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ABSTRACT
Large-scale machine learning (ML) algorithms are often
iterative, using repeated read-only data access and I/O-
bound matrix-vector multiplications to converge to an opti-
mal model. It is crucial for performance to fit the data into
single-node or distributed main memory and enable very
fast matrix-vector operations on in-memory data. General-
purpose, heavy- and lightweight compression techniques
struggle to achieve both good compression ratios and fast de-
compression speed to enable block-wise uncompressed oper-
ations. Compressed linear algebra (CLA) avoids these prob-
lems by applying lightweight lossless database compression
techniques to matrices and then executing linear algebra
operations such as matrix-vector multiplication directly on
the compressed representations. The key ingredients are ef-
fective column compression schemes, cache-conscious oper-
ations, and an efficient sampling-based compression algo-
rithm. Experiments on an initial implementation in Sys-
temML show in-memory operations performance close to the
uncompressed case and good compression ratios. We thereby
obtain significant end-to-end performance improvements up
to 26x or reduced memory requirements.

1. INTRODUCTION
Large-scale machine learning (ML) leverages large data

collections in order to find interesting patterns and build ro-
bust predictive models [9, 10]. Applications include regres-
sion analysis, classification, and recommendations. Data-
parallel frameworks such as MapReduce [11], Spark [22], and
Flink [2] are often used for cost-effective parallelized model
building on commodity hardware.

Declarative ML: State-of-the-art, large-scale ML sys-
tems support declarative ML algorithms [5], expressed in
high-level languages, that comprise linear algebra opera-
tions, i.e., matrix multiplications, aggregations, element-
wise and statistical computations. Examples—at varying
abstraction levels—are SystemML [6], SciDB [20], Cumu-
lon [15], DMac [21], and TensorFlow [1]. A high level of
abstraction gives data scientists the flexibility to create and
customize ML algorithms without worrying about data and
cluster characteristics, underlying data representations (e.g.,
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Figure 1: Goals of Compressed Linear Algebra.

sparse/dense format) or execution plan generation. We aim
to improve the performance of declarative ML algorithms.

Bandwidth Challenge: Many ML algorithms are itera-
tive, with repeated read-only access to the data. They rely
on matrix-vector multiplications to converge to an optimal
model; such operations require one complete scan of the ma-
trix, with two floating point operations per matrix element.
Hence, matrix-vector multiplications are, even in-memory,
I/O bound. Disk bandwidth is usually 10x-100x slower than
memory bandwidth, so it it crucial for performance to fit
the matrix into available memory without sacrificing opera-
tions performance. This challenge applies to single-node in-
memory computations [16], data-parallel frameworks with
distributed caching such as Spark [22], and hardware accel-
erators like GPUs, with limited device memory [1, 3, 4].

Compressed Linear Algebra: Declarative ML pro-
vides data independence, which allows for automatic lossless
compression to fit larger datasets into memory. A baseline
solution would employ general-purpose compression tech-
niques and decompress matrices block-wise for each oper-
ation. However, heavyweight techniques like Gzip are in-
applicable because decompression is too slow (slower than
uncompressed I/O), while lightweight methods like Snappy
only achieve moderate compression ratios. Existing special-
purpose compressed matrix formats with good performance
like CSR-VI [18] similarly show only modest compression
ratios. We have therefore initiated the study of compressed
linear algebra (CLA), in which lightweight database com-
pression methods—such as compressing offset lists per dis-
tinct column value—are applied to matrices and then linear
algebra operations are executed directly on the compressed
representations [12]. Figure 1 shows the goals of this ap-
proach: we want to widen the sweet spot for compression by
achieving both (1) performance close to uncompressed in-
memory operations and (2) good compression ratios to fit
larger datasets into memory. The novelty of our approach
is to combine both database compression techniques and
sparse matrix representations, leading towards a generaliza-
tion of traditional sparse matrix formats for sparse and dense
data; see [12] for a full discussion of related work.
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Table 1: Compression Ratios of Real Datasets.
Dataset Size Gzip Snappy CLA
Higgs [19] 11M×28, 0.92: 2.5 GB 1.93 1.38 2.03

Census [19] 2.5M×68, 0.43: 1.3 GB 17.11 6.04 27.46
Covtype [19] 600K×54, 0.22: .14 GB 10.40 6.13 12.73
ImageNet [8] 1.2M×900, 0.31: 4.4 GB 5.54 3.35 7.38
Mnist8m [7] 8.1M×784, 0.25: 19 GB 4.12 2.60 6.14

Table 2: Overview ML Algorithm Core Operations
(see http://systemml.apache.org/algorithms for details).

