
120

GIO: Generating Efficient Matrix and Frame Readers for
Custom Data Formats by Example
SAEED FATHOLLAHZADEH, Graz University of Technology & Know-Center GmbH, Austria
MATTHIAS BOEHM∗, Technische Universität Berlin, Germany

Data Scientists deal with a wide variety of file data formats and data representations. Probably the most
difficult to handle are custom data formats that liberally define their own particular flat or nested structure
with multiple custom delimiters, multi-line records, or undocumented semantics of attribute sequences, co-
appearances, and repetitions. As a prerequisite for exploratory ML model training, data scientists need to
map these data representations into regular frames or matrices. Unfortunately, existing tools and frameworks
provide only limited support for aiding this process, which causes redundant manual efforts and unnecessary
data quality issues. In this paper, we initiate work on automatic matrix and frame reader generation by
example. A user provides a sample of raw text data and its mapped matrix or frame representation. Our GIO
framework then first identifies the mapping rules from raw to structured data, and subsequently generates
source code of an efficient, multi-threaded reader for reading full raw datasets of this format. In order to
facilitate manual improvements, both the mapping rules, and generated reader can be modified as needed.
Our experiments show that GIO is able to correctly identify the mapping rules for basic text formats like CSV,
LibSVM, MatrixMarket; custom text formats from publishing, automotive, and health care; as well as various
nested formats such as JSON and XML. Additionally, the automatically generated readers yield competitive
performance compared to hand-coded readers and tuned libraries like RapidJSON.

CCS Concepts: • Information systems→ Database management system engines; Data scans; Record
and block layout; • Theory of computation→ Database query processing and optimization (theory).

Additional Key Words and Phrases: Raw Data; Custom Data Format; Efficient Readers; Data Loading

ACM Reference Format:
Saeed Fathollahzadeh and Matthias Boehm. 2023. GIO: Generating Efficient Matrix and Frame Readers for
Custom Data Formats by Example. Proc. ACM Manag. Data 1, 2, Article 120 (June 2023), 26 pages. https:
//doi.org/10.1145/3589265

1 INTRODUCTION
The typical data science lifecycle is exploratory, where data scientists formulate hypotheses, inte-
grate and clean the necessary data in order to build and evaluate predictive models [31, 36]. Data
sourcing and integration often deals with files in open data formats, stored in cloud object storage
or distributed file systems [79]. Common formats include text formats such as CSV, fixed-width
text, JSON, and XML; as well as binary formats such as Parquet, HDF5, and Protobuf. Apart from
these domain-agnostic, syntactic data formats, there are also a number of domain-specific, semantic

∗This work was partially done at Graz University of Technology, Austria.

Authors’ addresses: Saeed Fathollahzadeh, Graz University of Technology & Know-Center GmbH, Austria; Matthias Boehm,
Technische Universität Berlin, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/6-ART120 $15.00
https://doi.org/10.1145/3589265

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0003-3723-6191
HTTPS://ORCID.ORG/0000-0003-1344-3663
https://doi.org/10.1145/3589265
https://doi.org/10.1145/3589265
https://orcid.org/0000-0003-3723-6191
https://orcid.org/0000-0003-1344-3663
https://doi.org/10.1145/3589265

120:2 Saeed Fathollahzadeh & Matthias Boehm

formats with similar structure but specific schemas. Examples are MDF (automotive measurements),
HL7 (health care), and SWIFT (finance), as well as many custom formats.
Problem of Custom Data Formats: In many applications, custom data formats originate

from systems and machines, whose data representation (e.g., logs) was not designed for data
exchange and interoperability. Challenging characteristics of such data formats include flat or
nested structure, optional key or positional attributes, multiple custom delimiters or prefixes,
potentially multi-line records, undocumented semantics of attribute sequences, co-appearances,
and repeating groups of attributes. Examples from our industrial partners—where custom data
formats are a major hurdle for integrated data analysis—include semiconductor manufacturing,
smart grid data management, paper production, and mixed, non-hazardous waste recycling. A
common process of dealing with such data formats is taking a sample and writing custom extractors
(for reading, parsing, ingestion, and mapping) to capture all relevant data in matrices or frames,
which causes redundant manual efforts for extractor implementations and data quality issues due to
brittle, insufficiently-tested extractors. Unfortunately, writing such extractors or readers—especially
for complex custom formats—is still a painful process that is poorly supported in existing ML
systems, libraries, and data-parallel computation frameworks.

Existing Raw Data Processing: Data and query processing of raw input files is an important
yet challenging problem. The inspiring and highly-influential NoDB work (and RAW Labs) [9, 47]
enables SQL query processing on CSV and JSON files, while providing high-performance via
techniques such as positional maps for selective parsing, caching, and partitioning. In this context,
Proteus [51] further enabled efficient JSON data extraction and query processing via source code
generation. State-of-the-art in practice include custom hand-coded extractors, often using data-
parallel frameworks such as Apache Spark [78], as well as SQL processing via SparkSQL [15]
and JSON processing via RumbleDB [63], augmented with techniques for selective parsing [65].
However, reading and processing complex custom formats still requires custom, manually-created
extractors, or even parsers generated via ANTLR/JavaCC and hand-crafted grammars. Existing
work on raw data primarily focus on reading and query processing of simple, existing data formats,
while automatic mapping identification and complex data handling remain open problems.

GIOOverview: In order to address the missing support for custom data formats, we initiate work
on automatic matrix/frame reader generation by example and present our GIO framework. Given a
sample of raw text data and a corresponding example frame or matrix that cover subsets of raw
data values, we generate efficient readers for processing the full dataset (and future datasets of the
same format). The conceptual basis of our framework are position (row/column) and value mapping
functions, assembled into mapping rules. In a first identification step, GIO mines these mapping
rules from the user-provided examples of raw and extracted data. In a second step, GIO generates
source code for an efficient reader that implements the mapping rules. In contrast to schema
matching [26] and mapping [44, 77]—which deal with schema-level correspondences extracted via
schema- or instance-based matchers, and the generation of mapping programs—GIO handles raw,
text-based data formats and their ingestion into matrices and frames for ML applications.
Contributions: Our primary contribution is the practical GIO1 framework for matrix/frame

reader generation by example of custom, text-based (flat or nested) data formats. Besides conceptu-
alizing this new problem, we also provide novel techniques for efficient mapping identification by
example, and efficiently generating efficient readers. Our technical contributions are:

1GIO is short for generated I/O primitives and honors Gio Wiederhold’s contributions to compilers, data acquisition, infor-
mation integration, and knowledge management. All code and experiments are available open source in Apache SystemDS
(https://github.com/apache/systemds) and our reproducibility repository (https://github.com/damslab/reproducibility).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

https://github.com/apache/systemds
https://github.com/damslab/reproducibility

GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example 120:3

• Problem Formulation: As conceptual basis for this and future work, we first formulate the
overall problem, and survey how existing data formats align with it in Section 2.
• Mapping Identification: We then introduce novel algorithms for identifying mapping rules
from flat and nested raw data to matrices/frames in Section 3. This identification leverages
prefix trees for efficient candidate evaluation.
• Reader Generation: We further describe a template-based code-generation approach for
generating efficient matrix or frame readers in Section 4. These readers utilize multi-threading
and selective parsing of projected attributes.
• Experimental Evaluation: Finally, we report on extensive experiments in Section 5. We use
multiple basic and custom data formats, and compare with existing parallel readers.

2 BACKGROUND AND OBJECTIVES
We first describe the background of custom data formats, and then formulate the problem of
generating readers from user-provided examples, including identifying the mapping rules.

2.1 Custom Data Format Characteristics
Files in custom data formats are widely used inputs to ML pipelines and applications. For the sake
of a clear presentation, we first describe the characteristics of commonly used ML data formats,
show examples of custom data formats, and finally, summarize related challenges that need to be
handled by generated I/O primitives.
ML Data Formats: ML Applications often consume their input data from consolidated, self-

contained files. The most commonly used data formats are general-purpose formats such as CSV
(comma-separated values) [69], JSON (javascript object notation) [72], XML [59], and Protobuf.
Additionally, specialized matrix formats are used to capture specific characteristics such as sparsity
and labels. Examples are MatrixMarket (coordinate or array format with different value types like
real/integer, and different symmetry types) [2] and LibSVM (sparse row representation with labels)
[34], but also scientific formats such as NetCDF and HDF5, where the latter uses B-trees for the
efficient extraction of chunks. For large-scale data processing formats like Parquet, ORC, and Arrow
are common as well. However, open text-based formats like CSV, MatrixMarket, LibSVM, JSON,
and XML are largely preferred in practice in order to ensure interoperability (human readable,
independent of existing systems and tools, and stable over time). Many ML systems already natively
support these formats, but their structural concepts are reappearing in custom data formats as well.
Custom Data Formats: In contrast to general-purpose formats, we use the term custom data

formats for specialized domain-specific formats (e.g., HL7 and SWIFT messages), tailor-made
application-specific formats (e.g., vendor-specific machine logs), as well as specific schemas in
general-purpose JSON or XML representations. Such formats are often designed without interoper-
ability in mind or provide advantages in terms of flexibility and simplicity in their domain. Although
there is a spectrum of formats without clear demarcation of custom data formats, we generally
refer to specialized formats unsupported by most ML systems. In contrast, CSV, MatrixMarket, and
LibSVM are widely-used, text-based formats with often-reused key structural elements. Figure 1

0,0,7,0
7,0,7,7
0,7,0,0

3 4 5
1 3 7
2 1 7
2 3 7
2 4 7
3 2 7

-1 3:7
+1 1:7 3:7 4:7
+1 2:7

CSV
MatrixMarket

LibSVM

Fig. 1. A 3 × 4 Matrix with 5 Non-Zero Values.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

120:4 Saeed Fathollahzadeh & Matthias Boehm

shows a 3-by-4 matrix with 5 non-zero values (constant value 7) in CSV, MatrixMarket, and LibSVM,
where only LibSVM additionally contains labels (binary -1/+1 labels).
Key concepts are (1) one or multiple, single-/multi-character delimiters, (2) positional or prefix
encodings of cell positions, and (3) mixed data and metadata. For example, the first row in Matrix-
Market represents the metadata of numbers of rows, columns, and number of non-zero values;
followed by 5 triples of (row column value) for these non-zero values. Many custom data formats
have additional structure. Figure 2 shows three AMiner publications [73] as an example. Here, we
have additionally (4) custom prefixes (e.g., #* for paper title, #t for year, and #c for venue), (5) lists
of authors and references, and (6) multi-line records. Currently, such custom data formats are only
poorly supported in existing systems, often requiring reading data as plain text and then parsing
records via custom user-defined functions.

#index 2015101

➔

beginning of record #1
#* NoDB: efficient query execution on raw data files
#@ Ioannis Alagiannis; Renata Borovica; Anastasia Ailamaki
#o EPFL Switzerland; EPFL Switzerland; EPFL Switzerland
#t 2015
#c VLDB Conference
#% ... unlimited set of references
#! As data collections become larger and larger, data loading evolves to a major bottleneck. ...

#index 2019102

➔

beginning of record #2
#* Pangea: Monolithic Distributed Storage for Data Analytics
#@ Jia Zou; Arun Iyengar; Chris Jermaine
#o Rice University; Rice University; Rice University
#t 2019
#c VLDB Conference
#% ... unlimited set of references
#! Storage and memory systems for modern data analytics are heavily layered, managing shared ...

#index 2018103

➔

beginning of record #3
#* Filter Before You Parse: Faster Analytics on Raw Data
#@ Shoumik Palkar; Firas Abuzaid; Matei Zaharia
#o Stanford InfoLab; Stanford InfoLab; Databricks Inc
#t 2018
#c VLDB Endowment
#% ... unlimited set of references
#! Exploratory big data applications often run on raw unstructured or semi-structured data ...

Fig. 2. AMiner Publication Dataset: Three Records.

Additional Challenges: Although some metadata is included, other properties have to be
inferred from the given example datasets. First, the data might include extra values that are not
taken over into the target matrix or frame representation. Other attributes are optional and need to
be treated as such during reading. Second, readers might have to deal with variable-length and
alternative textual representations. For example, "70", "70.0", and "7e1" should all be recognized
as the same value. Third, attribute values with keys or explicit position encoding might appear
in the sample out-of-order and at different hierarchy levels, which requires arbitrary row- and
column-oriented mappings as well as handling path expressions in nested representations. Fourth,
readers need to infer the dimensions (number of rows and columns) as well as sparsity for output
pre-allocation. These characteristics render the generation of readers for custom formats a very
challenging problem, not handled by existing JSON/XML parsers alone.

2.2 Reader Generation Problem
Given a custom text-based dataset D, and user-provided examples of raw and target data, our goal
is to generate a matrix or frame reader for reading the full dataset and other data of this format.
The user-provided examples have the following structure:

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example 120:5

ExampleExample (S)

Dataset (D) Output Matrix/Frame

(F)

Matrix/Frame

Identification
Mapping

Shape Inference

Code Generation
Modify Reader Src

Runable Reader (R)

R(D)

Fig. 3. Reader Generation Workflow in GIO.

• Sample Raw (S) Input: Let S = {𝑆1, 𝑆2, . . . , 𝑆𝑙 } be a list of input strings (i.e., selected rows of
the input dataset D), and be stored as a newline-separated text file. We denote 𝑆𝑖 as a vector
of characters of size 𝑟𝑖 = |𝑆𝑖 |.
• Sample Matrix/Frame (F) Input: Let F = {𝐹1, 𝐹2, . . . , 𝐹𝑛} be a sample matrix or frame, cor-
responding to S with 𝑛 records and the following schema: F(valueType1, valueType2,
. . . , valueTypem), where valueTypei ∈ {I32, I64, Bool, String, FP32, FP64}. Thus, F
has dimensions 𝑛 ×𝑚 and F𝑖 𝑗 denotes the cell value of the 𝑖th row and 𝑗th cell.

Problem Formulation: Based on the provided sample raw and matrix/frame inputs S and F, we
aim to generate a reader for the entire dataset D. For the sake of flexibility in practice, we split this
problem into two sub-problems with well-defined intermediates as shown in Figure 3. First, given
S and F, we aim to identify a valid set of mapping rulesM that capture the mapping of values from
S to F. The mapping rulesM are valid if and only if S M→ F, that is,M logically applied to S yields
exactly F. Second, givenM, we aim to generate a reader that can read S into F and be applied to
any dataset of the same format like S. The user API of GIO accordingly comprises three functions:
• M = gio_identify(S,F) (identification),
• R = gio_codegen(M) (reader generation), and
• F2 = R.read(D) (reader usage on full or different datasets).

