
218

Saga: A Scalable Framework for Optimizing Data Cleaning

Pipelines for Machine Learning Applications

SHAFAQ SIDDIQI, Graz University of Technology, Austria
ROMAN KERN, Graz University of Technology, Austria
MATTHIAS BOEHM

∗
, Technische Universität Berlin, Germany

In the exploratory data science lifecycle, data scientists often spent the majority of their time finding, integrat-
ing, validating and cleaning relevant datasets. Despite recent work on data validation, and numerous error
detection and correction algorithms, in practice, data cleaning for ML remains largely a manual, unpleasant,
and labor-intensive trial and error process, especially in large-scale, distributed computation. The target
ML application—such as classification or regression models—can be used as a signal of valuable feedback
though, for selecting effective data cleaning strategies. In this paper, we introduce Saga, a framework for
automatically generating the top-K most effective data cleaning pipelines. Saga adopts ideas from Auto-ML,
feature selection, and hyper-parameter tuning. Our framework is extensible for user-provided constraints,
new data cleaning primitives, and ML applications; automatically generates hybrid runtime plans of local
and distributed operations; and performs pruning by interesting properties (e.g., monotonicity). Instead of
full automation—which is rather unrealistic—Saga simplifies the mechanical aspects of data cleaning. Our
experiments show that Saga yields robust accuracy improvements over state-of-the-art, and good scalability
regarding increasing data sizes and number of evaluated pipelines.

CCS Concepts: • Information systems→ Data cleaning; Data cleaning; • Computing methodologies

→ Distributed computing methodologies.

Additional Key Words and Phrases: Data Cleaning for ML; Linear-algebra-based Primitives; Data Cleaning
Pipelines; Evolutionary Algorithms; Hyper-parameter Tuning; Data- and Task-parallel Execution

ACM Reference Format:

Shafaq Siddiqi, Roman Kern, and Matthias Boehm. 2023. Saga: A Scalable Framework for Optimizing Data
Cleaning Pipelines for Machine Learning Applications. Proc. ACM Manag. Data 1, 3 (SIGMOD), Article 218
(September 2023), 26 pages. https://doi.org/10.1145/3617338

1 INTRODUCTION

Data integration, validation, and cleaning are old, well-studied, but complex problems [83, 99].
Sources of data quality issues are manifold, including heterogeneous data sources (e.g., syntactic
or semantic heterogeneity, misalignments, outliers, missing values, and duplicates) [1, 41, 78, 79],
human error1 (e.g., typos, attribute swaps, incorrect labels) [45], or measurement and processing
errors (e.g., erroneous sensors or extraction programs). These issues are traditionally addressed
∗This work was partially done at Graz University of Technology, Austria.
1Such errors then unfortunately even propagate into highly-curated data collections such as DBLP. Interesting examples
include attribute swaps in affiliations (examples meanwhile fixed), and typos in dissertation titles (e.g., link [106]).

Authors’ addresses: Shafaq Siddiqi, shafaq.siddiqi@tugraz.at, Graz University of Technology, Austria; Roman Kern, rkern@
tugraz.at, Graz University of Technology, Austria; Matthias Boehm, matthias.boehm@tu-berlin.de, Technische Universität
Berlin, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/9-ART218
https://doi.org/10.1145/3617338

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

HTTPS://ORCID.ORG/0000-0003-0031-9911
HTTPS://ORCID.ORG/0000-0003-0202-6100
HTTPS://ORCID.ORG/0000-0003-1344-3663
https://doi.org/10.1145/3617338
https://dblp.org/rec/phd/basesearch/Zaharia13.html?view=bibtex
https://orcid.org/0000-0003-0031-9911
https://orcid.org/0000-0003-0202-6100
https://orcid.org/0000-0003-1344-3663
https://doi.org/10.1145/3617338

218:2 Shafaq Siddiqi, Roman Kern & Matthias Boehm

via tool-supported, but manually crafted ETL (extract, transform, load) processes [14, 96], schema
matching [6], entity resolution or deduplication [18], or UI-centric data wrangling [50, 74, 82].
Orthogonal tools for data profiling [33], data validation [89, 91], and error detection and correction
[25, 44, 57, 59, 63, 64, 83, 108] share the characteristics of discovering and applying constraints such
as functional and inclusion dependencies; domain constraints, uniqueness, expected value ranges
and distinct items; as well as validity patterns and denial constraints.
Data Cleaning for ML: Data cleaning for data science or machine learning (ML) has unique

characteristics. The typical data science lifecycle is exploratory: data scientists deal with under-
specified objectives, pose hypotheses, and prepare the data for predictive modeling [11]. Since the
data quality strongly influences the models, most manual labor is spent on finding, integrating, and
cleaning relevant datasets [98, 99]. Various data cleaning tools have been developed for reducing
the manual effort [44, 59, 64, 83], gradually shifting the focus from hand-written scripts to config-
urations, rules, constraints, and techniques like active learning [25, 29, 50, 58, 63, 77]. Although
these tools show valuable improvements, several severe usability and scalability issues remain.
Existing work mostly considers data cleaning as a standalone task, independent of downstream ML
applications [59, 63, 64, 83]. Previous studies have shown, however, that such oblivious data cleaning
may not improve—or even degrade—model performance [58, 61, 68]. Instead, we can leverage the
downstream ML applications as a signal, in terms of quantitative feedback, for selecting effective
data cleaning strategies. Similar to the broader ISO 9001 quality management [3]—where products
and services are monitored for their “fit-for-purpose” (fulfillment of defined requirements), the
quality of ML models (e.g., accuracy) can evaluate the impact of data cleaning strategies.

Usability Challenges: In practice, data cleaning for ML faces several usability challenges. First,
many tools strongly depend on user-provided inputs such as constraints, regular expressions, and
dictionaries. While the experiments often look promising, such user inputs (provided upfront or via
active learning) require significant domain expertise and time investments. Second, data cleaning
algorithms and tools become increasingly specialized for particular types of problems or errors.
This specialization is problematic because it ignores inter-dependencies among cleaning techniques,
and it requires orchestrating, configuring, and tuning multiple tools. Examples are query processing
with imputation [19] or deduplication [2], algorithms for missing value imputation [9, 102], entity
resolution pipelines [39, 55, 81], or factor graphs for groups of constraints [83]. Together, there is
still an unnecessarily large burden on the user.
Scalability Challenges: There are also unaddressed scalability challenges. First, except for

special solutions for distributed data deduplication [13, 24], distributed data validation [89], and
distributed rule-based cleaning [54], existing data cleaning tools are unable to enumerate and
execute cleaning pipelines in a distributed manner. Relevant subproblems include task-parallelism
for concurrent pipeline evaluation and data-parallel cleaning of large datasets that exceed single-
node memory. Second, an increasing number of cleaning primitives and their parameters further
increases the search space and thus, the need for parallelization.
Saga Design Principles: Learning from decades of work on data cleaning and related areas

such as entity resolution and schema mapping2, we aim—instead of full automation which is rather
unrealistic—to simplify the mechanical aspects of data cleaning for ML. Our key design principles
are automatic pipeline enumeration (provide effective means for enumerating and tuning pipelines
and their parameters), extensibility (allow new types of cleaning primitives, ML applications, and

2Bernstein &Melnik: “Given the existence of all these tools, why is it still so labor-intensive to develop engineered mappings?
To some extent, it is an unavoidable consequence of ambiguity [...] the specification of meaning is weak and the mapping
must be precisely engineered, it seems hopeless to fully automate the process anytime soon.” [7]

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

Saga: Data Cleaning Pipelines for ML 218:3

manual pipeline refinements), as well as automatic plan generation (generate efficient local or
distributed runtime plans according to workload characteristics).

Contributions: Our primary contribution is Saga, a scalable framework—fully integrated into
open-source Apache SystemDS3—for finding the top-K, parameterized data cleaning pipelines
for a given dataset, ML application, and optional user-provided constraints. In this context, our
conceptual and technical contributions are:
• Framework: As framework foundations, Section 2 introduces Saga’s library of data cleaning
primitives (which are implemented in linear algebra, allowing automatic parallelization), the
overall problem formulation, and a clean API contract for top-K pipeline enumeration.
• Pipeline Enumeration and Tuning Algorithms: At the core, we introduce simple yet effective
algorithms for logical pipeline enumeration (pipeline structure) in Section 3, and physical
pipeline tuning (pipeline parameters) in Section 4. Further optimizations include pruning by
traits of primitives (e.g., by monotonicity), and flattening nested parallelism.
• Runtime Plan Generation: From the perspective of scalable execution, we briefly describe
alternative parallel plans, as well as compilation and runtime techniques for generating
efficient local or distributed plans in Section 5.
• Experiments: Finally, we share the results of a broad experimental evaluation in Section 6,
including real and synthetic data, different baseline cleaning tools, errors types and charac-
teristics, ML algorithms, AutoML tools, and parallel plans.

2 SAGA FRAMEWORK

In this section, we summarize Saga’s cleaning primitives, formulate the problem of finding the
top-K data cleaning pipelines for an ML application, and provide an overview of the API contract
and resulting framework.

2.1 Data Cleaning Primitives

Over the last three years, we created Saga’s library of cleaning primitives, which implement—
mostly known—data cleaning primitives as linear-algebra-based built-in functions. Table 1 shows
selected primitives of different categories as well as their parameters and applicability to pruning
by monotonicity. Related catalog information is managed as simple data frames, and thus, new
primitives can be added seamlessly.
Selected Primitives: Besides data preparation (e.g., feature transformations, standardization,

and dimensionality reduction) and string processing (e.g., stemming, typos, and swaps), our prim-
itives address outliers, missing values, as well as class imbalance and/or flipped labels. First, for
outlier removal, we leverage statistical primitives such as outlier removal by inter-quartile range,
by standard deviation, and winsorization (based on quantiles), as well as DBSCAN [92] as a density-
based clustering algorithm (remove points that are not density-reachable). Second, missing value
imputation techniques include simple imputation of constants, last values (forward/backward
filling), mean, and mode (most frequent item). More complex strategies are imputation by robust
functional dependencies [33] (if an FD country→city applies to 90% of tuples, use it to clean the re-
maining 10%) and multivariate imputation by chained equations [102] (classification for categorical
and regression for numerical features). Third, for handling labels we apply classical under-sampling,
SMOTE [22] (synthetic oversampling), and tomekLink (under-sampling by dropping borderline
points). Furthermore, we also allow label flipping and abstain (tuple removal) for instances where
linear models mispredict with high confidence.

3Apache SystemDS [11]: http://apache.github.io/systemds/, reproducibility: https://github.com/damslab/reproducibility

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

http://apache.github.io/systemds/
https://github.com/damslab/reproducibility

218:4 Shafaq Siddiqi, Roman Kern & Matthias Boehm

Table 1. Saga’s Data Cleaning Primitives.

Category Name Params Monotonic

1 Outliers dbscan [92] minPts, 𝜖
2 outlierByIQR 𝑘 ✓
3 outlierBySd 𝑘 ✓
4 winsorize 𝑞𝑙 , 𝑞𝑢 ✓
5 MV Imputation fillDefault 𝑣

6 fillForward
7 imputeByFd [33] 𝑃 ✓
8 imputeByMean
9 imputeByMedian
10 mice [102] 𝑖 , 𝑃
11 Data Preparation encodeOneHot
12 encodeFequency
13 encodeDate
14 normalize / scale
15 pca / ppca 𝑘

16 weightOfEvidence
17 Class Imbalance smote [22] 𝑁

18 tomekLink
19 underSampling 𝑁

20 Labels flipLabels 𝑃 ✓
21 abstain 𝑃 ✓
22 String Handling correctTypos
23 (stage 0) fixLength / fixType L / T ✓
25 stemming / lowerCase
27 swapValues

Fit and Apply: Each primitive has a fit and apply function (e.g., outlierByIQR and
outlierByIQRApply), where the former computes state such as the inter-quartile range (IQR =

𝑞3 − 𝑞1), and then calls the apply function to remove outliers outside the [𝑞1 − 𝑘 · IQR, 𝑞3 + 𝑘 · IQR]
range. The fit functions are used during training, their state is kept, and used when calling the
apply functions during model scoring/inference. Some primitives like flipLabels have no-op
apply functions similar to dropout layers in DNNs.

Need forOptimization:There are several dependencies among cleaning primitives. For example,
outlier methods can replace values directly, remove rows, or replace values by missing values. Thus,
together outlier removal and missing value imputation are a form of error detection and correction.
Accordingly, both the ordering of primitives and good parameters for these primitives are strongly
data-dependent, which requires automatic optimization.

2.2 Problem Formulation

In order to provide users with the flexibility of manual refinements of cleaning pipelines and
primitives, we focus on top-K cleaning pipeline enumeration. We define the problem as follows:
Notation: Let (X,Y) be a dataset composed of input features X (𝑛 − 1 independent variables,

categorical or numerical), and a target feature Y (class labels or continuous response). Each tuple
𝑡𝑖 ∈ (X,Y) is a vector of frame cells 𝑡𝑖 = {𝐶𝑖1,𝐶𝑖2, . . . ,𝐶𝑖𝑛}. Furthermore, let 𝜔 (X,Y) be an ML

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

Saga: Data Cleaning Pipelines for ML 218:5

model—including feature transformations—learned on (X,Y) that produces a certain training loss
𝜙 (𝜔 (X,Y)) and test loss 𝜙 (𝜔 (X′,Y′)). We assume that some cells𝐶𝑖 𝑗 ∈ (X,Y) and X′ are corrupted,
wrong, or missing. Therefore, we seek to find a cleaning pipeline 𝑃 that applied to (X,Y) before
training and to (X′,Y′) before scoring reduces the expected test loss. As a proxy for expected test
loss (which is not seen by our cleaning framework), the training or validation4 loss should be strictly
improved 𝜙 (𝜔 (𝑃 (X,Y))) < 𝜙 (𝜔 (X,Y)). The target ML application is a tuple (𝜔,𝜙) composed of a
specific regression, classification, or other learning task 𝜔 as well as a user-specific loss function 𝜙
(e.g., inverse accuracy, f1-measure, l2-norm, r-squared loss).