Algorithm M-V V-M MVChain TSMM
Xv v>X X>

(
w � (Xv)

)
X>X

LinregCG X X X (w/o w�)
LinregDS X X

Logreg / GLM X X X (w/ w�)
L2SVM X X

PCA X X

Compression Potential: Our focus is on floating-point
matrices, so the potential for compression may not be ob-
vious. Table 1 shows compression ratios for the general-
purpose, heavyweight Gzip and lightweight Snappy algo-
rithms and for our CLA method on real-world datasets (sizes
given as rows, columns, sparsity, and in-memory size). We
see compression ratios of 2x-27x, due to the presence of a
mix of floating point and integer data, and due to features
with relatively few distinct values. Thus enterprise machine-
learning datasets are indeed amenable to compression. The
decompression bandwidth (including time for matrix deseri-
alization) of Gzip ranges from 88 MB/s to 291 MB/s which
is slower than for uncompressed I/O. Snappy achieves a de-
compression bandwidth between 232 MB/s and 638 MB/s
but only moderate compression ratios. In contrast, CLA
achieves good compression ratios and avoids decompression.
In the following sections, we motivate our approach and
describe its key components: column compression schemes,
cache-conscious vector-matrix operations, and an efficient
sampling-based compression algorithm.

2. BACKGROUND AND MOTIVATION
As discussed below, both the features of declarative-ML

systems and the characteristics of typical ML workloads mo-
tivate our approach to compressed linear algebra.

SystemML Setting: We describe CLA in the setting
of SystemML, as it is representative of the declarative ML
platforms that we are targeting. In SystemML, algorithms
are expressed in a high-level R-like scripting language and
compiled to hybrid runtime plans that combine both single-
node, in-memory operations and distributed operations on
MapReduce or Spark. Each statement block of an ML script
is first parsed into a directed cyclic graph (DAG) of high-
level operators. The system then applies various rewrites,
such as common subexpression elimination and optimiza-
tion of matrix-multiplication chains, as well as operator se-
lection, yielding a DAG of low-level operators, which is then
compiled into instructions. Matrices are represented inter-
nally in a binary block matrix format with fixed-size blocks.
Each block is represented either in dense or sparse format.
For single-node, in-memory operations, the entire matrix is
often represented as a single block. CLA can be seamlessly
integrated by adding a new derived block representation and
operations. See [6, 12] for further details on SystemML.

Common Operation Characteristics: Table 2 sum-
marizes the core operations of important ML algorithms.
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Figure 2: Cardinality Ratios and Co-Coding.

These algorithms include linear regression via iterative
conjugate-gradient descent (LinregCG) and via direct so-
lution of the normal equations (LinregDS), as well as logis-
tic regression (Logreg), generalized linear models (GLM),
support-vector machines with L2-regularization (L2SVM)
and principal component analysis (PCA). LinregDS and
PCA are non-iterative and the other algorithms are iter-
ative. Vector-matrix multiplication is often caused by the
rewrite X>v → (v>X)> to avoid transposing X. In addi-
tion, many systems also implement physical operators for
matrix-vector chains, with optional element-wise weight-
ing w�, and transpose-self matrix multiplication (TSMM)
X>X. All of these operations are I/O-bound, except for
TSMM with m� 1 features because its compute workload
grows as O(m2). Beside these operations, append, unary ag-
gregates like colSums, and matrix-scalar operations access
X for intercept computation, scaling and shifting.

