked
Bernoulli Synopses: Sampling along Foreign Keys. In SSDBM. 6-23.
John R. Gilbert, Cleve Moler, and Robert Schreiber. 1992. Sparse Matri-
ces in Matlab: Design and Implementation. SIAM J. Matrix Anal. Appl.
13,1 (1992), 333-356.

Google. [n. d.]. word2vec. code.google.com/archive/p/word2vec.
Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Lynne Stokes. 1995.
Sampling-Based Estimation of the Number of Distinct Values of an
Attribute. In VLDB. 311-322.

Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Arun N. Swami.
1996. Selectivity and Cost Estimation for Joins Based on Random
Sampling. J. Comput. Syst. Sci. 52, 3 (1996), 550-569.

Peter J. Haas and Lynne Stokes. 1998. Estimating the Number of
Classes in a Finite Population. J. Amer. Statist. Assoc. 93, 444 (1998),
1475-1487.

Hazar Harmouch and Felix Naumann. 2017. Cardinality Estimation:
An Experimental Survey. PVLDB 11, 4 (2017), 499-512.

Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling
the Visual Evolution of Fashion Trends with One-Class Collaborative
Filtering. In WWW. 507-517.

Stefan Heule, Marc Nunkesser, and Alexander Hall. 2013. HyperLogLog
in practice: algorithmic engineering of a state of the art cardinality
estimation algorithm. In EDBT. 683-692.

T. C. Hu and M. T. Shing. 1984. Computation of Matrix Chain Products.
Part II. SIAM J. Comput. 13, 2 (1984), 228-251.

Botong Huang, Shivnath Babu, and Jun Yang. 2013. Cumulon: Opti-
mizing Statistical Data Analysis in the Cloud. In SIGMOD. 1-12.
Botong Huang, Matthias Boehm, Yuanyuan Tian, Berthold Reinwald,
Shirish Tatikonda, and Frederick R. Reiss. 2015. Resource Elasticity
for Large-Scale Machine Learning. In SIGMOD. 137-152.

Yannis E. loannidis and Stavros Christodoulakis. 1991. On the Propa-
gation of Errors in the Size of Join Results. In SIGMOD. 268-277.
Daniel M. Kane, Jelani Nelson, and David P. Woodruff. 2010. An
optimal algorithm for the distinct elements problem. In PODS. 41-52.
Carl-Christian Kanne and Guido Moerkotte. 2010. Histograms
Reloaded: The Merits of Bucket Diversity. In SIGMOD. 663-674.
Jeremy Kepner and John Gilbert. 2011. Graph Algorithms in the Lan-
guage of Linear Algebra. SIAM.

David Kernert, Frank Kohler, and Wolfgang Lehner. 2015. SpMacho
- Optimizing Sparse Linear Algebra Expressions with Probabilistic
Density Estimation. In EDBT. 289-300.

David Kernert, Wolfgang Lehner, and Frank Kohler. 2016. Topology-
Aware Optimization of Big Sparse Matrices and Matrix Multiplications
on Main-Memory Systems. In ICDE. 823-834.

Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ:
Questions Asked Frequently. In PODS. 13-28.

Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classi-
fication. In EMNLP. 1746-1751.

Arun Kumar, Matthias Boehm, and Jun Yang. 2017. Data Manage-
ment in Machine Learning: Challenges, Techniques, and Systems. In
SIGMOD. 1717-1722.

Per-Ake Larson, Wolfgang Lehner, Jingren Zhou, and Peter Zabback.
2007. Cardinality estimation using sample views with quality assur-
ance. In SIGMOD. 175-186.

[45]

[46]
[47]
[48]
[49]

[50]

[51]
[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and
Thomas Neumann. 2017. Cardinality Estimation Done Right: Index-
Based Join Sampling. In CIDR.

