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Compression is an effective technique for fitting data in available memory, reducing I/O, and increasing

instruction parallelism. While data systems primarily rely on lossless compression, modern machine learning

(ML) systems exploit the approximate nature of ML and mostly use lossy compression via low-precision

floating- or fixed-point representations. The resulting unknown impact on learning progress, and model

accuracy, however, create trust concerns, that require trial and error, and are problematic for declarative

ML pipelines. Given the trend towards increasingly complex, composite ML pipelines—with outer loops for

hyper-parameter tuning, feature selection, and data cleaning/augmentation—it is hard for a user to infer the

impact of lossy compression. Sparsity exploitation is a common lossless scheme used to improve performance

without this uncertainty. Evolving this concept to general redundancy-exploiting compression is a natural next

step. Existing work on lossless compression and compressed linear algebra (CLA) enable such exploitation

to a degree, but face challenges for general applicability. In this paper, we address these limitations with a

workload-aware compression framework, comprising a broad spectrum of new compression schemes and

kernels. Instead of a data-centric approach that optimizes compression ratios, our workload-aware compression

summarizes the workload of an ML pipeline, and optimizes the compression and execution plan to minimize

execution time. On various micro benchmarks and end-to-end ML pipelines, we observe improvements for

individual operations up to 10,000x and ML algorithms up to 6.6x compared to uncompressed operations.

CCS Concepts: • Theory of computation→ Data compression; • Information systems→ Data com-
pression; Data scans; • Computing methodologies→ Linear algebra algorithms; Machine learning.
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1 INTRODUCTION
Data compression dates back to old Morse code (from the eighteen-hundreds) that uses shorter

codewords for common letters [80]. In modern data management and machine learning (ML)

systems, compression is a well-established and effective technique for fitting data in available

memory, reducing I/O and memory bandwidth requirements [25, 62], and increasing instruction

parallelism [79]. Data management systems with declarative interfaces almost exclusively rely on

lossless compression in order to ensure correct results, and lightweight techniques [21, 22] that

offer a good balance of compression ratios and (de)compression speed.
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Compression: In contrast to lossless compression in data systems, ML systems—especially for

mini-batch training of deep neural networks (DNN) predominately exploit the approximate nature

of ML models and apply lossy compression such as quantization (i.e., static or dynamic discretiza-

tion) [30, 84], sparsification (clipping of low quantities) [29, 56], new data types (e.g., bfloat16,
TF32) [39, 56, 65], dimensionality reduction [34] and sampling (few step/epoch mini-batch train-

ing [72], or sampled batch training [60]). However, lossy compression introduces unknown behavior

on new datasets and models, which creates trust concerns and requires an exploratory trial-and-

error process [78]. In contrast, lossless compression ensures result correctness, but is less commonly

applied in ML. Examples include—besides general-purpose lossless matrix compression like Snappy

or LZ4—value-indexed representations [37, 40], grammar-compressed matrices [73], tuple-oriented

coding (TOC) [45] and Compressed Linear Algebra (CLA) [25, 26].

Redundancy Exploitation: Sparsity exploitation is currently a major trend across the stack

from hardware [56, 58], over systems [14, 50, 70], to algorithms [28, 29, 63], but its applicabil-

ity is limited to sparse data (many zero values). Previous work on compressed linear algebra

(CLA) [25, 26] further allowed for more general redundancy exploitation (with repeated values and

correlation) by applying lightweight lossless compression techniques like dictionary, run-length,

and offset-list encoding and executing linear algebra operations like matrix-vector multiplications

and element-wise operations directly on compressed representations. CLA was integrated into

Apache SystemML [13], but by default only applied for multi-column matrices, whose size exceed

aggregated cluster memory, and all operations are supported in compressed space. These constraints

ensure that online compression overheads are amortized but limit applicability in practice.

Aware Goals and Contributions: We aim to improve the applicability of lossless matrix

compression in complex ML pipelines. The key objective is to optimize for execution time of

a given workload instead of compression ratios. This metric also covers reduced compression

time to amortize online compression, optimization for size if data access is the bottleneck, and

fast operations via specialized compression decisions, kernels, and execution plans. To this end,

we introduce a workload-aware matrix compression framework (for full matrices or tiles of a

distributed matrix), and make the following detailed technical contributions:

• Compression Framework: New encodings and compressed operations (Section 3 and 4), which

are designed for compressed intermediates and thus, chains of operations.

• Workload-aware Compression: Novel workload-aware compression planning and compilation

techniques (Section 5).

• Experiments: Local & distributed experiments comparing uncompressed linear algebra (ULA),

CLA [25, 26], TensorFlow, and Aware on various workloads (Section 6).

2 BACKGROUND AND OVERVIEW
This section reviews the main characteristics of CLA and its limitations, which directly motivate key

design decisions of Aware. CLA [25, 26] is a lossless compression framework leveraging column-

wise compression, column co-coding (encode groups of columns as single units), and heterogeneous

column encoding schemes. This design exploits characteristics of feature matrices—with categorical

and numerical features in columns—namely, tall and skinny matrices, non-uniform sparsity, low

cardinality and correlations. Since the selection of column groups is strongly data-dependent, CLA

introduced a sampling-based compression planning for online compression after an initial read of an

input matrix. Once compressed, specialized kernels work directly on the compressed representation

if applicable and efficient, otherwise fall back to decompression followed by uncompressed kernels.
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Table 1. Differences of CLA and Aware

CLA [25, 26] Aware

Co-Coding O(𝑚2) O(𝑚)
Column Group Encodings 4 (5) 7 (327)

Materialization Eager Deferred

Optimization Objective Data Data & Ops

Matrix Multiplication MV, VM MV, VM, MM

2.1 Limitations of CLA
Despite CLA’s compelling properties—allowing operations directly on the compressed

representations—there are limitations and missing functionality that hinder general applicability.

Compression Costs: The original CLA’s [25] sampling-based compression planning used a

sample fraction and a co-coding algorithm that—ignoring greedy partitioning—required O(𝑚3)
group extractions from the sample. The refined CLA [26] improved the co-coding approach via

memoization to O(𝑚2) group extractions. However, despite column classification into compressible

and incompressible columns, matrices with no or minor compression benefits were recognized

much too late, after incurring already substantial overhead. Furthermore, the super-linear co-coding

complexity becomes infeasible for millions of columns.

Compressed Intermediates: CLA performs online compression for input matrices and keeps

outputs of amenable operations like matrix-scalar element-wise multiplications, or scaling and shift-

ing compressed. Other operations produce uncompressed outputs (e.g., after feature transformations

or data cleaning). In complex, exploratory ML pipelines there are multiple sources of redundancy

though, which would largely benefit from a more fine-grained selection of intermediates and

optimization of their individual compression schemes.

Optimization Objective: The design and implementation of CLA aimed at the sweet spot

of compressed operation performance close to uncompressed (low in-memory overhead), while

achieving good compression ratios (fit larger data in memory, reduced I/O for large data). Besides

this hand-crafted tuning, the internal objective for selecting compression schemes and co-coding

then only focuses on minimizing compressed size. Fundamentally, however, the overall optimization

objective should be total execution time, factoring in compression, compressed operations, and

potential I/O in order to better adapt to data, operation, and cluster characteristics.

2.2 Aware Overview
Our workload-aware compression addresses these limitations with new techniques for compression

planning, compressed intermediates, and different optimization objectives. Table 1 highlights these

key differences between CLA and Aware. First, to reduce compression time, we introduce a new

co-coding technique that performs group combinations instead of group extractions, reducing the

overhead to analyze groups. Our co-coding approach further includes a new enumeration heuristic

that only evaluates O(𝑚) group combinations. Second, for extended utilization of compressed

intermediates, we provide new column group encodings that facilitate shallow-copy operations.

Table 1 shows the number of high-level column group types and—in parenthesis—the total number

of variations of these encodings. We also introduce a deferred operation/encoding design, where

compressed operations can output different types of encodings, allowing compressed intermediates

where CLA would decompress or return inefficient representations. Furthermore, Aware natively

supports compressed matrix-matrix multiplication (even with two compressed inputs), unlike

CLA that would process it via repeated matrix-vector multiplications and thus decompresses one
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Table 2. Overview of CLA and Aware Column Groups.

Type Description CLA [25, 26] Aware

CON Constant or Empty Columns ✓
DDC Dense Dictionary Coding ✓ ✓
OLE Offset-list Encoding ✓ (✓)
FOR Frame of Reference ✓
RLE Run-length Encoding ✓ (✓)
SDC Sparse Dictionary Coding ✓
UC Uncompressed (dense/sparse) ✓ ✓

side. And above all, Aware uses a cost-based optimization objective of minimizing the workload

execution time and thus, tuning the compression process, the compressed representation, and

compressed operations in a principled way.

3 COMPRESSION
This section describes Aware’s compressed representation, selected new concepts, and the overall

compression algorithm. The new encoding schemes are designed for redundancy exploitation across

operations, while the new compression algorithm ensures fast, easy to amortize compression.

3.1 Compressed Representation
Aware encodes each column group independently in a specific encoding type. Table 2 shows these

column-group encodings, as well as the differences to CLA. Figure 1 then presents an example of

compressing a 10 × 6 matrix into three single-column groups (0, 2 and 5), one two-column group

({1, 3}), and an empty group. Also shown is an element-wise scalar subtraction on the compressed

matrix, creating two alternative compressed outputs (A and B).