Common Data Characteristics: Despite signifi-
cant differences in data sizes—ranging from kilobytes to
terabytes—we and others have observed certain common
characteristics of ML datasets. First, matrices usually have
significantly more rows (observations) than columns (fea-
tures), especially in enterprise machine learning, where data
often originates from data warehouses. Second, feature pre-
processing like dummy coding often yields datasets having
many sparse features (i.e., features with many zero values);
sparsity, however, is rarely uniform, but often varies widely
among features [12]. Third, Many datasets contain features
with low column cardinality, i.e., few distinct values. Exam-
ples include encoded categorical, binned or dummy-coded
(0/1) features. Low column cardinality is a good indicator
of compression potential because it indicates redundancy.
For example, all columns of Census have a ratio of column
cardinality to number of rows below .0008% and the major-
ity of columns of Higgs have a cardinality ratio below 1%.
The column cardinalities can vary widely within a dataset,
however; for example, Higgs contains several columns hav-
ing millions of distinct values. (See [12] for additional dis-
cussion of the datasets.) Finally, many datasets contain col-
umn groups that exhibit significant correlation in that the
concatenated columns have a cardinality ratio much lower
than would be expected if the values in each column were
arranged randomly and independently of the other columns.

Compression Strategy: The foregoing workload char-
acteristics suggest several key features of a good compression
strategy. First, the compression schemes should be column-
based and value-centric, with fallbacks for high cardinality
columns. Moreover, schemes should exploit column correla-
tion by discovering and co-coding highly correlated column
groups. With value-based offset lists, a column i with di dis-
tinct values requires ≈ 8di + 4nB, where n is the number
of rows, and each value is encoded with 8 B and a list of
4 B row indexes. Co-coding two columns i and j as a single
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Figure 3: Example Compressed Matrix Block.

group of value-pairs and offsets requires 16dij + 4nB, where
dij is the number of distinct value-pairs. The higher the
correlation, the larger the size reduction by co-coding. For
example, Figures 2(a) and 2(b) show the size reductions (in
MB) by co-coding all pairs of columns of Higgs and Census.
Overall, co-coding column groups of Census (not limited to
pairs) improves the compression ratio from 10.1x to 27.4x.
For Higgs, co-coding any of the columns 8, 12, 16, and 20
with one of most of the other columns reduces sizes by at
least 25 MB. Moreover, co-coding any column pair of Census
reduces sizes by at least 9.3 MB.

3. COMPRESSION SCHEMES
We now describe our novel matrix compression frame-

work, including two effective encoding formats for com-
pressed column groups, as well as efficient, cache-conscious
core linear algebra operations over compressed matrices.

3.1 Matrix Compression Framework
A compressed matrix block is represented as a set of com-

pressed columns. Column-wise compression leverages two
key characteristics: few distinct values per column and high
cross-column correlations. Taking advantage of few distinct
values, we encode a column as a list of distinct values to-
gether with a list of offsets per value, i.e., a list of row indexes
in which the value appears. As with sparse matrix formats,
offset lists allow for efficient linear algebra operations.

Column Co-Coding: We exploit column correlation by
partitioning columns into column groups such that columns
within each group are highly correlated. Columns within the
same group are then co-coded as a single unit. Conceptually,
each row of a column group comprising m columns is an m-
tuple t of floating-point values, representing reals or integers.

Column Encoding Formats: Conceptually, the offset
list associated with each distinct tuple is stored as a com-
pressed sequence of bytes. The efficiency of executing lin-
ear algebra operations over compressed matrices strongly
depends on how fast we can iterate over this compressed
representation. We adapt two well-known effective offset-
list encoding formats: Offset-List Encoding (OLE) and
Run-Length Encoding (RLE). We fall back to a simple
uncompressed-column (UC) format if compression is not
beneficial. These decisions on column encoding formats as
well as co-coding are strongly data-dependent and hence
require automatic optimization. We discuss compression
planning—i.e., automatically choosing plans that maximize
the compression ratio—in Section 4.

Example Compressed Matrix: Figure 3 shows our
running example of a compressed matrix block. The 10× 5
input matrix is represented as four column groups. Columns
2, 4, and 5 are represented as single-column groups and en-
coded with RLE, OLE, and UC, respectively. For column 4,
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Figure 4: Data Layout OLE/RLE Column Groups.

we have two distinct non-zero values and hence two offset
lists. Finally, there is a co-coded column group for the cor-
related columns 1 and 3, which encodes offset lists for all
distinct value-pairs.