This separation into sub-problems simplifies testing or debugging, and it enables optionally hand-
crafting or fine-tuning the mapping rulesM as input to the reader generation process.

2.3 Mapping Rules
There are two types of essential mapping rules. First, shape inference functions allow to infer the
dimensions 𝑛 ×𝑚 (and optionally sparsity) of F from D, so a generated reader can pre-allocate
the matrix or frame accordingly. Second, cell value mapping functions encode how the values are
extracted from S or D and placed in F𝑖 𝑗 . Both types of functions can be parameterized with values
such as the delimiters, keys, path expressions, and offsets. Additional types of mapping rules is an
interesting direction for future work.

Shape Inference Functions: A set of shape inference functions allows to determine the number
of rows and columns, and optionally estimate the sparsity, for new datasets D of the given custom
data format. The types and parameters of these functions need to be discovered from the sampled
raw S and target matrix/frame F. In detail, we currently support the following functions:
• Identity: Infers a dimension by the number of data items produced by applying a specific
delimiter (e.g., 𝑛 = |𝐷 | with del=\n for CSV or "#index" for AMiner; or𝑚 = |𝐷1 |).
• Constants: Infers a dimension by a fixed constant or via existing metadata at a fixed location
in D (e.g., MatrixMarket).
• Max: Infers a dimension as the maximum of explicitly given cell indexes at specific locations.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

120:6 Saeed Fathollahzadeh & Matthias Boehm

• Stack: Infers a dimension by sequential counting of entries at a certain hierarchy level via a
stack of begin and end delimiters (e.g., in XML or other nested representations).
• Special: As general fallback for complex shapes, we provide special arithmetic functions for
deriving dimensions. For example, consider a single-line S = {1, 2, 3, 3, 4, 4, 5, 6, 7, 8, 9} and the
following different F targets:

𝐹1 =

1 2 3
4 5 6
7 8 9

𝐹2 =

1 4 7
2 5 8
3 6 9

𝐹3 =

[
1 2 3 4 5
6 7 8 9 0

]
𝐹4 =

[
1 3 5 7 9
2 4 6 8 0

]

The corresponding shape functions are 𝑛 =𝑚 =
√︁
|S| for F1 and F2, as well as 𝑛 = ⌈|S|/5⌉ and

𝑚 = 5 for F3 and F4 (both with row- and column-major value mappings).
Cell Value Mapping Functions: Similar to the shape inference functions, mapping rules of

values in S and F are encoded with coarse-grained, parameterized mapping functions. Conceptually,
we need to map all values in F onto S, and infer rules that cover all values (i.e., no value violates
the rules). With duplicate values many valid mappings are possible, but based on the principle of
minimality [27] one should choose the simplest rules. The values of F might be fully existing in S
(e.g., CSV), partially existing in S (e.g., MatrixMarket-symmetric where values in S are replicated
once in F), or generated from constants (e.g., defaults). In detail, we support the following functions:
• Identity: 𝐹𝑖 𝑗 values appear grouped and sorted in S. This means, the positions are identical to
the position in S after splitting by appropriate delimiters.
• Exist: The indexes of values in F are explicitly included in S before or after F’s cell values.
• Scattered-Sequential: Values of a record in F are collected from single-/multi-line strings in S.

Note that there are separate functions for row and column mappings. For example, CSV has row
and column Identity mappings, whereas LibSVM has row Identity and column Exist mapping rules.
In the following, we describe in detail how GIO identifies these mapping rules and then generates
efficient readers based on these rules.

3 MAPPING IDENTIFICATION
We obtain the mapping rules for a given S and F , by first collecting detailed mapping information for
all cells values in F and then synthesizing the coarse-grained rulesM. In this section, we describe
key algorithms for cell value mapping, efficient pattern matching, and the overall identification
algorithm along with illustrative examples for conveying the underlying intuitions.

3.1 Cell Value Mapping
As a basis for the overall identification algorithm, we aim to extract a detailed cell value mapping.
This mapping indicates indexes where each value in F can be found in S.

Mapping Algorithm. The target matrix or frame F explicitly contains all cell values F𝑖 𝑗 as
well as their locations in terms of row and column indexes 𝑖 and 𝑗 . Algorithm 1 maps these values
to strings in S by considering valid mapping alternatives, and returns the most likely mapping.
In Lines 3-6 of Algorithm 1, we construct indexes to group values of each line in S into numeric,
boolean, and string values via our indexing Algorithm 2. Here, we assume that records in S (single or
multiple rows) can be separated by a single- or multi-character delimiter. To obtain the most likely
mapping, we iterate over all mapping orders from F to S (see Line 7), compute each mapping (see
Lines 8-19), and finally score the mappings via selectTrustedMapping to return the best mapping.
The Algorithm selectTrustedMapping (not shown due to its mechanical complexity) follows the
mentioned principle of minimality [27] by assigning scores according to the simplicity of mapping
functions and consistency of row/column cell mappings. Our indexing Algorithm 2, constructs

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example 120:7

Algorithm 1 map(S, F)
Input: Sample Raw S , Sample Frame F
Output: MappingM∗
1: n← nrow(F); m← ncol(F); M ← ∅
2: S′numeric ← ∅; S′bool ← ∅ // multimap
3: for 𝑖 in 1 : nline(S) do
4: (N, B) ← index(S𝑖 , 𝑖)
5: S′𝑛𝑢𝑚𝑒𝑟𝑖𝑐 ← S′𝑛𝑢𝑚𝑒𝑟𝑖𝑐 ∪ N
6: S′

𝑏𝑜𝑜𝑙
← S′

𝑏𝑜𝑜𝑙
∪ B

7: for 𝑟 in |S × F| do // any order of F’s values on S
8: M = [𝑛𝑢𝑙𝑙]𝑛×𝑚 // M𝑛×𝑚 matrix of (x,y) pairs
9: for 𝑖 in 1 : 𝑛 do
10: for 𝑗 in 1 :𝑚 do
11: if F𝑖 𝑗 ∉ {𝑛𝑢𝑙𝑙, 0} then
12: if 𝑣𝑎𝑙𝑢𝑒𝑇𝑦𝑝𝑒 𝑗 ∈ {I32, I64, FP32, FP64} then
13: (𝑝, 𝑙) = F𝑖 𝑗 ∈ S′𝑛𝑢𝑚𝑒𝑟𝑖𝑐
14: else if 𝑣𝑎𝑙𝑢𝑒𝑇𝑦𝑝𝑒 𝑗 ∈ {Bool} then
15: (𝑝, 𝑙) = F𝑖 𝑗 ∈ S′𝑏𝑜𝑜𝑙
16: else
17: s(𝑝,𝑝+𝛼)

𝑙
← F𝑖 𝑗 ∈ S

18: M𝑖 𝑗 ← (𝑝, 𝑙) // save (𝑝, 𝑙) pair at M𝑖 𝑗

19: M ← {M} ∪M
20: return selectTrustedMapping(M)

Algorithm 2 index(Raw, L)
Input: A String Raw, Line Number L
Output: Numeric Multimap N , Boolean Multimap B
1: N ← ∅; B ← ∅; l← 𝑙𝑒𝑛(Raw)
2: bn← 𝐵𝑖𝑡𝑠𝑒𝑡 (l); bb← 𝐵𝑖𝑡𝑠𝑒𝑡 (l) // Empty bitsets with size l
3: for 𝑖 in 1 : l do
4: if getStringChar(Raw, 𝑖) ∈ {0-9,+,-,.,’,’,E} then
5: bn[𝑖] ← 1
6: if getStringChar(Raw, 𝑖) ∈ {0,1,T,F} then
7: bb[𝑖] ← 1
8: [(ns,np)] ← getAllSeqenceSetSubstrings(Raw, bn)
9: [(bs, bp)] ← getAllSeqenceSetSubstrings(Raw, bb)
10: N ← [parseStringToNumber(ns), (np, L)]
11: B ← [parseStringToBoolean(bs), (bp, L)]
12: return N ,B

indexes by 15 characters {0-9, ’+’, ’-’, ’.’, ’,’, ’E’} (see Line 4) that might appear in
numeric values, 6 keywords {’0’, ’1’, ’T’, ’F’, ’True’, ’False’} (see Line 6) that might
represent boolean values, and any characters can appear in string values. Our cell value mapping
algorithm does not yet support special values like NaN, -Inf, +Inf, which is possible but requires
additional dictionaries for common variants and framework extensions for NaN-awareness (e.g.,
on value comparisons). After indexing the raw string by two bitmaps in Lines 3-7 of Algorithm 2,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

120:8 Saeed Fathollahzadeh & Matthias Boehm

getAllSeqenceSetSubstrings extracts the actual (string of numeric or boolean) values from the
raw string (see Lines 8-9). We parse extracted strings of actual values according to their inferred
types, and use a hash-map with bag semantics (duplicate keys allowed) as the underlying data
structure. Actual values are the keys, mapping to individual (char offset, line number) pairs.

Original text(#line=1): 123,45.24e+1,3.6e-2,89.32,T,SIGMOD,2023

Numeric Bitmap 111011111111011111101111100000000001111

key← actual value 123 452.4 0.036 89.32 2023

value← (offset, #line) (1,1) (5,1) (14,1) (21,1) (35,1)

Fig. 4. Example Numeric String Index.

Example 1 (Index Construction). Figure 4 shows an example of the index construction for a raw
string record (top). Here, the bitmap (second row) indicates which characters might be part of numeric
values, encoded as runs of set bits. Additionally, the last two rows show the resulting value to position
mapping. Furthermore, assume the following S (in CSV) and F along with four alternative mappings
M (each containing (char-offset, row-index) pairs for all values in F).

S =

1, 2, 3, 3
4, 4, 5, 6
7, 8, 9, 0

F =

1 3
4 5
7 9

M =

{
(1, 1) (1, 5)
(2, 1) (2, 5)
(3, 1) (3, 5)

︸ ︷︷ ︸
𝑀1

,

(1, 1) (1, 7)
(2, 1) (2, 5)
(3, 1) (3, 5)

︸ ︷︷ ︸
𝑀2

,

(1, 1) (1, 5)
(2, 3) (2, 5)
(3, 1) (3, 5)

︸ ︷︷ ︸
𝑀3

,

(1, 1) (1, 7)
(2, 3) (2, 5)
(3, 1) (3, 5)

︸ ︷︷ ︸
𝑀4

}

The matrix F projects columns 1 and 3 from the four column S and the values 3 and 4 appear each
twice in S. Accordingly,M contains four different mappings, and we selectM∗ = 𝑀1 as the best because
of consistent character and column alignment.

3.2 Pattern Matching
Pattern creation and matching during identification are essential for extracting delimiters and cell
values. We leverage prefix trees (tries) [29, 33, 57, 62] for efficient matching, which reduced the
identification time from super-linear to linear in the sample size.

Algorithm 3 pattern(P, S)
Input: List of Prefix Strings P, List of Suffix Strings S
Output: List of Strings P, Set of Delimiters D
1: C ← getAllCommonSubseqences(P) // array of list
2: 𝑡𝑟𝑖𝑒 ← Initial Prefix Tree // prepare prefix tree for delimiters
3: for 𝑐 ∈ C do // iterate over common sub-strings
4: if (∀P, c reach the end of string then
5: P ← 𝑐; break
6: for 𝑠 ∈ S do // insert all suffixes into prefix tree
7: 𝑡𝑟𝑖𝑒 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑠)
8: D ← getRootNodeChildren(𝑡𝑟𝑖𝑒)
9: return P,D

PatternCreation:Algorithm 3 takes a list of strings and finds patterns of common sub-sequences
as candidates of delimiters. This algorithm is invoked multiple times in the overall identification

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example 120:9

2015101 Ioannis Alagiannis Renata Borovica Anastasia Ailamaki

2019102 Jia Zou Arun Iyengar Chris Jermaine

2018103 Shoumik Palkar Firas Abuzaid Matei Zaharia

F =

#col1 #col2 #col3 #col4

(a) Figure 2 Sample Raw(S), F Projects Paper ID and Three Author Names.

l1
l2
l3

#index
#index
#index

#@
#@
#@

#@ ■;
#@ ■;
#@ ■;

#@ ■;■;
#@ ■;■;
#@ ■;■;

\n
\n
\n

;■ ;■

;■ ;■

;■ ;■

;■

;■

;■

\n
\n
\n

#col1 #col2 #col3 #col4 #col1 #col2 #col3 #col4

Prefixes Suffixes

Note: ■ The value has already been selected by another column(s) and is now empty.

(b) Prefixes and Suffixes of the Projected Attributes.

Pattern Creation Delimiter Creation

∀𝑐𝑜𝑙 ∈ {1, 2, 3, 4}, P𝑐𝑜𝑙 = 𝐿𝐶𝑆 (𝑙1, 𝑙2, 𝑙3) Add all suffixes to Trie

P#col1=[#index]
P#col2=[#@]
P#col3=[#@ , ;]
P#col4=[#@ , ; , ;]

Trie

\n ;
;

D#col1=[\n]
D#col2=[;]
D#col3=[;]
D#col4=[\n]

(c) Pattern and Delimiter Creation for Projected Attributes.

Fig. 5. Example of Pattern Creation for Publication.

algorithm, with different prefixes and suffixes. At its core, we compare all input strings (as lists of
characters) and compute the "intersection" in terms sub-sequences of characters that appear in all
strings (see Line 1). This intersection function needs to consider the order of characters, and thus,
it is a modified version of the Longest Common Subsequence (LCS) [25] that keeps all common
sub-sequences. We take lists of string prefixes as input, try to find a pattern in the prefix list (see
Lines 3-5), and if no common sub-sequence is found, invoke the pattern algorithm multiple times
with different prefixes and suffixes. The order of built pattern is kept available in the additional
meta data (whose explanation we otherwise skip for sake of presentation simplicity). We are also
storing the indicators of the end of values by a list of single characters or more complex patterns.
Subsequently, we initialize a prefix-tree with an empty string (Line 2), and insert the suffixes
(Lines 6-7). Finally, we select and return all children of the root node of the prefix tree as delimiters,
which represents the common sub-sequence at the start of prefixes and end of suffixes (Line 8).