Logical and Physical Pipelines: A pipeline 𝑃 is defined by its structure (primitives and their
order) and its parameters (hyper-parameters of contained primitives). We explicitly distinguish
between logical pipelines and physical pipelines. A logical pipelines only defines the structure and
can be evaluated with default parameters. In contrast, a physical pipeline has the structure of its
parent logical pipeline but assigns concrete hyper-parameter values.

Optimization Objective: We aim to find the top-K physical cleaning pipelines that satisfy the
following optimization objective:

P = arg min
P∈S

Σ𝐾
𝑘=1𝜙 (𝜔 (P𝑘 (X,Y),Σc))

𝑠 .𝑡 . ∀𝑘 ∈ N[1,𝐾] : 𝜙 (𝜔 (P𝑘 (X,Y))) < 𝜙 (𝜔 (X,Y))
(1)

Given a dataset (X,Y), set of optional user constraints Σc, a target ML application (𝜔,𝜙), and an
integer 𝐾 , the goal is to find the top-K cleaning pipelines P from the search space of all pipelines
S with minimal total loss 𝜙 , ordered ascending by loss. In order to prevent unwanted redundancy,
the returned top-K set must contain physical pipelines of distinct logical pipelines.
Search Space: A brute-force solution would enumerate every pipeline of the space S, which

requires training and evaluating 𝜙 (𝜔 (𝑃 (X,Y))). The overall search space is huge and ∞ if we
allow repeated cleaning primitives (unbounded pipeline length). Even the restricted search space—
where every primitive appears at most once—is huge. Given 𝑝 cleaning primitives with a single
hyper-parameter and ℎ parameter values each, the search space comprises

|S| =
𝑝∑︁
𝑙=0

(
𝑝

𝑙

)
! · ℎ𝑙 =

𝑝∑︁
𝑙=0

𝑝!
(𝑝 − 𝑙)! · ℎ

𝑙 (2)

physical pipelines. For every pipeline length 𝑙 ∈ [0, 𝑝], we have a partial permutation p permute l,
multiplied by the number of hyper-parameter configurations ℎ𝑙 . With 𝑝 = 25 cleaning primitives
(see Table 1) and ℎ = 10, the number of pipelines is already |S| > 1050, which renders brute force
enumeration infeasible.

2.3 API Contract and Saga Overview

Fitting and Applying Pipelines: Addressing the large search space requires efficient pipeline
enumeration. An often overlooked aspect of such enumeration algorithms is the concrete user API
contract. We define a simple API with three functions:
• topk_cleaning() takes the training data, metadata, constraints, and target ML application;
performs top-K cleaning pipeline enumeration; and returns the top-K pipelines, their hyper-
parameter values and validation scores.
• fit_pipeline() takes a selected or refined pipeline (with fixed primitives and hyper-
parameters) and fits this pipeline on the new data, returning the internal state (e.g., quantiles
for outlierByIQR) and cleaned data.

4Similar to traditional hyper-parameter tuning of ML models, we further split the train data into train and validation sets
for evaluating different cleaning pipelines.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

218:6 Shafaq Siddiqi, Roman Kern & Matthias Boehm

INPUTS

Best Logical Pipelines

TOP-K CLEANING
OUTPUTS

Dataset

Target Application

Metadata & Constrains

Schema, mask
FD, constraints

Top-K Pipelines

Debugging Tool

Primitives States

Metadata, model
hyperparameters,
..

Pipeline 1

...
Pipeline N

Input Population

Genetic Transitions

DATA & TASK PARALLEL EXECUTION

Successive Halving

Exploration Exploration

Exploitation

Exploration

ExploitationExploitation

Logical Pipelines Allocation

Bucket 1

...

Bucket N

LOGICAL PIPELINES ENUMERATION PHYSICAL PIPELINES ENUMERATION

Pipeline 1

...

Pipeline N

...

...

Bucket 2

... Pipeline1, hp1, Score1

Pipeline2, hp2, Score2

. . .

Pipelinek, hpk, Scorek

Hyperparameter Optimization

Multi-arm Bandit Monotonic Pruning

Concurrent Pipelines Data Partitions Spark Cluster

Fig. 1. Overview of Saga Framework (Top-K Cleaning).

• apply_pipeline() transforms new incoming data for scoring with the given pipeline and
read-only state of primitives.

This separation is important for moving top-K enumeration and training outside the critical path,
and allowing manual refinements.

Framework Overview: Figure 1 gives an overview of our top-K cleaning pipeline enumeration.
Besides the input data and ML target application, users may provide constraints for a more directed
search, where we leverage functional dependencies, feature string lengths, and feature types (cate-
gorical or numerical). Saga then performs all string processing and feature transformations before
any cleaning on matrices. Given an input data frame and metadata, we handle typos, fix invalid
values, perform stemming and normalization, and apply feature transformations. String manipu-
lations are efficiently executed via second-order map functions (e.g., map(FS,"s->s.length()"))
for which we internally perform code generation. Inspired by the optimization of data-processing
workflows [27, 93, 94], and AutoML tools [71, 93, 97], we devise an effective multi-level optimization
strategy of logical and physical pipelines. First, Saga uses an evolutionary algorithm for finding the
promising sequences of cleaning primitives with their default hyper-parameters (logical pipelines).
Second, we adopt Hyperband [60] for tuning hyper-parameters of these logical pipelines (physical
pipelines). Having implemented this top-K cleaning pipelines framework in linear algebra, allows
automatically generating hybrid task- and data-parallel runtime plans of local and distributed
operations. Finally, we return the top-K physical pipelines, their hyper-parameters, and 𝜙-scores.
Saga also provides detailed logs of the enumeration process for debugging.

Avoiding Over-fitting: In contrast to ML-agnostic data cleaning, data cleaning for ML may be
more prone to over-fitting the target ML application. We address this danger with (1) k-fold cross
validation5 for obtaining reliable scores of cleaning pipelines and models, (2) evaluating logical
pipelines (structural aspects) only with default parameters, (3) starting logical pipeline enumeration
from simple 1-primitive pipelines, and (4) top-K pipeline enumeration where users can modify
and tune the most promising pipelines (balancing cleaning performance and pipeline complexity).
Similar to the pruning of decision trees after training, selecting robust cleaning pipelines in a
semi-automatic manner is interesting future work.
5Related work on wrapper-methods for feature selection [70] and similar approaches also tackles the danger of over-fitting
primarily with cross validation.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

Saga: Data Cleaning Pipelines for ML 218:7

3 LOGICAL PIPELINE ENUMERATION

We aim to find a set of candidate logical pipelines, which serve as good starting points for physical
pipeline tuning. To this end, we devise a simple—yet empirically very effective—evolutionary
algorithm. This algorithm aligns very well with our goal of automating the mechanical aspects of
trial-and-error data cleaning, where data scientists iteratively apply combinations of data repair
routines and evaluating their effectiveness on the target ML application.

3.1 Pipeline Construction

A key component of our evolutionary algorithm is the construction of new logical pipelines. We
start from a set of seed pipelines P (by default, the primitives from Table 1 as 1-step pipelines)
and then refine them via genetic transitions. The primitives for seed pipelines are defined in an
extensible configuration file. We do not restrict the search space, allowing cleaning primitives to
appear multiple times in a pipeline. This approach causes an unbounded search space, but enables
pipelines such as missing value imputation, followed by outlier removal (which state is influenced
by imputed values), and missing value imputation for correcting dropped outliers.
Genetic Transitions: From the fittest candidate pipelines, we then derive a population of

new pipelines. Inspired by work on optimizing ETL workflows [94], we apply cleaning-specific
transformations for refining these pipelines. In detail, we randomly pick good pipelines, and then
apply a random transition to each candidate pipeline:
• Addition: Add a random primitive at a random position in [1, 𝑙 + 1] to the candidate pipeline.
• Crossover: Concatenate variable (non-overlapping) parts of two random candidate pipelines.
• Mutation: Swap the order of two existing primitives at random but non-equal positions in a
candidate pipeline.
• Removal: Remove a primitive (at a random position in [1, 𝑙]) from the candidate pipeline.

Additional fine-tuning includes a weighted randomization (i.e., sample selection) of candidate
pipelines by their observed loss, and expected runtime of primitives.
Pipeline Dependencies: For the sake of simplicity and extensibility—by new, user-provided

cleaning primitives—our evolutionary algorithm does not exploit detailed dependencies among
individual cleaning primitives for a more directed search. However, we keep track of duplicates
(avoid already executed pipelines), perform pruning for known categories of cleaning primitives
(e.g., no MV imputation primitives directly on input data without missing values), and perform
generic pruning by monotonicity (see Section 4 for details).

3.2 Enumeration Algorithm

Algorithm 1 summarizes our logical pipeline enumeration approach. The inputs are the dataset
(X,Y), the seed pipeline population P, the loss on the dirty dataset D, a target absolute loss
improvement 𝑒 , the target ML application (𝜔,𝜙), and a maximum number of iterations max_iter
(i.e., evaluated generations).

Scoring Pipelines (Line 3): In each iteration, we evaluate the scores of the population of
pipelines P via the target ML application, sort the pipelines ascending by loss (best first), and
perform successive halving (select the top-half pipeline population, halving ratio 𝜂 = 2). The dy-
namically composed pipelines are represented as frames and then evaluated primitive-by-primitive
via second-order methods.

Applying Transitions (Line 11): From the retained best pipelines, the new population P′ is
generated. We first copy over the good pipelines into the output (Line 8), and then derive new
pipelines until the expected population size (by default 16 logical pipelines) is reached. Once the
new population P′ is complete, the next iteration starts and evaluates this new population.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

218:8 Shafaq Siddiqi, Roman Kern & Matthias Boehm

Algorithm 1 Logical Pipeline Optimization
Input: (X,Y), P, D, 𝑒 , (𝜔,𝜙), max_iter
Output: Best logical pipelines L
1: L← 𝑓 𝑟𝑎𝑚𝑒 (0, 0, 0); 𝑖𝑡𝑒𝑟 ← 1; 𝑙𝑜𝑠𝑠_𝑙𝑖𝑠𝑡 () // initialize variables
2: while (!converged & iter < maxi) do
3: P, 𝑠𝑐𝑜𝑟𝑒𝑠 ← evaluateAndOrder(X,Y,P, 𝑑𝑒𝑠𝑐𝑟 = 𝐹, 𝜂 = 2)
4: putLoss(𝑙𝑜𝑠𝑠_𝑙𝑖𝑠𝑡, 𝑠𝑐𝑜𝑟𝑒𝑠 [1])
5: 𝑙𝑜𝑠𝑠 ← getLoss(𝑙𝑜𝑠𝑠_𝑙𝑖𝑠𝑡, 𝑠𝑡𝑎𝑟𝑡 = 1, 𝑒𝑛𝑑 = 3)
6: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← isAllDuplicate(𝑙𝑜𝑠𝑠)&𝑙𝑜𝑠𝑠 [1] < (D - 𝑒)
7: 𝑛 ← 𝑛𝑟𝑜𝑤 (P)
8: L← append(L,P)
9: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑓 𝑟𝑎𝑚𝑒 (𝑟𝑜𝑤𝑠 = 𝑛)
10: while 𝑘 < 𝑛 & (!converged) do

11: 𝑐1← applyTransition(𝑡𝑜𝑝 = P[𝑘], 𝑝𝑟𝑜𝑏 = 𝑟𝑎𝑛𝑑𝑜𝑚())
12: P′ ← append(P′, 𝑐1)
13: 𝑘 ← 𝑘 + 1
14: P ← P′
15: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1
16: return L

Termination (Line 6): The algorithm terminates if at least one of the following conditions are
met. First, if the previous three iterations did not yield any loss reduction, or the best loss already
reached the target loss D − 𝑒 , we declare convergence. Second, the algorithm also terminates if the
maximum number of iterations is reached, providing an upper bound on the number of evaluated
populations. The algorithm finally returns an output frame of the best candidate pipelines from all
iterations (Lines 8 and 16).

4 PHYSICAL PIPELINE TUNING

At the last level of multi-level optimization, we perform physical pipeline tuning for optimizing the
hyper-parameters of primitives in a logical pipeline via a technique similar to Hyperband [60] (as
a generalization of multi-armed bandits and random search) as well as tailor-made pruning and
parallelization strategies.

4.1 Tuning Approach

HyperbandBackground:Hyperband [60] is an extension of the successive halvingmethod [46] for
adaptive resource allocation of random search. Successive halving evaluates a set of configurations
with R resources, keeps the best 50% of configurations and doubles their resources until only one
configuration remains. In order to avoid the high-influence parameter of the number of initial
configurations, Hyperband introduces the notion of brackets and calls successive halving in each
bracket with different numbers of starting configurations and maximum number of successive
halving iterations. The spectrum of brackets and the principled early-stopping strategy provide a
good tradeoff of explorations and exploitation, and has shown substantial speedups over hyper-
parameter tuning with Bayesian Optimization on selected benchmarks.