Notation: For the ith column group, denote by Ti =
{ ti1, ti2, . . . , tidi } the set of di distinct non-zero tuples, by
Gi the set of column indexes, and by Oij the set of offsets as-
sociated with tij (1 ≤ j ≤ di). We focus on the “sparse” case
in which zero values are not stored (aka “0-suppressing”).
Also, denote by α the size in bytes of each floating point
value; α = 8 for the double-precision IEEE-754 standard.

3.2 Column Encoding Formats
We now describe the compressed data layout of the OLE

and RLE formats and give formulas for the in-memory com-
pressed size SOLE

i and SRLE
i . The total matrix size is then

computed as the sum of group size estimates.
Data Layout: Figure 4 shows—as an extension to our

running example from Figure 3 (with more rows)—the data
layout of OLE/RLE column groups composed of four lin-
earized arrays. Besides a data array Di, both encoding
schemes use a common header of three arrays for column
indexes, fixed-length value tuples, and pointers to the data
per tuple. The physical data length per tuple in Di can be
computed as the difference of adjacent pointers (e.g., for
ti1 = {7, 6} as 13− 1 = 12). The data array is then used in
an encoding-specific manner. Tuples are stored in order of
decreasing physical data length to improve branch predic-
tion and pre-fetching.

Offset-List Encoding (OLE): Our OLE scheme divides
the offset range into segments of fixed length ∆s = 216 (two
bytes per offset). Each offset is mapped to its corresponding
segment and encoded as the difference to the beginning of its
segment. For example, the offset 155,762 lies in segment 3
(= 1 + b(155,762 − 1)/∆sc) and is encoded as 24,690 (=
155,762 − 2∆s). Each segment then encodes the number of
offsets with two bytes, followed by two bytes for each offset,
resulting in a variable physical length in Di. Empty segments
are represented as two bytes indicating zero length. Iterating
over an OLE group entails scanning the segmented offset list
and reconstructing global offsets as needed. The size SOLE

i

of column group Gi is calculated as

SOLE
i = 4|Gi|+ di

(
4 + α|Gi|

)
+ 2

di∑

j=1

bij + 2zi, (1)

where bij denotes the number of segments of tuple tij , |Oij |
denotes the number of offsets for tij , and zi =

∑di
j=1|Oij |

denotes the total number of offsets in the column group. The
common header has a size of 4|Gi|+ di

(
4 + α|Gi|

)
.

Run-Length Encoding (RLE): In RLE, a sorted list of
offsets is encoded as a sequence of runs. Each run represents
a consecutive sequence of offsets, via two bytes for the start-
ing offset and two bytes for the run length. We store starting
offsets as the difference between the offset and the ending
offset of the preceding run. Empty runs are used when a
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Algorithm 1 Cache-Conscious OLE Matrix-Vector

Input: OLE column group Gi, vectors v, q, row range [rl, ru)
Output: Modified vector q (in row range [rl, ru))
1: for j in [1, di] do // distinct tuples
2: πij ← skipScan(Gi, j, rl) // find position of rl in Di
3: uij ← tij · vGi // pre-aggregate value
4: for bk in [rl, ru) by ∆c do // cache buckets in [rl, ru)
5: for j in [1, di] do // distinct tuples
6: for k in [bk,min(bk + ∆c, ru)) by ∆s do // segments
7: if πij ≤ bij + |Oij | then // physical data length
8: addSegment(Gi, πij ,uij , k,q) // update q, πij

relative starting offset is larger than the maximum length
of 216. Similarly, runs exceeding the maximum length are
partitioned into smaller runs. Iterating over an RLE group
entails scanning the runs and enumerating offsets per run.
The size SRLE

i of column group Gi is computed as

SRLE
i = 4|Gi|+ di

(
4 + α|Gi|

)
+ 4

di∑

j=1

rij , (2)

where rij is the number of runs for tuple tij . Again, the
common header has a size of 4|Gi|+ di

(
4 + α|Gi|

)
.

3.3 Operations over Compressed Matrices
We now show how to execute efficient linear algebra opera-

tions over a set X of column groups; matrix block operations
are then composed of operations over column groups. We
write cv to denote element-wise scalar-vector multiplication
as well as u · v to denote the inner product of vectors.