Dense Dictionary Coding (DDC) contains two parts: a dictionary with the distinct value tuples

in the column group, (shown in Figure 1 as a Dict with 2 values for column {0}), and an index

structure with a row-to-tuple mapping (e.g., dictionary position). DDC is dense because each row

input is assigned a code in the map.

Sparse Dictionary Coding (SDC) is a combination of DDC and sparse matrix formats like

compressed sparse rows (CSR). An example is shown in yellow for columns {1, 3} in Figure 1.

Like DDC, each group has a dictionary of all unique tuples except the most frequent tuple named

“Def” for default. This scheme encodes row locations of non-default tuples in the index structure

as row-index pairs. This approach is similar to compressed sparse columns (CSC) that store row-

index/value pairs for non-zero values, but extends it for general redundancy exploitation (default

values, dictionary references). The row part is further specialized to delta offsets (“Off”) from

previous rows to allow smaller physical codewords. Finally, a “Map” (index part of CSC) maps

offsets to tuples in the dictionary, similar to DDC. SDC specializes into SDCZero, where zero

default entries are removed like in the {2} blue column group, and SDCSingle for binary data (one

dictionary entry, one default), removing the need of codes like in the {4} orange column group.

Frame of Reference (FOR) is used as a second layer on top of DDC or SDC (called DDCFOR,

SDCFOR). This encoding shallow-copies the index structures and dictionaries, and allocates a

reference tuple, that indicates a global value offset. An SDC group can zero-out the default tuple by

adding it to the dictionary and subtracting it from the reference tuple (converted to SDCZero).

Offset-list Encoding (OLE) is a CLA encoding scheme, but largely superseded by SDC. SDC

has in general worse compression than OLE, but SDC allow the group to densify its values without
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0

1
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Const{0, 1, 2, 3, 4, 5}
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Dict -3
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Const{4}

Ref -7
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B: Processed

Compress

Binary MatrixScalar
Operation: Subtract 7

Fig. 1. Example Aware Matrix Compression and Operation (with Alternative Compressed Outputs).

having to modify its index structure, while if densified OLE encode a value for each row making it

inefficient and potentially bigger.

Run-length Encoding (RLE) is unlikely beneficial in Aware since co-coding many columns—

which is good for operation performance, and likely to be done in scenarios with good RLE

compression—makes it unlikely to retain sufficiently long runs. RLE also reallocates the index

structure on densifying operations.

Constant Encodings are used for empty, constant columns, and constant tuple column groups.

CLA encodes such groups using run-length encoding (RLE). Instead we specialize with constant

groups in order to simplify operations with compressed outputs.

Dictionaries: CLA uses basic FP64 dictionaries. In contrast, Aware generalizes the data binding

of dictionaries and uses basic FP64 and INT8 arrays, or sparse matrices. The more columns co-coded,

the more zeros might be included in unique tuples and thus, warrant a sparse dictionary. Aware

does not share dictionaries across multiple column groups like CLA does in some cases.

Index Encodings: The different column group implementations share common primitives such

as Map and Off, of different value types (not shown in the figure). Map supports encodings in Bit,

Byte, UByte, Char, Char+Byte and Int, while Off supports delta-encoded Byte or Char arrays, and

specializations for one/two offsets.

Overlapping Column Groups: Aware allows column groups to overlap with partial sum

semantics. Multiple column groups may refer to the same column but store separate dictionaries

and index structures. Overlapping helps column groups preserve (and due to compression, eliminate)

structural redundancy of intermediates for chains of operations such as matrix multiplication, row

sums aggregation, and scalar or column addition.

An Operation Example: Figure 1 (right) shows an operation example subtracting 7 from the

compressed matrix. Option A creates an overlapping representation with pointers to the input

column groups and a new constant group subtracting 7 from the entire matrix. In contrast, Option

B performs the subtraction on all column groups, creating different output group types. The empty

column becomes a Const group of -7. Column {2} in blue becomes a SDCFOR group that copies

pointers to the previous dictionary and index structure, and only materializes a new reference value.

The SDCSingle group in orange becomes an SDCSingleZero because Def 7-7 yields 0. The SDC group

in yellow has a different default value, and thus, produces an SDCFOR group, where we subtract

the default value from the dictionary, and subtract 7 from the default value as new reference value.

The total costs of Option A is 1 FLOP and allocation of small arrays and pointers. Option B requires

13 FLOPs but outputs a non-overlapping state, which can be beneficial for following operations.

Uncompressed requires 60 FLOPs and an allocation in the input size. In contrast toAware, CLAwith

DDC{0} DDC {1, 3}, DDC {5}, OLE {2} and RLE {5} compression requires 16 FLOPs (3 more due

to OLE/RLE/DDC), but more significantly, allocates new index structures in columns {2} and {5}.
Our current heuristic for such additive scalar operations is to return an overlapped representation

(with a new/reused constant group) if the input was overlapping, and processed groups otherwise.
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Fig. 2. Workflow of Compression Phases.

Algorithm 1 Compression Algorithm

Require: Matrix input𝑀

return𝑀𝑐

G← ExtractIndexStructures(Sample(𝑀))
SingleColumInfos← Classify(G) ⊲ Abort 1

Plan← Grouping(SingleColumInfos,𝐺) ⊲ Abort 2

(𝑀, 𝑡) ← TransposeMaybe(Plan, 𝑀) ⊲ t is true if M is transposed

𝑀𝑐 ← Finalize(Compress(Plan, 𝑀, 𝑡)) ⊲ Abort 3

3.2 Compression Algorithm
Our compression algorithm aims to reduce the online compression

1
time, introduce workload-

awareness via generic cost functions (computation, memory or combinations), and handle matrices

with many columns. Together, solutions to these issues, allow us to apply compression for a wide

variety of inputs and intermediates with robust performance improvements. Given an uncompressed

matrix, the Aware compression algorithm (Figure 2 and Alg 1) comprises the following phases:

a) Classify: For efficient compression planning, we first obtain an index structure (dense or

sparse for DDC or SDC) for each column in a sample of the input matrix, as well as counts of non

zeros (NNZ) per column in the input matrix. Using the index structure and NNZ count, we compute

summary statistics for individual columns (e.g., the frequency of distinct items), estimate the cost

of the individual columns, classify columns as compressible or incompressible, and extract empty

columns. For classifying a column or list of columns, the same summary statistics are needed,

irrespective of optimizing for workload cost or size in memory. Compared to the CLA compression

algorithm—where the entire uncompressed matrix was transposed first for efficient extraction in

Classify and Compress—we benefit from working only with small index structures until deciding on

aborting the compression for non-amenable matrices. Furthermore, we gain more efficient sample

extraction, and bounded temporary memory requirements for incompressible matrices.

b) Grouping: Column co-coding seeks to find column groups in order to exploit redundancy

among correlated columns.Aware introduces two techniques to improve CLA’s co-coding algorithm.

First, instead of extracting statistics from the sample when combining columns, we combine

the index structures of two already extracted groups from the classification phase or previously

combined columns. Algorithm 2 combines two dense index structures (𝐼𝑟 and 𝐼 𝑙 ) into a combined

index structure 𝐼𝑐 . This algorithm allocates a mapping𝑀 that is able to encode all possible unique

mappings from combining 𝐼𝑟 and 𝐼 𝑙 by the product of their numbers of distinct items 𝑑𝑙 and 𝑑𝑟 .

1
Online compression refers to the compression of inputs or intermediates during runtime of a linear algebra program (e.g.,

after reading uncompressed inputs).
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Algorithm 2 Combine Algorithm for Dense Index Structures

Require: Index structures for two groups 𝐼 𝑙 , 𝐼𝑟

return Combined index structure 𝐼𝑐

𝑀 ← 𝐼 [𝑑𝑙 · 𝑑𝑟 ] , 𝑢 ← 1 ⊲ Allocate map of possible distinct size

for 𝑖 ← 0 to 𝑛 do
𝑚 ← 𝐼 𝑙𝑖 + 𝐼𝑟𝑖 · 𝑑𝑟 ⊲ Calculate new unique index

if 𝑀𝑚 = 0 then ⊲ Non-existing value at the unique index

𝑀𝑚 ← 𝑢++ ⊲ Assign unique index to next unique value

𝐼𝑐𝑖 ← 𝑀𝑚 − 1 ⊲ Assign output to map value at unique index

Algorithm 3 PriorityQueue Co-coding Algorithm

Require: A queue of all current index structures 𝑄

return A list of index structures 𝐺

while 𝑄.𝑝𝑒𝑒𝑘 ≠ 𝑁𝑈𝐿𝐿 , 𝐼 𝑙 ← 𝑄.𝑝𝑜𝑙𝑙 do ⊲ Remove cheapest Index

𝐼𝑟 ← 𝑄.𝑝𝑒𝑒𝑘 ⊲ Look at next cheapest Index

𝐼𝑐 ← 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝐼 𝑙 , 𝐼𝑟 ) ⊲ Combine two cheapest

if 𝐼𝑐 .𝑐𝑜𝑠𝑡 < 𝐼 𝑙 .𝑐𝑜𝑠𝑡 + 𝐼𝑟 .𝑐𝑜𝑠𝑡 then ⊲ Costs of combined is lower

𝑄.𝑝𝑜𝑙𝑙 , 𝑄.𝑝𝑢𝑡 (𝐼𝑐 ) ⊲ Remove 𝐼𝑟 from queue and add 𝐼𝑐

else
𝐺.𝑎𝑑𝑑 (𝐼 𝑙 ) ⊲ Add cheapest (already extracted) to output

Further specializations are algorithms for sparse-sparse and sparse-dense combining. Second, we

introduce a new co-coding algorithm (see Algorithm 3) that uses a priority queue 𝑄 for sorting

columns (or column groups) based on a configurable cost function, and combines groups at the

head of the queue. We found that starting with this new co-coding algorithm and switching to a

greedy combining approach at a threshold number of remaining groups gives a good balance of

compression time and quality. In cases with millions of columns, we do a static partitioning of the

columns to available threads and combine columns in a thread-local manner.