J. Leskovec, J. Kleinberg, and C. Faloutsos. [n. d.]. SuiteSparse Matrix
Collection: email-EuAll. sparse.tamu.edu/SNAP/email-EuAll.
Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. 2007. Graph
evolution: Densification and shrinking diameters. TKDD 1, 1 (2007).
M. Lichman. [n. d.]. UCI Machine Learning Repository: Covertype.
https://archive.ics.uci.edu/ ml/datasets/Covertype.
Weifeng Liu and Brian Vinter. 2014. An Efficient GPU General Sparse
Matrix-Matrix Multiplication for Irregular Data. In IPDPS. 370-381.
Gaélle Loosli, Stéphane Canu, and Léon Bottou. 2007. Training Invari-
ant Support Vector Machines using Selective Sampling. In Large Scale
Kernel Machines, Léon Bottou, Olivier Chapelle, Dennis DeCoste, and
Jason Weston (Eds.). MIT Press, Cambridge, MA., 301-320.

Miles Lopes. 2013. Estimating Unknown Sparsity in Compressed
Sensing. In ICML. 217-225.

Julian McAuley. [n. d.]. Amazon Product Data - Books.
jmcauley.ucsd.edu/data/amazon.

Vijay Menon and Keshav Pingali. 1999. High-Level Semantic Opti-
mization of Numerical Codes. In ICS. 434-443.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Ef-
ficient Estimation of Word Representations in Vector Space. CoRR
(2013).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Distributed Representations of Words and Phrases
and their Compositionality. In NIPS. 3111-3119.

Thomas Neumann and Bernhard Radke. 2018. Adaptive Optimization
of Very Large Join Queries. In SIGMOD. 677-692.

Milos Nikolic, Mohammed Elseidy, and Christoph Koch. 2014. LIN-
VIEW: incremental view maintenance for complex analytical queries.
In SIGMOD. 253-264.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. 2017. Automatic differentiation in PyTorch. (2017).
Hongbo Rong, Jongsoo Park, Lingxiang Xiang, Todd A. Anderson, and
Mikhail Smelyanskiy. 2016. Sparso: Context-driven Optimizations of
Sparse Linear Algebra. In PACT. 247-259.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-
June Paul Hsu, and Kuansan Wang. 2015. An Overview of Microsoft
Academic Service (MAS) and Applications. In WWW - Companion
Volume. 243-246.

Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman.
2011. The Architecture of SciDB. In SSDBM. 1-16.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.
2008. ArnetMiner: Extraction and Mining of Academic Social Networks.
In SIGKDD. 990-998.

Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-
Based Query Re-Optimization. In SIGMOD. 1721-1736.

Feng Yu, Wen-Chi Hou, Cheng Luo, Dunren Che, and Mengxia Zhu.
2013. CS2: a new database synopsis for query estimation. In SIGMOD.
469-480.

Yongyang Yu, MingJie Tang, Walid G. Aref, Qutaibah M. Malluhi,
Mostafa M. Abbas, and Mourad Ouzzani. 2017. In-Memory Distributed
Matrix Computation Processing and Optimization. In ICDE.

Reza Bosagh Zadeh, Xiangrui Meng, Alexander Ulanov, Burak Yavuz, Li
Pu, Shivaram Venkataraman, Evan R. Sparks, Aaron Staple, and Matei
Zaharia. 2016. Matrix Computations and Optimization in Apache
Spark. In SIGKDD. 31-38.

	Abstract
	1 Introduction
	2 Existing Sparsity Estimators
	2.1 Naïve Estimators
	2.2 Density Map Estimator
	2.3 Sampling-based Estimators
	2.4 Graph-based Estimators
	2.5 Discussion and Analysis

	3 MNC Sketch
	3.1 MNC Framework
	3.2 Sparsity Estimation
	3.3 Sketch Propagation

	4 Additional Operations
	4.1 Sparsity Estimation
	4.2 Sketch Propagation

	5 Sparsity Estimation Benchmark
	6 Experiments
	6.1 Experimental Setup
	6.2 Construction and Estimation
	6.3 Accuracy for Matrix Products
	6.4 Accuracy for Other Operations
	6.5 Baseline Parameter Configurations
	6.6 Accuracy for Chains of Operations

	7 Related Work
	8 Conclusions
	A Extended Sampling-based Estimator
	B Multi-Threaded Bitset Estimator
	C Optimizer Integration
	Acknowledgments
	References