Matrix-Vector Multiplication: The product q = Xv
of X and a column vector v can be represented with respect

to column groups as q =
∑|X|
i=1

∑di
j=1(tij · vGi)1Oij , where

vGi is the projection of v onto the indexes Gi and 1Oij is
the 0/1-indicator vector of offset list Oij . A straightforward
way to implement this computation iterates over tij tuples
in each group, scanning Oij and adding tij · vGi at recon-
structed offsets to q. However, pure column-wise processing
would scan the n × 1 output vector q once per tuple, re-
sulting in cache-unfriendly behavior for the typical case of
large n. We therefore use cache-conscious schemes for OLE
and RLE groups based on horizontal, segment-aligned scans
(with benefits of up to 2.1x/5.4x for M-V/V-M in our experi-
ments); see Algorithm 1 and Figure 5(a) for the case of OLE.
Multi-threaded operations parallelize over segment-aligned
partitions of rows [rl, ru), which guarantees disjoint results
and thus avoids partial results per thread. We find πij , the
starting position of each tij in Di via a skip scan that aggre-
gates segment lengths until we reach rl (line 2). To minimize
the overhead of finding πij , we use static scheduling (task
partitioning). We further pre-compute uij = tij ·vGi once for
all tuples (line 3). For each cache-bucket of size ∆c (such that
∆c ·#cores · 8 B fits in L3 cache, by default ∆c = 2∆s), we
then iterate over all distinct tuples (lines 5-8) but maintain
the current positions πij as well. The inner loop (lines 6-8)
then scans segments and adds uij via scattered writes at re-
constructed offsets to the output q (line 8). RLE is similarly
realized except for sequential writes to q per run, special
handling of partition boundaries, and additional state for
the reconstructed start offsets per tuple.

As a toy example for OLE, consider the column group
G = {1, 3} as in Figure 4 and suppose that vG = (1, 2).
Also suppose that the OLE encoding uses two segments,
each of length = 5 rows, and that a cache bucket comprises
exactly one segment. Finally, suppose that a single thread

v1

i

64K
segment

64K

64K
q

3

cache 
bucket
(output)

value preagg
{7,6} {7,5}{3,4}

4
6

(a) Matrix-Vector

1 3

i

{7,6} {7,5}{3,4}

v
64K

q

cache 
bucket
(input)

64K 64K
value 

postscaling

(b) Vector-Matrix

Figure 5: Cache-Conscious OLE Operations.

updates q. Algorithm 1 first precomputes (1, 2) · (7, 6) = 19,
(1, 2) · (3, 4) = 11, and (1, 2) · (7, 5) = 17. The thread then
handles rows in [rl, ru) = [1, 11), i.e., all ten rows. It reads
the first five elements of q into cache, and then adds 19
to q[1] and q[3], 11 to q[2] and q[5], and 17 to q[4]. Next,
the thread reads in the last five elements of q and adds 19
to q[9], 11 to q[7], q[8], q[10], and 17 to q[6]. In contrast,
the näıve approach would first add 19 to q[i] for i = 1, 3, 9,
then add 11 to q[i] for i = 2, 5, 7, 8, 10, and then add 17
to q[i] for i = 4, 6. The cost on our toy architecture is six
“cache reads” compared to two reads for Algorithm 1. Also
note that Algorithm 1 requires only 6 multiplications and
13 additions, whereas the uncompressed operation requires
20 multiplications and 20 additions.

Vector-Matrix Multiplication: Column-wise compres-
sion allows for efficient vector-matrix products q = v>X
because individual column groups update disjoint entries of
the output vector q. Each entry qi can be expressed over
columns as qi = v>X:i. We rewrite this multiplication in
terms of a column group Gi as scalar-vector multiplications:
qGi =

∑di
j=1

∑
l∈Oij

vltij . However, a purely column-wise

processing would again suffer from cache-unfriendly behav-
ior because we scan the input vector v once for each dis-
tinct tuple. Our cache-conscious OLE/RLE group opera-
tions again use horizontal, segment-aligned scans as shown
in Figure 5(b). The OLE/RLE algorithms are similar to
matrix-vector but in the inner loop we sum up input-
vector values according to the given offset list; finally, we
scale the aggregated value once with the values in tij .
For multi-threaded operations, we parallelize over column
groups, where disjoint results per column allow for simple
dynamic task scheduling. The cache bucket size is equiv-
alent to matrix-vector (by default 2∆s) except that RLE
runs are allowed to cross cache bucket boundaries due to
column-wise parallelization.