c) Transpose: The uncompressed input matrix can be transposed (columns in row-major) if the

compress phase would benefit from sequential access and amortize such data reorganization. This

decision is dependent on the data characteristics (e.g., matrix dimensions, dense or sparse) and the

chosen compression plan (e.g., co-coded columns).

d) Compress: During compression, we take the input matrix and compression plan (co-coding

decisions, and column-group types), and create the compressed column groups. For every group,

we first extract its single- or multi-column uncompressed bitmap as a canonical representation

of distinct tuples and offset lists per tuple. With these temporary offset lists, we re-evaluate the

group types, and finally create the physical encoding of the compressed column groups, which

involves various specializations (e.g., delta-encoded offsets) for smaller code words. Once a column

group is compressed—and it is beneficial in terms of workload costs—we analyze if we can sparsify

its dictionary via a frame-of-reference encoding, and if so apply the transformation. In contrast

to CLA, we apply no corrections for estimated compressible but actually incompressible columns

because the estimators and co-coding show robust behavior.

e) Finalize: In a last phase, we perform compaction of special groups, and compare costs of

the actual compressed representation with the uncompressed costs (and abort if needed). Finally,

we cleanup all temporary buffers but keep a soft reference (subject to garbage collection under

memory pressure) to the uncompressed block to skip potential decompressions.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 2. Publication date: May 2023.



2:8 Sebastian Baunsgaard & Matthias Boehm

Parallelization Strategies: When compressing distributed matrices, blocks are compressed

independently in a data-parallel manner with single-threaded compression per block. In contrast,

local, in-memory compression utilizes multi-threading with barriers per phase. Classify parallelizes

over columns, Grouping over blocks of columns, Compress over column groups and in some cases

row partitions, and Transpose uses a multi-threaded cache-conscious uncompressed transpose

operation. A more fine-grained parallelization with a task graph [53] is interesting future work.

4 COMPRESSED OPERATIONS
Performing linear algebra operations—like matrix multiplications, element-wise operations, and

aggregations—on compressed matrices can improve memory-bandwidth requirements and cache

utilization, reduce the number of floating point operations, and preserve structural redundancy

across chains of operations. Aware makes extensions for compressed matrix-matrix multiplications

and compressed intermediates, which broaden its applicability.

4.1 Design Principles and Notation
As a basis for discussing compressed operations, we first establish necessary terminology, and

summarize underlying design principles.

Definitions and Scope: We define sparse-safe operations as operations or aggregations that

only need to process non-zero input cells. For example, round(X) is sparse-safe, while exp(X) is
sparse-unsafe because exp(0) = 1. Special values like NaN (not-a-number, with NaN · 0 = NaN) are

not supported compressed because they render sparse linear algebra invalid [70].

Design Principles: Many of the Aware operations share the following design principles. Com-

pared to CLA, Aware applies these principles to more operations and generalizes them with the

goals of redundancy exploitation and minimizing total execution time.

• Shared Index Structures: For operations that only modify distinct values (e.g.,X ·7), we perform
dictionary-local operations and shallow-copy the index structures into the output.

• Memoized Tuple Frequencies: Operations like sum(X) aggregate the distinct tuples scaled by

their frequencies. To avoid redundant computation, we memoize computed frequencies and

retain them on shallow-copies of indexes.

• Exploited Structural Redundancy: While many sparse-unsafe operations can be executed on

compressed matrices, they can require the materialization of zero, which often creates large

unbalanced groups. Instead, in Aware we exploit both sparsity and redundancy via the

handling of default values, as well as preserve structural redundancy across operations.

• Soft References: We keep useful but recomputable data structures (e.g., decompressed data,

offset pointers to indexes, and tuple frequencies) on soft references. Any serialization or

memory estimates do not include these cached objects.

Notation: Finally, we need some additional notation. An 𝑛 ×𝑚 uncompressed input matrix

is compressed into a set of column groups G, where |G| denotes the number of column groups

(with |G| ≤ 𝑚 without overlap), and G𝑖 denotes the 𝑖-th column group. A single column group G𝑖
comprises |G𝑖 | columns, a 𝑑𝑖 × |G𝑖 | dictionary D𝑖 with 𝑑𝑖 distinct tuples, and an index structure

I𝑖 . For matrix multiplications AG or G B, let 𝑘 denote the number of rows in A and columns in

B, respectively. Given a matrix or vector X, 𝑛𝑛𝑧 (X) denotes its number of non-zeros and 𝑛𝑛𝑑 (X)
denotes its number of non-default values (equivalent to 𝑛𝑛𝑧 (X) if zero is the most frequent value).

4.2 Matrix Multiplications
CLA supports only matrix-vector and vector-matrix multiplications directly on compressed rep-

resentations, but emulates matrix-matrix multiplications via repeated slicing and matrix-vector
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Fig. 3. Example Pre-aggregation in Compressed MatMult.

multiplications. This approach provides simplicity and reasonable performance, but looses perfor-

mance as the size of the second matrix increases, which is common in applications like multi-class

classification, dimensionality reduction, and clustering. Other previous work like TOC [45] supports

matrix-matrix multiplication but belongs to the class of grammar-compression. In this section,

we introduce simple yet impactful techniques for matrix-matrix multiplications on lightweight

compressed matrices, including special cases of compressed-compressed multiplication.

Preaggregation: A central technique of compressed matrix multiplications are different forms of

pre-aggregation over the distinct tuples. In Aware, we vectorize such pre-aggregation for improved

simplicity and performance. For instance, Figure 3 shows the intuition of pre-aggregation in left

and right matrix multiplication on our running example. First, for a left matrix multiplication

AG with an uncompressed vector A, we initialize a zero vector P, and accrue the entries of A

according to indexes I𝑖 . Subsequently, a simple uncompressed vector-matrix multiplication PD𝑖 of

the pre-aggregates and the dictionary yields the overall result (for columns of the column group).

Instead of multiplying all entries with the same distinct value (or tuple in case of co-coding), we

simply distribute multiplication over addition. Second, for a right matrix multiplication G B with

an uncompressed vector B (subset relevant to the column group), we first compute a matrix-vector

multiplication ofD𝑖 B to get the pre-aggregated vector P, and subsequently add these pre-aggregated
values to the output according to indexes I𝑖 . Interestingly, a similar pre-aggregation strategy is

also applied as a general case for unnesting correlated subqueries [54]. Given this vectorized form

and the storage of dictionaries as uncompressed matrices, we can directly apply cache-conscious

uncompressed matrix multiplications for the general case of left- or right-hand-side uncompressed

matrices with k rows or columns, respectively.

Left Matrix Multiplication:We call the matrix multiplication (AG)—where the left-hand-side
input A is uncompressed—a left matrix multiplication (LMM). Figure 4(a) shows an LMM with

two column groups. For each column group, we compute the pre-aggregated 𝑘 × 𝑑𝑖 matrix P𝑖 (via
the already described vectorized pre-aggregation), then matrix multiply P𝑖 D𝑖 , and finally, shift

these results into the correct column positions of the output matrix O. Pre-aggregation for each

column group is a linear scan of A, but for large index structures I𝑖 , we can utilize cache-blocking

to reuse blocks of I𝑖 from caches across multiple rows in A. The more co-coding is applied, and/or

the smaller the number of distinct items per group, the more we benefit from LMM pre-aggregation

in terms of reduced floating point operations and data accesses. Multi-threaded LMM operations

parallelize over column groups and rows in A because they access disjoint output columns.

Morphing: Some types of column groups are able to skip processing rows or columns for certain

operations. We leverage such properties by changing the format—similar to the technique from

MorphStore [23]—of DDCFOR, SDC, SDCFOR, and SDCSingle groups before performing LMM.
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Fig. 4. Types of Compressed Matrix Multiplication (with 2 and 3 column groups).

Using SDCFOR as an example, we simply take the reference tuple as a vector, subtract it from

the dictionary, and return a SDCZero column group with the modified dictionary. We multiply

A and the column group using the preaggregate technique, and then add the vector scaled by

row-sum of the left-hand-side matrix. In cases where multiple groups are morphed, their vectors

are combined and processed together. This technique is also applied—with slight modifications—in

decompression, right matrix multiply, and unary aggregates. This approach is virtually constructing

an overlapping constant group for the entire matrix, transforming a single multiplication into a

cheaper matrix multiplication, a row sum, and vector outer-product.