Delimiters in Values: Ideally, non-projected values would not contain any delimiters, but these
are valid data characteristics we aim to support. There are issues if such values contain a full or
partial delimiter sequence. To overcome this issue, we enumerate all topological sub-sequences
of strings and select the correct of them. For example, assume we want to find the intersection of
a,b,”c,d”,e and f,g,”h”,i . Here, P1 = [, , ,” , ,] and P2 = [, , ,” , ",] are two topological
sub-sequences. Our correction algorithm then selects patterns among P1 and P2 by testing these
patterns on the source strings. Pattern P1 cannot reach the end of strings but P2 can reach both
of them. The only drawback of this technique is that all prefix/suffix strings contain delimiters as
values for non-projected columns, which later affects the pattern matching in generated source

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

120:10 Saeed Fathollahzadeh & Matthias Boehm

code. However, that way we can handle things like CSV quoting but in a very generic manner
(without the usual stack-based CSV parsing for quoted delimiters and quotes).

Example 2 (Pattern Creation). An example of pattern and delimiter construction for the AMiner
publication dataset is shown in Figure 5. Assume the example from Figure 2 is a sample raw S , and
F —shown in Figure 5(a))—comprises four columns of the paper ID (#𝑐𝑜𝑙1) and the three first authors
(#𝑐𝑜𝑙2-#𝑐𝑜𝑙4) of each paper. In Figure 5(b), we first map F𝑖 𝑗 values on S and then find the prefixes and
suffixes of each column individually. We left some strings blank in the prefixes and suffixes because
they are already selected in other columns. With Algorithm 3, we obtain the LCS patterns for each
column as well as value delimiters in a prefix tree (trie) as shown in Figure 5(c).

Syntactic Characters: We use the notion of syntactic characters as natural, but superfluous
separators such as the fixed characters { , } , [,] , . . . in JSON. Our mined delimiters would include
these syntactic characters as well, which is not just unnecessary but may even create incorrect
patterns. For the sake of generality, we are not explicitly excluding fixed characters but different
attribute orders help eliminate most of these from the rule sets.

3.3 Overall Identification Algorithm
Putting it all together, we describe the overall identification algorithm and its remaining limitations.

Identification Algorithm: Our overall identification algorithm is shown in Algorithm 4, which
takes S and F as input and returns the coarse-grained, parameterized mapping rulesM as union of
row, column, and value mapping functions.M also contains shape inference functions which are,
however, not explicitly shown here. In detail, the algorithm comprises five steps. First, we obtain
the detailed mappings for cell values in F—but also row and column indexes—with Algorithm 1
from Section 3.1. In this context, we also apply basic pre-processing—for checking properties of F
like Skew, Symmetric, Skew-Symmetric, as well as some simple patterns—whose overhead was
negligible in our experiments. Second, we evaluate the detailed mappings and derive mapping
functions (as defined in Section 2.3) and their basic parameters. Valid alternatives are scored by
ranked simplicity. Third and fourth, we enumerate prefix and suffix strings—in a mapping-function-
specific manner—for rows and columns respectively, and create patterns for the extraction of
delimiters and cell values with Algorithm 3 from Section 3.2. Fifth and finally, we obtain the
concrete patterns as parameters of the mapping rules and return these rules accordingly.
Limitations: Despite good generalization for different structural properties of custom data

formats, GIO has several limitations, which also directly characterize the class of supported formats.
The remaining high-level limitations are:
• No Unseen Patterns:GIO uses prefixes and suffixes to build patterns for begin and end positions
of values, and then extracts these values. This extraction is heavily dependent on the input
samples and does not support unseen patterns.
• No Mixed Data Formats: The mapping identification currently extracts homogeneous mapping
functions for the entire dataset. Thus, we do not support data comprised of a mix of different
formats (e.g., sections in CSV and JSON).
• No Query Processing: Apart from index mapping and projections, GIO does not support query
processing such as selections (row filtering) or aggregations to derive the matrix/frame
representations from the raw input data.

Addressing these remaining limitations is interesting future work.

4 READER GENERATION
After having successfully identified the mapping rules for a custom data format (and potential
manual refinements), GIO efficiently generates source code for efficiently reading datasets encoded

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example 120:11

Algorithm 4 identification(S, F)
Input: Sample Raw S , Sample Frame F
Output: R: a triple (structure, pattern, and delimiter) for row index, C: col index structure and a

list of (pattern, delimiter) pairs,V: col value supplier and a list of (pattern, delimiter) pairs
1: n← nrow(F); m← ncol(F)
2: // a) map value of F, row index RI, and col index CI on S
3: M∗ ← map(S, F)
4: M𝑟∗ ← map(S,RI) // 2d-Array integers (𝑛 ×𝑚) where RIij = i
5: M𝑐∗ ← map(S,CI) // 2d-Array integers (𝑛 ×𝑚) where CIij = j
6: // b) check data supplier and index structures

7: Vsupplier ← D(𝑀∗)
8: Rstructure ← I𝑟𝑜𝑤 (M∗,M𝑟∗)
9: Cstructure ← I𝑐𝑜𝑙 (M∗,M𝑐∗)
10: prefix← ∅; suffix← ∅ // 2d-Array strings (𝑛 ×𝑚) for M∗

11: prefix𝑟 ← ∅; suffix𝑟 ← ∅ // 2d-Array strings (𝑛𝑚 × 1) for M𝑟∗

12: prefix𝑐 ← ∅; suffix𝑐 ← ∅ // 2d-Array strings (𝑛 ×𝑚) for M𝑐∗

13: // c) create pattern for row index counter

14: if Rstructure ∈ {Constants, Max} then
15: [prefix𝑟 , suffix𝑟] ← getPrefixAndSuffix(S,M𝑟∗)
16: R (pattern, delimiter) ← pattern(prefix𝑟 , suffix𝑟)
17: else if Rstructure ∈ {Stack} then
18: 𝑦 ←Vrows // 2d-Array ints (𝑛 ×𝑚), lines on S are for record
19: for 𝑖 in n do
20: [min𝑖 ,max𝑖] ← minmax(𝑦 [𝑖,])
21: prefix𝑟𝑖 ←

⋃min𝑖+1
𝑙=max𝑖−1 S𝑙

22: R (pattern, delimiter) ← pattern(prefix𝑟 , ∅)
23: // d) create pattern for col index

24: if Cstructure ∈ {Constants, Max} then
25: [prefix𝑐 , suffix𝑐] ← getPrefixAndSuffix(S,M𝑐∗)
26: for 𝑗 in m do // build pattern for each column index
27: pc← prefix𝑐 [, 𝑗]
28: sc← suffix𝑐 [, 𝑗]
29: C (pattern, delimiter) ← pattern(pc, sc)
30: // e) create pattern for cell value extraction

31: if Vsupplier ∈ {Identity, Scattered-Sequential} then
32: [prefix, suffix] ← getPrefixAndSuffix(S,M∗)
33: for 𝑗 in m do // pattern for each column of matrix/frame
34: pc← prefix[, 𝑗]
35: sc← suffix[, 𝑗]
36: V (pattern, delimiter) ← pattern(pc, sc)
37: return R (structure, pattern, delimiter) ,

C (structure,[(pattern, delimiter)]1×𝑚) ,
V (supplier,[(pattern, delimiter)]1×𝑚)

in this format. In this section, we describe the template-based code generation, key techniques for
efficient pattern matching, and example templates and generated code.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

120:12 Saeed Fathollahzadeh & Matthias Boehm

4.1 Template-based Code Generation
Our code generation approach relies on templates for the reader skeleton, parsing primitives,
conditions, path expressions, and value indexing. These templates are instantiated and hierarchically
composed according to the passed mapping rulesM.
Code Templates: Figure 6(a) shows the main skeleton template for a single-threaded frame

reader, while multi-threaded readers parallelize over blocks of rows. This template has three main
parts. First, a pre-pass can be instantiated for obtaining additional metadata from the data (e.g.,
dimensions or row block offsets). Second, we infer the dimensions, estimate sparsity, and allocate
an in-memory frame block. Third, we iterate over records of the raw dataset, parse and insert the
data into the frame. We separately generate the code for row index parsing, column index and
value parsing, and subsequently instantiate them into the main template. Finally, we materialize
both the Java source code (for manual fine-tuning) as well as the compiled class files. Different
backends for generating code in other programming languages and exploiting SIMD instruction
level parallelism are interesting future work.
Row Indexing Code: The readers can determine the number of rows during the pre-pass

and thus, pre-allocate the matrix or frame upfront. Figure 6(b) shows the row indexing template
and related code generation, which instantiates code according to the mapping functions. These
functions also carry necessary metadata such as the delimiters and suffix patterns, which allows
iterating over rows and incrementing or parsing the row indexes. For Exist functions (in Lines 6-11),
we have to find the target row index before extracting the cell values. We do so by scanning a
sequence of patterns on the record, allowing to distinguish the next values. For scattered-sequential
mapping functions—which include the handling of multi-row records—we generate a more complex
finite state machine (FSM) into the pre-pass for keeping track of passed records and keys, and
increment the row indexes in the inner loop accordingly.

Column Index and Value Code: The generated cell code extracts column indexes and values for
projected attributes from each record. During identification, dedicated key patterns can be created
for the individual columns, allowing attributes to appear in different orderings while utilizing local
extraction prefixes and suffixes. We instantiate the related code templates according to the types of
mapping functions, and with the goal of efficient pattern matching and attribute projections.

4.2 Pattern Matching Approaches
For efficient pattern matching, we introduce three dedicated code generation approaches that utilize
(1) nested conditions derived from a prefix tree, (2) a regular loop with sequential string matching,
as well as (3) compiled regular expressions.
Cell Value by Nested Conditions: Our first approach is to build a prefix tree for all patterns

and generate code with nested conditions for a tailored pipeline of parsing, extraction, and type
handling. For both flat and nested data, common sub-paths (part of multiple patterns) are extracted
only once, with group aborts if a sub-path does not exist.

Example 3 (Pattern Matching via Nested Conditions). Figure 7 shows an example of the cell
value extraction via compiled nested conditions. For the sake of presentation, we generated code for
the AMiner publication dataset from which we projected four columns of type 𝐼𝑁𝑇64, and 𝑆𝑡𝑟𝑖𝑛𝑔 as
shown in Figure 5. The overlapping patterns (see Figure 5(c)) are compactly represented in the prefix
tree. By utilizing the prefixes and suffixes, individual values can be locally extracted without scanning
the entire record. Figure 7 shows the built prefix tree (on the right), comprising 3 levels and 4 column
patterns at levels 1 to 3—for which the reader extracts values—as well as the generated code with nested
conditions (on the left). This code is tailored for dense access, and skips non-projected attributes without
parsing (which is an expensive iterative procedure for floating point values).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example 120:13

GenericTemplate(R, C, V)

1: [srcInitRow, srcRow] = GenerateRowCode(R);
2: [srcInitCol, srcCol] = GenerateColCode(V, T);
3: src = " InitFile(); " +

4: " FrameBlock ReadBlock(BufferReader br) {

5: " pro = Estimation(br, R, C, V); " +

6: " FrameBlock fb = new FrameBlock(pro); " +

7: srcInitRow + // row pre-source
8: srcInitCol + // col pre-source

9: " for each (record 𝑟 in 𝑏𝑟) { " +

10: srcRow + // row index counter
11: srcCol + // extract and parse cell value

12: " } "

13: " return fb; } ";

14: return src;

(a) Skeleton Code Template

GenerateRowCode(R)
1: srcInit = " "; src = " ";

2: if (Rstructure == Identity)

3: srcInit = " if (Rpattern ∈ r) "+

4: " rowIndex++; ";

5: else if (Rstructure == Constraint || Rstructure == Max)

6: srcInit = " _index = 0; " +

7: " for (key 𝑘 ∈ Rpattern) " +

8: " _index = r.IndexOf(𝑘, _index); " +

9: " _end = r.IndexOf(Rdelimiter, _index); " +

10: " _text = r.Substring(_index, _end); " +

11: " rowIndex = ParseInt(_text); ";

12: else if (Rstructure == Stack)

13: srcInit = " _bList = []; _eList = []; " +

14: " for (record 𝑟 ∈ 𝑏𝑟) { " +

15: " _index = 0; _end = 0; " +

16: " while (_index != 0) { " +

17: " _index = r.IndexOf(Rpattern[0], _index); " +

18: " if(_index != 0) " +

19: " _blis.append(Pair(r.index, _index)); } " +

20: " while (_end != 0) { " +

21: " _end = r.IndexOf(Rpattern[1], _end); " +

22: " if(_end != 0) " +

23: " _eList.append(Pair(r.index, _end)); }} " +

24: " _rIndexes = []; _stack = Stack(); " +

25: " for (int i=0, j=0; i < min(len(_bList), len(_eList));) { " +

26: " if(_bListi] < _eList[j]) _stack.push(_bList[i++]); " +

27: " else { " +

28: " _index = _stack.pop(); " +

29: " if(_stack.empty()) " +

30: " _rIndexes.append(Pair(_index, _eList[j++])); } } " +

31: src = " if(_rIndexes[rowIndex].key <= r.index && " +

" r.index <= _rIndexes[rowIndex].val) { " +

32: " _rStr += getRecordStr(r, r.index, _rIndexes[rowIndex]); " +

33: " continue; } " +

34: " else { r = _rStr; _rStr = ""; rowIndex++; } "

35: return srcInit, src;

(b) Row Index Code Template

GenerateColCode(V, T)
1: srcInit = " "; src = " ";

2: trie = InitTrie(Root);
3: for (column 𝑣 ∈ V)
4: Node 𝑛𝑜𝑑𝑒 = new Node(V𝑘𝑒𝑦, V𝑐𝑜𝑙𝐼𝑛𝑑𝑒𝑥, V𝑣𝑎𝑙𝑢𝑒𝑇 𝑦𝑝𝑒);

5: trie.insert(node); // node’s key is a list of strings
6: if T> |trie.Root.GetChild()|
7: if trie.GetHeight() == |trie.GetNodes()|
8: src = GenerateCodeRegular(trie);
9: else
10: src = GenerateCodeTrie(trie.Root, src, " 0 ");

11: else
12: regexes = EmptySet(); map = EmptyMap();
13: for (column 𝑣 ∈ V)
14: regex = BuildRegex(𝑣key); regexes.Add(regex);
15: map.Put(𝑣key, 𝑣colIndex);
16: srcInit = MapToString(map); // convert map to string src
17: src = GenerateCodeRegex(regexes);

18: return srcInit, src;

GenerateCodeTrie(Node node, String pos)

19: if (node ∈ EndOfColPattern)

20: src += " _end = FindEndPos(" + nodedelimiter+ ");" +

21: " _text = r.Substring(" + pos + " , _end"); " +

22: " _val = Parse(_text, " + node.valType + "); " +

23: " fb.set(rowIndex, " + node.cellIndex + ", _val); "

24: if (|node.GetChild()| > 0)
25: for (𝑐ℎ𝑖𝑙𝑑 in node.GetChild())

26: src += " index = r.IndexOf(" + childkey +" , "+ pos+ "); " +

27: " if (index != 0) { " +

28: " _newPos = _index+len("+childkey+"); "

29: GenerateCodeTrie(child, newPos);

30: return src + " } ";

GenerateCodeRegular(PrefixTree trie)

31: src += " Node[] nodes = "+ trie.GetAllNodes()+" ; "+

32: " _index = 0; _end = 0; +

33: " for (node ∈ nodes) { " +

34: " _index = r.IndexOf(nodekey, _index); +

35: " _end = FindEndPos(_index, nodedelimiter);" +

36: " _text = r.Substring(_index, _end"); " +

37: " _val = Parse(_text, node.valType); " +

40: return src;

GenerateCodeRegex(Regexes regexes)

41: for (Regex reg ∈ regexes)

42: src += " matcher= Pattern.Compile(" + reg + " .Matcher(r)) " +

43: " while(matcher.Find()) { " +

44: " _key = matcher.Group(1); " +

45: " colIndex = map.Get(_key); " +

46: " if (colIndex != Null) { " +

47: " _end = FindEndPos(map.GetSuffix(colIndex)); " +

48: " _text = r.Substring(matcher.End(), _end); " +

49: " _val = Parse(_text, map.GetValType(cellIndex)); " +

50: " fb.Set(rowIndex, cellIndex, _val)"); } } "

51: return src;

(c) Cell Value Code Template

Fig. 6. Overview of GIO Code Templates and Code Generation.