Other Operations: As discussed in [12], efficient meth-
ods for more complex operations such as matrix-vector mul-
tiplication chains and transpose-self matrix multiplications
are built up from the foregoing matrix-vector and vector-
matrix operations. Common operations such as X2, 2X, and
append can be executed very efficiently over compressed ma-
trices without scanning the offset lists. Finally, unary aggre-
gates like sum (or similarly colSums) are efficiently computed

using offset-list sizes as
∑|X|
i=1

∑di
j=1|Oij |tij .

4. COMPRESSION PLANNING
Given an uncompressed n ×m matrix block X, the sys-

tem automatically chooses a compression plan, that is, a
partitioning of compressible columns into column groups
and a compression scheme per group. To keep the planning
costs low, sampling-based techniques are used to estimate
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the compressed size of an OLE/RLE column group Gi. The
size estimates are used for finding the initial set of compress-
ible columns and a good column-group partitioning. Exhaus-
tive (O(mm)) and brute-force greedy (O(m3)) partitioning
are infeasible, but a bin-packing-based technique can dras-
tically reduce the number of candidate groups. The overall
compression algorithm corrects for estimation errors.

4.1 Estimating Compressed Size
To calculate the compressed size of a column group Gi

via size-estimation formulas (1) and (2), we need to esti-
mate the number of distinct tuples di, non-zero tuples zi,
segments bij , and runs rij . Our estimators are based on a
small sample of rows S drawn randomly and uniformly from
X with |S| � n. We have found experimentally that being
conservative (overestimating compressed size) and correct-
ing later on yields the most robust co-coding choices, so we
make conservative choices in our estimator design.

Number of Distinct Tuples: To estimate di, we use the
“hybrid” estimator d̂i from [14]; the idea is to estimate the
degree of variability in the frequencies of the tuples in Ti as
low, medium, or high, based on the estimated squared coef-
ficient of variation and then apply a “generalized jackknife”
estimator that performs well for that regime. Such an esti-
mator has the general form d̂ = dS + K(N (1)/|S|), where
dS is the number of distinct tuples in the sample, K is a
data-based constant, and N (1) is the number of tuples that
appear exactly once in S (“singletons”). The hybrid estima-
tor provides a reasonable balance of cost and accuracy [12].

Number of OLE Segments: In general, not all elements
of Ti will appear in the sample. Denote by T oi and T ui the
sets of tuples observed and unobserved in the sample, and
by doi and dui their cardinalities. The latter can be estimated
as d̂ui = d̂i − doi , where d̂i is obtained as described above.
We also need to estimate the population frequencies of both
observed and unobserved tuples. Let fij be the population
frequency of tuple tij and Fij the sample frequency. A näıve
estimate scales up Fij to obtain fnäıve

ij = (n/|S|)Fij . Note

that
∑

tij∈T o
i
fnäıve
ij = n implies a zero population frequency

for each unobserved tuple. We adopt a standard way of deal-
ing with this issue and scale down the näıve frequency esti-
mates by the estimated “coverage”Ci of the sample, defined
as Ci =

∑
tij∈T o

i
fij/n. The usual estimator of coverage,

originally due to Turing (see [13]), is

Ĉi = max
(
1−N (1)

i /|S|, |S|/n
)
. (3)

This estimator assumes a frequency of one for unseen tuples,
computing the coverage as one minus the fraction of single-
tons in the sample. We add the lower sanity bound |S|/n
to handle the case N

(1)
i = |S|. For simplicity, we assume

equal frequencies for all unobserved tuples. The resulting
frequency estimation formula for tuple tij is

f̂ij =

{
(n/|S|)ĈiFij if tij ∈ T oi
n(1− Ĉi)/d̂ui if tij ∈ T ui .