RightMatrixMultiplication: Similar to LMM, we call a matrix multiplication (G B)—where the
right-hand-side input B is uncompressed—a right matrix multiplication (RMM). Figure 4(b) shows an

example with two column groups. Our column-oriented compression and multiplication by B from

the right, provides an opportunity to preserve structural redundancy and thus, avoid unnecessary

decompression (aggregation into an uncompressed output). The simple, yet very effective, key idea

of our RMM is to only perform the vectorized pre-aggregation P𝑖 = D𝑖 B∗ by multiplying the column

group dictionaries with related rows in B, and then store these pre-aggregates as new dictionaries

of overlapping column groups. This way, we can leave the index structures I𝑖 untouched and

shallow-copy them into the compressed output representation, preserving the source redundancy.

Each output column group now has dictionaries of size 𝑑𝑖 × 𝑘 . The individual column groups

compute, again independent (but now overlapping) outputs and thus, multi-threaded operations

parallelize over column groups and columns of B. In distributed environments with block-local

matrix multiplications, the same RMM applies and the overlapping output can be preserved (if

beneficial in size) even through serialization and shuffling.

Transpose-Self Matrix Multiplication: Transpose-self matrix multiplication (TSMM
2
) X⊤ X

or XX⊤—whose outputs is known to be symmetric—appears in many applications such as closed-

form linear regression, co-variance and correlation matrices, PCA, and distance computations.

CLA emulates TSMM again via slicing and repeated vector-matrix multiplications. In contrast,

Aware natively supports TSMM as shown in Figure 4(c), as well as compressed-compressed matrix

multiplications (with transposed left input), which are also commonly occurring in practice. A

TSMM is composed of pairs of column group operations, where blocks on the diagonal are self-joins

of column groups, while others are |G| · ( |G| − 1)/2 combinations of column groups. First, a

self-join of a column group computes (or reuses) the 𝑑𝑖 × 1 pre-aggregate P of tuple frequencies,

and subsequently computes the results via an uncompressed TSMM (D ⊙ P)⊤ (D𝑖), i.e., where rows
of D are scaled by their frequencies. Second, for remaining blocks and compressed-compressed

matrix multiplications, we adopt the strategy of LMM: pre-aggregation and matrix multiplication

P𝑖 D𝑖 . However, given two compressed inputs, we can freely pick the pre-aggregation side and

2
TSMM is also known as BLAS syrk (symmetric rank-k update) or Gram matrix.
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Table 3. Complexity of Matrix Multiplications.

Uncompressed Aware
(dense) (multiple, dense column groups)

LMM O (𝑘𝑛𝑚) O
(
𝑘𝑛 |G| + 𝑘∑ | G |

𝑖=1
(𝑑𝑖 |G𝑖 |)

)
RMM O (𝑘𝑛𝑚) O

(
𝑘
∑ | G |

𝑖=1
(𝑑𝑖 |G𝑖 |)

)
TSMM O

(
𝑛𝑚2

)
O

(
𝑙
∑ | G |

𝑖=1
(𝑛 + 𝑑𝑖 |G𝑖 |2) +

∑ | G |
𝑖=1

∑ | G |
𝑗=𝑖+1 (𝑛 |G𝑖 | + |G𝑖 |𝑑 𝑗 |G𝑗 |)

)
alternatively, do (P𝑗 D𝑗 )⊤. In any case, the pre-aggregate is computed without decompression and

can exploit column-group characteristics (e.g., sparse, non-default, or constant encoding).

Cost Analysis: Apart from reduced I/O and memory-bandwidth requirements due to the smaller

compressed size, compression can also reduce the number of floating point operations. In detail,

Table 3 compares the asymptotic behavior of uncompressed matrix multiplications with related

Aware operations. Uncompressed LMM and RMM have both cubic complexity, where we ignore

sparse linear algebra for the sake of simplicity. In contrast, compressed LMM and RMM have a

complexity has depends on the data characteristics (distinct items and co-coding per column group).

First, for LMM, we have two terms for pre-aggregation (only additions) and dictionary-based

computation (additions and multiplications). With substantial co-coding (e.g., |G| = 1 ∧ |G𝑖 | =𝑚)

and few distinct items 𝑑𝑖 , a much better complexity than cubic is possible (O(𝑘𝑛 + 𝑘𝑚) instead of

O(𝑘𝑛𝑚)). In the worst-case, |G| =𝑚 and 𝑑𝑖 = 𝑛, which gives O(𝑘𝑛𝑚) but with a higher constant

factor. Second, RMM has only the second term of LMM and thus, we already benefit with less

favorable data characteristics but the same worst-case guarantees apply, even with subsequent

decompression. TSMM is more complex but the first term of the addition represents self-joins per

column group (including pre-aggregation), and the second term enumerates pairs of column groups

with two sub-terms for pre-aggregation and scaling. These cost functions, together with estimated

or observed compression ratios, are also the basis for our workload-aware compression planning,

allowing us to optimize for total execution time.

4.3 Aggregations and Element-wise Operations
Aggregations and element-wise operations are largely similar to CLA but with few extensions that

leverage the design for redundancy exploitation and optimization for total execution time.

Tuple Frequencies and Defaults: Aggregations like sum(X) or colSums(X) pre-aggregate
counts and then scale and accumulate the dictionary D𝑖 . In CLA, column group types like OLE only

need to aggregate segment sizes, but DDC column groups still required a full scan of the index

structures. In Aware the most common column groups are DDC and SDC. By materializing the

tuple frequencies, we can often reuse P𝑖 , yielding better asymptotic behavior. For matrix-scalar

and matrix/row-vector operations—as used for standardization (e.g., X − colMeans(X)—we further
preserve the structural redundancy by handling default values in SDC column groups (e.g., replace

zero by column mean), leaving the index structures unchanged.

Handling Overlapped State: After right matrix multiplications, operations have to deal with—

but can also leverage and propagate—overlapping state with partial sum semantics. Generally,

sum-product operations can be executed directly on overlapping state. While left matrix mul-

tiplications directly apply, aggregations and element-wise operations require special treatment.

The list of extended operations includes full or column aggregations like sum or mean, but also

matrix-scalar or matrix/row-vector multiplications and additions. For matrix/row-vector addi-

tion and subtraction (e.g., X − colMeans(X), we can add a single overlapping column group (of
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constant columns), whereas for X/colSds(X), we process all overlapping dictionaries via uncom-

pressed matrix-vector operations. Operations like min/max/pow or matrix-matrix operations are

not supported in overlapping state because these types do not distribute over sums.

Decompression: Unsupported Aware operations or operations that cannot process overlapping
state are then handled by decompression. We use cache-conscious blocking for converting the

column-compressed matrix into a row-major uncompressed matrix. In contrast to update-fragment

compaction during read in TileDB [59] (latest writer wins), we accrue the overlapping column

group contributions into the output with O(𝑛𝑚 |G|) time complexity (worst-case of |G| overlapping
groups). Although decompression is expensive, it ensures robustness and allows controlling poten-

tial redundancy, but if more efficient than full decompressions, we support partial decompressions

to enable the operations to process sub-parts of the matrix at a time.

5 WORKLOAD-AWARE COMPRESSION
Aware aims to achieve broad applicability by redundancy exploitation and optimization for ex-

ecution time. Instead of compressing input matrices only according to data characteristics, we

extract workload characteristics from the given LA program, and compress candidate inputs and

intermediates in a data- and workload-aware manner (Section 5.1), and then leverage compressed

data characteristics for a refined compilation of execution plans (Section 5.2).

5.1 Workload Trees and Compression
Given a linear algebra program, workload-aware compression selects intermediates as compression

candidates, and for each candidate extracts a workload tree (a compact workload summary seen in

Figure 5), evaluates its costs, and if valid for compression, injects a compress directive that utilizes

the workload for fine-tuned (i.e., workload-aware) compression.

Workload Trees:Manyworkloads in practice are complex LA programs with conditional control

flow, non-trivial function call graphs, and thousands of operations. However, compressing an input

or intermediate often affects only a small subset of data-dependent operations. We introduce the

notion of a workload tree as a compact representation of these operations to simplify optimization.

A workload tree for a single candidate intermediate represents the program hierarchy of conditional

control flow (branches and loops) as well as function calls as inner nodes, and relevant compressed

operations as leaf nodes. Here, parent-child relationships represent containment. For the sake of

compactness, the tree comprises only inner nodes that contain at least one compressed operation.

Counting frequencies and costing is then an aggregation across hierarchy levels. For loops, we

multiply the costs by the number of iterations. If the number of iterations is unknown (e.g.,

convergence-based loops), we assume a constant 10 to reflect that operations inside the loop, are

likely executed multiple times. Some instructions are further multiplied by the dimensionality of

the inputs, and if unknown during optimization, a multiplier of 16.