Cell Value by Sequential String Matching: The main drawbacks of extracting values via
nested conditions are the assumption of a fixed record structure (e.g., number of columns) and a
very large code size for datasets with many columns and few shared paths. For example, sparse
matrix representations (e.g., LibSVM) with millions of columns would require millions of generated
conditions and runtime checks. For such cases, our second approach compiles a regular loop (over

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

120:14 Saeed Fathollahzadeh & Matthias Boehm

1: _index = r.indexOf("#index", 0);
2: if(_index != -1) {
3: _index += 6;
4: _end = r.length();
5: _text = r.substring(_index, _end);
6: fb.set(rowIndex, 1, Parse(_text, INT64));
7: }

8: _index = r.indexOf("#@", 0);
9: if(_index != -1) {
10: _index += 2;
11: _end = r.indexOf(";", _index);
12: _text = r.substring(_index, _end);
13: fb.set(rowIndex, 2, _text);

14: _index = r.indexOf(";", _end);
15: if(_index != -1) {
16: _index += 1;
17: _end = r.indexOf(";", _index);
18: _text = r.substring(_index, _end);
19: fb.set(rowIndex, 3, _text);

20: _index = r.indexOf(";", _index);
21: if(_index != -1) {
22: _index += 1;
23: _end = r.length();
24: _text = r.substring(_index, _end);
25: fb.set(rowIndex, 3, _text);
26: } } }

#index

Trie

#@

;

;

[#col1, INT64]

[#col2, String]

[#col3, String]

[#col4, String]

Fig. 7. Example Reader Code with Nested Conditions.

projected attributes) with generic string matching and cell value extraction. This approach applies
to formats where column indexes are prefixes of cell values, and allows efficient projections without
scanning all columns. We use this approach for simple patterns and many columns.
Cell Value by Regular Expressions: Finally, our third approach uses compiled regular ex-

pressions for matching more complex patterns. During code generation (see Figure 6(c), Line
6), we check the prefix tree structure against a threshold T (number of projected, non-overlap
attributes; default 100) in order to select the appropriate code generation approach. As shown in
Lines 41-51, we generate a regular expression for each column (with simple "𝑠+" and "𝑑+" for spaces
and numbers) and add them to a set of regular expressions that are processed in a generic loop,
similar to the regular string matching approach. In addition to the regular expressions, we are also
keeping a map of column-index, value-type, and suffixes. This approach yields very small code size,
and the auxiliary data structures are of moderate size as well.

5 EXPERIMENTS
We study our GIO framework on a variety of real-world datasets with different data characteristics
as well as both existing and custom data formats. The primary insights are:

• Identification and Generation: GIO identifies and generates correct mapping rules and readers
for various formats with small overhead that is linear in the sample size.
• Reader Performance: GIO yields readers with competitive runtime performance—similar
to hand-coded multi-threaded readers when reading the entire datasets—and significant
improvements if only few attributes are extracted.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example 120:15

Table 1. Datasets (𝑛 Rows,𝑚 Columns, 𝑜 Nested Objects).

Dataset 𝑛 (nrow) 𝑚 (ncol) 𝑜 (objects) Size [GB]

AMiner-Author (JSON) 1,712,432 Nested 1 0.62
AMiner-Paper (JSON) 2,092,355 Nested 2 3.7

Yelp (JSON) 8,635,403 Nested 7 19
AMiner-Author (Custom) 1,712,432 N/A N/A 0.5
AMiner-Paper (Custom) 2,092,355 N/A N/A 2.1

HL7 (Custom) 10,240,000 100 N/A 7.5
Yelp-Review (CSV) 8,635,403 9 Flat 6.5
Mnist8m (LibSVM) 8,100,000 784 Flat 12
Susy (LibSVM) 5,000,000 18 Flat 2.4
Higgs (CSV) 11,000,000 28 Flat 7.5
Queen (MM) 4,147,110 4,147,110 Flat 4.5

ReWaste F (CSV) 1,953,434 313 Flat 1.2
ADF (XML) 10,000,000 146 20 41

5.1 Experimental Setting
HW/SW Environment:We ran all experiments on a server node with an AMD EPYC 7302 CPU @
3.0-3.3 GHz (16 physical/32 virtual cores) with 512KB, 8MB and 128MB L1, L2 and L3 caches, 128 GB
DDR4 RAM (peak performance is 768 GFLOP/s, 183.2 GB/s), two 480 GB SATA SSDs (system/home),
and twelve 2 TB SATA HDDs (data). All reader experiments utilize a single SSD. The software stack
comprises Ubuntu 20.04.1, OpenJDK 11 with 120 GB max and initial JVM heap sizes for GIO, as
well as Python 3.8 and clang++10 for other baseline readers.

Implementation Details. The entire GIO framework is implemented in Java and has been
integrated into the open-source ML system Apache SystemDS. In detail, SystemDS compiles hybrid
runtime plans of local, in-memory operations and distributed operations on Apache Spark. For
a seamless integration with Spark and HDFS file system implementations (e.g., local, HDFS, S3,
Azure, FTP), SystemDS is primarily implemented in Java expect for performance-critical kernels in
C++ and CUDA, which are accessed through JNI. For compiling the generated readers, we use the
fast in-memory Janino Java compiler [74] (as used for whole-stage code generation in Apache Spark
as well as code generation for operator fusion in Apache SystemDS [32]). Byte-code compilation is
negligible and the JVM just-in-time (JIT) compiler runs asynchronously a multi-tier compilation
into native code to yield very good performance. Generating LLVM and vectorized SIMD code as
well as distributed readers for Spark are interesting directions for future work.

Datasets. Table 1 shows the real-world datasets and characteristics used for both micro bench-
marks of identification and reader generation as well as reader runtime experiments. These datasets
comprise existing and custom formats as well as flat and nested representations.
• AMiner: The AMiner publications dataset (extraction and mining of academic social networks
dataset) [73] contains information about papers, citations, authors, affiliations, and author
collaborations. The experiments use the AMiner’s original, text-based custom data format as
well as another JSON format containing nested authors and publications.
• Yelp: The Yelp dataset is in JSON format containing multiple hierarchy levels. Additionally,
we extracted the Yelp reviews into CSV format and saved them as two Yelp-Review files.
• Flat Datasets:We further use the real-world datasets Higgs (UCI) and ReWaste F in dense CSV
format, as well as Mnist8m, Susy, and Queen (all UCI) in sparse LibSVM and MatrixMarket.
These datasets represent a good mix of characteristics (e.g., dimensions and sparsity).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

120:16 Saeed Fathollahzadeh & Matthias Boehm

Table 2. Micro-Benchmark Use Cases with Various Data/Query Characteristics.

Q# Dataset Format (Projection) Query Nesting & Array
Q1 AMiner-Author JSON index L1
Q2 AMiner-Author JSON name, paper_count L1
Q3 AMiner-Author JSON index, name, paper_count, citation_number, hIndex L1
Q4 AMiner-Author JSON name, affiliations[1, 2, 3, 4] L1, L1 Array
Q5 AMiner-Paper JSON index L1
Q6 AMiner-Paper JSON title, year L1
Q7 AMiner-Paper JSON index, title, year, publication_venue, abstract L1
Q8 AMiner-Paper JSON index, references[1, 2, 3, 4] L1, L1 Array
Q9 Yelp JSON id L1
Q10 Yelp JSON id, text L1
Q11 Yelp JSON id, text, business.id, user.id, business.postal_code L1, L2
Q12 Yelp JSON id, text, business.id, user.id, business.checkin.date, business.attribute.wifi L1, L2, L3
Q13 Yelp JSON business.checkin.date, business.hours.monday, business.attribute.HhashTV L3
Q14 AMiner-Author Custom index N/A
Q15 AMiner-Author Custom name, paper_count N/A
Q16 AMiner-Author Custom index, name, paper_count, citation_number, hIndex N/A
Q17 AMiner-Author Custom name, affiliations[1, 2, 3, 4] N/A
Q18 AMiner-Paper Custom index N/A
Q19 AMiner-Paper Custom title, year N/A
Q20 AMiner-Paper Custom index, title, year, publication_venue, abstract N/A
Q21 AMiner-Paper Custom index, references[1, 2, 3, 4] N/A
Q22 Yelp-Review CSV id FLAT
Q23 Yelp-Review CSV id, text, stars FLAT
Q24 HL7 Custom evn_code, datetime, reason_code, operator_id N/A
Q25 HL7 Custom patient_name, birth_day, address, phone_number, account_number N/A

• HL7: Health-Level 7 is a health-care communication protocol and message format, which is
the de-facto standard for data exchange among different clinical/health information systems
and medical devices. HL7 version 2.x is a custom text-based format, while version 3.x is an
XML-based format. To create a large dataset, we manually generated 1024 of these messages
and duplicated them 10,000 times.
• ADF: The Auto-Lead Data Format (ADF) [1] is an XML-based format, designed for communi-
cating automotive dealership purchase requests including equipment variants and financing.
Many vendors of customer management systems serving the automotive industry support
ADF, which was developed by thirteen major organizations in the automotive ecosystem.
We created 10 million instances with their relationships and stored them as ADF XML files.

Sample Raw and Frame/Matrix Inputs: As a prerequisite for evaluating GIO, we need to
construct the input sample-raw and target frame/matrix representations. For existing data formats,
we automatically construct these samples (of different sizes), whereas for custom formats—without
existing readers—we constructed these samples semi-manually. In both cases, we ensure that each
column contains at least two values to facilitate the identification of valid mappings.

Baseline Comparisons: We aim to compare our GIO framework with state-of-the-art libraries
and systems. For the nested datasets, we compare GIO with four best-of-breed JSON parsers: (1)
Jackson [5] as a well-known standard JSON library for Java as used in Apache Spark and Apache
Drill, (2) JSON4J, a Java JSON library from IBM, (3) Gson [3], another Java JSON parser from Google,
(4) HAPI-HL7 [4] object-oriented HL7 2.x parser for Java, and (5) RapidJSON [6] as a C++ JSON
parser and generator. Additionally, we use Python libraries and Apache SystemDS for comparing
reading dense and sparse matrices from data formats such as CSV, MatrixMarket, and LibSVM; as
well as hand-coded readers for custom data formats not supported in existing systems.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example 120:17

200 300 400 500 600 700 800 900 1000
0
1
2
3
4

2,101.33

2,187

2,219

2,318.25

2,357.25

2,440.33

2,501.33

2,534.25

2,603.75

2,156

2,237.5

2,350.67

2,331

2,523.5

2,652

2,742.33

2,873

2,911

2,245.5

2,487.75

2,887.75

3,126

3,312.67

3,785.25

4,062 4,064

4,363.75

2,116.67

2,198.5

2,275

2,339.25

2,545.5

2,584

2,693.5

2,710.67

2,880

#Sample Records

Ex
ec
ut
io
n
Ti
m
e[
s] Q1 Q2 Q3 Q4

(a) AMiner-Author (JSON)

200 300 400 500 600 700 800 900 1000
0
1
2
3
4

2,227

2,350

2,551.75

2,633

2,769

2,870

3,015.33

3,119.67

3,264

2,620.5

2,825.33

3,035

3,175.33

3,269

3,431.5

3,598.33

3,744.33

3,953

2,819.67

3,065

3,277

3,506.33 3,505.33

3,826

3,982

3,968.67

4,282

2,925.5

3,080.5

3,140

3,297.33

3,459

3,649.33

3,743.33

3,970.5

3,989.33

#Sample Records

Ex
ec
ut
io
n
Ti
m
e[
s] Q5 Q6 Q7 Q8

(b) AMiner-Paper (JSON)

200 300 400 500 600 700 800 900 1000
0
1
2
3
4
5

2,216.33

2,468

2,759.5

2,899.67

3,047.67

3,325.33

3,521.5

3,828.67

4,015.33

2,523

2,784

2,938.5

3,186.33

3,528.33

3,590

3,767

4,120.5

4,286

3,800.33

4,738.75

5,115

5,208

5,230

5,372.5

5,473.67

5,554.67

5,576.67

3,181.67

3,253.67

3,455.33

3,727

3,895

3,939.5

4,061

4,524.25 4,522

2,837.67

2,955

3,310

3,401

3,574

3,801

4,033

4,226.67

5,035.33

#Sample Records

Ex
ec
ut
io
n
Ti
m
e[
s] Q9 Q10 Q11 Q12 Q13

(c) Yelp (JSON)

200 300 400 500 600 700 800 900 1000
0

1

2

3
2,167.5

2,228.33

2,334

2,386.5

2,471.75

2,547.75

2,627.67

2,669.33

2,818.33

2,238.25

2,275.75

2,402

2,469.33

2,544.33

2,636.25

2,769.25

2,852.5

2,980.5

2,209.67

2,368

2,423.67

2,458.67

2,611.5

2,694

2,913

2,958

3,283.67

2,276.25

2,351.33

2,492

2,569.75

2,688.33

2,798.67

2,928

2,969.5

3,151.5

#Sample Records

Ex
ec
ut
io
n
Ti
m
e[
s] Q14 Q15 Q16 Q17

(d) AMiner-Author (Custom)

200 300 400 500 600 700 800 900 1000
0
1
2
3
4

2,306.75

2,398.5

2,546.33

2,582.67

2,777.33

2,928

3,094

3,210.67

3,369

2,281

2,490.5

2,609.75

2,828.33

2,936.75

3,109.67

3,201.67

3,488.25

3,532.5

2,380.75

2,469

2,659

2,818.75

2,970.33

3,232.5

3,525

3,657 3,662.5

2,470.33

2,682.33

3,037.5

3,267

3,462.5

3,774

4,157.67

4,355.33

4,441.5

#Sample Records

Ex
ec
ut
io
n
Ti
m
e[
s] Q18 Q19 Q20 Q21

(e) AMiner-Paper (Custom)

200 400 600 800 1000
0

0.5
1

1.5
2

2.5
2,026

2,066

2,180.67

2,236.75

2,314.67

2,368.67

2,432.33

2,545.5

2,524

2,114.5

2,159

2,267.75

2,291.33

2,410.33

2,498.33

2,451.5

2,681

2,715

#Sample Records

Ex
ec
ut
io
n
Ti
m
e[
s] Q22 Q23

(f) Yelp (CSV)

200 400 600 800 1000
0

0.5
1

1.5
2

2.5
2,026

2,066

2,180.67

2,236.75

2,314.67

2,368.67

2,432.33

2,545.5

2,524

2,114.5

2,159

2,267.75

2,291.33

2,410.33

2,498.33

2,451.5

2,681

2,715

#Sample Records

Ex
ec
ut
io
n
Ti
m
e[
s] Q22 Q23

(g) HL7 (Custom)

Fig. 8. Q1-Q25 Execution Time for Identifying Mapping Rules.