Resource Allocation: Similar to Hyperband brackets, we create buckets with different resource
configurations for balancing exploration and exploitation. The resource value R—a Saga hyper-
parameter—controls the generation of physical pipelines per bucket. In contrast to Hyperband,
where the number of configurations per bucket (logical pipelines here) decreases exponentially,

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

Saga: Data Cleaning Pipelines for ML 218:9

Table 2. Hyperband Buckets with 𝑛𝑖 Pipelines and 𝑟𝑖 Resources per Iteration 𝑖 (with R = 50, 𝜂 = 2).

i s = 4 s = 3 s = 2 s = 1 s = 0
𝑛𝑖 𝑟𝑖 𝑛𝑖 𝑟𝑖 𝑛𝑖 𝑟𝑖 𝑛𝑖 𝑟𝑖 𝑛𝑖 𝑟𝑖

0 24 1 24 2 24 7 24 20 24 50
1 12 2 12 5 12 15 12 40
2 6 4 6 10 6 30
3 3 8 3 20
4 1 16
#Pipelines 112 228 528 960 1200

Algorithm 2 Hyperband for Physical Pipelines Enumeration
Input: 𝑅, 𝜂 (default 𝜂 = 2), L, (X,Y), (𝜔,𝜙), config
Output: 𝑡𝑜𝑝𝐾

1: 𝑠max ← ⌊log𝜂 (𝑅)⌋, 𝐵 ← (max(𝑠max + 1))𝑅 // initialize variables
2: 𝑛 ← ⌈(𝑛𝑟𝑜𝑤 (L)/𝑠𝑚𝑎𝑥)⌉
3: for 𝑠 ∈ {𝑠max, ..., 0} do
4: 𝑟 ←𝑊 ∗ 𝑅𝜂−𝑠
5: for 𝑖 ∈ {0, ..., 𝑠} do
6: 𝑛𝑖 ← 𝑛𝜂−𝑖 , 𝑟𝑖 ← 𝑟𝜂𝑖 ;
7: 𝑙𝑜𝑠𝑠 ← runWithHyperparam((X,Y), (𝜔,𝜙, 𝐿, 𝑟𝑖 , config)
8: L← topK(L, 𝑙𝑜𝑠𝑠, 𝑛𝑖/𝜂)
9: return 𝑡𝑜𝑝𝐾

we assign the same number of logical pipelines to each bucket to enable exploration despite small
populations. For example, in Table 2, we have 120 pipelines, 𝑠_𝑚𝑎𝑥 = 5 buckets, and R = 50
resources. We sort the logical pipelines by their loss, and assign 24 pipelines to each bucket 𝑠 , with
the most-promising pipelines in the last bucket (𝑠 = 0 with high starting resources). We then use the
scores of the logical pipelines for a weighted distribution of resources to the buckets. The weights
for each bucket are computed as follows:

weights = seq(1/𝑠_𝑚𝑎𝑥, 𝑠_𝑚𝑎𝑥, 1/𝑠_𝑚𝑎𝑥)
𝑟 = R ·weights[(𝑠_𝑚𝑎𝑥 − 𝑠) + 1] · 𝜂−𝑠 (3)

Successive Halving: Per bucket, we then apply—as shown in Table 2—Hyperband’s successive
halving (select top-half of pipelines and increase their resources), where 𝑖 is the current iteration
and 𝜂 = 2 is the rate of successive halving. In each iteration, we evaluate 𝑛𝑖 logical pipelines with 𝑟𝑖
resources (hyper-parameter combinations) and thus, 𝑛𝑖 · 𝑟𝑖 physical pipelines, and then sort these
pipelines by their scores. We keep the upper half of well-performing pipelines and discard the
rest. In the next iteration, the remaining pipelines are evaluated with 𝑟 + 𝑟 ′ resources (i.e., more
resources of physical pipelines for promising logical pipelines). Saga keeps the top-K pipelines
from each bucket to create one final set of (𝑠_𝑚𝑎𝑥 · 𝐾) pipelines, which is later capped to the
top-K pipelines and filtered by the dirty score D (to only return useful pipelines to the user). To
avoid over-fitting, by default, we evaluate the pipelines using 3-fold cross validation. Algorithm 2
provides a high-level overview of bucket creation and pipeline evaluation with input resources (𝑅),
successive halving rate (𝜂), logical pipelines (L), features and labels (X,Y), ML target application
(𝜔,𝜙), and hyper-parameter grid (parameters and value ranges) for all primitives (config).

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

218:10 Shafaq Siddiqi, Roman Kern & Matthias Boehm

P

K

v

u

of changes

(a) Sub-space Pruning

P1,1 P1,2 .. P1,r

Materialize r
pipelines for l1

P2,1 P2,2 .. P2,r

Materialize r
pipelines for l2

Pn,1 Pn,2 .. Pn,r

Materialize r
pipelines for ln

..
PARFOR
LOOP

NESTED
FOR LOOP

PARFOR
LOOP

P1 P2 P3 P4 ... Pn*rP5

(b) Nested and Flattened Parallelism

Fig. 2. Pruning and Flattening Techniques.

4.2 Pruning by Monotonicity

Understanding the traits of cleaning primitives allows pruning dominated configurations. Primitives
like outlierByIQR, outlierBySd, and imputeByFd have threshold parameters for value removal
and imputation. Some of these parameters exhibit monotonic behavior (see Table 1, where we
marked the applicable primitives). For example, outlierByIQR computes the interquartile range
IQR = 𝑞3 − 𝑞1 and removes all values outside [𝑞1 − 𝑘 · IQR, 𝑞3 + 𝑘 · IQR]. Given a fixed dataset,
if a certain value 𝑘 does not remove any values, then any values 𝑘 ′ ≥ 𝑘 will not remove values
either. Hence, all parameter combinations with such 𝑘 ′ can be safely pruned, which also motives
ordering parameter configurations to maximize pruning. More formally, let P𝑞 = {𝑝1, 𝑝2, . . . , 𝑝𝑙 } be
a pipeline of 𝑙 primitives with one monotonic hyper-parameter ℎ(𝑝𝑖) each. If we have observed that
ℎ(𝑝𝑖) = 𝑘 does not modify any values—and assuming a homogeneous coverage of the remaining
parameter space—we can safely prune ℎ(𝑝𝑖) ≥ 𝑘 and all combinations thereof with ℎ(𝑝 𝑗) for 𝑗 > 𝑖 .
Figure 2(a) shows an example of two monotonic hyper-parameters 𝐾 and 𝑃 (order is irrelevant
here). If no changes are made for 𝑃 = 𝑣 or 𝐾 = 𝑢, then all combination with values 𝑃 ≥ 𝑣 or 𝐾 ≥ 𝑢
can be pruned. Interesting future work for logical and physical pipeline tuning include error-driven
slice selection [26, 73, 86, 100], and lineage-based reuse of intermediates [76, 103].

4.3 Flattening Nested Parallelism

Pipeline tuning with Hyperband creates deep nested loops, each with few iterations. We ensure
effective local and distributed task-parallelism via a simple, yet effective, flattening of nested
parallelism [40] using parallel for loops (ParFor).
ParFor Background: Task-parallel ParFor loops [12, 40] have been successfully employed for

large-scale machine learning and a variety of tasks such as cross-validation, hyper-parameter
tuning, and ensemble learning. Given a parfor(i in beg:end){<body>} construct, an optimizing
compiler performs dependency analysis to verify that there are no loop-carried dependencies, and
then executes the body with a chosen parallelization strategy (from a spectrum of parallel plans,
see Section 5) for every iteration.

FlatteningApproach:Given nested ParFor loops of independent, expensive pipeline evaluations
as well as additional state at intermediate levels, our flattening approach splits these computations
into two phases. First, we perform an identical loop nest for materializing all configurations
in matrices, frames, or lists. Second, we evaluate all configurations through a single, local or
distributed ParFor loop (see Algorithm 3). This approach exposes more independent tasks and avoids
unnecessary synchronization barriers—which simplifies loop optimization and task scheduling—
and thus, improves the utilization of available parallelism, and reduces overheads for distributed
setup and result aggregation. The cost for materializing the configurations is negligible here.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

Saga: Data Cleaning Pipelines for ML 218:11

Algorithm 3 Flattened runWithHyperparam
Input: 𝑟 , L, (X,Y), (𝜔,𝜙), config
Output: 𝑙𝑜𝑠𝑠

1: 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠_𝑤𝑖𝑡ℎ_𝑐𝑜𝑛𝑓 𝑖𝑔𝑠 ← [], 𝑙𝑜𝑠𝑠 ← []
2: while (𝑖 < 𝑛𝑟𝑜𝑤 (𝐿)) do
3: param_config← getParamConfigs(𝑙, 𝑟 , config) // 𝑟 · 𝑙 rows
4: append(𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠_𝑤𝑖𝑡ℎ_𝑐𝑜𝑛𝑓 𝑖𝑔𝑠, 𝑙, param_config)
5: for 𝑖 in 𝑛𝑟𝑜𝑤 (𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠_𝑤𝑖𝑡ℎ_𝑐𝑜𝑛𝑓 𝑖𝑔𝑠) do // parallel for
6: 𝑠𝑐𝑜𝑟𝑒 ← evaluate(𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠_𝑤𝑖𝑡ℎ_𝑐𝑜𝑛𝑓 𝑖𝑔𝑠 [𝑖],X,Y), (𝜔,𝜙))
7: append(𝑙𝑜𝑠𝑠, 𝑠𝑐𝑜𝑟𝑒)
8: return 𝑙𝑜𝑠𝑠

Flattening Example: Logical pipelines are grouped by their scores into buckets, and for
each bucket, we perform successive halving. Nested ParFor loops parallelize over buckets and
subsequently—within each bucket—over logical pipelines, and resources per logical pipeline (i.e.,
physical pipelines). Instead, the flattened ParFor—as shown in Figure 2—executes super-steps of all
resources across all buckets with lockstep successive halving (five jobs across buckets in Table 2).

5 PARALLELIZATION STRATEGIES

Opportunities: Optimizing data cleaning pipelines has numerous parallelization opportunities.
First, frame andmatrix operations can exploit multi-threaded or distributed data parallelism. Second,
several cleaning primitives (see Table 1) have intrinsic opportunities for data-or task parallelism
(e.g., mice repeatedly trains classifiers and/or regression models). Third, logical and physical
pipeline tuning forms a hierarchy of populations, hyper-parameter tuning of pipelines, as well
as cross-validation and ML model training. Given these parallelization opportunities, alternative
parallelization strategies can be utilized. A key design principle of Saga is to avoid hard-coding
such decisions at script level for adaptation to data, workload, and cluster characteristics.

Task-parallel Plans:Weutilize task-parallel for-loops (ParFor) for coarse-grained parallelization
that avoids unnecessary synchronization barriers of individual operations. Plan alternatives include:

• ParFor in Cleaning Primitives: A baseline approach applies task-parallelism only at the last
level of cleaning primitives.
• Local Top-Level ParFor: Executing loops for logical and physical pipeline evaluation as local,
multi-threaded loops, which works for all data sizes with low latency overhead.
• Distributed Top-Level ParFor: In contrast to Local Top-Level, this top-level ParFor can be
executed as a single distributed job, potentially utilizing a higher degree of parallelism, but
this approach requires that inputs and outputs fit into task memory.
• Adaptive ParFor Hierarchies: Combining the advantages of other plans, we utilize adaptive
ParFor hierarchies, where all applicable levels include ParFor loops, and during runtime, the
ParFor optimizer compiles the most appropriate parallel execution plan.

We extended the underlying SystemDS for pipeline enumeration in distributed ParFors loops,
specifically with on-demand function loading and dynamic compilation in Spark executors, without
interference while still reusing functions across tasks and jobs.
Data-parallel Plans: End-to-end ML pipelines can be compiled into hybrid runtime plans of

local and distributed, data-parallel operations. Cleaning pipeline enumeration seamlessly leverages
these capabilities, but—except for flattening at script level (which is always beneficial)—we do not
yet specifically optimize such plans. An interesting direction for future work is the adaptation of

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

218:12 Shafaq Siddiqi, Roman Kern & Matthias Boehm

Table 3. Dataset Characteristics (excluding class labels).

Dataset #Rows #Cols #Class 𝜔 #Cat #Num D G

Animal [21] 26,729 8 5 class 8 0 0.62 Y
EEG [85] 14,980 14 2 class 0 14 0.63 Y
Movie [61] 9,329 7 2 class 2 5 0.74 Y

Nashville [30] 211,945 22 2 class 14 8 0.76 N
Puma [31, 53] 4,756 8 2 class 0 8 0.54 Y
Titanic [48] 891 11 2 class 5 6 0.76 Y
Cancer [32] 3,048 33 - Reg 2 31 0.10 N
Housing [47] 1,460 79 - Reg 46 33 0.67 N

Table 4. Summary of Errors (SE.. string errors, MV .. missing values, O .. outliers,

VFD .. violated functional dependencies, IM .. imbalanced classes, NL .. noisy labels).