Workload Tree Extraction: Our initial candidate selection and optimization approach relies on

heuristics.Wemake a linear scan over the program, and extract compression candidates by operation

type (e.g., persistent reads, comparisons, ctable, and rounding) as well as shape constraints

(dimensions, and row/column ratios). Together, these heuristics find good candidates while keeping

the number of candidates low. For each candidate, we then make a scan over the program and

extract its workload tree by computing the transitive closure of derived compressed intermediates

(based on operation types that are known to produce compressed outputs). Again in a heuristic

manner, we then evaluate individual candidates independently without considering joint effects of

groups of compressed intermediates. This extraction also descents into functions, but via stack-

based identification includes only the first level of recursive function calls. In this context, we

prune the unnecessary extraction of workload trees for overlapping intermediates. We perform this
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User Script:

  = read("data/X")
y = read("data/y")

X = scale(X,TRUE,TRUE)
w = l2svm(X,y,TRUE,
      1e‐9,1e‐3,100)

write(w,"data/wXy")

if(shift)
 X = X ‐ colMeans(X)  
if(scale)
 X = X / colSds(X)

if(intercept)
 X = cbind(X,ones)
while(conto & i<maxi) {
 Xd = X %*% s 
 while(conti) {
  out = 1‐y*(Xw+sz*Xd)
  sz = sz ‐ g/h; # ...
 }
 g_new = t(X) %*% (out*y)
}
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Fig. 5. Example showing a user script that reads a feature matrix X and label vector y, normalizes X to mean
0 and standard deviation 1, and then trains an l2-regularized support vector machine. These functions are
themselves linear-algebra scripts. Assuming X as a compression candidate, we extract the workload tree at
the right, which contains 2 function calls, 3 if branches, 2 nested while loops and 8 compressed operations
and 1 decompression. Aggregating the workload tree yields a cost summary for categories of operations.

extraction at the end of inter-procedural analysis (IPA). At this point, literals and size information

have been propagated across the program and into amenable functions, and many simplifications

have been performed. In Figure 5, we would have propagated the shift, scale, and intercept flags,

removed unnecessary branches, and inlined the scale function into the main program.

Cost Evaluation: The cost summaries computed from the workload tree serve two purposes:

for comparing uncompressed operations, and for guiding compression planning. We compute

both frequencies and costs, where the latter utilizes the cost functions from Table 3. We organize

the cost summaries by categories of operations with different behavior in compressed space: (0)

Decompression, (1) Overlapping Decompression, (2) LMM, (3) RMM, (4) TSMM, (5) Dictionary-

Ops, and (6) Indexing-Ops. Decompression is the frequency of regular decompressions, while

overlapping decompression converts the overlapping output into uncompressed form if operations

are not applicable on partial aggregates; both counts are multiplied by number of columns in each

occurrence. LMM is multiplied by the number of rows on the left, RMM multiplied by the number

of columns on the right, and TSMM includes counts of compressed multiplications and transpose-

self multiplications and is multiplied by the number of columns. Dictionary operations can be

performed directly on the compressed dictionaries (e.g., sum or element-wise scalar operations).

Finally, Indexing refers to slicing of batches or blocking during broadcasting. If the cost evaluation

suggests that compressing an intermediate may be beneficial, we make the cost summary globally

available, and inject the related compress directive.

Compression Planning: The compress directives injected into the execution plan, perform

compression as described in Section 3.2, but for workload-awareness get a cost summary. The

workload mix influence the selection of column group types, co-coding decisions, and tuning for

compression ratios. During classification and co-coding, we estimate the column costs from the

sample, and then use these costs to decide on column groupings instead of grouping purely for

compression ratios. However, including I/O costs also enables adapting the compression plans

for large out-of-core datasets where good compression ratios are important to fit data in memory

and/or reduce I/O. Local compression directly leverages the cost summaries, while for distributed

compression, we serialize the cost summaries and compress blocks independently.

Adaptive Compression: In our federated learning backend [8, 9], standing worker processes

execute continuously incoming operation requests frommultiple tenants.Aware also supports these

dynamically changing workloads by summarizing cost vectors of previously executed operations

and triggering asynchronous compression to adapt the compressed representation when needed.
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5.2 Workload-aware Execution Planning
In the context of hybrid runtime plans—composed of local in-memory, and distributed Spark

operations—after compression, opportunities for compiling more efficient plans arise. Specifically,

we can compile operations on compressed intermediates to local operations, where uncompressed

operations would exceed the memory budget and fallback to distributed runtime plans.

Program Restructuring: The challenge is that compression happens at runtime, and thus, the

estimated and actual compressed size is unknown during initial compilation. Accordingly, we create—

similar to data-dependent operators with unknown output shapes [15]—artificial recompilation

opportunities by splitting basic blocks after injected compress directives. If a block contains

multiple, independent compress operators, we create a single cut for all.

Compression-aware Recompilation: If an operator is marked for distributed operations due

to unknown input/output dimensions or sparsity during initial compilation, the entire DAG (basic

block) is marked for recompilation during runtime. Workload-aware compression leverages this

infrastructure for obtaining the actual size of compressed in-memory matrices, and propagating the

compressed size bottom-up through the DAG. With this updated size information, we can compile

and execute refined partial execution plans. Affected decisions include selected execution types

(local vs Spark), and physical operators including broadcasting.

6 EXPERIMENTS
Our experiments study Aware in Apache SystemDS

3
in comparison with uncompressed operations

(ULA), compressed linear algebra (CLA) [25, 26] in Apache SystemML, and different data types in

TensorFlow. We evaluate a variety of micro benchmarks, end-to-end ML algorithms, and hyper-

parameter tuning; with local, distributed, and hybrid runtime plans.

6.1 Experimental Setting
Hardware Setup: Our local and distributed experiments use a scale-out cluster of 1 + 6 (1 + 11)
nodes, each having a single AMD EPYC 7443P CPU at 2.85GHz (24 physical/48 virtual cores),

256GB DDR4 RAM at 3.2 GHz, 1 × 480GB SATA SSD, 8 × 2 TB SATA HDDs (data) and Mellanox

ConnectX-6 HDR/200Gb Infiniband. We use Ubuntu 20.04.1, OpenJDK Java 11.0.13 with JVM

arguments -Xmx110g -Xms110g -Xmn11g, Apache Hadoop 3.3.4, and Apache Spark 3.2.0. The

CLA baseline uses SystemML 1.2 with Spark 2.4 and equivalent configurations. Some experiments

marked with * were run on another cluster (for comparison) of 1 + 6 nodes with AMD EPYC

7302 CPU at 3.0 − 3.3 GHz (16/32 cores). 128GB DDR4 RAM at 2.933GHz, 2 × 480GB SATA SSDs

(system/home), 12 × 2 TB HDDs (data), and 2 × 10Gb Ethernet.
Datasets: Since compression is strongly data-dependent, we exclusively use the real datasets

shown in Table 4. This selection includes dense, sparse, and ultra-sparse datasets with common

data characteristics. All reported sizes and compression ratios refer to the size in memory using a

sparsity threshold of 0.4 for uncompressed matrices. USCensus [24] is further used in an encoded

form with binning/one-hot encoding for numerical, and recoding/one-hot encoding for categorical

features, resulting in an increase from 68 to 378 columns, and the increased sparsity from 0.43

to 0.18, but with negligible change of the size in memory. For large-scale experiments, we use a

replicated versions of USCensus Enc (up to 128x) which is roughly 290GB and after densifying

operations more than 950GB. The Spark default configuration uses a storage fraction of 0.5, which

gives an aggregate cluster memory of 6 · 105GB · 0.5 = 315GB. That way, we scale to data sizes

that require I/O per iteration in uncompressed representation.

3
All code and experiments are available open source in Apache SystemDS (https://github.com/apache/systemds) and our

reproducibility repository (https://github.com/damslab/reproducibility).
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Table 4. Datasets (𝑛 Rows,𝑚 Columns, 𝑠𝑝 Sparsity).

Dataset 𝑛 (nrow(X)) 𝑚 (ncol(X)) 𝑠𝑝 Size

Airline78 [6] 14,462,943 29 0.54 3.4GB

Amazon [32, 55] 8,026,324 2,330,066 1.2e-6 1.22GB

Covtype [24] 581,012 54 0.22 127MB

Mnist1m [18] 1,000,000 784 0.25 2.46GB

USCensus [24] 2,458,285 68 (378) 0.43 (0.18) 1.34GB

USCensus 128x 314,660,480 68 (378) 0.43 (0.18) 289.5GB

Table 5. Local Compression Times [Seconds] and Ratios.

Dataset CLA Aware-Mem Aware
time ratio time ratio time ratio

Airline78 9.34 sec 10.22 1.74 sec 8.61 2.08 sec 7.94

Amazon 37.6 hours Crash 8.54 sec 1.73 3.77 sec Abort

Covtype 1.10 sec 13.79 0.84 sec 14.24 1.23 sec 13.99

Mnist1m 7.25 sec 7.14 4.57 sec 6.09 17.50 sec 4.41

US Census 5.15 sec 35.38 1.16 sec 29.60 1.15 sec 27.35

US Census Enc 27.48 sec 41.03 5.78 sec 38.46 6.54 sec 29.46

6.2 Compression Performance
We first investigate the compression process itself in terms of compression times, compression

ratios, and the influence of workload characteristics.

Compression Ratios: Starting with local single-node matrix compression, we compare

Aware optimized for memory (Aware-Mem) and for workload (Aware) with the existing CLA

framework [25, 26]. The used workload is a fixed cost summary of left matrix multiplications that

leads to extensive co-coding of columns. Table 5 shows the compression times and ratios for all

datasets, where the ratios are calculated from the sizes of in-memory representations. We attribute

the minor differences to published CLA compression ratios [26] (Airline78 7.44, Covtype 18.19,

USCensus 35.69) to different data preparation and sparse memory estimates. Compared to CLA,

Awareyields worse compression ratios except for CovType, where Aware’s co-coding finds other

column groups and uses new encoding types. The lower compression ratios are due to the tuning

for operations performance rather than size, and in practice, moderate absolute differences of large

compression ratios have only little impact on size. For example, compressing a 1GB input with ratio

7 versus 6 yields only a difference of 24MB. The Amazon dataset is an interesting case, where CLA

runs out of memory due to group memoization during co-coding (> 2.7 · 1012 pairs of columns). In

contrast, Aware aborts the compression early because the estimated total costs exceed the costs

of ULA. Optimizing for memory in Aware yields a low compression ratio for Amazon because of

object overheads per column group, which do not exist in ULA’s CSR representation.