5.2 Identification and Reader Generation
In order to study the GIO framework components of identifying mapping rules and generating
readers, we composed 25 diverse use cases, with different datasets and characteristics, in existing
and custom formats, and with different projected attributes. These micro-benchmark use cases
resemble a mix of different characteristics—with different nesting levels, projections, and array
access—which are loosely inspired by real custom data formats we worked with in the ecosystems
of automotive vehicles, recycling economy, process industry, and health-care as well as related use
cases. Table 2 summarizes these uses cases and queries, as well as their key properties, where we
utilize a subset of the datasets from Table 1.
Identification with Varying Sample Size: In a first series of experiments, we compare the

runtime overhead of identifying mapping rules for various data characteristics (e.g., flat and nested,
out-of-order attributes) and increasing sample size |S|. Conceptually, increasing sample sizes are
challenging due to increasing number of values, where each such value needs to get mapped to
an increasing size of the sample raw strings. Figure 8 shows the runtime for identifying mapping
rules when varying the sample size from 200 to 1,000 rows. For single-line datasets, prefix trees and
suffix patterns show excellent linear scaling. However, for multi-line datasets, GIO still has to find
a row delimiter, which is very challenging when the number of records in the raw sample increases.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

120:18 Saeed Fathollahzadeh & Matthias Boehm

Table 3. Execution Time for Identifying Mapping Rules, from 1k to 10k Sample Records (times are sec.)

#Rows Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25

1K 2.5 2.9 4.1 2.7 3.3 3.8 4.2 3.9 4.1 4.3 4.9 4.6 4.7 2.8 3.1 3.4 3.2 3.5 3.7 4.1 4.5 2.7 2.7 7.2 8.8
2K 3.1 3.4 4.3 4 4.3 5.3 5.3 5.1 4.7 5.4 5.8 5.7 5.4 3.8 3.9 4.7 4.5 4.7 4.9 5.2 6.8 3.3 3.5 10.6 9.6
3K 3.6 4 4.4 4.4 5.1 5.7 6.2 5.6 5.3 5.5 6 6.1 6.5 5.2 5.7 6.4 5.7 6.4 7.1 7.5 9.4 3.8 4 18.4 17.1
4K 3.9 4.6 4.6 4.7 5.6 5.8 6.3 5.8 5.3 6.5 6.8 6.4 6.8 7.7 8.2 9.1 7.7 9.7 10 11.5 10.8 4.5 4.5 20.5 20
5K 4.2 4.9 5.1 4.9 6 6.2 6.4 6.7 5.6 7.3 7 6.6 6.7 11.1 12.4 14.3 12.3 16 16.3 19.3 19.2 4.6 4.8 21.3 22.5
6K 4.8 5.5 5.5 5.9 6.3 6.3 6.5 7.3 5.7 7.4 7.5 7.1 6.8 18.4 19.2 22.8 20.4 22.9 25.4 30.3 29.1 4.9 5.2 30.9 31
7K 5 5.6 5.8 6 6.4 6.4 6.8 7.4 6.1 7.5 7.7 7.2 7.3 26.7 28.2 31 28.4 33.7 35.3 38.9 38.6 5 5.4 38 39
8K 5.2 5.7 6.2 6.1 6.5 6.5 7.6 7.5 6.5 7.7 8.1 7.6 7.6 37.2 39.6 42.2 39.4 48.4 51.3 57.1 55.2 5.1 5.4 44.9 45
9K 5.3 6.3 6.3 6.3 6.6 6.6 8 7.6 6.9 7.8 8.3 7.8 7.8 50.8 54.7 54.8 53.5 64.9 67.9 74.2 71.7 5.2 6.2 55.1 56
10K 5.5 6.4 6.4 6.6 6.7 6.8 8.1 7.8 7.1 7.9 8.4 8.2 8.3 67.8 72.4 72.8 70.1 86.7 92.1 97.3 94.3 5.5 6.2 61.2 63

200 400 600 800 10000
10
102
103
104

8.15

8.21

8.28

8.39

8.35 8.33

8.43

8.5

8.43

8.49

10.55

12.89

13.67

14.23

14.65

15.01

15.32

15.53

15.32

15.53

#Sample Records

Ex
ec
ut
io
n
Ti
m
e[
s] GIO Early GIO

(a) #Columns = 200

0
10
102
103
104
105

200 400 600 800 1000

7.97

8.23

8.3

8.46

8.55
8.53

8.56

8.8

8.65

8.88

10.59

12.89

13.69

14.17

14.68

15.02

15.26

15.56

15.89

16.25

#Projected Columns
Ex

ec
ut
io
n
Ti
m
e[
s] GIO Early GIO

(b) #Sample Records = 200

Fig. 9. Identification Overhead of Different GIO Versions.

In order to provide evidence for safer conclusions, Table 3 scales the number of input samples for
all queries from 1,000 to 10,000 samples and thus, well beyond the typical scale of user-provided
mappings. The absolute overhead of identification is moderate in the order of few seconds for most
use cases and the scaling to 10,000 samples is well-behaved. The AMiner and HL7 use cases with
more complex custom data formats are exceptions with overhead up to 10 seconds for 1K samples),
but even that is still very reasonable for offline use in practice. Generally speaking, identifying
rules for deep nesting levels and projected array fields (e.g., Q4, Q8, Q11, and Q12 projected arrays
and fields from L1-L3 levels) is more expensive than identifying rules for flat datasets.
Prefix Matching: Experiments with early versions of GIO showed very high overhead and

super-linear scaling. Accordingly, Figure 9 shows an ablation study of comparing GIO (using
prefix/suffix matching) with an earlier version of GIO (using brute-force matching) on data in
MatrixMarket format. In detail, Figure 9(a) fixed the number of columns at 200 and varied the
number of sample records from 100 to 1,000, whereas Figure 9(b) fixed 200 sample records and
varied the number of projected columns from 100 to 1,000. In both settings, we observe up to three
orders of magnitude runtime improvements by prefix/suffix matching.

Reader Code Generation: Furthermore, Figure 10 shows the runtime of reading all 25 datasets,
while also indicating the fraction of time (I/O-Gen in black) spent for both identification (with
|S| = 200) and reader generation. We observe that together, identification and reader generation
account only for a small constant fraction of the end-to-end runtime (independent of dataset size).
The actual reader generation (source code generation and compilation) is almost negligible in the
tens of milliseconds because we avoid generating a large number of nested conditions.

Correctness: These use cases also serve as a verification of the correctness of identification and
reader generation. Compared with other baselines, GIO yields equivalent results for all use cases.

5.3 Reader Runtime Performance
We now can turn our attention to the actual reader performance in comparison with various
baselines, as well as the impact of multi-threading and the number of projected attributes.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example 120:19

Q10
5
10
15
20
25

1-
Th

re
ad

Ex
ec
ut
io
n
Ti
m
e[
s]

32
-T
hr
ea
d

Q2

1-
Th

re
ad

32
-T
hr
ea
d

Q3
1-
Th

re
ad

32
-T
hr
ea
d

Q4

1-
Th

re
ad

32
-T
hr
ea
d

GIO I/O Gen RapidJSON Jackson Gson JSON4J

(a) AMiner-Author (JSON)

Q50
10
20
30
40
50
60
70

1-
Th

re
ad

Ex
ec
ut
io
n
Ti
m
e[
s]

32
-T
hr
ea
d

Q6

1-
Th

re
ad

32
-T
hr
ea
d

Q7

1-
Th

re
ad

32
-T
hr
ea
d

Q8

1-
Th

re
ad

32
-T
hr
ea
d

GIO I/O Gen RapidJSON Jackson Gson JSON4J

(b) AMiner-Paper (JSON)

Q90
50
100
150
200
250
300
350

1-
Th

re
ad

Ex
ec
ut
io
n
Ti
m
e[
s]

32
-T
hr
ea
d

Q10

1-
Th

re
ad

32
-T
hr
ea
d

Q11

1-
Th

re
ad

32
-T
hr
ea
d

Q12

1-
Th

re
ad

32
-T
hr
ea
d

Q13

1-
Th

re
ad

32
-T
hr
ea
d

GIO I/O Gen RapidJSON Jackson Gson JSON4J

(c) Yelp (JSON)

Q140
5
10
15
20

1-
Th

re
ad

Ex
ec
ut
io
n
Ti
m
e[
s]

32
-T
hr
ea
d

Q15

1-
Th

re
ad

32
-T
hr
ea
d

Q16

1-
Th

re
ad

32
-T
hr
ea
d

Q17

1-
Th

re
ad

32
-T
hr
ea
d

GIO I/O Gen Java Hand-coded

(d) AMiner-Author (Custom)

Q180
5
10
15
20
25
30 1-

Th
re
ad

Ex
ec
ut
io
n
Ti
m
e[
s]

32
-T
hr
ea
d

Q19

1-
Th

re
ad

32
-T
hr
ea
d

Q20

1-
Th

re
ad

32
-T
hr
ea
d

Q21

1-
Th

re
ad

32
-T
hr
ea
d

GIO I/O Gen Java Hand-coded

(e) AMiner-Paper (Custom)

Q220
10
20
30
40
50
60

1-
Th

re
ad

Ex
ec
ut
io
n
Ti
m
e[
s]

32
-T
hr
ea
d

Q23

1-
Th

re
ad

32
-T
hr
ea
d

GIO I/O Gen SystemDS Pandas

(f) Yelp (CSV)

Q240
101
102
103
104

1-
Th

re
ad

Ex
ec
ut
io
n
Ti
m
e[
s]

32
-T
hr
ea
d

Q25
1-
Th

re
ad

32
-T
hr
ea
d

GIO I/O Gen HAPI-HL7 Python-HL7

(g) HL7 (Custom)

Fig. 10. Q1-Q25 Reader Runtime Comparison, including Identification and Reader Generation (|S| = 200).

Single-threaded Comparison: Figure 10 (left half of every use case) shows the single-threaded
reader performance of GIO (including generation) as well as the four baselines RapidJSON, Jackson,
Gson, and JSON4J. Here, I/O Gen further shows the time GIO spends on mapping identification and
reader generation, which is important because generated readers can be usedmany times, potentially
amortizing these identification and reader generation costs. The use cases from Table 2 are kept
unchanged which includes a mix of attribute projections. GIO efficiently skips non-projected
attributes (no value parsing), whereas several baseline systems do not support this projection
push-down. Overall, GIO shows competitive performance, close to or better than RapidJSON as
the fastest baseline. The other baselines (Jackson, Gson, and JSON4J) show substantial overheads
between 2.5x and 7x. For the Yelp CSV dataset, we also compare with SystemDS and Pandas,
where GIO shows again moderate runtime improvements despite reader generation. Finally, for
the AMiner and HL7 custom formats, we compare with a hand-crafted baseline, which shows up to
2x runtime overhead due to less efficient pattern matching.
Multi-threaded Comparison: Figure 10 (right half of every use case) also shows the multi-

threaded reader performance of GIO and the different baselines. We make several interesting
observations. First, RapidJSON and Pandas do not exploit multi-threading and thus, become less
competitive in such configurations. Second, there are several use cases where GIO multi-threading
improves performance by more than an order of magnitude (e.g., Q9, Q10, Q12, Q13, Q24, Q25).
However, there are also use cases (Q1-Q4) where the improvements are very small. Third, with

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

120:20 Saeed Fathollahzadeh & Matthias Boehm

0
2
4
6
8

1 2 3 4 5 6 7

GIO
Jackson

I/O Gen
Gson

RapidJSON
JSON4J

5,179

5,514

5,952.67

6,084

6,386

6,313.67

6,678

2,109.5

2,200.25

2,240.33 2,254.33

2,170.33

2,357

2,454

5,426 5,414

5,490

5,469

5,591

5,425

5,542

6,475.33

6,788.6

7,044.4

6,996.25 7,012.33 7,003.75

7,052.25

5,955.33

6,232.67

6,198.8

6,105.5

5,988.8

6,542.8

6,161.8

6,298

6,418.75

6,348

6,467.5

6,641.5

7,053.5

7,153.33

Parsed Fields

Ex
ec
ut
io
n
Ti
m
e[
s]

(a) AMiner-Author (JSON)

0
10
20
30
40
50

1 2 3 4 5 6 7 8 9 10

GIO
Jackson

I/O Gen
Gson

RapidJSON
JSON4J

2,176.67

2,300.75

2,535.5

2,805.33 2,855.5

3,002.33 2,960.67

3,485 3,441 3,418

25,970

29,342 29,337

30,351

43,262

43,996

43,614

43,960

42,568

41,736

15,451.67

16,512

15,674

15,370

15,916

16,109

16,217

16,742

15,941.67

16,149.25

14,516

14,732.33

14,597 14,515

14,324

14,675 14,598.33

14,785 14,730

14,445

15,517.67

15,722

16,084.67

16,215.5 16,264.5

16,489.5

16,657 16,674

21,502.25

26,087

13,098

13,576.67

13,997.5

14,196

14,616.33

14,902

15,419.5 15,409.75

15,791

15,905.75

Parsed Fields
Ex

ec
ut
io
n
Ti
m
e[
s]