Dataset SE MV O VFD IM NL

Animal 208,436 21,322 2,083 6,470 10,572 0
EEG 0 0 209 0 1,537 854
Movie 13,828 0 937 0 2,531 129

Nashville 2,529,412 213,650 66,059 31,680 116,941 45,387
Puma 0 7,646 306 0 39 185
Titanic 1,180 866 97 743 207 0
Cancer 6,093 3,046 1,150 0 N/A N/A
Housing 63,135 6,965 1974 124 N/A N/A

ideas from scan sharing in hyper-parameter tuning [97], and model-hopper parallelism [66, 67] to
the specifics of cleaning pipelines (e.g., partial data modifications, and pruning by monotonicity).

6 EXPERIMENTS

We study Saga in comparison with state-of-the-art data cleaning and AutoML tools regarding the
accuracy of ML applications, various micro benchmarks, and parallelization strategies.

6.1 Experimental Setting

Hardware Setup: We ran all experiments on a 1+6 node cluster, each node having an AMD EPYC
7302 CPU@3.0-3.3 GHz (16 physical/32 virtual cores), and 128GB DDR4 RAM (peak performance
is 768GFLOP/s, 183.2GB/s). The software stack comprises Ubuntu 20.04.1, Apache Hadoop 3.3.1,
and Apache Spark 3.2.0. Saga uses OpenJDK 11.0.13 with 110GB max and initial JVM heap sizes.
ML Applications: The ML target applications are provided as linear-algebra-based UDFs. We

study different classification (multinomial logistic regression, multi-class support vector machines,
and decision tree) as well as regression (direct-solve ordinary least squares, and decision tree)
models. All datasets are split into 70% train and 30% test. As the train/test splits are from the same
dataset, they follow the same distributions. The test data labels are never passed to the cleaning
frameworks, but solely used for evaluation. We further use 3-fold cross-validation on the train set,
and report accuracy for classification and 𝑅2 for regression tasks.
Datasets: We used eight real datasets from ML competitions and the UCI repository. Table 3

summaries the data characteristics of these datasets including dimensions, number of classes, target
application𝜔 , number of categorical and numeric columns, dirty accuracyD, and the availability of

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

Saga: Data Cleaning Pipelines for ML 218:13

ground truth G, which refers to “clean” accuracy as known from previous work because no actual
ground truth exist. These datasets include string errors (e.g., typos, value swaps, out-of-domain
values, case mismatch), missing values, outliers, violations of functional dependencies, imbalanced
classes, and noisy labels. Table 4 shows the error distributions of all datasets. Given the absence
of ground truth, we computed these counts in a best effort manner (e.g., missing values from
NULL/NaN, outliers outside three standard deviations). Although, the Movie dataset has no missing
values, the test set does because it contains strings non-existing in the train set.

6.2 End-to-End Data Cleaning for ML

We investigate the end-to-end accuracy improvements of data cleaning on all datasets and ML
applications. In detail, we compare Saga with state-of-the-art data cleaning frameworks, evaluate
the impact of different models, and compare with AutoML tools. Here, we use the Saga default
parameters of 15 iterations of the evolutionary algorithm, seed population size |P | = 16, and R = 50
Hyperband resources. With this configuration, Saga evaluates ≈ 10,000 physical pipelines (cleaning
and cross-validated model training) per dataset.
Baselines:We compare Saga with the following baselines, which all use the same ML target

application. Saga differentiates by its holistic tuning and the generation of scalable execution plans.

• Basic Heuristics: We hand-crafted several heuristic, commonly-used cleaning pipelines
(e.g., missing value imputation by mean, outlier removal via winsorizing [0.05, 0.95]).
• BoostClean [57]:We compare BoostClean with b=5 (best setting mentioned in the paper)
and report the accuracy on the train set. Additionally, we use the best ensemble and apply it
for obtaining the test accuracy as well.
• HoloClean [44, 83]: HoloClean uses a factor graph for detecting and repairing errors based
on denial constraints. For each dataset, we spent three hours to define meaningful constraints,
and tuned the hyper-parameters.
• Raha-Baran [63, 64]: Similarly, Raha & Baran also perform error detection and correction
without considering the target application. Raha & Baran (and similarly but slightly worse,
ActiveClean [58]) use active leaning for predicting the correct and incorrect values.
• Learn2Clean [8]: The recent Learn2Clean uses reinforcement learning (Q-learning) to
find the best cleaning strategy for a configurable ML target application, without any other
hyper-parameters or extension hooks.

Results: Table 5 summarizes the train/test accuracy of the baselines and Saga. BoostClean only
supports classification and no regression (N/A). To remove the effects of randomization, each test
was repeated three times and we report the average accuracy. The basic heuristics already work
quite well for some datasets. In Movies, missing values exist only in the test split, so the heuristic
pipeline does not change the training data but imputes missing values for testing using the training
mean. Housing contains outliers that are winsorized, which yields an improved 𝑅2. BoostClean
shows generally mixed results. When changing the underlying ML application from the default
decision tree (more robust to errors) to multinomial logistic regression, accuracy was negatively
impacted. Saga outperforms BoostClean because BoostClean tries to repair every misclassified
tuple with statistical imputation, whereas Saga uses a mix of statistical, rule-based, and ML-based
primitives. Additionally, BoostClean also did not perform very well on the Animal dataset where
all the features are categorical. For HoloClean and Raha-Baran, we observe similar accuracy on
all datasets, except HoloClean runs out-of-memory (OOM) on Nashville, Raha-Baran times out
(TO) on Nashville due to swapping, and HoloClean times out on Housing despite dedicated hyper-
parameter tuning. For Raha-Baran, we observe that the system detects the errors correctly (Raha’s
𝐹1 score greater than 0.9), but the error correction does not improve overall accuracy. BoostClean

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

218:14 Shafaq Siddiqi, Roman Kern & Matthias Boehm

Table 5. Train and Test Accuracy Linear Models

(Multinomial Logistic Regression for Classification and Ordinary Least Squares for Regression
∗
).

Dataset Dirty Basic Heuristics BoostClean HoloClean Raha-Baran Learn2Clean Saga

train test train test train test train test train test train test train test

Animal 0.70 0.62 0.70 0.69 0.34 0.33 TO TO 0.34 0.60 N/A N/A 0.86 0.86
EEG 0.64 0.63 0.65 0.65 0.64 0.63 0.55 0.64 0.55 0.63 0.68 0.67 0.69 0.68
Movie 0.75 0.74 0.75 0.84 0.69 0.70 0.63 0.62 0.53 0.64 0.76 0.76 0.78 0.85

Nashville 0.76 0.76 0.79 0.78 0.79 0.79 OOM OOM TO TO 0.79 0.79 0.80 0.80
Puma 0.55 0.54 0.54 0.56 0.55 0.57 0.56 0.54 0.57 0.47 0.57 0.51 0.57 0.57
Titanic 0.79 0.76 0.78 0.65 0.80 0.81 0.66 0.78 0.66 0.80 0.78 0.73 0.81 0.82

Cancer∗ 0.43 0.10 0.43 0.45 N/A N/A 0.16 0.16 0.16 0.16 0.62 0.61 0.51 0.52
Housing∗ 0.67 0.67 0.81 0.85 N/A N/A TO TO 0.65 0.67 0.84 0.89 0.83 0.87

Table 6. Train and Test Accuracy Tree-based Models

(Decision Trees with Impurity Measure Gini-Index for Classification and Squared Loss for Regression).

Dataset Dirty Basic Heuristics BoostClean HoloClean Raha-Baran Learn2Clean Saga

train test train test train test train test train test train test train test

Animal 0.64 0.63 0.64 0.65 0.32 0.17 TO TO 0.42 0.1 N/A N/A 0.83 0.83

EEG 0.58 0.55 0.76 0.80 0.80 0.81 0.58 0.55 0.59 0.55 0.80 0.73 0.84 0.74
Movie 0.65 0.66 0.65 0.65 0.70 0.69 0.65 0.66 0.66 0.67 0.76 0.77

* 0.67 0.67
Nashville 0.79 0.78 0.80 0.80 0.75 0.77 OOM OOM TO TO 0.80 0.80 0.80 0.80
Puma 0.51 0.53 0.51 0.55 0.53 0.54 0.52 0.51 0.52 0.52 0.54 0.53 0.55 0.56

Titanic 0.76 0.57 0.69 0.72 0.79 0.72 0.63 0.68 0.68 0.55 0.80 0.79 0.81 0.79
Cancer 0.34 0.37 0.37 0.39 N/A N/A 0.34 0.37 0.34 0.37 0.39 0.37 0.36 0.39
Housing 0.64 0.74 0.65 0.73 N/A N/A TO TO 0.65 0.74 0.70 0.78 0.69 0.76

performs generally better than HoloClean and Raha-Baran, which highlights the importance of
optimization for target ML applications. Learn2Clean shows overall good results but failed on the
Animal dataset—which has only categorical features—because the design of Learn2Clean requires
at least one continuous column. We observed that primitives used in Learn2Clean proactively
remove the rows from train and test dataset to get rid of outliers and invalid patterns. This approach
shows improved performance on Cancer and Housing dataset but deleted 1,418 train and 595
test samples from Cancer as well as 543 train and 238 test samples from Housing. Ignoring this
behavior, Learn2Clean performed better than all the previous baselines showing effectiveness of
using ML signals for data cleaning but loses information by deleting the samples instead of fixing
them. Furthermore, Saga consistently outperforms the basic and state-of-the-art baselines, with
substantial (greater than 10%) improvements on some datasets without deleting any samples from
test data and using sampling only on train datasets when under-sampling the majority class.

Generalization: In order to validate our results, we further evaluated all baselines and datasets
with decision trees (table 6) and Multi-class SVM (not shown). For decision trees, we observe the
same trend as with linear models for all baselines, except the Movie dataset. For Movie dataset
Learn2Clean removed 2,670 rows from the train and 1,123 rows test data, yielding a big accuracy
improvement. For Saga, we only remove rows from training dataset whenever a sample is required
and do not remove any instances from the test data. For Multi-class SVM, we obtain similar results to
multinomial regression, with differences of ±0.03. BoostClean shows one outlier where the accuracy
on Titanic significantly drops from 0.81 to 0.66. We attribute this incident the strong dependence
of BoostClean on the underlying target ML application. Furthermore, we found cases, where
enumerated pipelines with separate primitives for outlier removal and missing value imputation
helped generalization. For example, the Movies dataset is challenging because missing values only
exist in the test set. Saga yields good generalization on the test set because it selected outlier

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

Saga: Data Cleaning Pipelines for ML 218:15

Table 7. Auto-Sklearn 1.0 Accuracy (on Dirty Data left and Saga’s Data right).

Dataset 100 mins 200 mins 100 mins 200 mins
Train Test Train Test Train Test Train Test

Animal 0.87 0.87 0.86 0.86 0.86 0.86 0.88 0.86
EEG 0.96 0.97 0.96 0.97 0.96 0.97 0.97 0.97
Puma 0.58 0.56 0.58 0.56 0.59 0.56 0.60 0.55
Titanic 0.84 0.80 0.84 0.81 0.94 0.83 0.95 0.82

Table 8. Auto-Sklearn 2.0 Accuracy (on Dirty Data left and Saga’s Data right).

Dataset 100 mins 200 mins 100 mins 200 mins
Train Test Train Test Train Test Train Test

Animal NA 0.4 NA 0.4 NA 0.35 NA 0.35
EEG 0.78 0.84 0.78 0.84 0.69 0.71 0.80 0.87

Puma 0.58 0.55 0.58 0.57 0.59 0.56 0.59 0.55
Titanic 0.79 0.80 0.81 0.80 0.91 0.81 0.91 0.80

removal primitives (which dropped certain values), and thus, rendered missing value imputation
during training beneficial (which then handled real missing values during scoring).
AutoML Comparison: Some AutoML tools also include basic data preparation but do not

support data cleaning primitives. Table 7 (left) compares the accuracy of Auto-Sklearn [37]—as a
representative AutoML tool—with different time budgets, which allows the application of a variety
of feature transformations and ML models. Auto-Sklearn generally yields very good accuracy,
even on dirty data. However, with data cleaned by Saga, the accuracy improved up to 10% on
instances like Titanic Table 7 (right). This result—together with another recent study [69]—motivates
the integration of data cleaning into AutoML tools. For datasets with value-swap errors, Auto-
Sklearn even crashed due to mixed data in categorical columns. We repeated these experiments
with AutoSklearn 2.0 (experimental) [36], which builds data profiles and—similar to Saga—uses
a combination of Bayesian Optimization and Hyperband for hyper-parameter optimization and
model selection. Table 8 (right) shows that Auto-Sklearn 2.0 also benefits from clean data, but
overall Auto-Sklearn 1.0 still yield better accuracy.

6.3 Micro Benchmarks

In a second series of experiments, we evaluate Saga on a variety of micro benchmarks. We use the
Chicago FoodInspection dataset (39,814 × 9) [42], and leverage Jenga [91] for generating errors
(data corruptions of specific types) in the train and test sets. As pre-processing steps, we drop all
rows with NULL values, as well as filter the two risk categories high and medium, and the five
most frequent facilities. Furthermore, we remove the institution name, constant city and state, and
date columns, which resulted in a high-quality input dataset as a basis for systematic corruption.