Compression Times: Table 5 further shows the compression times for all datasets. Aware gen-

erally reduces compression times when optimizing for size (up to 4.7x) and cost (up to 4.2x), which

makes compression easier to amortize. The speed difference in Aware-Mem USCensus Enc is

due to a reduction of the grouping phase from 19 to 2.4 seconds. When using workload-aware

compression with a fixed cost summary that causes more grouping and compression, only MNIST

and USCensus have significantly slower compression compared to optimizing for memory. MNIST

is slow because combining column groups have a large number of distinct values (each column

contains up to 256 distinct values, and three columns together has up to 256
3
distinct tuples).
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Table 6. Spark RDD Compression (Data: USCensus Enc).

Aware-Mem Aware
Blocksize Ratio Total Size Ratio Total Size ULA

1K 8.94 225.58 MB 7.83 257.36 MB 2.02 GB

2K 15.1 143.49 MB 10.9 198.55 MB 2.17 GB

16K 26.6 81.68 MB 23.3 93.36 MB 2.17 GB

64K 29.9 72.74 MB 23.4 92.96 MB 2.17 GB

256K 30.5 71.22 MB 24.5 88.70 MB 2.17 GB

Compression Ratio Spark: For distributed operations, matrices are represented as Spark

resilient distributed datasets (RDD) [83]—i.e., distributed collections of key-value pairs—with values

being fixed-size matrix blocks of size 𝑏 × 𝑏 (except boundary blocks). These blocks are compressed

independently with separate compression plans and dictionaries. The default block size is 𝑏 = 1K

(8MB dense blocks), but sparsity and compression warrant larger blocks. Table 6 varies this block

size 𝑏 for USCensus, and reports the size of Aware-Mem, Aware, and uncompressed (ULA) RDDs

(from Spark’s cached RDD-infos). With small blocks, there is larger variability of compression,

and increasing block sizes give better ratios while also stabilizing the resulting compression plans.

Overall, Aware yields good compression ratios even with small 𝑏 and approaches local compression

ratios with larger 𝑏. For the remaining experiments, we use a block size of 𝑏 = 16K.

6.3 Operations Performance
In a second series of micro-benchmarks, we compare the runtime of Aware with ULA and CLA

operations.While CLAwas designed for operations performance close to uncompressed and benefits

from keeping large datasets in memory, Aware aims to improve performance more generally, even

for in-memory settings and keep performance stable even if the input data is densified. We compare

using both original and densified by simply adding 1 to all cells.

Aggregations: Figure 6(a) shows the results for computing the aggregate sum(X). CLA processes

each column group in parallel, aggregates individual sums, and combines them into the result. ULA

uses multi-threading with sequential scans of row partitions. By memorizing the frequencies of

tuples, Aware executes purely on the column group dictionaries without scanning their indexes

because of memoization. Without memoization, the execution time increase according to the

complexity of scanning the index structures. For instance, we observed no penalty in case of

Census enc, while 60x performance drop in Census for Aware. When densifying, in Figure 6(b), CLA

and Aware retain their performance while ULA’s performance worsen. For column aggregations

(Figure 6(c) and 6(d)), CLA is slower than ULA because CLA’s DDC colSums is not specialized for

DDC1 and DDC2 and thus, performs a lookup of dictionary values for each encoded cell.

Element-wise Operations: Figure 7(a) shows the performance of adding a scalar value to

each matrix cell. We observe extreme speedups of up to 10,766x because Aware avoids modifying

dictionaries where possible. Figures 7(b) shows similar improvements for matrix-vector (row

vector) element-wise operations. Specifically, we analyze X/v on sparse (not shown) and dense

representations, where we chose division because it forces modifications of the dictionaries. We

still see speedups of about three orders of magnitude (2,047x).

Left Matrix Multiplication (LMM): Left, right, and transpose-self matrix multiplications

are key operations in many ML algorithms. In the following, we first evaluate these operations

independently. Figure 8(a) shows the results of left matrix multiplications for all datasets, where

the uncompressed left-hand-side has 16 rows. CLA emulates this matrix-matrix multiplication via

16 vector-matrix multiplications. We observe Aware performance comparable to multi-threaded
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Fig. 6. Operations Performance Aggregate.
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(b) Div Row-vector, Dense

Fig. 7. Operations Performance Scalar.
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(a) 16 row LMM
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Fig. 8. Operations Performance Left Matrix Multiplication.

ULA (sparse and dense) with improvements for Covtype, USCensus, and USCensus Enc, but a

moderate slowdown for Airlines and a significant slowdown for MNIST. LMM also shows a major

performance difference when optimizing for memory versus optimizing for operations, which is

especially noticeable in USCensus Enc. In contrast, for datasets with smaller potential for co-coding

like Airline, there is no difference. Figure 8(b) shows results on USCensus Enc with varying number

of rows in the left-hand-side. CLA performs similar to Aware at a single row, but when rows

increase CLA’s performance decrease to the same as ULA due to the lack of native matrix-matrix

support. CLA is worse at utilizing more threads, while Aware and ULA scale better. For ULA and

Aware-Mem, there is a change in parallelization strategies after 16 rows. In contrast, Aware yields

between half and one order of magnitude speedups for all #rows configurations.
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Fig. 9. Operations Performance Right Matrix Multiplication.
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Fig. 10. Operations Performance Transpose Self Matrix Multiplication.
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Fig. 11. Operations Performance Sequence.

Right Matrix Multiplication (RMM): In contrast to LMM, the right matrix multiplication

creates outputs of overlapping column groups with a shallow copy of the index structures. Figure 9(a)

shows the results for all datasets, where we observe Aware speedups between 53x to 1,528x

because of the deferred aggregation across column groups. Figure 9(b) then shows the scaling with

increasing number of columns in the uncompressed right-hand-side. CLA shows equal performance

to uncompressed in the single column case but scales worse then ULA, again due to the lack of

native matrix-matrix multiplication. Aware’s RMM exhibits better asymptotic behavior due to its

dictionary-centric operations, yielding speedups >13,000x for 512 columns.

Transpose-Self Matrix Multiplication (TSMM): Figures 10(a) and 10(b) show the results of

TSMM operations as used for computing PCA, direct-solve linear regression, as well as covariance

and correlation matrices. We observe speedups on all datasets except MNIST, where Aware yields

a substantial slowdown, especially for sparse inputs. The TSMM performance is largely dependent

on the number of column groups, their number of distinct items, and thus, co-coding decisions.

MNIST has a high number of columns, with high cardinality, and low correlation between columns.

Operation Sequences: As final micro benchmark use cases, we evaluate two sequences of

operations. First, scale and shift in Figure 11(a) performs a shifting Y = X− (colSums(X)/nrow(X))
and scaling Z = Y/

√︁
colSums(Y2)/(nrow(Y) − 1). This sequence is a common normalization step

(standard-scaler) of the input data but has the negative side effect of densifying the input data.
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Table 7. RMM Overlap Sequence (Data: USCensus Enc).

I/O Comp RMM Total

SystemML - ULA 0.84 sec — 188.40 sec 190.03 sec

SystemML - CLA 0.88 sec 24.34 sec 374.13 sec 401.27 sec

SystemDS - ULA 0.81 sec — 189.27 sec 190.42 sec

Aware-No OL 0.76 sec 3.97 sec 189.59 sec 195.51 sec

Aware-Mem 0.80 sec 8.00 sec 0.38 sec 9.72 sec

Aware 0.78 sec 3.93 sec 0.42 sec 5.69 sec

Aware improves performance up to a best case of 15,399x. Second, we compute the minimum

Euclidean distances via D = −2 ∗ (X × t(C)) + t(rowSums(C2)), followed by d = rowMins(D)
(which forces a decompression from overlapping state). Here, D are the Euclidean distances of

each row in X to the centroids C. This expressions is used, for instance, in K-Means clustering.

Aware shows performance up to 11.3x faster compared to ULA in all cases except MNIST.

Overlap: Leveraging the overlapping output from RMM without compaction shows significant

improvements in Figures 9(a) and 11. However, overlapping representations are most beneficial in

chains of RMMs. Table 7 shows the end-to-end runtime for a sequence of 10 RMM of size 𝑘 = 512,

representative for processing 10 fully-connected layers of size 512with no activation. CLA is slower

than ULA in this scenario because it is falling back to vector matrix compressed operations for

the first multiplication. Aware with no overlapping is slower because the first right multiplication

decompress, but it does show close to ULA performance. Aware with overlapping column groups

push the compressed index structures through the entire chain of RMMs, improving performance

irregardless of optimizing for memory or workload, with a slight advantage to workload.