(b) AMiner-Paper (JSON)

0
10
20
30
40
50

1 2 3 4 5 6 7 8 9 10

GIO
Jackson

I/O Gen
Gson

RapidJSON
JSON4J

2,176.67

2,300.75

2,535.5

2,805.33 2,855.5

3,002.33 2,960.67

3,485 3,441 3,418

25,970

29,342 29,337

30,351

43,262

43,996

43,614

43,960

42,568

41,736

15,451.67

16,512

15,674

15,370

15,916

16,109

16,217

16,742

15,941.67

16,149.25

14,516

14,732.33

14,597 14,515

14,324

14,675 14,598.33

14,785 14,730

14,445

15,517.67

15,722

16,084.67

16,215.5 16,264.5

16,489.5

16,657 16,674

21,502.25

26,087

13,098

13,576.67

13,997.5

14,196

14,616.33

14,902

15,419.5 15,409.75

15,791

15,905.75

Parsed Fields

Ex
ec
ut
io
n
Ti
m
e[
s]

(c) Yelp (JSON)

0
2
4
6
8

1 2 3 4 5 6 7

GIO I/O Gen
Java Hand-coded

6,622.67

6,879.67

6,957.67

6,679

7,564.33

7,431

7,452.67

2,173.75

2,127

2,215

2,237 2,235

2,280.67

2,205

8,216

8,255.75

8,181.33

8,099 8,106 8,118

8,073

Parsed Fields

Ex
ec
ut
io
n
Ti
m
e[
s]

(d) AMiner-Author (Custom)

0
3
6
9
12
15

1 2 3 4 5 6 7 8 9 10

GIO I/O Gen
Java Hand-coded

9,806.75

10,374.25

10,552.75

11,119

11,327.5

11,944.67

12,064

12,368.33

13,020.67

12,065.25

2,280.5 2,272

2,328.5 2,311.33

2,245.5

2,487.5 2,520.75 2,539.75 2,556

2,422.5

15,425.5

15,309.5

15,607.67

15,112.25

15,206.25

15,500.67

15,447.67

15,531.33

15,334

15,510

Parsed Fields

Ex
ec
ut
io
n
Ti
m
e[
s]

(e) AMiner-Paper (Custom)

0
20
40
60
80

1 2 3 4 5 6 7 8 9

GIO
Python

I/O Gen
SystemDS

2,046.25 2,076.33 2,047.67 2,069.33 2,076.33 2,133 2,147.5 2,160 2,093

38,094

45,598

45,827

46,586

51,052

52,866

50,904

52,098

78,005

21,555.67

21,254 21,409.5 21,239.33

21,616.67 21,607.5 21,658

21,318.33

21,602

17,841

18,549

19,020.33

19,554.5 19,536

20,276.67

20,824

21,633

20,855

Parsed Fields

Ex
ec
ut
io
n
Ti
m
e[
s]

(f) Yelp (CSV)

0
101
102
103
104

10 20 30 40 50 60 70 80 90100

GIO I/O Gen
Python-HL7 HAPI-HL7

10.45

10.7

10.87

11.06

11.18

11.32

11.7

11.88

11.93

12.11

7.84

7.91

7.96

7.99

8.17

8.31

8.39

8.55

8.71

8.84

15.92 15.93 15.95 15.94

15.96

16.01

15.97 15.98 15.99 16

14.7 14.7 14.71 14.71 14.72 14.72 14.72 14.72 14.72 14.73

Parsed Fields

Ex
ec
ut
io
n
Ti
m
e[
s]

(g) HL7 (Custom)

0
150
300
450
600
750

1 196 392 588 784

GIO
Python

I/O Gen
SystemDS

86,573.33 87,803.67

91,928.75

86,717.5 87,049.33 88,413.5 88,242.25 87,836.67 88,781.75 88,194.75 87,552.5 87,623 87,999.5 87,952 88,799.33 89,209.25 88,992.5 88,435.5

91,765.5

88,541 88,902.75 88,730.67 88,273

94,928.33

88,282 88,669.75 88,188.33

91,387.5

88,188.67

47,012 48,002 48,332.67 49,071.5 50,253 50,657

53,413

56,041.75

59,026

65,525.25

93,305.5

75,796.75

81,984

89,343.5

1.03 · 105

98,340.33

1.05 · 105

1.26 · 105

1.58 · 105

1.48 · 105

1.31 · 105

1.29 · 105

1.45 · 105

1.94 · 105

1.56 · 105

1.48 · 105

1.56 · 105

1.5 · 105 1.51 · 105

2,318.33 2,370.5 2,383 2,372.33 2,396 2,439.75 2,330.67 2,449.67 2,442 2,453 2,449.75 2,485 2,420.67 2,466 2,503.25 2,400 2,461.25 2,468.67 2,481.5 2,497 2,480 2,535 2,549.75 2,465.67 2,539 2,531.67 2,532 2,497.33 2,548.25

6.23 · 105

6.26 · 105

6.35 · 105

6.3 · 105

6.32 · 105 6.32 · 105 6.31 · 105

6.49 · 105

6.41 · 105

6.46 · 105

6.37 · 105

6.32 · 105
6.33 · 105

6.42 · 105
6.43 · 105

6.37 · 105 6.38 · 105

6.44 · 105

6.42 · 105

6.57 · 105

6.46 · 105

6.44 · 105

6.4 · 105

6.51 · 105

6.35 · 105

6.5 · 105

6.63 · 105

6.45 · 105

6.41 · 105

Parsed Fields

Ex
ec
ut
io
n
Ti
m
e[
s]

(h) Mnist8m (LibSVM)

0
20
40
60

1 3 6 9 12 15 18

GIO
Python

I/O Gen
SystemDS

2,070.67 2,104.25 2,116.67 2,129.33 2,141 2,145.75 2,129 2,199.67 2,214 2,223.33 2,264 2,289.67 2,261.33 2,251.67 2,286.67 2,305 2,311.33

2,136

63,202 63,224

63,482 63,526

63,053

64,811

62,734

63,560 63,591

62,406

63,773

63,466

63,850

63,450

62,697

63,094

62,665

63,646

12,582.25 12,701.67

12,873.33 12,816.5 12,862.5 12,859.25

12,649 12,782.33

14,584.5

12,716 12,575.75

12,752.67 12,630.33 12,635.5 12,656.75 12,691.5 12,740

16,621.5

9,357

10,173.67

11,046

11,502

12,039

12,713.5

13,469.33

14,065.33

14,966.67

15,423.67

15,823.33

17,837.75 17,758.67

18,821.33 18,936.5

19,360.75

21,425.33

20,769

Parsed Fields

Ex
ec
ut
io
n
Ti
m
e[
s]

(i) Susy (LibSVM)

0
10
20
30
40

1 120 220 313

GIO
Python

I/O Gen
SystemDS

2,139

2,316

2,440.67

2,536.75 2,575

2,690.67 2,724.67

2,881

3,163.5

4,164.67

5,043.5

5,457.5

5,647.33

5,977.67

6,475.33

6,643 6,577.67

6,678 6,598 6,538

7,228.25

6,131

6,905 6,946.33

6,823.67

6,376.33

7,198.67

7,440.75

7,269.33

6,478 6,431.75 6,521

7,188.5

9,552

9,258

9,997

10,704

12,435

13,192

13,004

13,747

14,672

15,342

17,918

16,911

17,714

18,525

19,283

22,775

22,242

21,539

22,325

23,163

23,955

24,836

26,555

26,344

29,159

29,297

28,699

30,599

30,395

34,060

34,992

37,469

36,684

41,270.5

40,970

39,647.75

40,584

40,957.33

40,755.67 40,792.33 40,791

40,902.5

40,647.67 40,666.67 40,734.67 40,747.25 40,747.25

40,885 40,862

41,216.67

40,747.25 40,744.5 40,755.67 40,825.75 40,761.75 40,835.67

40,615.5

39,809

40,749.33

40,534.33

39,622.75

40,505.75

40,981.25 41,018.5

40,829

40,475.33

6,613

9,878

10,287.5

11,452.67

11,915

12,278.25

13,740.67

14,631.67

15,384.75

18,400.5

17,910.67

19,607

20,017.33

21,137.33

22,372.67

25,376

23,621.33

27,469

27,673

28,292.33

30,536

29,576

30,229.25

28,485.33

33,472

30,319.5 30,362.67

29,968.33

33,639.67

32,651.67

32,395.25

31,969

38,721.5

Parsed Fields

Ex
ec
ut
io
n
Ti
m
e[
s]

(j) ReWaste F (CSV)

0
15
30
45
60
75

1 7 14 21 28

GIO
Python

I/O Gen
SystemDS

22,137.67

22,998.5

22,125 22,224.33 22,290.33 22,258 22,313.67 22,421.33 22,512.75 22,531.75 22,520.67 22,462.33

22,717 22,629.5 22,628.5 22,627.67

22,984.25 22,879.67 23,000 22,922.25

23,136

22,850 22,901.33 23,051.67

22,851

23,025.25

23,228.75 23,111.5

2,083.75 2,094.33 2,129.67 2,125.67 2,109.5 2,140 2,156.33 2,178 2,179 2,216.75 2,217.33 2,219.5 2,269 2,279.67 2,240.33 2,268.75 2,281 2,268.75 2,282.75 2,278 2,285.25 2,251.33 2,323.25 2,287 2,310.33 2,280.33 2,257 2,316.33

42,273

41,659

44,780

45,349

44,590

46,617

49,978

48,088

51,702

52,120

51,019 50,899

53,261

52,418

54,841

53,401

54,410

55,749

56,642

58,126

63,362

59,221

61,604

62,002

60,705

66,998

63,764 63,904

31,920.5

31,517 31,388.67

31,007.67

32,202.25

31,596

31,242

32,109

31,715

32,100 32,160.75

31,644.67

31,829.25

31,609.5

31,908.67

31,590.25

32,018.75 31,973

31,565.5

32,055

31,860.67 31,967 31,963 32,093.25

31,634

31,466.33

32,170.67 32,059.33

Parsed Fields

Ex
ec
ut
io
n
Ti
m
e[
s]

(k) Higgs (CSV)

0
50
100
150
200
250

20 25 210 215 220

GIO
Python

I/O Gen
SystemDS

30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056 30,056

14,111.33 14,226.5 14,045 14,221 14,039.67 14,048.75 13,957.33 14,170 14,268.5 14,208 14,557.25 14,487.25

15,183

15,804.25

17,087.67

19,199.33

21,603.75

25,044.67

32,571.75

43,575

2,106 2,073.75 2,055 2,056.67 2,029 2,090.5 2,060.33 2,107 2,221 2,374.67 2,522 2,786.33 3,329.33

4,117.33

5,219.33

6,488.25

9,362

12,669.5

20,816.67

20,016.33

2.32 · 105

2.38 · 105

2.33 · 105

2.38 · 105

2.34 · 105

2.37 · 105

2.33 · 105

2.35 · 105

2.36 · 105

2.4 · 105

2.3 · 105

2.34 · 105

2.34 · 105

2.36 · 105 2.36 · 105

2.35 · 105

2.34 · 105

2.31 · 105

2.37 · 105

2.33 · 105

Parsed Fields

Ex
ec
ut
io
n
Ti
m
e[
s]

(l) Queen (MM)

Fig. 11. Reader Runtime Comparison with Varying Number of Attributes.

multi-threaded reading, the identification and reader generation overhead becomes substantial on
some use cases (e.g., 50% on Q18-Q21). The reason is that GIO identification and reader generation
are not fully parallelized yet, which is an interesting direction for future work.
Varying Number of Projected Attributes: The use cases covered a mix of workloads with

projections, which have large impact on performance. We now study this impact by varying the
number of projected attributes (from one to a fixed number of attributes, or all in case of few
columns) for all datasets from Table 1. Figure 11 shows the results with multi-threaded readers.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example 120:21

Author Paper HL7 ADF0

10

100

1e3

1e4

GIO I/O Gen
Java Hand-coded
Python-HL7
HAPI-HL7
Jackson (XML)

Ex
ec
ut
io
n
Ti
m
e[
s]

(a) Single-threaded Readers

Author Paper HL7 ADF0

10

100

1e3

1e4

GIO I/O Gen
Java Hand-coded
Python-HL7
HAPI-HL7
Jackson (XML)

Ex
ec
ut
io
n
Ti
m
e[
s]

(b) Multi-threaded Readers

Fig. 12. Reader Performance on Full Custom Datasets.

For JSON datasets, we see that RapidJSON is the slowest because of single-threaded parsing,
where the peculiar transition from 4 to 5 attributes is likely due to the use of SIMD instructions.
Furthermore, for flat matrix and frame formats (CSV, LibSVM, MatrixMarket), SystemDS shows
fairly good performance but does not exploit projection push-down. For that reason, GIO yields
performance improvements for small and moderate number of projected attributes but SystemDS
often outperforms GIO slightly when reading the entire dataset. Python readers show mixed results:
when reading from dense CSV, performance is good due to projection push-down, but when reading
from sparse formats (LibSVM and MatrixMarket) performance is non-competitive. Finally, GIO
shows very robust performance with mostly linear scaling—except Yelp (CSV)—even when reading
sparse matrices with millions of columns (e.g., the Queen dataset).

5.4 Full Data of Custom Data Formats
Until this point, many of our experiments with complex custom data formats extracted a moderate
number of attributes. As additional end-to-end experiments (for truly custom data formats unsup-
ported by ML systems), we use the AMiner-Author, AMiner-Paper, HL7, and ADF datasets in their
custom text representations, and generate readers for all contained attributes as a stress test.
Runtime Performance: Figure 12 shows the runtime of reading the full datasets, including

mapping rules identification and reader generation, for both single-threaded and multi-threaded
readers. We make again multiple interesting observations. First, multi-threading yields again rather
small speedups on the AMiner and ADF datasets but a good speedup of 5x on HL7. Second, the
identification overhead remains moderate for AMiner-Author, HL7, and ADF. In contrast, on
AMiner-Paper, GIO shows substantial identification overhead, both in single- and multi-threaded
readers because of many attributes, longer strings, and deeper structure. For this reason, the
hand-crafted baseline also outperforms GIO on this specific AMiner-Paper dataset. Third, GIO
yields—even for these stress tests—good runtime performance, close to the hand-coded and Jackson
baselines and is almost two orders of magnitude faster than the single-threaded Python HL7 baseline
(and one order of magnitude faster than the Java-based HAPI-HL7 baseline).