Error Generation:We vary the percentage of errors from 0% to 40% in all columns, and generate
the following types of errors:
• Missing Values: We generate both Missing at Random (MAR) and Missing Completely at
Random (MCAR).
• Noise: We add Gaussian noise to the Longitude and Latitude with 𝜇 = 0 and 𝜎 ∈ [1, 5].
• Value Swaps: We swap values among License Number, Facility Type, Zip, and Address.
• Scaling Errors: We scale the Longitude and Latitude.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

218:16 Shafaq Siddiqi, Roman Kern & Matthias Boehm

50

55

60

65

70

75

80

0 10 20 30 40

A
cc

u
ra

cy

Percentage of MAR

target

topK

MAR

(a) Missing at Random

50

55

60

65

70

75

80

0 10 20 30 40

A
cc

u
ra

cy

Percentage of MCAR

target

topK

MCAR

(b) Missing Completely at Random

Fig. 3. Missing Values.

50

55

60

65

70

75

80

0 10 20 30 40

A
cc

u
ra

cy

Percentage of Gaussian Noise

target

topK

Gaussian Noise

(a) Sampled = MAR

50

55

60

65

70

75

80

0 10 20 30 40

A
cc

u
ra

cy

Percentage of Gaussian Noise

target

topK

Gaussian Noise

(b) Sampled = MCAR

Fig. 4. Gaussian Noise.

• Violated FDs: We introduce violations of functional dependencies in Zip and Address.
• Mixed Errors: We randomly pick columns for different types of error generation (see above).

Finally, we divide the dataset into 70/30% train/test splits, run Saga’s top-K cleaning pipeline
enumeration on the train split, apply the top-1 pipeline with multinomial logistic regression on
the test split, and report the test accuracy on the ground-truth (target baseline), dirty data (yellow
squares) and cleaned data (blue triangles).
Missing Values: We experimented with two categories of missing data: Missing at Random

(MAR, reconstructable from existing data) and Missing Completely at Random (MCAR). Figure 3
shows the results, where with increasing error rate, the model accuracy drops below the ground
truth. In contrast, with our top-K cleaning pipeline enumeration, the clean accuracy continuously
outperforms the ground-truth accuracy. The imputed values seems to act as a form of regularization.
As Saga continuously optimizes for signals of the downstream ML application, we get good
generalization. The results in Figures 3(a) and 3(b) further indicate a major difference in behavior
between MAR and MCAR. For MAR, both with and without cleaning, we get fluctuating results,
whereas for MCAR, we see a very smooth behavior. A possible reason could be that synthetic
error generation distorts the columns correlations, and thus, affects the reconstruction in ways,
disproportionate to the error rate. Most importantly, Saga shows very consistent improvements
over dirty data for both types of missing values.
Noise: Gaussian Noise is only added to two of nine columns, and thus, we do not observe

significant distortions in Figure 4. However, Saga yields robust performance, comparable to the
ground-truth, for all noise levels as well. Interestingly, with increasing error rate, at some point,
the model and its predictions are dominated by the Gaussian noise, and thus, accuracy improves
even on dirty data. We observe again larger improvements for MCAR-sampled error locations.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

Saga: Data Cleaning Pipelines for ML 218:17

50

55

60

65

70

75

80

0 10 20 30 40

A
cc

u
ra

cy

Percentage of Swap Errors

target

topK

Swap Errors

(a) Sampled = MAR

50

55

60

65

70

75

80

0 10 20 30 40

A
cc

u
ra

cy

Percentage of Swap Errors

target

topK

Swap Errors

(b) Sampled = MCAR

Fig. 5. Value Swap Errors.

50

55

60

65

70

75

80

0 10 20 30 40

A
cc

u
ra

cy

Percentage of Scaling Errors

target

topK

Scaling Errors

(a) Sampled = MAR

50

55

60

65

70

75

80

0 10 20 30 40

A
cc

u
ra

cy

Percentage of Scaling Errors

target

topK

Scaling Errors

(b) Sampled = MCAR

Fig. 6. Scaling Errors.

50

55

60

65

70

75

80

0 10 20 30 40 50

A
cc

u
ra

cy

Percentage of FD Violations

target

topK

FD Violations

(a) FD Violations

50

55

60

65

70

75

80

0 10 20 30 40

A
cc

u
ra

cy

Percentage of Errors

target

topK

Errors

(b) Multiple Errors

Fig. 7. FD Violation and Mixed Errors.

Value Swaps: For value-swaps, we observe accuracy differences of at most 2% for MAR (Fig-
ure 5(a)) and 5% for MCAR (Figure 5(b)). Swaps with MCAR introduce more distortion in the
dirty accuracy because of random swapping without correlations. Saga provides almost constant
accuracy, very close to the ground-truth.

Scaling Errors: For scaling errors, we randomly change the scaling of entire numeric columns.
Figure 6 shows the resulting accuracy differences. The Saga behavior is consistent as before, and
the MAR errors (Figure 6(b)) introduce more model-affecting distortion in the dataset than MCAR
(Figure 6(a)). However, there is a spurious spike for both dirty and clean data at 20%. Even in such
scenarios Saga consistently outperforms the dirty accuracy.
Violated FDs: For violations of functional dependencies (FDs), we systematically introduce

inconsistencies in the Zip and Address columns. Figure 7(a) shows only slight drops in accuracy
because we only introduce errors in a single column. Saga exhibits almost constant accuracy.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

218:18 Shafaq Siddiqi, Roman Kern & Matthias Boehm

0.61

0.64

0.67

0.7

0.73

0.76

0.79

0.82

0 5 10 15 20 25

A
cc

u
ra

cy

iterations

EEG

Titanic

Movie

Housing

(a) max_iter→ Validation Accuracy

0

250

500

750

1000

1250

1500

0 5 10 15 20 25

E
x
ec

u
ti

o
n

 T
im

e
[s

]

iterations

EEG

Titanic

Movie

Housing

(b) max_iter→ Runtime

0.61
0.64
0.67
0.7

0.73
0.76
0.79
0.82
0.85

0 10 20 30 40 50

A
cc

u
ra

cy

resources

EEG

Titanic

Movie

Housing

(c) R → Validation Accuracy

0

500

1000

1500

2000

0 10 20 30 40 50

E
x
ec

u
ti

o
n
 T

im
e

[s
]

resources

EEG

Titanic

Movie

Housing

(d) R → Runtime

Fig. 8. Impact of Logical/Physical Enumeration.

Mixed Errors: Finally, we inject a mix of errors (missing data, noise, value swaps, scaling, FD
violations) into the dataset. Figure 7(b) shows that for mixed errors, there is a significant accuracy
deterioration of up to 6% on dirty data. At some points the dirty accuracy catch-up with the ground
truth due to significant distortion of column correlations. In contrast, Saga’s top-K cleaning also
handles this more challenging case with accuracy close to the ground-truth accuracy. Overall, Saga
yields remarkably robust results outperforming dirty model accuracy on almost all error types and
error rates, often very close or better than the ground-truth.

6.4 Scalability and Runtime Comparison

Finally, we evaluate various runtime properties, including parameters, pruning, runtimes of base-
lines, and parallelization strategies.
Impact of Parameters: The parameters max_iter (default 15) and resources R (default 50)

heavily influence logical and physical pipeline enumeration. Figure 8(a) shows the top-1 accuracy
for varying number of iterations (with default R) for selected datasets. With increasing number
of iterations (fixed seeds, only logical pipelines), we observe increasing accuracy that plateaus
before our default 15. Figure 8(b) further shows linearly increasing runtimes when evaluating more
populations. Together, converging accuracy and increasing runtime, motivates our convergence
checks. Additionally, our starting heuristic yields good accuracy quickly. Figures 8(c) and 8(d) show
the accuracy and runtime for varying resources R (with default max_iter). We observe increasing
accuracy, which is higher due to full optimization. The runtime fluctuations are due to the impact
of resources on parallelization and some hyper-parameters (e.g., in dbscan or mice).

Scalability with Datasize: For evaluating the scalability with increasing #rows, we replicate the
EGG dataset up to 7x, which keeps other characteristics constant. Figure 9(a) shows the runtimes
and ideal scaling (1x-runtime × rep factor). We compare Hyperband with basic nested-loops (over
buckets/pipelines, and hyper-parameters), and our flattening approach (see Section 4.3). Since these
loops are ParFor loops, flattening influences parallelization. Except for few outliers, we observe

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

Saga: Data Cleaning Pipelines for ML 218:19

0K

10K

20K

30K

40K

50K

60K

1 2 3 4 5 6 7

E
x
ec

u
ti

o
n

 T
im

e
[s

]

Row Replication Factor (x 14980)

Nested Parfor (Ne)

Flatten Parfor (Fl)

Ne Ideal Scaling

Fl Ideal Scaling

(a) Nested & Flattened ParFor

EEG Titanic Movie Housing

FP MP SMP

0K

2K

4K

6K

8K

10K

12K

#
E

n
u

m
er

at
ed

 P
ip

el
in

es

Dataset

(b) Pruning Strategies

Fig. 9. Flattening and Pruning.

a b c d e f

NP (a)

OP (b)

NFP (c)

Flat (d)

NFP−R (e)

Flat−R (f)

0K
1K
2K
3K
4K
5K
6K
7K
8K

E
x
ec

u
ti

o
n
 T

im
e

[m
in

]

Execution Strategies

[1x]

[3.3x]

[14x] [32x] [39x] [189x]

(a) Task-Parallel Plans

37 GB 74 GB 110 GB 147 GB

Pipeline 1

Pipeline 2

Pipeline 3

Pipeline 4

Pipeline 5

0K
2K
4K
6K
8K

10K
12K
14K
16K

E
x
ec

u
ti

o
n

 T
im

e
[s

]

Datasizes

1
2 3 4

5
1

2 3 4

5

1

2
3 4

5

1
2

3

4

5

(b) Data-Parallel Plans

Fig. 10. Task- and Data-parallel Execution Plans.

good scalability with increasing datasize, and—even for local, multi-threaded plans—already a >2x
improvement by flattening. The moderate deterioration and outliers are due to larger intermediates
and memory pressure (increased garbage collection overheads).
Pruning Strategies:We also evaluate the impact of pruning (skipping of pipelines by mono-

tonicity). Figure 9(b) shows the number of evaluated pipelines for selected datasets without pruning
(FP), pruning by monotonicity (MP), and sorted pruning by monotonicity (SMP), where we order
the hyper-parameters accordingly. Pruning by monotonicity is lossless and thus, does not impact
accuracy, while still reducing the number of evaluated pipelines up to 2x. However, this pruning is
strongly data-dependent (e.g., Titanic vs. Movie) and applies only to a subset of primitives.

Task-parallel Plans: Saga leverages local and distributed execution plans. Figure 10(a) compares
the execution time of the following task-parallel plans, using the EEG dataset with replication
factor 5 and approximately 10,000 physical pipelines.

• No Parallelism (NP): Single-threaded ops, and for-loops,
• Operator Parallelism (OP): Multi-threaded ops, and for-loops,
• Nested Full Parallelism (NFP): Nested-parallel, multi-threaded pipeline enum and ops,
• Flatten Parallelism (Flat): Flattened-parallel multi-threaded pipeline enum and ops
• Nested Full Parallelism Remote (NFP-R): Distributed NFP, and
• Flatten Parallelism Remote (Flat-R): Distributed Flat.

For local, single-node computation on the driver (16 physical/32 virtual cores), flattened, multi-
threaded ParFor loops (Flat) yield improvements of 21x over NP, 6x over OP, and 2x over NFP. This
characteristic is due to fewer synchronization barriers and better CPU utilization. Furthermore,
for distributed computation on the 1+6 node cluster (32+192 virtual cores), flattened, distributed

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

218:20 Shafaq Siddiqi, Roman Kern & Matthias Boehm

Table 9. Baseline Runtime Comparison (Saga in single node).

Dataset BoostClean HoloClean Raha-Baran Learn2Clean Saga

Animal 262 s TO 33,484 s NA 885 s
EEG 296 s 567 s 1,715 s 38 s 843 s
Movie 1,529 s 1,923 s 10,414 s 22 621 s

Nashville 41,658 s OOM TO 1118 s 5,961 s
Puma 39 s 404 s 8,535 s 19 s 210 s
Titanic 444 s 304 s 1,500 s 19 s 436 s
Cancer∗ NA 996 s 918 s 13 s 294
Housing∗ NA TO 2,100 s 19 s 1,691 s

ParFor loops (Flat-R) yield improvements of 189x, 148x, and 13x over NP, OP and NFP. Due to fewer
distributed jobs and a larger degree of parallelism, Flat-R further yields a 5x over NFP-R.
Data-parallel Plans:We further validate Saga’s scalability on large datasets, which are up to

205x larger than reported by prior work. Once an operationwith its in/outputs exceeds local memory
(here, 70GB driver), we compile data-parallel plans. We scale EEG to sizes in [37GB, 147GB], and
measure the runtime of cleaning pipelines and model training/testing (Figure 10(b)).

pipeline1: undersample, scale, winsorize, imputeByMean
pipeline2: imputeByFd, winsorize, outlierBySd, imputeByMean
pipeline3: forward_fill scale winsorize imputeByMean SMOTE
pipeline4: imputeByMean, winsorize, scale
pipeline5: mice, scale, winsorize

In these experiments, the min/max accuracies per pipeline did not vary much with increasing
datasize due to replication. However, data-parallel plans ensure scalability if needed (for unknown
datasets with many features); otherwise, Saga also provides a sampling option, and techniques for
estimating appropriate sampling fractions exist [72].
Baseline Comparisons: Finally, Table 9 shows the execution time for all baselines tools and

datasets (see Table 5), where we run Saga only with local, multi-threaded enumeration (Flat) and
pruning. BoostClean and Learn2Clean show good runtime performance, but mixed accuracy. The
most comparable approach to Saga is Raha-Baran, which also applies multiple error detection and
correction strategies without dropping train and test data. Even with multi-threaded enumeration,
Saga already shows runtime improvements of more than an order of magnitude on some datasets
(e.g., Animal, Movie, Puma), and generally very robust performance characteristics. Nashville is
a challenging dataset with 212,000 rows and 22 features, where HoloClean runs out of memory,
Raha-Baran runs into timeouts, BoostClean takes 11.5 hours, while Saga takes <1.7 hours.