Computation Cost: Table 8 shows the Aware workload analysis of different micro benchmarks

on Census_Enc. This experiment shows the estimated Theoretical Operations (TOPS), calculated

from the cost vectors and compression schemes. We compare the estimated TOPS for uncompressed

operations (on the left) with Aware’s estimated TOPS extracted from the sample and co-coding

decisions, as well as the estimated TOPS after compression (on the right). We observe that the

estimated TOPS from the sample is close to the actual TOPS, indicating good estimation accuracy

and thus, meaningful costs. We also show the compression time (Comp) and the runtime (Time)

for executing 100 repetitions of the given operation (Op 100×). There are some micro benchmarks

that show disproportionate scaling of runtimes compared to TOPS. With small execution times,

moderate discrepancies are expected because of various unaccounted overheads in both ULA and

Aware. For TSMM and LMM, the differences are due to output allocation, memory bandwidth

limitations, and index structure lookups. Although the runtime discrepancies are sub-par, we found

Table 8. Aware Workload TOPS (Data: USCensus Enc).

ULA Aware
Op (100×) TOPS Time Est. TOPS TOPS Comp Time

SUM 3.38e+10 2.25 sec 1.29e+05 1.14e+05 4.60 sec 0.08 sec

SUM Dense 1.90e+11 8.96 sec 1.31e+05 1.14e+05 4.65 sec 0.07 sec

RMM-256 2.81e+13 156.97 sec 2.13e+07 1.94e+07 4.74 sec 0.25 sec

LMM-256 4.28e+12 185.69 sec 6.87e+11 7.14e+11 7.22 sec 53.76 sec

TSMM 6.32e+12 111.12 sec 9.83e+11 9.98e+11 7.19 sec 16.91 sec

ScaleShift 7.47e+11 3,216.21 sec 4.08e+05 3.42e+05 4.89 sec 0.36 sec

Euclidean-256 4.80e+13 308.85 sec 8.61e+11 9.04e+11 7.87 sec 78.55 sec
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Table 9. Workload-awareness on Local End-to-End Algorithms (Data: USCensus Enc)

ULA Aware-Mem Aware
Time Comp Time Comp Time

K-Means 51.6 sec 4.2 sec 46.2 sec 6.2 sec 27.1 sec

PCA 12.7 sec 4.0 sec 10.4 sec 6.0 sec 9.0 sec

MLogReg 32.0 sec 4.5 sec 32.5 sec 7.2 sec 26.0 sec

lmCG 19.8 sec 5.0 sec 20.7 sec 6.4 sec 18.6 sec

lmDS 15.6 sec 5.7 sec 15.5 sec 6.1 sec 14.3 sec

L2SVM 38.9 sec 6.5 sec 45.2 sec 6.2 sec 36.5 sec

Table 10. L2SVM (without scale&shift, 60 iterations, Data: USCensus Enc)

Local (1x) Distributed (256x)

I/O Comp L2SVM Total Total

SystemML - ULA 1.6 sec — 36.7 sec 38.4 sec 5,689.6 sec

SystemML - CLA 1.5 sec 32.8 sec 31.7 sec 66.0 sec 4,722.7 sec

SystemDS - ULA 1.6 sec — 19.3 sec 20.9 sec 2,849.1 sec

Aware-Mem 1.4 sec 6.0 sec 21.3 sec 28.7 sec 2,300.4 sec

Aware 1.6 sec 7.9 sec 15.9 sec 25.3 sec 2,294.9 sec

that our TOPS estimation provides a good balance of simplicity and reflecting key differences

relevant for compression. More sophisticated cost estimators are, however, interesting future work.

6.4 End-to-End Algorithm Performance
We use the following six algorithms to evaluate Aware with workload-ware compression on end-

to-end ML training: K-Means for clustering; principal component analysis (PCA) for dimensionality

reduction; multinomial (multi-class) logistic regression (MLogReg); LM via conjugate gradient

(lmCG), and via a direct solve method (lmDS) for linear regression; as well as l2-regularized support

vector machines (L2SVM) for classification. In theory, Aware gives equal results to ULA but because

of rounding errors in sequences of FP64 operations and different parallelization strategies—present

both, in ULA and Aware—algorithms naturally execute with slight variations. Therefore, algorithm

parameters are set to ensure an equal number of iterations and operations.We use the USCensus Enc

dataset and scale up by replication. The replication maintains the statistics of the data, and is not

an issue for distributed execution, where blocks are compressed independently. The local influence

is limited to constant dictionary sizes, and replication is not actively exploited by Aware.

Local Execution: Table 9 shows the results algorithms fit in-memory. Aware yields moderate

but consistent improvements, or at worst (e.g. L2SVM, lmDS) comparable performance. Observ-

ing improvements on all algorithms most notably 19% for MLogReg, 47% for K-Means (iterative

algorithms), and 29% for PCA (non-iterative algorithm) is remarkably because this includes online

compression. Underlying reasons are fast compression that is easier to amortize and redundancy

exploiting operations. The algorithms L2SVM, lmCG, and lmDS all perform very close to ULA.

CLA Comparison: CLA is not included in Table 9 because it does not support scale&shift and

therefore would not execute efficiently. For a fair comparison, we use the L2SVM algorithm from

CLA [26] (with minor modifications, e.g. 60 iterations not 100) and compare different configurations

of CLA (in SystemML) and Aware in Table 10. Both systems read and parse both train and test

datasets (in binary), increasing I/O compared to the other experiments. We observe that CLA

compression is slower than Aware optimizing for size or compute. CLA does not outperform
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Table 11. End-to-End AlgorithmsHybrid Execution [Seconds] (Data: USCensus Enc,𝐷 .. Incl. DistributedOps).

K-Means PCA MLogReg

ULA Aware ULA Aware ULA Aware

1x 51.6 (6) 27.1 12.7 (6) 9.4 32.0 (7) 26.0

8x 471.0 (26) 117.8 330.3 (26) 42.6 393.3 (29) 88.2

16x
𝐷
484.3 (48) 183.9

𝐷
76.3 (47) 67.5

𝐷
570.3 (58) 144.2

32x
𝐷
1,491.6

𝐷
1,496.3

𝐷
70.3

𝐷
61.2

𝐷
671.5

𝐷
629.9

128x
𝐷
17,819.0

𝐷
6,298.0

𝐷
137.0

𝐷
140.3

𝐷
3,502.9

𝐷
1,710.6

*128x
𝐷
33,039.0

𝐷
11,616.0

𝐷
269.0

𝐷
259.0

𝐷
50,998.0

𝐷
8,599.6

lmCG lmDS L2SVM

ULA Aware ULA Aware ULA Aware

1x 19.8 (6) 18.6 15.6 (6) 14.3 38.9 (6) 36.5

8x 366.2 (26) 60.6 334.4 (29) 51.5 405.2 (26) 115.4

16x
𝐷
104.4 (44) 91.7

𝐷
80.2 (50) 75.8

𝐷
252.6 (56) 195.5

32x
𝐷
264.6

𝐷
105.3

𝐷
91.5

𝐷
70.8

𝐷
433.2

𝐷
479.4

128x
𝐷
1,611.4

𝐷
242.6

𝐷
175.9

𝐷
162.4

𝐷
5,286.9

𝐷
1,904.5

*128x
𝐷
33,090.0

𝐷
469.0

𝐷
365.9

𝐷
465.0

𝐷
74,016.0

𝐷
1,060.0

ULA in SystemML in local settings because the compression is not amortized. In contrast, our

ULA baseline is 1.9x faster, Aware-Mem shows similar performance to CLA, and Aware improves

the relative training time (without compression and IO) by 2x over CLA, and 2.3x over ULA, but

SystemDS ULA is the fastest end-to-end. Since CLA mostly focuses on large distributed datasets,

we further compare CLA and Aware on a larger sparse dataset (256x, which only partly fits in

memory of 11 nodes). Table 10 (right) shows that SystemML CLA yields a moderate speedup, but

Aware achieves another 2x over SystemML CLA. At this scale, Aware optimizes for memory size

and thus, the results Aware and Aware-Mem are similar.

Hybrid Execution: In between the local and distributed extremes, there are hybrid runtime

plans, where the sparse input fits into memory of the driver but after scale&shift transformation,

the transformed data does not fit in the driver and thus, generates distributed operations. Table

11 show the results for replicated versions of USCensus Enc (8x-32x). Runs using distributed

operations are marked with 𝐷 and local compression times are included in parenthesis. These

in-between scenarios are generally challenging in terms of evictions, efficient exchange between

local and distributed runtimes, as well as decisions on when to prefer distributed operations. Most

notable is this characteristic in ULA, which is sometimes faster for larger scales. This is because

the execution fits in memory for various instructions and therefore more or less instructions are

executed distributed. For instance in PCA, the number of distributed instructions grows from 16x

to 32x to finally 128x. Across all algorithms—except for a few instances—Aware show consistent

improvements, especially if we focus on computation time (without the compression time).