(4)

We can now estimate the number of segments bij in which
tuple tij appears at least once (this modified definition of
bij ignores empty segments for simplicity with negligible er-
ror in our experiments). There are l = n − |S| unobserved

offsets and estimated f̂uiq = f̂iq − Fiq unobserved instances
of tuple tiq for each tiq ∈ Ti. We adopt a maximum-entropy
(maxEnt) approach and assume that all assignments of un-

interval 4 (η4=5)  
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Figure 6: Estimating the Number of RLE Runs r̂ij.

observed tuple instances to unobserved offsets are equally
likely. Denote by B the set of segment indexes and by Bij
the subset of indexes corresponding to segments with at least
one observation of tij . Also, for k ∈ B, let lk be the num-
ber of unobserved offsets in the kth segment and Nijk the
random number of unobserved instances of tij assigned to
the kth segment (Nijk ≤ lk). Then we estimate bij by its
expected value under our maxEnt model:

b̂ij = E[bij ] = |Bij |+
∑

k∈B\Bij

P (Nijk > 0)

= |Bij |+
∑

k∈B\Bij

[1− h(lk, f̂
u
ij , l)],

(5)

where h(a, b, c) =
(
c−b
a

)/(
c
a

)
is a hypergeometric probability.

Note that b̂ij ≡ b̂ui for tij ∈ T ui , where b̂ui is the value of b̂ij
when f̂uij = (1 − Ĉi)n/d̂ui and |Bij | = 0. Thus our estimate

of the sum
∑di
j=1 bij in (1) is

∑
tij∈T o

i
b̂ij + d̂ui b̂

u
i .

Number of Non-Zero Tuples: We estimate the number
of non-zero tuples as ẑi = n− f̂i0, where f̂i0 is an estimate of
the number of zero tuples in X:Gi . Denote by Fi0 the number
of zero tuples in the sample. If Fi0 > 0, we can proceed as
above and set f̂i0 = (n/|S|)ĈiFi0, where Ĉi is (3). If Fi0 = 0,

then we set f̂i0 = 0; this estimate maximizes ẑi and hence
ŜOLE
i per our conservative estimation strategy.
Number of RLE Runs: The number of RLE runs rij for

tuple tij is estimated as the expected value of rij under the
maxEnt model. This expected value is very hard to compute
exactly and Monte Carlo approaches are too expensive, so we
approximate E[rij ] by considering one interval of consecu-
tive unobserved offsets at a time as shown in Figure 6. Adja-
cent intervals are separated by a “border” comprising one or
more observed offsets. As with the OLE estimates, we ignore
the effects of empty and very long runs. Denote by ηk the
length of the kth interval and set η =

∑
k ηk. Under the max-

Ent model, the number fuijk of unobserved tij instances as-
signed to the kth interval is hypergeometric, and we estimate
fuijk by its mean value: f̂uijk = (ηk/η)f̂uij . Given that f̂uijk in-
stances of tij are assigned randomly and uniformly among
the ηk possible positions in the interval, the number of runs
rijk within the interval (ignoring the borders) is known to
follow an “Ising-Stevens” distribution [17, pp. 422-423] and

we estimate rijk by its mean: r̂ijk = f̂uijk(ηk − f̂uijk + 1)/ηk.
We show in [12] that a reasonable estimate of the contribu-
tion to rij from the border between interior intervals k and

k + 1 is Âijk = 1 − (2f̂uij/η), so that the final estimate is

r̂ij =
∑
k r̂ijk+

∑
k Âijk (with appropriate modifications for

the first and last border).

4.2 Partitioning Columns into Groups
A greedy brute-force method for partitioning a set of com-

pressible columns into groups starts with singleton groups
and executes merging iterations. At each iteration, we merge
the two groups having maximum compression ratio (sum of
their compressed sizes divided by the compressed size of the
merged group). We terminate when no further space reduc-
tions are possible, i.e., no compression ratio exceeds 1. Al-
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Algorithm 2 Matrix Block Compression

Input: Matrix block X of size n×m
Output: A set of compressed column groups X
1: CC ← ∅, CUC ← ∅, G ← ∅, X ← ∅
2: // Planning phase – – – – – – – – – – – – – – – – – – –
3: S ← sampleRowsUniform(X, sample size)
4: for all column k in X do // classify