7 ADDITIONAL RELATEDWORK

Optimizing data cleaning pipelines for ML applications is related to the areas of data validation,
ML-based data cleaning, data cleaning for ML, pipeline enumeration, and AutoML tools.

Data Validation: The validation of training and serving data focuses on both exploratory model
training and production ML pipelines. Common strategies include checking descriptive statistics,
histograms of continuous and categorical values, as well as the number of distinct and existing
values for expected shapes [78]. Schelter et al. introduced a UDF library of constraints and metrics
for quality checks, computed via distributed Spark operations and incremental maintenance [89].
Similarly, Google’s TFX platform [4] offers via TensorFlow Data Validation [15, 20, 34] means
for schema validation, statistics, validation checks, and anomaly detection. Recent work includes

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

Saga: Data Cleaning Pipelines for ML 218:21

model assertions [51], validation via unit tests in Deequ [88] and ease.ml/ci [52, 84], as well as tests
for model robustness against data corruptions in Jenga [91] and expected prediction quality [90].
BigDancing [54] performs rule-based data validation and repairs on distributed data, as well as
compiles efficient runtime plans with scan sharing and other data access optimizations. In contrast,
Saga automatically optimizes complex data cleaning pipelines—while optionally leveraging user-
provided constraints—for minimizing the loss of a target ML application.
ML-based Data Cleaning:Machine learning is widely used to improve the effectiveness and

efficiency of data cleaning [65, 104, 105] by detecting errors and predicting repairs. The Holo-
Clean [83] and HoloDetect [44] systems combine qualitative and quantitative repair signals in a
statistical model. However, these systems require manual hyper-parameter optimization and follow
a one-shot aggregation strategy. ActiveClean [58] cleans the training data for an ML application but
rely on the user to specify how to clean and featurize the dataset. Finally, Raha-Baran [63, 64] use a
combination of active learning and clustering to find labels for sampled data clusters and use them
to classify data as dirty or clean. Saga yields robust accuracy improvements over these baselines,
and is implemented in linear algebra to seamlessly integrate ML-based cleaning primitives, ML
applications, and hyper-parameter tuning.

Data Cleaning for ML: Recent work [11, 68, 107] made a case for "fit-of-purpose" data cleaning,
that is, data cleaning is not an isolated and model-agnostic task. Data that is of high quality for one
purpose may be of low quality for another purpose. Signals from the downstream ML applications
can be used for effective data cleaning for specific use-cases. Systems such as ActiveClean [58],
BoostClean [57], AlphaClean [59], CPClean [53], Learn2Clean [8] already use these signals, but
focus on specific models or types of errors (e.g., missing values). There are also models like XGBoost
that are more robust to missing values because they learn default paths (dedicated sub-trees) for all
tuples that miss split-feature values [23], but cannot handle disguised missing values yet (where
missing values are replaced, for instance, by defaults) [80]. Li et al. conducted a large-scale study on
the impact of a variety of basic data cleaning primitives on the accuracy of ML models [61]. Saga is
a natural extension of this line of work in several dimensions by optimizing data cleaning pipelines
for an extensible set of scalable cleaning primitives (with high-level traits like monotonicity),
different ML models, as well as local and distributed runtime plans.

Pipelines Enumeration: Apart from data cleaning, Saga is also related to the enumeration of
data preparation pipelines in general. Early work focused on optimizing ETL (extract-transform-
load) workflows with similar, but ETL-specific transitions [94], as well as the evaluation of such
workflows under different metrics [95, 96]. Recent work on pipeline enumeration for data prepara-
tion include data augmentation pipelines via reinforcement learning [27], explainable stock market
prediction models via evolutionary algorithms [28], data preparation and model selection [93], as
well as feature selection for algorithmic fairness [87]. Saga shares similar ideas of evolutionary
pipeline enumeration and physical/logical pipeline tuning, but focuses on cleaning primitives,
dedicated pruning techniques, as well as local and distributed evaluation.
AutoML Systems: Optimizing data cleaning pipelines—with respect to model performance

on a validation set—is also closely connected to AutoML. Although existing systems like Auto-
WEKA [56, 101], Auto-sklearn [37], BOHB [35], TuPAQ [97], TPOT [71], Alpine Meadow [93]
and DeepLine [43] also include basic data preparation steps, they focus primarily on model and
feature selection as well as hyper-parameter tuning for non-ML-experts [5, 10, 62]. Common
techniques aremulti-armed bandits formodel selection [17, 60, 97], Bayesian Optimization for hyper-
parameter tuning [16, 37, 56, 101], evolutionary algorithms [71], and hierarchical enumeration
[71, 93]. Recently, most cloud providers also offer dedicated AutoML services [38, 109]. Furthermore,
neural architecture search [49, 75, 110] also leverages evolutionary algorithms for constructing new
network architectures from building blocks under multiple objectives (e.g., accuracy and runtime).

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

218:22 Shafaq Siddiqi, Roman Kern & Matthias Boehm

In Saga, we leverage similar ideas for evolutionary algorithms and hyper-parameter tuning with a
specific focus on data cleaning pipelines.

8 CONCLUSIONS

We introduced Saga, a framework for finding effective data cleaning pipelines for downstream
ML applications. We utilize an evolutionary algorithm that incrementally refines logical pipelines,
and Hyperband for tuning physical pipelines with their parameters. Compared to state-of-the-art,
we see robust accuracy improvements with good generalization. A combination of multi-level
enumeration, pruning, and parallelization also yields efficient and scalable runtime behavior.
We draw two major conclusions. First, a simple and clean adoption of ideas from evolutionary
algorithms and hyper-parameter tuning is able to automate the mechanical aspects of finding
good data cleaning pipelines, while providing extensibility for different ML applications, cleaning
primitives, and manual refinements. Second, implementing this cleaning framework in linear
algebra on top of ML systems yields a seamless integration with ML-based cleaning primitives,
and leverages the infrastructure for optimizing and executing linear algebra programs. Further
interesting future work includes dedicated data-parallel execution strategies and HW acceleration;
the integration with Auto-ML tools; and data cleaning for nested and multi-modal data.

ACKNOWLEDGEMENTS

We thank Ziawasch Abedjan for valuable comments on an earlier version, as well as our anonymous
reviewers for their constructive comments and suggestions, which helped improve the paper.

REFERENCES

[1] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock. 2018. Data Profiling. In Synthesis
Lectures on Data Management. http://sites.computer.org/debull/A18june/p3.pdf

[2] Giorgos Alexiou, George Papastefanatos, Vassilis Stamatopoulos, Georgia Koutrika, and Nectarios Koziris. 2022.
QueryER: A Framework for Fast Analysis-Aware Deduplication over Dirty Data. CoRR abs/2202.01546 (2022).
arXiv:2202.01546 https://arxiv.org/abs/2202.01546

[3] ASQ/ANSI/ISO. 2015. 9001:2015: Quality management systems - Requirements.
[4] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria Haque, Salem Haykal, Mustafa Ispir,

Vihan Jain, Levent Koc, Chiu Yuen Koo, Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis,
Sukriti Ramesh, Sudip Roy, Steven EuijongWhang, Martin Wicke, JarekWilkiewicz, Xin Zhang, and Martin Zinkevich.
2017. TFX: A TensorFlow-Based Production-Scale Machine Learning Platform. In KDD. 1387–1395. https://doi.org/
10.1145/3097983.3098021

[5] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter Optimization. JMLR 13 (2012), 281–305.
https://doi.org/10.5555/2503308.2188395

[6] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. 2011. Generic Schema Matching, Ten Years Later. PVLDB 4,
11 (2011), 695–701. http://www.vldb.org/pvldb/vol4/p695-bernstein_madhavan_rahm.pdf

[7] Philip A. Bernstein and Sergey Melnik. 2007. Model management 2.0: manipulating richer mappings. In SIGMOD.
https://doi.org/10.1145/1247480.1247482

[8] Laure Berti-Équille. 2019. Learn2Clean: Optimizing the Sequence of Tasks for Web Data Preparation. In The World
Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019. ACM, 2580–2586. https://doi.org/10.
1145/3308558.3313602

[9] Felix Bießmann, Tammo Rukat, Philipp Schmidt, Prathik Naidu, Sebastian Schelter, Andrey Taptunov, Dustin Lange,
and David Salinas. 2019. DataWig: Missing Value Imputation for Tables. JMLR 20 (2019). http://jmlr.org/papers/v20/18-
753.html

[10] Carsten Binnig, Benedetto Buratti, Yeounoh Chung, Cyrus Cousins, Tim Kraska, Zeyuan Shang, Eli Upfal, Robert C.
Zeleznik, and Emanuel Zgraggen. 2018. Towards Interactive Curation & Automatic Tuning of ML Pipelines. In DEEM.
1:1–1:4. https://doi.org/10.1145/3209889.3209891

[11] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert Ginthör, Kevin Innerebner, Florijan
Klezin, Stefanie N. Lindstaedt, Arnab Phani, Benjamin Rath, Berthold Reinwald, Shafaq Siddiqui, and Sebastian Ben-
jamin Wrede. 2020. SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle. In
CIDR. http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

http://sites.computer.org/debull/A18june/p3.pdf
https://arxiv.org/abs/2202.01546
https://arxiv.org/abs/2202.01546
https://doi.org/10.1145/3097983.3098021
https://doi.org/10.1145/3097983.3098021
https://doi.org/10.5555/2503308.2188395
http://www.vldb.org/pvldb/vol4/p695-bernstein_madhavan_rahm.pdf
https://doi.org/10.1145/1247480.1247482
https://doi.org/10.1145/3308558.3313602
https://doi.org/10.1145/3308558.3313602
http://jmlr.org/papers/v20/18-753.html
http://jmlr.org/papers/v20/18-753.html
https://doi.org/10.1145/3209889.3209891
http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf

Saga: Data Cleaning Pipelines for ML 218:23

[12] Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen, Yuanyuan Tian, Douglas Burdick, and Shivaku-
mar Vaithyanathan. 2014. Hybrid Parallelization Strategies for Large-Scale Machine Learning in SystemML. PVLDB
7, 7 (2014), 553–564. https://doi.org/10.14778/2732286.2732292

[13] Christoph Böhm, Gerard de Melo, Felix Naumann, and Gerhard Weikum. 2012. LINDA: distributed web-of-data-scale
entity matching. In CIKM. 2104–2108. https://doi.org/10.1145/2396761.2398582

[14] Matthias Böhm, Uwe Wloka, Dirk Habich, and Wolfgang Lehner. 2009. GCIP: exploiting the generation and optimiza-
tion of integration processes. In EDBT, Vol. 360. 1128–1131. https://doi.org/10.1145/1516360.1516494

[15] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Whang, and Martin Zinkevich. 2019. Data Validation for Machine
Learning. In MLSys. https://proceedings.mlsys.org/book/267.pdf

[16] Eric Brochu, Vlad M. Cora, and Nando de Freitas. 2010. A Tutorial on Bayesian Optimization of Expensive Cost
Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. CoRR (2010).
http://arxiv.org/abs/1012.2599

[17] Sébastien Bubeck and Nicolò Cesa-Bianchi. 2012. Regret Analysis of Stochastic and Nonstochastic Multi-armed
Bandit Problems. Found. Trends Mach. Learn. 5, 1 (2012), 1–122. https://doi.org/10.1561/2200000024

[18] Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang-Chiew Tan. 2019. Expressive power of
entity-linking frameworks. J. Comput. Syst. Sci. 100 (2019), 44–69. https://doi.org/10.1016/j.jcss.2018.09.001

[19] José Cambronero, John K. Feser, Micah J. Smith, and SamuelMadden. 2017. Query optimization for dynamic imputation.
PVLDB 10 (2017), 1310–1321. https://doi.org/10.14778/3137628.3137641

[20] Emily Caveness, Paul Suganthan G. C., Zhuo Peng, Neoklis Polyzotis, Sudip Roy, and Martin Zinkevich. 2020.
TensorFlow Data Validation: Data Analysis and Validation in Continuous ML Pipelines. In SIGMOD. 2793–2796.
https://doi.org/10.1145/3318464.3384707

[21] Austin Animal Center. 2022. Shelter Animal Outcomes competition dataset from Kaggle. https://www.kaggle.com/
competitions/shelter-animal-outcomes/data

[22] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. SMOTE: Synthetic Minority
Over-sampling Technique. J. Artif. Intell. Res. 16 (2002), 321–357. https://doi.org/10.1613/jair.953

[23] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In SIGKDD. 785–794. https:
//doi.org/10.1145/2939672.2939785

[24] Xu Chu, Ihab F. Ilyas, and Paraschos Koutris. 2016. Distributed Data Deduplication. PVLDB 9, 11 (2016), 864–875.
https://doi.org/10.14778/2983200.2983203