Large-scale Execution: Finally, the last two rows (128x) show the primary compression scenario,

where both the sparse input and dense intermediate after transformation do not fit into local memory

and the dense intermediate exceeds aggregate cluster memory. We still compile hybrid runtime

plans but all operations on X (and some derived intermediates) are distributed. Since the data

exceeds aggregate memory, iterative algorithms read in every iteration more than two thirds of

X from evicted partitions. The 128x results refer to our primary cluster setup but with a different
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Fig. 12. TensorFlow Comparison (lmCG, USCensus Enc).

memory configuration (more executors and nodes, smaller spark.memory.fraction) in order to

ensure stable results. For comparison, we also include previous results from our secondary cluster

(128x*) using the same configuration as hybrid execution, which caused lost executors in some

cases. Due to redundancy exploitation and good compression ratios—even on tiles (see Table 6)—we

observe large improvements of 2.8x for K-Means, 2x for MLogReg, 6.6x for lmCG, and 2.8x for

L2SVM. In contrast, PCA and lmDS are non-iterative algorithms. On the secondary cluster, we

observed up to 70x performance gains. The differences in relative improvements are due to faster

networking and OS file system caching of evicted partitions due to more physical memory per

node (256GB versus 128GB), which favors uncompressed (ULA) operations.

6.5 Additional Baseline - TensorFlow
While ULA is the most important baseline—within the same compiler and runtime— we also

compare with TensorFlow (TF) version 2.12; We evaluated both TF and TF-AutoGraph [52], but

report numbers for TF-AutoGraph, which gave 1-5 sec faster execution times on average. The

workload is a simplified version of lmCG on USCensus Enc, expressed via TF linear algebra

operations. By default, we use 300 lmCG iterations (instead of 100 in Table 9).

Results: Figure 12 shows the results in log-scale, where each stack is I/O time, compute time,

and total time (from front to back, as regular stacking is infeasible in log scale). On the left, we

have TF with different value types. Changing from FP64 (double) to FP32 improves execution time

by 21.7%, reducing to FP16 produces infinite sums, rendering the algorithm invalid. BF16 solves

this issue by using a different numbers of exponent and mantissa bits, but it is not well supported

on the CPU, resulting in a 3x slowdown compared to FP64. Using TF’s sparse representation

worsen performance slightly at FP64 precision similarly at FP32. TF executes the core expression

per iteration (of two matrix-vector multiplications) X⊤ (Xv) single-threaded because it only uses

multi-threaded matrix multiplications with two or more columns in right-hand-side matrix. In

contrast, our multi-threaded I/O and matrix-vector multiplications yield speedups of about 13x for

ULA and 19.5x for Aware. Forcing both single-threaded I/O and operations (St), ULA becomes 38%

faster than TF. ULA (with data size of 1.3GB) does not fully saturate the memory-bandwidth for

this sparse dataset, while Aware fits the compressed matrix (49.7MB) into the 128MB L3 cache,

yielding a 3.3x speedup over TF-FP64. To summarize, both ULA and Aware show competitive

performance with single-threaded, and are faster with multi-threaded operations, indicating that

Aware’s improvements could carry over to other ML systems.

6.6 Hyper-Parameter Tuning
Executing a single short ML training algorithm makes it hard to amortize the online compression.

In practice, however, most time is spent in ML pipelines that involve outer loops for enumerating

data augmentation pipelines, feature and model selection, hyper-parameter tuning, and model

debugging. Aware adapts to such more complex workloads by spending more time on compression

(which is easily amortized) and optimizing for operation performance in the inner loops. Table 12
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Table 12. GridSearch MLogReg (Data: USCensus Enc).

ULA Aware-Mem Aware

274.3 sec 238.1 sec 92.6 sec

shows results for a basic GridSearch hyper-parameter tuning of the MLogReg algorithm. Even for a

small number of 3 · 3 · 3 · 5 = 90 hyper-parameter configurations, Aware improves the local runtime

(including compression) by 3x, which is a promising result for wide practical applicability.

7 RELATEDWORK
Workload-aware, lossless matrix compression is related to lossless and lossy matrix compression,

query processing on compressed data, and workload-aware physical design of compressed data.

Lossless Matrix Compression: Naturally, the closest area of related work is lossless matrix

compression, whose limitations we already discussed in Section 2. General-purpose data-parallel

frameworks like Spark [83] or Flink [5], scientific data formats like NetCDF and HDF5 [31], and

storage managers like SciDB [71] and TileDB [59] also support compression, but decompress block-

or partition-wise for operations. Early work includes traditional sparse matrix representations (e.g.,

CSR, CSC, COO) [64] and compression techniques by Kourtis et al. that already leveraged dictionary

coding [37, 40], as well as delta and run-length encoding [37]. Subsequent work on compressed

linear algebra (CLA) focused on online compression and entire ML algorithms, where CLA [25, 26]

uses column compression for batch algorithms, and TOC [45] uses tuple compression for mini-batch

algorithms. Other works exploit different properties such as: integer time series values [12], floating

point time series [46], and bounded ranges of floats [48]. Recent work on grammar-compressed

matrices report operation performance proportional to the compressed size [27], while others

presented impossibility results (worst-case) for efficient matrix-vector multiplications on grammar-

compressed matrices such as Lempel-Ziv [4]. Factorized learning [42, 67] further pushes operations

ofML training algorithms through joins and can be seen as a specialized form of lossless compression

exploiting available schema information [57] to avoid materializing denormalized tables. These

factorization ideas can also be implemented on top of ML systems [20] by representing joins via

structured selection matrices. Compared to these mostly data-centric compression frameworks—

where LMFAO [68] also compiles efficient sum-product plans for factorized learning—our Aware

framework leverages both data and workload characteristics of linear algebra programs and adjusts

the compression process, compressed representations, and execution plans accordingly.

Lossy Compression and Sampling: In the context of mini-batch DNN training and scoring,

we see broad adoption of lossy compression. First, quantization discretizes floating-point into

fixed-point representations such as UINT8 for scoring [30]. Common techniques are static min/max

binning (equi-width) [30] and learned quantization schemes (equi-height via quantiles) [84, 85].

Such quantization schemes are also used for efficient data transfer in ZipML [84] and SketchML

[35]. With residual accumulation at the workers, some systems reduce communicated values to

a single bit [69]. Second, the challenges of training with low 8-bit FP precision are addressed

with chunk-based accumulation and stochastic rounding [77]. Third, there are techniques like

mantissa truncation [3, 10] and new data types with different trade-offs of range and precision [56].

Examples are Google’s bfloat16 (1+8+7 bits) [65], Intel’s Flexpoint (shared subset of exponent bits)

[39], and NVIDIA’s TF32 (1+8+10) [56]. Fourth, other techniques include sparsification or value

clipping (omit small values) [29, 56], dimensionality reduction like auto encoders [34], sampling in

BlinkML [60], DNN activation compression in COMET [36], and progressive compression schemes

[41, 78]. Unfortunately, the unknown impact on results, creates trust concerns, requires trial and

error, and is problematic for declarative ML pipelines. Recent work in MLWeaving [78] introduced
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data structures for efficiently extracting different granularities for simplifying exploration, while

BlinkML [60] estimates the minimum sample size to satisfy an accuracy constraint. Our work on

lossless compression is orthogonal as it guarantees correct results.

Workload-aware Physical Database Design: Work on lossless matrix compression like CLA

[25, 26] and TOC [45] was inspired by lossless compression in column stores and related query

processing on compressed data. There is a wide variety of lightweight lossless data compression

schemes such as null suppression, run-length encoding, dictionary coding, frame of reference, and

delta coding [1, 2]. Extensions include patched encoding schemes (separate handling of exception

values) [86], order-preserving dictionary coding [11, 49], and exploitation of such schemes in query

processing [7, 11, 43, 61]. Our handling of default values is also related to header compression

in SAP HANA [66] and fast-mode column adds in Teradata [74]. The performance/compressed-

size tradeoffs of existing schemes are, however, strongly data-dependent [22, 33]. For that reason,

existing systems largely rely on conservative selection heuristics [1, 2, 43], but there is also work

on cost modeling [17, 19, 22], and balancing query performance and storage size with different

column group projections and encodings [75]. Once compression choices are reflected in the costs,

they influence what-if physical design tuning. Compression-aware design tuning [38] showed how

index compression can affect index selection choices, and learned partitioning schemes maximize

partitioning pruning [82] (e.g., via small materialized aggregates [51]). Furthermore, recent work

introduced memory-budget-constrained offline compression for selecting encoding schemes based

on estimated costs and compression ratios [16], and related data partitioning across storage tiers

[44, 76]. In contrast, our workload-aware compression planning summarizes the workload of a linear

algebra program in order to tune online lossless matrix compression and compressed operations.

8 CONCLUSIONS
We introduced Aware as a workload-aware, lossless matrix compression framework with new

encoding schemes and compressed operations. Compared to previous lossless matrix compression,

Aware summarizes the workload characteristics of a linear algebra program and selects where and

how to compress the inputs and intermediates for minimizing total execution time. Based on a

variety of experiments, we draw two major conclusions. First, the broader spectrum of compression

techniques (column groups, fast compression, overlapped representations) yields runtime improve-

ments even when uncompressed operations fit in memory, and can handle increasingly complex

ML pipelines of data preparation, model training, and debugging. Second, the workload-aware

compression planning nicely adapts the compressed representation for higher compression ratios

when needed, and otherwise prefers operation performance. Together, these characteristics yield a

compression framework with robust performance and thus, more general applicability. Interesting

future work includes the pushdown of compression into data preparation (e.g., feature transfor-

mations, and data cleaning) [81], extensions for federated learning (e.g., extended asynchronous

compression) [8, 9], and combinations with lossy compression (e.g., bounded loss[36, 47]).
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