Summary: Overall, the experiments have shown that GIO correctly identifies mapping rules
and generates code for efficient readers. These readers scale linearly with the number of attributes
and datasize, and are very competitive to available baseline systems. The identification and reader
generation overhead is usually very small, but there are edge cases where this overhead can be
substantial. However, identification and reader generation are typically conducted offline (just
once) and amortized when reading multiple datasets of the same custom format or very large
datasets. Finally, GIO has shown robust performance, which makes it a practical tool for custom
formats that otherwise require hand-crafted extractors.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

120:22 Saeed Fathollahzadeh & Matthias Boehm

6 RELATEDWORK
Identifying mapping rules and generating efficient readers for custom data formats in our GIO
framework has connections to the broad areas of schema inference, schema matching and mapping,
query processing on raw data, as well as efficient readers for text-based and open formats. In the
following, we survey these areas individually and discuss how GIO differs in detail.

Schema Inference:Discovering metadata and schema information is a broad area and comprises
a variety of techniques. Basic techniques include inferring attribute types via regular expressions
(e.g., via option("inferSchema",true) in Spark [78]) as well as data profiling [8, 37] to identify
domain characteristics and find key candidates by discovering uniqueness constraints, inclusion
dependencies, and functional dependencies. More recent techniques also discover semantic types
[46, 80] (e.g., date, currency, location) and feature types [70] (e.g., numeric, ordinal, categorical) with
classifiers trained on large corpora of schemas. Furthermore, schema inference for semi-structured
JSON data has received considerable attention in the literature [22], and is supported by several
systems such as SparkSQL [15], Jaql [28], and Schema Guru [7]. Besides JSON schema, many systems
introduce tailor-made, simpler schema/type languages [23, 28], some of which also handle different
levels of abstraction [20, 21]. A common approach of schema inference/extraction is counting
the occurrences of attributes at certain paths [20, 53]. Schema inference for semi-structured data
is an old problem though, where early work focused on the Object Exchange Model (OEM) and
related schema discovery algorithms [64, 75]. Recent work on JSON Schema introduced a witness
generation algorithm [16, 17] for addressing the problems of schema satisfiability, inclusion, and
equivalence. GIO is related to some of these works by also relying on sampling and guiding example
instances, but GIO differs in its goal of identifying mapping rules from raw, text-based data formats
to a structured frame or matrix representation, which does not need full schema inference.
Schema Matching and Mapping: Schema matching [26, 60] aims to find correspondences

(mapping rules) between two or more schemas, whereas schema mapping [61] generates data
transformation programs for created correspondences. These fields are naturally related to GIO’s
mapping rules identification and reader generation. Schema matching techniques are broadly
classified into schema-based, instance-based, and hybrid [68]. COMA++ [18, 38]—and its evolution
to COMA 3.0—is an example of a feature-rich schema matching tool. In contrast, schema mapping
tools like Clio [44, 45] generate—given the high-level correspondences—correct and efficient SQL
or XSLT transformation programs. In database theory, schema mappings were formalized via
declarative mappings called tuple-generating dependencies (tgds) and extensively studied [40, 54].
Multiple lines of work also leverage examples. Sample-driven schema mappings [67] requires only
user-provided target example records, which reduce the effort for specifying mappings. Other work
like Clio [77], IREINE [11, 12, 14], and Muse [13] leverage examples to aid the design, understanding
and refinement of mappings. Examples are also used to learn extractors from hierarchical JSON
and XML data to relational tables [76]. In contrast to schema matching and mapping, GIO identifies
mapping rules for raw data in custom data formats and generates efficient readers.
Query Processing on Raw Data: Our GIO framework was partially inspired by the highly-

influential NoDB work [9, 10, 47] that enables SQL query processing on raw CSV and JSON files.
Efficiency for exploratory data analysis is achieved by avoiding data loading, selective tokenization
and parsing (via positional maps), as well as horizontal/vertical partitioning and caching [9].
RAW [52] and Proteus [51] later introduced code generation for data extraction and query processing
on heterogeneous formats and JSON data. Other work then handled in-situ raw data access and
query processing for scientific formats like HDF5 and NetCDF [30, 48], JSONiq query processing
[63, 66], and integrated these techniques into systems with continuous scans and speculative
loading [35]. Typically, these systems assume known syntactic and semantic properties of the raw

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example 120:23

data formats, which does not apply to custom data formats. In contrast, our GIO framework does
not require any metadata on schemas, delimiters, or other structure but identifies such properties
from the examples, which makes code generation more important and challenging.
Efficient Readers: Related to query processing on raw data, recent work—in the context of

accessing open data formats [79] and avoiding data loading in exploratory analysis [9]—focus on
the implementation and generation of efficient readers for various formats. Major lines of work are
selective and speculative parsing (e.g., via raw string filtering, or parsing of projected columns)
[35, 41, 58, 65], the exploitation of SIMD instruction-level parallelism [42, 49, 55, 56] and HW
accelerators [71], dedicated cost estimation techniques [19, 39, 65], as well as the generation of
specialized code [43, 51, 55]. These lines of work share the concepts of eliminating unnecessary
overheads and leveraging modern hardware. Similar, to query processing on raw data, these efficient
readers typically assume known format properties. Although our GIO framework already shows
competitive performance (similar to existing libraries and systems for known formats), generating
high-performance readers for custom data formats is interesting future work.

7 CONCLUSIONS
To summarize, we introduced the GIO (generated I/O) reader framework for custom text data
formats. Given a sample of raw data and its mapping to matrices or frames as user-provided
examples, GIO automatically identifies position/value mapping rules, and efficiently generates code
for efficient, multi-threaded readers for datasets in this format. Our experiments show that GIO is
capable of correctly identifying—even on samples of very moderate size—the mapping rules for
basic text formats, custom flat text formats, and nested data formats. At the same time, the generated
readers yield competitive performance. In conclusion, GIO simplifies exploratory data analysis
and predictive modeling with custom data formats by reducing manual effort and potential data
quality issues. Users can additionally perform manual fine-tuning of mapping rules and generated
readers. Interesting future work includes the generation of data-parallel readers for distributed
computation, the generation of more efficient readers, the handling of custom binary data formats,
a richer set of shape inference and position/value mapping functions, as well as the integration
with query processing on raw data [9, 47, 51] and federated learning on raw data [24, 50].

ACKNOWLEDGMENTS
Partial funding for this work was provided by the COMET project Recycling and Recovery of Waste
for Future (acronym ReWaste F, contract 882512) in the COMET—Competence Centers for Excellent
Technologies—program, which is financially supported by BMK, BMDW and the federal state of
Styria, and managed by the FFG. We also thank in particular the ReWaste F partners Siemens and
REDWAVE, as well as Infineon for inspiration and use cases related to custom data formats.

REFERENCES
[1] 2000. Auto-lead Data Format / ADF: An Industry Standard Data Format for the Export and Import of Automotive

Customer Leads using XML. https://adfxml.info/adf_spec.pdf
[2] 2013. Matrix Market Exchange Formats. Technical Report. Math, Statistics, and Computational Science. https:

//math.nist.gov/MatrixMarket/formats.html
[3] 2022. Gson. https://github.com/google/gson/
[4] 2022. HAPI object-oriented HL7 2.x parser for Java. https://hapifhir.github.io/hapi-hl7v2/
[5] 2022. Jackson. https://github.com/FasterXML/jackson/
[6] 2022. RapidJSON. http://rapidjson.org/
[7] 2022. Schema Guru. https://github.com/snowplow/schema-guru
[8] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2017. Data Profiling: A Tutorial. In SIGMOD. 1747–1751.

https://doi.org/10.1145/3035918.3054772

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

https://adfxml.info/adf_spec.pdf
https://math.nist.gov/MatrixMarket/formats.html
https://math.nist.gov/MatrixMarket/formats.html
https://github.com/google/gson/
https://hapifhir.github.io/hapi-hl7v2/
https://github.com/FasterXML/jackson/
http://rapidjson.org/
https://github.com/snowplow/schema-guru
https://doi.org/10.1145/3035918.3054772

120:24 Saeed Fathollahzadeh & Matthias Boehm

[9] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anastasia Ailamaki. 2012. NoDB: Efficient
Query Execution on Raw Data Files. In SIGMOD. 241–252. https://doi.org/10.1145/2213836.2213864

[10] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anastasia Ailamaki. 2012. NoDB in Action:
Adaptive Query Processing on Raw Data. PVLDB 5, 12 (2012), 1942–1945. https://doi.org/10.14778/2367502.2367543

[11] Bogdan Alexe, Balder TEN Cate, Phokion G Kolaitis, and Wang-Chiew Tan. 2011. Characterizing schema mappings
via data examples. TODS 36, 4 (2011), 1–48. https://doi.org/10.1145/2043652.2043656

[12] Bogdan Alexe, Balder ten Cate, Phokion G Kolaitis, and Wang-Chiew Tan. 2011. EIRENE: Interactive design and
refinement of schema mappings via data examples. PVLDB 4, 12 (2011), 1414–1417. http://www.vldb.org/pvldb/vol4/
p1414-alexe.pdf

[13] Bogdan Alexe, Laura Chiticariu, Renée J Miller, and Wang-Chiew Tan. 2008. Muse: Mapping understanding and design
by example. In ICDE. 10–19. https://doi.org/10.1109/ICDE.2008.4497409

[14] Bogdan Alexe, Balder Ten Cate, Phokion G Kolaitis, and Wang-Chiew Tan. 2011. Designing and refining schema
mappings via data examples. In SIGMOD. 133–144. https://doi.org/10.1145/1989323.1989338

[15] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan,
Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In SIGMOD.
1383–1394. https://doi.org/10.1145/2723372.2742797

[16] Lyes Attouche, Mohamed Amine Baazizi, Dario Colazzo, Francesco Falleni, Giorgio Ghelli, Cristiano Landi, Carlo
Sartiani, and Stefanie Scherzinger. 2021. A Tool for JSON Schema Witness Generation. In EDBT. 694–697. https:
//doi.org/10.5441/002/edbt.2021.86

[17] Lyes Attouche, Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger. 2022.
Witness Generation for JSON Schema. PVLDB 15, 13 (2022), 4002–4014. https://www.vldb.org/pvldb/vol15/p4002-
sartiani.pdf

[18] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard Rahm. 2005. Schema and ontology matching with
COMA++. In SIGMOD. 906–908. https://doi.org/10.1145/1066157.1066283

[19] Tahir Azim, Manos Karpathiotakis, and Anastasia Ailamaki. 2017. ReCache: Reactive Caching for Fast Analytics over
Heterogeneous Data. PVLDB 11, 3 (2017), 324–337. https://doi.org/10.14778/3157794.3157801

[20] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2017. Counting types for massive JSON
datasets. In DBPL@VLDB Workshop. 1–12. https://doi.org/10.1145/3122831.3122837

[21] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019. Parametric schema inference for
massive JSON datasets. VLDB J. 28, 4 (2019), 497–521. https://doi.org/10.1007/s00778-018-0532-7

[22] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019. Schemas and Types for JSON Data:
From Theory to Practice. In SIGMOD. 2060–2063. https://doi.org/10.1145/3299869.3314032

[23] Mohamed-Amine Baazizi, Houssem Ben Lahmar, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2017. Schema
inference for massive JSON datasets. In EDBT. https://doi.org/10.5441/002/edbt.2017.21

[24] Sebastian Baunsgaard, Matthias Boehm, Ankit Chaudhary, Behrouz Derakhshan, Stefan Geißelsöder, Philipp M.
Grulich, Michael Hildebrand, Kevin Innerebner, Volker Markl, Claus Neubauer, Sarah Osterburg, Olga Ovcharenko,
Sergey Redyuk, Tobias Rieger, Alireza Rezaei Mahdiraji, Sebastian Benjamin Wrede, and Steffen Zeuch. 2021. ExDRa:
Exploratory Data Science on Federated Raw Data. In SIGMOD. 2450–2463. https://doi.org/10.1145/3448016.3457549

[25] Lasse Bergroth, Harri Hakonen, and Timo Raita. 2000. A survey of longest common subsequence algorithms. In
Proceedings Seventh International Symposium on String Processing and Information Retrieval. SPIRE 2000. IEEE, 39–48.
https://doi.org/10.1109/SPIRE.2000.878178

[26] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. 2011. Generic Schema Matching, Ten Years Later. PVLDB 4,
11 (2011), 695–701. http://www.vldb.org/pvldb/vol4/p695-bernstein_madhavan_rahm.pdf

[27] George Beskales, Ihab F. Ilyas, Lukasz Golab, and Artur Galiullin. 2013. On the relative trust between inconsistent data
and inaccurate constraints. In ICDE. 541–552. https://doi.org/10.1109/ICDE.2013.6544854

[28] Kevin S. Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mohamed Y. Eltabakh, Carl-Christian Kanne, Fatma
Özcan, and Eugene J. Shekita. 2011. Jaql: A Scripting Language for Large Scale Semistructured Data Analysis. PVLDB
4, 12 (2011), 1272–1283. http://www.vldb.org/pvldb/vol4/p1272-beyer.pdf

[29] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. 2018. HOT: A Height Optimized Trie Index
for Main-Memory Database Systems. In SIGMOD. 521–534. https://doi.org/10.1145/3183713.3196896

[30] Spyros Blanas, Kesheng Wu, Surendra Byna, Bin Dong, and Arie Shoshani. 2014. Parallel data analysis directly on
scientific file formats. In SIGMOD. 385–396. https://doi.org/10.1145/2588555.2612185

[31] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert Ginthör, Kevin Innerebner, Florijan Klezin,
Stefanie N. Lindstaedt, Arnab Phani, Benjamin Rath, Berthold Reinwald, Shafaq Siddiqui, and Sebastian Benjamin
Wrede. 2020. SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle. In CIDR.
http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

https://doi.org/10.1145/2213836.2213864
https://doi.org/10.14778/2367502.2367543
https://doi.org/10.1145/2043652.2043656
http://www.vldb.org/pvldb/vol4/p1414-alexe.pdf
http://www.vldb.org/pvldb/vol4/p1414-alexe.pdf
https://doi.org/10.1109/ICDE.2008.4497409
https://doi.org/10.1145/1989323.1989338
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.5441/002/edbt.2021.86
https://doi.org/10.5441/002/edbt.2021.86
https://www.vldb.org/pvldb/vol15/p4002-sartiani.pdf
https://www.vldb.org/pvldb/vol15/p4002-sartiani.pdf
https://doi.org/10.1145/1066157.1066283
https://doi.org/10.14778/3157794.3157801
https://doi.org/10.1145/3122831.3122837
https://doi.org/10.1007/s00778-018-0532-7
https://doi.org/10.1145/3299869.3314032
https://doi.org/10.5441/002/edbt.2017.21
https://doi.org/10.1145/3448016.3457549
https://doi.org/10.1109/SPIRE.2000.878178
http://www.vldb.org/pvldb/vol4/p695-bernstein_madhavan_rahm.pdf
https://doi.org/10.1109/ICDE.2013.6544854
http://www.vldb.org/pvldb/vol4/p1272-beyer.pdf
https://doi.org/10.1145/3183713.3196896
https://doi.org/10.1145/2588555.2612185
http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf

GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example 120:25

[32] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexandre V. Evfimievski, and Niketan Pansare.
2018. On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML. PVLDB 11, 12 (2018),
1755–1768. https://doi.org/10.14778/3229863.3229865

[33] Matthias Böhm, Benjamin Schlegel, Peter Benjamin Volk, Ulrike Fischer, Dirk Habich, and Wolfgang Lehner. 2011.
Efficient In-Memory Indexing with Generalized Prefix Trees. In BTW. 227–246. https://dl.gi.de/20.500.12116/19581

[34] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst.
Technol. 2, 3 (2011), 27:1–27:27. https://doi.org/10.1145/1961189.1961199

[35] Yu Cheng and Florin Rusu. 2014. Parallel in-situ data processing with speculative loading. In SIGMOD. 1287–1298.
https://doi.org/10.1145/2588555.2593673

[36] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and Caleb Welton. 2009. MAD Skills: New Analysis
Practices for Big Data. PVLDB 2, 2 (2009), 1481–1492. https://doi.org/10.14778/1687553.1687576

[37] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael Stonebraker, Ahmed K. Elmagarmid,
Ihab F. Ilyas, Samuel Madden, Mourad Ouzzani, and Nan Tang. 2017. The Data Civilizer System. In CIDR. http:
//cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf

[38] Hong Hai Do and Erhard Rahm. 2002. COMA - A System for Flexible Combination of Schema Matching Approaches.
In VLDB. 610–621. https://doi.org/10.1016/B978-155860869-6/50060-3

[39] Dominik Durner, Viktor Leis, and Thomas Neumann. 2021. JSON Tiles: Fast Analytics on Semi-Structured Data. In
SIGMOD. 445–458. https://doi.org/10.1145/3448016.3452809

[40] Ronald Fagin, Phokion G Kolaitis, Renée J Miller, and Lucian Popa. 2005. Data exchange: semantics and query answering.
Theoretical Computer Science 336, 1 (2005), 89–124. https://doi.org/10.1016/j.tcs.2004.10.033

[41] Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Donald Kossmann. 2019. Speculative distributed CSV
data parsing for big data analytics. In SIGMOD. 883–899. https://doi.org/10.1145/3299869.3319898

[42] Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Donald Kossmann. 2019. Speculative distributed CSV
data parsing for big data analytics. In Proceedings of the 2019 International Conference on Management of Data. 883–899.
https://doi.org/10.1145/3299869.3319898

[43] Philipp M Grulich, Breß Sebastian, Steffen Zeuch, Jonas Traub, Janis von Bleichert, Zongxiong Chen, Tilmann Rabl, and
Volker Markl. 2020. Grizzly: Efficient stream processing through adaptive query compilation. In SIGMOD. 2487–2503.
https://doi.org/10.1145/3318464.3389739

[44] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian Popa, and Mary Roth. 2005. Clio grows up: from research
prototype to industrial tool. In SIGMOD. 805–810. https://doi.org/10.1145/1066157.1066252

[45] Mauricio A. Hernández, Renée J. Miller, and Laura M. Haas. 2001. Clio: A Semi-Automatic Tool For Schema Mapping.
In SIGMOD. 607. https://doi.org/10.1145/375663.375767

[46] Madelon Hulsebos, Kevin Zeng Hu, Michiel A. Bakker, Emanuel Zgraggen, Arvind Satyanarayan, Tim Kraska, Çagatay
Demiralp, and César A. Hidalgo. 2019. Sherlock: A Deep Learning Approach to Semantic Data Type Detection. In
SIGKDD. 1500–1508. https://doi.org/10.1145/3292500.3330993

[47] Stratos Idreos, Ioannis Alagiannis, Ryan Johnson, and Anastasia Ailamaki. 2011. Here are my Data Files. Here are my
Queries. Where are my Results?. In CIDR. 57–68. http://cidrdb.org/cidr2011/Papers/CIDR11_Paper7.pdf

[48] Milena Ivanova, Yagiz Kargin, Martin L. Kersten, Stefan Manegold, Ying Zhang, Mihai Datcu, and Daniela Espinoza-
Molina. 2013. Data vaults: a database welcome to scientific file repositories. In SSDBM. 48:1–48:4. https://doi.org/10.
1145/2484838.2484876

[49] Lin Jiang, Junqiao Qiu, and Zhijia Zhao. 2020. Scalable Structural Index Construction for JSON Analytics. PVLDB 14, 4
(2020). https://doi.org/10.14778/3436905.3436926

[50] Peter Kairouz, Brendan McMahan, and Virginia Smith. 2020. Federated Learning Tutorial. In NeurIPS. https:
//slideslive.com/38935813/federated-learning-tutorial

[51] Manos Karpathiotakis, Ioannis Alagiannis, and Anastasia Ailamaki. 2016. Fast Queries Over Heterogeneous Data
Through Engine Customization. PVLDB 9, 12 (2016), 972–983. https://doi.org/10.14778/2994509.2994516

[52] Manos Karpathiotakis, Miguel Branco, Ioannis Alagiannis, and Anastasia Ailamaki. 2014. Adaptive Query Processing
on RAW Data. PVLDB 7, 12 (2014), 1119–1130. https://doi.org/10.14778/2732977.2732986

[53] Meike Klettke, Uta Störl, and Stefanie Scherzinger. 2015. Schema Extraction and Structural Outlier Detection for
JSON-based NoSQL Data Stores. In BTW. 425–444. https://dl.gi.de/20.500.12116/2420

[54] Phokion G Kolaitis. 2005. Schema mappings, data exchange, and metadata management. In PODS. 61–75. https:
//doi.org/10.1145/1065167.1065176

[55] Marcel Kornacker et al. 2015. Impala: A Modern, Open-Source SQL Engine for Hadoop. In CIDR. http://cidrdb.org/
cidr2015/Papers/CIDR15_Paper28.pdf

[56] Geoff Langdale and Daniel Lemire. 2019. Parsing gigabytes of JSON per second. VLDB J. 28, 6 (2019), 941–960.
https://doi.org/10.1007/s00778-019-00578-5

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

https://doi.org/10.14778/3229863.3229865
https://dl.gi.de/20.500.12116/19581
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/2588555.2593673
https://doi.org/10.14778/1687553.1687576
http://cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf
https://doi.org/10.1016/B978-155860869-6/50060-3
https://doi.org/10.1145/3448016.3452809
https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.1145/3299869.3319898
https://doi.org/10.1145/3299869.3319898
https://doi.org/10.1145/3318464.3389739
https://doi.org/10.1145/1066157.1066252
https://doi.org/10.1145/375663.375767
https://doi.org/10.1145/3292500.3330993
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper7.pdf
https://doi.org/10.1145/2484838.2484876
https://doi.org/10.1145/2484838.2484876
https://doi.org/10.14778/3436905.3436926
https://slideslive.com/38935813/federated-learning-tutorial
https://slideslive.com/38935813/federated-learning-tutorial
https://doi.org/10.14778/2994509.2994516
https://doi.org/10.14778/2732977.2732986
https://dl.gi.de/20.500.12116/2420
https://doi.org/10.1145/1065167.1065176
https://doi.org/10.1145/1065167.1065176
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
https://doi.org/10.1007/s00778-019-00578-5

120:26 Saeed Fathollahzadeh & Matthias Boehm

[57] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree: ARTful indexing for main-memory
databases. In ICDE. 38–49. https://doi.org/10.1109/ICDE.2013.6544812

[58] Yinan Li, Nikos R Katsipoulakis, Badrish Chandramouli, Jonathan Goldstein, and Donald Kossmann. 2017. Mison: a
fast JSON parser for data analytics. PVLDB 10, 10 (2017), 1118–1129. https://doi.org/10.14778/3115404.3115416

[59] Ericsson M. Garcia-Martin, G. Camarillo. 2008. Extensible Markup Language (XML) Format Extension for Representing
Copy Control Attributes in Resource Lists. RFC 5364. RFC Editor. https://datatracker.ietf.org/doc/html/rfc5364

[60] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. 2001. Generic Schema Matching with Cupid. In VLDB. 49–58.
http://www.vldb.org/conf/2001/P049.pdf

[61] Renée J. Miller, Laura M. Haas, and Mauricio A. Hernández. 2000. Schema Mapping as Query Discovery. In VLDB.
77–88. http://www.vldb.org/conf/2000/P077.pdf

[62] Donald R. Morrison. 1968. PATRICIA - Practical Algorithm To Retrieve Information Coded in Alphanumeric. J. ACM
15, 4 (1968), 514–534. https://doi.org/10.1145/321479.321481

[63] IngoMüller, Ghislain Fourny, Stefan Irimescu, Can Berker Cikis, and Gustavo Alonso. 2020. Rumble: Data Independence
for Large Messy Data Sets. PVLDB 14, 4 (2020), 498–506. https://doi.org/10.14778/3436905.3436910

[64] Svetlozar Nestorov, Jeffrey Ullman, Janet Wiener, and Sudarashan Chawathe. 1997. Representative objects: Concise
representations of semistructured, hierarchical data. In ICDE. 79–90.

[65] Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2018. Filter Before You Parse: Faster Analytics on Raw
Data with Sparser. PVLDB 11, 11 (2018). https://doi.org/10.14778/3236187.3236207

[66] Christina Pavlopoulou, E Preston Carman Jr, Till Westmann, Michael J Carey, and Vassilis J Tsotras. 2018. A Parallel
and Scalable Processor for JSON Data. In EDBT. 576–587. https://doi.org/10.5441/002/edbt.2018.68

[67] Li Qian, Michael J Cafarella, and HV Jagadish. 2012. Sample-driven schema mapping. In SIGMOD. 73–84. https:
//doi.org/10.1145/2213836.2213846

[68] Erhard Rahm and Philip A. Bernstein. 2001. A survey of approaches to automatic schema matching. VLDB J. 10, 4
(2001), 334–350. https://doi.org/10.1007/s007780100057

[69] Y. Shafranovich. 2005. Common Format and MIME Type for Comma-Separated Values (CSV) Files. RFC 4180. RFC Editor.
https://www.rfc-editor.org/rfc/rfc4180

[70] Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, and Arun Kumar. 2021. Towards Benchmarking Feature
Type Inference for AutoML Platforms. In SIGMOD. 1584–1596. https://doi.org/10.1145/3448016.3457274

[71] Elias Stehle and Hans-Arno Jacobsen. 2020. ParPaRaw: Massively Parallel Parsing of Delimiter-Separated Raw Data.
PVLDB 13, 5 (2020). https://doi.org/10.14778/3377369.3377372

[72] Ed. T. Bray. 2017. The JavaScript Object Notation (JSON) Data Interchange Format. RFC 8259. RFC Editor. https:
//datatracker.ietf.org/doc/html/rfc8259

[73] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnetminer: extraction and mining of
academic social networks. In SIGKDD. 990–998. https://doi.org/10.1145/1401890.1402008

[74] Arno Unkrieg. 2014. Janino: A super-small, super-fast Java Compiler. https://janino-compiler.github.io/janino/2014-
02-18_SWM-JAK.pdf

[75] Qiu Yue Wang, Jeffrey Xu Yu, and Kam-Fai Wong. 2000. Approximate graph schema extraction for semi-structured
data. In EDBT. 302–316. https://doi.org/10.1007/3-540-46439-5_21

[76] Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. 2018. Automated migration of hierarchical data to relational tables
using programming-by-example. PVLDB 11, 5 (2018), 580–593. https://doi.org/10.1145/3187009.3177735

[77] Ling-Ling Yan, Renée J. Miller, Laura M. Haas, and Ronald Fagin. 2001. Data-Driven Understanding and Refinement of
Schema Mappings. In SIGMOD. 485–496. https://doi.org/10.1145/375663.375729

[78] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin,
Scott Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In NSDI. 15–28. https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[79] Matei Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. 2021. Lakehouse: A New Generation of Open Platforms
that Unify Data Warehousing and Advanced Analytics. In CIDR. http://cidrdb.org/cidr2021/papers/cidr2021_paper17.
pdf

[80] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çagatay Demiralp, and Wang-Chiew Tan. 2020. Sato:
Contextual Semantic Type Detection in Tables. PVLDB 13, 11 (2020), 1835–1848. http://www.vldb.org/pvldb/vol13/
p1835-zhang.pdf

Received October 2022; revised January 2023; accepted February 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 120. Publication date: June 2023.

https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.14778/3115404.3115416
https://datatracker.ietf.org/doc/html/rfc5364
http://www.vldb.org/conf/2001/P049.pdf
http://www.vldb.org/conf/2000/P077.pdf
https://doi.org/10.1145/321479.321481
https://doi.org/10.14778/3436905.3436910
https://doi.org/10.14778/3236187.3236207
https://doi.org/10.5441/002/edbt.2018.68
https://doi.org/10.1145/2213836.2213846
https://doi.org/10.1145/2213836.2213846
https://doi.org/10.1007/s007780100057
https://www.rfc-editor.org/rfc/rfc4180
https://doi.org/10.1145/3448016.3457274
https://doi.org/10.14778/3377369.3377372
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259
https://doi.org/10.1145/1401890.1402008
https://janino-compiler.github.io/janino/2014-02-18_SWM-JAK.pdf
https://janino-compiler.github.io/janino/2014-02-18_SWM-JAK.pdf
https://doi.org/10.1007/3-540-46439-5_21
https://doi.org/10.1145/3187009.3177735
https://doi.org/10.1145/375663.375729
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
http://www.vldb.org/pvldb/vol13/p1835-zhang.pdf
http://www.vldb.org/pvldb/vol13/p1835-zhang.pdf

	Abstract
	1 Introduction
	2 Background and Objectives
	2.1 Custom Data Format Characteristics
	2.2 Reader Generation Problem
	2.3 Mapping Rules

	3 Mapping Identification
	3.1 Cell Value Mapping
	3.2 Pattern Matching
	3.3 Overall Identification Algorithm

	4 Reader Generation
	4.1 Template-based Code Generation
	4.2 Pattern Matching Approaches

	5 Experiments
	5.1 Experimental Setting
	5.2 Identification and Reader Generation
	5.3 Reader Runtime Performance
	5.4 Full Data of Custom Data Formats

	6 Related Work
	7 Conclusions
	References