[25] Xu Chu,Mourad Ouzzani, JohnMorcos, Ihab F. Ilyas, Paolo Papotti, Nan Tang, and Yin Ye. 2015. KATARA: Reliable Data
Cleaning with Knowledge Bases and Crowdsourcing. PVLDB 8, 12 (2015). https://doi.org/10.14778/2824032.2824109

[26] Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong Whang. 2020. Automated Data
Slicing for Model Validation: A Big Data - AI Integration Approach. IEEE Trans. Knowl. Data Eng. 32, 12 (2020),
2284–2296. https://doi.org/10.1109/TKDE.2019.2916074

[27] Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. 2019. AutoAugment: Learning
Augmentation Strategies From Data. In CVPR. 113–123. https://doi.org/10.1109/CVPR.2019.00020

[28] Can Cui, Wei Wang, Meihui Zhang, Gang Chen, Zhaojing Luo, and Beng Chin Ooi. 2021. AlphaEvolve: A Learning
Framework to Discover Novel Alphas in Quantitative Investment. In SIGMOD. 2208–2216. https://doi.org/10.1145/
3448016.3457324

[29] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elmagarmid, Ihab F. Ilyas, Mourad Ouzzani, and Nan Tang.
2013. NADEEF: a commodity data cleaning system. In SIGMOD. 541–552. https://doi.org/10.1145/2463676.2465327

[30] Data.Nashville.gov. 2020. Nashville Traffic Accidents Dataset. https://data.nashville.gov/Police/Traffic-Accidents/
6v6w-hpcw

[31] Delve Datasets. 2022. Puma Dataset. https://www.cs.toronto.edu/~delve/data/datasets.html
[32] data.world. 2016. OLS Regression Challenge - Cancer. https://data.world/nrippner/ols-regression-challenge
[33] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael Stonebraker, Ahmed K. Elmagarmid,

Ihab F. Ilyas, Samuel Madden, Mourad Ouzzani, and Nan Tang. 2017. The Data Civilizer System. (2017). http:
//cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf

[34] Mike Dreves, Gene Huang, Zhuo Peng, Neoklis Polyzotis, Evan Rosen, and Paul Suganthan G. C. 2020. From Data to
Models and Back. In DEEM@SIGMOD Workshop. https://doi.org/10.1145/3399579.3399868

[35] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and Efficient Hyperparameter Optimization at
Scale. In ICML. 1436–1445. http://proceedings.mlr.press/v80/falkner18a.html

[36] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. 2020. Auto-Sklearn 2.0:
The Next Generation. CoRR (2020). https://arxiv.org/abs/2007.04074

[37] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum, and Frank Hutter.
2019. Auto-sklearn: Efficient and Robust Automated Machine Learning. In Automated Machine Learning - Methods,
Systems, Challenges. 113–134. https://doi.org/10.1007/978-3-030-05318-5

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

https://doi.org/10.14778/2732286.2732292
https://doi.org/10.1145/2396761.2398582
https://doi.org/10.1145/1516360.1516494
https://proceedings.mlsys.org/book/267.pdf
http://arxiv.org/abs/1012.2599
https://doi.org/10.1561/2200000024
https://doi.org/10.1016/j.jcss.2018.09.001
https://doi.org/10.14778/3137628.3137641
https://doi.org/10.1145/3318464.3384707
https://www.kaggle.com/competitions/shelter-animal-outcomes/data
https://www.kaggle.com/competitions/shelter-animal-outcomes/data
https://doi.org/10.1613/jair.953
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.14778/2983200.2983203
https://doi.org/10.14778/2824032.2824109
https://doi.org/10.1109/TKDE.2019.2916074
https://doi.org/10.1109/CVPR.2019.00020
https://doi.org/10.1145/3448016.3457324
https://doi.org/10.1145/3448016.3457324
https://doi.org/10.1145/2463676.2465327
https://data.nashville.gov/Police/Traffic-Accidents/6v6w-hpcw
https://data.nashville.gov/Police/Traffic-Accidents/6v6w-hpcw
https://www.cs.toronto.edu/~delve/data/datasets.html
https://data.world/nrippner/ols-regression-challenge
http://cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf
https://doi.org/10.1145/3399579.3399868
http://proceedings.mlr.press/v80/falkner18a.html
https://arxiv.org/abs/2007.04074
https://doi.org/10.1007/978-3-030-05318-5

218:24 Shafaq Siddiqi, Roman Kern & Matthias Boehm

[38] Nicoló Fusi, Rishit Sheth, and Melih Elibol. 2018. Probabilistic Matrix Factorization for Automated Machine Learning.
In NeurIPS. 3352–3361. https://proceedings.neurips.cc/paper/2018/file/b59a51a3c0bf9c5228fde841714f523a-Paper.pdf

[39] Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava. 2021. BEER: Blocking for Effective Entity
Resolution. In SIGMOD. 2711–2715. https://doi.org/10.1145/3448016.3452747

[40] Gábor E. Gévay, Jorge-Arnulfo Quiané-Ruiz, and Volker Markl. 2021. The Power of Nested Parallelism in Big Data
Processing - Hitting Three Flies with One Slap. In SIGMOD. 605–618. https://doi.org/10.1145/3448016.3457287

[41] Joachim Hammer, Michael Stonebraker, and Oguzhan Topsakal. 2005. THALIA: Test Harness for the Assessment of
Legacy Information Integration Approaches. In ICDE. 485–486. https://doi.org/10.1109/ICDE.2005.140

[42] Chicago health services. 2022. Chicago Food Inspection Dataset. https://data.cityofchicago.org/Health-Human-
Services/Food-Inspections/4ijn-s7e5/data

[43] Yuval Heffetz, Roman Vainshtein, Gilad Katz, and Lior Rokach. 2020. DeepLine: AutoML Tool for Pipelines Generation
using Deep Reinforcement Learning and Hierarchical Actions Filtering. In KDD. 2103–2113. https://doi.org/10.1145/
3394486.3403261

[44] Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, and Theodoros Rekatsinas. 2019. HoloDetect: Few-shot learning for
error detection. SIGMOD (2019), 829–846. https://doi.org/10.1145/3299869.3319888

[45] Christoph Hube, Besnik Fetahu, and Ujwal Gadiraju. 2019. Understanding and Mitigating Worker Biases in the
Crowdsourced Collection of Subjective Judgments. In CHI. ACM, 407. https://doi.org/10.1145/3290605.3300637

[46] Kevin G. Jamieson and Ameet Talwalkar. 2016. Non-stochastic Best Arm Identification and Hyperparameter Opti-
mization. In AISTATS (JMLR Workshop and Conference Proceedings, Vol. 51). 240–248. http://proceedings.mlr.press/
v51/jamieson16.html

[47] Kaggle. 2022. House Prices - Advanced Regression Techniques. https://www.kaggle.com/competitions/house-prices-
advanced-regression-techniques/data

[48] Kaggle. 2022. Titanic Dataset. https://www.kaggle.com/competitions/titanic/data
[49] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, and Eric P. Xing. 2018. Neural Architec-

ture Search with Bayesian Optimisation and Optimal Transport. In NeurIPS. 2020–2029. https://proceedings.neurips.
cc/paper/2018/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html

[50] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2011. Wrangler: interactive visual specification
of data transformation scripts. In CHI. 3363–3372. https://doi.org/10.1145/1978942.1979444

[51] Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. 2020. Model Assertions for Monitoring and Improving
ML Models. In MLSys. https://proceedings.mlsys.org/book/319.pdf

[52] Bojan Karlas, Matteo Interlandi, Cédric Renggli, Wentao Wu, Ce Zhang, Deepak Mukunthu Iyappan Babu, Jordan
Edwards, Chris Lauren, Andy Xu, and Markus Weimer. 2020. Building Continuous Integration Services for Machine
Learning. In KDD. 2407–2415. https://doi.org/10.1145/3394486.3403290

[53] Bojan Karlas, Peng Li, Renzhi Wu, Nezihe Merve Gürel, Xu Chu, Wentao Wu, and Ce Zhang. 2020. Nearest Neighbor
Classifiers over Incomplete Information: From Certain Answers to Certain Predictions. PVLDB 14, 3 (2020), 255–267.
https://doi.org/10.5555/3430915.3442426

[54] Zuhair Khayyat, Ihab F. Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouzzani, Paolo Papotti, Jorge-Arnulfo Quiané-
Ruiz, Nan Tang, and Si Yin. 2015. BigDansing: A System for Big Data Cleansing. In SIGMOD. 1215–1230. https:
//doi.org/10.1145/2723372.2747646

[55] Pradap Konda, Sanjib Das, Paul Suganthan G. C., AnHai Doan, Adel Ardalan, Jeffrey R. Ballard, Han Li, Fatemah
Panahi, Haojun Zhang, Jeffrey F. Naughton, Shishir Prasad, Ganesh Krishnan, Rohit Deep, and Vijay Raghavendra.
2016. Magellan: Toward Building Entity Matching Management Systems over Data Science Stacks. PVLDB 9, 13
(2016), 1581–1584. https://doi.org/10.14778/3007263.3007314

[56] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown. 2017. Auto-WEKA 2.0:
Automatic model selection and hyperparameter optimization in WEKA. J. Mach. Learn. Res. 18 (2017), 25:1–25:5.
http://jmlr.org/papers/v18/16-261.html

[57] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, and Eugene Wu. 2017. BoostClean: Automated Error Detection
and Repair for Machine Learning. CoRR abs/1711.01299 (2017). http://arxiv.org/abs/1711.01299

[58] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken Goldberg. 2016. Activeclean: Interactive
data cleaning for statistical modeling. PVLDB 9, 12 (2016), 948–959. https://doi.org/10.14778/2994509.2994514

[59] Sanjay Krishnan and Eugene Wu. 2019. AlphaClean: Automatic Generation of Data Cleaning Pipelines. (2019).
http://arxiv.org/abs/1904.11827

[60] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. 2017. Hyperband: A
Novel Bandit-Based Approach to Hyperparameter Optimization. J. Mach. Learn. Res. 18 (2017), 185:1–185:52. http:
//jmlr.org/papers/v18/16-558.html

[61] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021. CleanML: A Study for Evaluating the Impact
of Data Cleaning on ML Classification Tasks. In ICDE. 13–24. https://doi.org/10.1109/ICDE51399.2021.00009

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

https://proceedings.neurips.cc/paper/2018/file/b59a51a3c0bf9c5228fde841714f523a-Paper.pdf
https://doi.org/10.1145/3448016.3452747
https://doi.org/10.1145/3448016.3457287
https://doi.org/10.1109/ICDE.2005.140
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5/data
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5/data
https://doi.org/10.1145/3394486.3403261
https://doi.org/10.1145/3394486.3403261
https://doi.org/10.1145/3299869.3319888
https://doi.org/10.1145/3290605.3300637
http://proceedings.mlr.press/v51/jamieson16.html
http://proceedings.mlr.press/v51/jamieson16.html
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data
https://www.kaggle.com/competitions/titanic/data
https://proceedings.neurips.cc/paper/2018/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://doi.org/10.1145/1978942.1979444
https://proceedings.mlsys.org/book/319.pdf
https://doi.org/10.1145/3394486.3403290
https://doi.org/10.5555/3430915.3442426
https://doi.org/10.1145/2723372.2747646
https://doi.org/10.1145/2723372.2747646
https://doi.org/10.14778/3007263.3007314
http://jmlr.org/papers/v18/16-261.html
http://arxiv.org/abs/1711.01299
https://doi.org/10.14778/2994509.2994514
http://arxiv.org/abs/1904.11827
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
https://doi.org/10.1109/ICDE51399.2021.00009

Saga: Data Cleaning Pipelines for ML 218:25

[62] Tian Li, Jie Zhong, Ji Liu, Wentao Wu, and Ce Zhang. 2018. Ease.Ml: Towards Multi-Tenant Resource Sharing for
Machine Learning Workloads. PVLDB 11, 5 (2018), 607–620. https://doi.org/10.1145/3187009.3177737

[63] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective Error Correction via a Unified Context Represen-
tation and Transfer Learning. PVLDB 13, 11 (2020), 1948–1961. https://doi.org/10.14778/3407790.3407801

[64] Mohammad Mahdavi, Samuel Madden, Ziawasch Abedjan, Mourad Ouzzani, Nan Tang, Raul Castro Fernandez,
and Michael Stonebraker. 2019. Raha: A configuration-free error detection system. SIGMOD (2019), 865–882.
https://doi.org/10.1145/3299869.3324956

[65] Chris Mayfield, Jennifer Neville, and Sunil Prabhakar. 2010. ERACER: a database approach for statistical inference
and data cleaning. In SIGMOD. 75–86. https://doi.org/10.1145/1807167.1807178

[66] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2019. Cerebro: Efficient and Reproducible Model Selection on
Deep Learning Systems. In DEEM@SIGMOD Workshop. https://doi.org/10.1145/3329486.3329496

[67] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A Data System for Optimized Deep Learning
Model Selection. PVLDB 13, 11 (2020), 2159–2173. https://doi.org/10.14778/3447689.3447691

[68] Felix Neutatz, Binger Chen, Ziawasch Abedjan, and Eugene Wu. 2021. From Cleaning before ML to Cleaning for ML.
IEEE Data Eng. Bull. 44, 1 (2021), 24–41. http://sites.computer.org/debull/A21mar/p24.pdf

[69] Felix Neutatz, Binger Chen, Yazan Alkhatib, Jingwen Ye, and Ziawasch Abedjan. 2022. Data Cleaning and AutoML:
Would an Optimizer Choose to Clean? Datenbank-Spektrum 22, 2 (2022), 121–130. https://doi.org/10.1007/s13222-
022-00413-2

[70] UchechukwuNjoku, Besim Bilalli, Alberto Abelló, and Gianluca Bontempi. 2023. WrapperMethods forMulti-Objective
Feature Selection. In EDBT. 697–709. https://doi.org/10.48786/edbt.2023.58

[71] Randal S. Olson and Jason H. Moore. 2019. TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine
Learning. In Automated Machine Learning - Methods, Systems, Challenges. 151–160. https://doi.org/10.1007/978-3-
030-05318-5_8

[72] Yongjoo Park, Jingyi Qing, Xiaoyang Shen, and Barzan Mozafari. 2019. BlinkML: Efficient Maximum Likelihood
Estimation with Probabilistic Guarantees. In SIGMOD. 1135–1152. https://doi.org/10.1145/3299869.3300077

[73] Eliana Pastor, Elena Baralis, and Luca de Alfaro. 2023. A Hierarchical Approach to Anomalous Subgroup Discovery.
In ICDE. 2647–2659. https://doi.org/10.1109/ICDE55515.2023.00203

[74] Dessislava Petrova-Antonova and Rumyana Tancheva. 2020. Data Cleaning: A Case Study with OpenRefine and
Trifacta Wrangler. In QUATIC, Vol. 1266. 32–40. https://doi.org/10.1007/978-3-030-58793-2_3

[75] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. 2018. Efficient Neural Architecture Search via
Parameter Sharing. In ICML. 4092–4101. http://proceedings.mlr.press/v80/pham18a.html

[76] Arnab Phani, Benjamin Rath, and Matthias Boehm. 2021. LIMA: Fine-grained Lineage Tracing and Reuse in Machine
Learning Systems. In SIGMOD. ACM, 1426–1439. https://doi.org/10.1145/3448016.3452788

[77] Clément Pit-Claudel, Zelda E. Mariet, Rachael Harding, and Samuel Madden. 2016. Outlier Detection in Heterogeneous
Datasets using Automatic Tuple Expansion. In Technical Report MIT-CSAIL-TR-2016-002. http://hdl.handle.net/1721.1/
101150

[78] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich. 2017. Data Management Challenges in
Production Machine Learning. In SIGMOD. 1723–1726. https://doi.org/10.1145/3035918.3054782

[79] Abdulhakim A. Qahtan, Ahmed Elmagarmid, Raul Castro Fernandez, Mourad Ouzzani, and Nan Tang. 2018. FAHES:
A Robust Disguised Missing Values Detector. (2018), 2100–2109. https://doi.org/10.1145/3219819.3220109

[80] Abdulhakim Ali Qahtan, Ahmed K. Elmagarmid, Raul Castro Fernandez, Mourad Ouzzani, and Nan Tang. 2018.
FAHES: A Robust Disguised Missing Values Detector. In SIGKDD. 2100–2109. https://doi.org/10.1145/3219819.3220109

[81] Kun Qian, Lucian Popa, and Prithviraj Sen. 2019. SystemER: A Human-in-the-loop System for Explainable Entity
Resolution. PVLDB 12, 12 (2019), 1794–1797. https://doi.org/10.14778/3352063.3352068

[82] Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel: An Interactive Data Cleaning System. In VLDB.
381–390. http://www.vldb.org/conf/2001/P381.pdf

[83] Theodoros Rekatsinas, Xu Chuy, Ihab F. Ilyasy, and Christopher Ré. 2017. HoloClean: Holistic data repairs with
probabilistic inference. PVLDB 10 (2017), 1190–1201. https://doi.org/10.14778/3137628.3137631

[84] Cédric Renggli, Bojan Karlas, Bolin Ding, Feng Liu, Kevin Schawinski, Wentao Wu, and Ce Zhang. 2019. Continuous
Integration of Machine Learning Models with ease.ml/ci: Towards a Rigorous Yet Practical Treatment. In MLSys.
https://proceedings.mlsys.org/book/266.pdf

[85] UCI Repository. 2013. EEG Eye State Dataset. https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
[86] Svetlana Sagadeeva and Matthias Boehm. 2021. SliceLine: Fast, Linear-Algebra-based Slice Finding for ML Model

Debugging. In SIGMOD. 2290–2299. https://doi.org/10.1145/3448016.3457323
[87] Ricardo Salazar, Felix Neutatz, and Ziawasch Abedjan. 2021. Automated Feature Engineering for Algorithmic Fairness.

PVLDB 14, 9 (2021), 1694–1702. https://doi.org/10.14778/3461535.3463474

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

https://doi.org/10.1145/3187009.3177737
https://doi.org/10.14778/3407790.3407801
https://doi.org/10.1145/3299869.3324956
https://doi.org/10.1145/1807167.1807178
https://doi.org/10.1145/3329486.3329496
https://doi.org/10.14778/3447689.3447691
http://sites.computer.org/debull/A21mar/p24.pdf
https://doi.org/10.1007/s13222-022-00413-2
https://doi.org/10.1007/s13222-022-00413-2
https://doi.org/10.48786/edbt.2023.58
https://doi.org/10.1007/978-3-030-05318-5_8
https://doi.org/10.1007/978-3-030-05318-5_8
https://doi.org/10.1145/3299869.3300077
https://doi.org/10.1109/ICDE55515.2023.00203
https://doi.org/10.1007/978-3-030-58793-2_3
http://proceedings.mlr.press/v80/pham18a.html
https://doi.org/10.1145/3448016.3452788
http://hdl.handle.net/1721.1/101150
http://hdl.handle.net/1721.1/101150
https://doi.org/10.1145/3035918.3054782
https://doi.org/10.1145/3219819.3220109
https://doi.org/10.1145/3219819.3220109
https://doi.org/10.14778/3352063.3352068
http://www.vldb.org/conf/2001/P381.pdf
https://doi.org/10.14778/3137628.3137631
https://proceedings.mlsys.org/book/266.pdf
https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
https://doi.org/10.1145/3448016.3457323
https://doi.org/10.14778/3461535.3463474

218:26 Shafaq Siddiqi, Roman Kern & Matthias Boehm

[88] Sebastian Schelter, Felix Bießmann, Dustin Lange, Tammo Rukat, Philipp Schmidt, Stephan Seufert, Pierre Brunelle,
and Andrey Taptunov. 2019. Unit Testing Data with Deequ. In SIGMOD. 1993–1996. https://doi.org/10.1145/3299869.
3320210

[89] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Bießmann, and Andreas Grafberger. 2018.
Automating Large-Scale Data Quality Verification. PVLDB 11, 12 (2018), 1781–1794. https://doi.org/10.14778/3229863.
3229867

[90] Sebastian Schelter, Tammo Rukat, and Felix Bießmann. 2020. Learning to Validate the Predictions of Black Box
Classifiers on Unseen Data. In SIGMOD. 1289–1299. https://doi.org/10.1145/3318464.3380604

[91] Sebastian Schelter, Tammo Rukat, and Felix Biessmann. 2021. JENGA - A Framework to Study the Impact of Data
Errors on the Predictions of Machine Learning Models. In EDBT. 529–534. https://doi.org/10.5441/002/edbt.2021.63

[92] Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. 2017. DBSCAN Revisited, Revisited:
Why and How You Should (Still) Use DBSCAN. ACM Trans. Database Syst. 42, 3 (2017), 19:1–19:21. https://doi.org/10.
1145/3068335

[93] Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann, Philipp Eichmann, Yeounoh Chung,
Carsten Binnig, Eli Upfal, and Tim Kraska. 2019. Democratizing Data Science through Interactive Curation of ML
Pipelines. In SIGMOD. 1171–1188. https://doi.org/10.1145/3299869.3319863

[94] Alkis Simitsis, Panos Vassiliadis, and Timos K. Sellis. 2005. Optimizing ETL Processes in Data Warehouses. In ICDE.
564–575. https://doi.org/10.1145/2463676.2465247

[95] Alkis Simitsis, Kevin Wilkinson, Malú Castellanos, and Umeshwar Dayal. 2009. QoX-driven ETL design: reducing the
cost of ETL consulting engagements. In SIGMOD. 953–960. https://doi.org/10.1145/1559845.1559954

[96] Alkis Simitsis, Kevin Wilkinson, and Petar Jovanovic. 2013. xPAD: a platform for analytic data flows. In SIGMOD.
1109–1112.

[97] Evan R. Sparks, Ameet Talwalkar, Daniel Haas, Michael J. Franklin, Michael I. Jordan, and Tim Kraska. 2015. Au-
tomating Model Search for Large Scale Machine Learning. In SoCC. 368–380. https://doi.org/10.1145/2806777.2806945

[98] Michael Stonebraker, Daniel Bruckner, Ihab F. Ilyas, George Beskales, Mitch Cherniack, Stanley B. Zdonik, Alexander
Pagan, and Shan Xu. 2013. Data Curation at Scale: The Data Tamer System. In CIDR. http://cidrdb.org/cidr2013/
Papers/CIDR13_Paper28.pdf

[99] Michael Stonebraker and Ihab F. Ilyas. 2018. Data Integration: The Current Status and the Way Forward. IEEE Data
Eng. Bull. 41 (2018), 3–9.

[100] Ki Hyun Tae and Steven Euijong Whang. 2021. Slice Tuner: A Selective Data Acquisition Framework for Accurate
and Fair Machine Learning Models. In SIGMOD. 1771–1783. https://doi.org/10.1145/3448016.3452792

[101] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013. Auto-WEKA: combined selection and
hyperparameter optimization of classification algorithms. In KDD. 847–855. https://doi.org/10.1145/2487575.2487629

[102] Stef van Buuren and Karin Groothuis-Oudshoorn. 2011. mice: Multivariate Imputation by Chained Equations in R.
Journal of Statistical Software 45, 3 (2011), 1–67. https://www.jstatsoft.org/index.php/jss/article/view/v045i03

[103] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya G. Parameswaran. 2018. Helix: Holistic
Optimization for Accelerating Iterative Machine Learning. PVLDB 12, 4 (2018), 446–460. https://doi.org/10.14778/
3297753.3297763

[104] Mohamed Yakout, Laure Berti-Équille, and Ahmed K. Elmagarmid. 2013. Don’t be SCAREd: use SCalable Automatic
REpairing with maximal likelihood and bounded changes. In SIGMOD. https://doi.org/10.1145/2463676.2463706

[105] Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, Mourad Ouzzani, and Ihab F. Ilyas. 2011. Guided data
repair. PVLDB 4, 5 (2011), 279–289. https://doi.org/10.14778/1952376.1952378

[106] Matei A. Zaharia. 2013. An Architecture for and Fast and General Data Processing on Large Clusters. Ph. D. Dissertation.
University of California, Berkeley, USA.

[107] Amrapali Zaveri and Anisa Rula. 2019. Data Quality and Data Cleansing of Semantic Data. (2019). https://doi.org/10.
1007/978-3-319-63962-8_289-1

[108] Aoqian Zhang, Shaoxu Song, JianminWang, and Philip S. Yu. 2017. Time series data cleaning: From anomaly detection
to anomaly repairing. PVLDB 10, 10 (2017), 1046–1057. https://doi.org/10.14778/3115404.3115410

[109] Hantian Zhang, Luyuan Zeng, Wentao Wu, and Ce Zhang. 2017. How Good Are Machine Learning Clouds for Binary
Classification with Good Features? CoRR abs/1707.09562 (2017). http://arxiv.org/abs/1707.09562

[110] Barret Zoph and Quoc V. Le. 2017. Neural Architecture Search with Reinforcement Learning. In ICLR. https:
//openreview.net/forum?id=r1Ue8Hcxg

Received January 2023; revised April 2023; accepted May 2023

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 218. Publication date: September 2023.

https://doi.org/10.1145/3299869.3320210
https://doi.org/10.1145/3299869.3320210
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.1145/3318464.3380604
https://doi.org/10.5441/002/edbt.2021.63
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3299869.3319863
https://doi.org/10.1145/2463676.2465247
https://doi.org/10.1145/1559845.1559954
https://doi.org/10.1145/2806777.2806945
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf
https://doi.org/10.1145/3448016.3452792
https://doi.org/10.1145/2487575.2487629
https://www.jstatsoft.org/index.php/jss/article/view/v045i03
https://doi.org/10.14778/3297753.3297763
https://doi.org/10.14778/3297753.3297763
https://doi.org/10.1145/2463676.2463706
https://doi.org/10.14778/1952376.1952378
https://doi.org/10.1007/978-3-319-63962-8_289-1
https://doi.org/10.1007/978-3-319-63962-8_289-1
https://doi.org/10.14778/3115404.3115410
http://arxiv.org/abs/1707.09562
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

	Abstract
	1 Introduction
	2 Saga Framework
	2.1 Data Cleaning Primitives
	2.2 Problem Formulation
	2.3 API Contract and Saga Overview

	3 Logical Pipeline Enumeration
	3.1 Pipeline Construction
	3.2 Enumeration Algorithm

	4 Physical Pipeline Tuning
	4.1 Tuning Approach
	4.2 Pruning by Monotonicity
	4.3 Flattening Nested Parallelism

	5 Parallelization Strategies
	6 Experiments
	6.1 Experimental Setting
	6.2 End-to-End Data Cleaning for ML
	6.3 Micro Benchmarks
	6.4 Scalability and Runtime Comparison

	7 Additional Related Work
	8 Conclusions
	References