5: cmp ratio← ẑiα/min(ŜRLE
k , ŜOLE

k )
6: if cmp ratio > 1 then
7: CC ← CC ∪ k
8: else
9: CUC ← CUC ∪ k

10: bins← runBinPacking(CC) // group
11: for all bin b in bins do
12: G ← G ∪ groupBruteForce(b)
13: // Compression phase – – – – – – – – – – – – – – – – –
14: for all column group Gi in G do // compress
15: do
16: biglist← extractBigList(X,Gi)
17: cmp ratio← getExactCmpRatio(biglist)
18: if cmp ratio > 1 then
19: X ← X ∪ compressBigList(biglist), break
20: k ← removeLargestColumn(Gi)
21: CUC ← CUC ∪ k
22: while |Gi| > 0
23: return X ← X ∪ createUCGroup(CUC)

though compression ratios are estimated from a sample, the
cost of the brute-force scheme is O(m3), which is infeasible.

Bin Packing: We observed empirically that the brute-
force method usually generates groups of no more than five
columns. Further, we noticed that the time needed to esti-
mate a group size increases as the sample size, the number
of distinct tuples, or the matrix density increases. These two
observations motivate a heuristic strategy where we parti-
tion the columns into a set of small bins and then apply
the brute-force method within each bin to form the column
groups. We use a bin-packing algorithm to assign columns
to bins. The weight of each column indicates its estimated
contribution to the overall runtime of the brute-force par-
titioning. The capacity of a bin is chosen to ensure mod-
erate brute-force runtime per bin. Intuitively, bin packing
minimizes the number of bins, which should maximize the
number of columns within each bin and hence grouping po-
tential, while controlling the processing costs.

Bin Weights: We set the weight of the ith column to
d̂i/n, i.e., the ratio of distinct tuples to rows. If d̂i/n is
larger than a specified threshold γ, then we consider col-
umn i as ineligible for grouping. We also set each bin capac-
ity to w = βγ, where β is a tuning parameter. We made the
design choice of a constant bin capacity—independent of the
number of non-zeros—to ensure constant compression ratios
and throughput irrespective of blocking configurations. We
use the first-fit heuristic to solve the bin-packing problem.

4.3 Compression Algorithm
We now describe the overall algorithm for creating com-

pressed matrix blocks (Algorithm 2). Note that we transpose
the input in case of row-major dense or sparse formats to
avoid performance issues due to column-wise processing.

Planning Phase (lines 2-12): Planning starts by draw-
ing a sample of rows from X. For each column i, the sample
is first used to estimate the compressed column size SC

i by
ŜC
i = min(ŜRLE

i , ŜOLE
i ), where ŜRLE

i and ŜOLE
i are obtained

by substituting the estimated d̂i, ẑi, r̂ij , and b̂ij into formulas
(1) and (2). We conservatively estimate the uncompressed

column size as ŜUC
i = ẑiα, which covers both dense and

sparse with moderate underestimation for common scenar-
ios, and allows column-wise decisions independent of |CUC|
(where sparse-row overheads might be amortized in case of
many columns). Columns whose estimated compression ra-

tio ŜUC
i /ŜC

i exceeds 1 are added to a compressible set CC.
In a last step, we divide the columns in CC into bins and
apply the greedy brute-force algorithm within each bin to
form column groups.

Compression Phase (lines 13-23): The compression
phase first obtains exact information about the parameters
of each column group and uses this information in order to
adjust the groups, correcting for any errors induced by sam-
pling during planning. The exact information is also used to
make the final decision on encoding formats for each group.
In detail, for each column group Gi, we extract the “big”
(i.e., uncompressed) list that comprises the set Ti of distinct
tuples together with the uncompressed lists of offsets for the
tuples. The big lists for all of the column groups are ex-
tracted during a single column-wise pass through X using
hashing. During this extraction operation, the parameters
di, zi, rij , and bij for each group Gi are computed exactly,
with negligible additional cost. These parameters are used
in turn to calculate the exact compressed sizes SRLE

i and
SOLE
i and exact compression ratio SUC

i /SC
i for each group.

Corrections: Because the column groups are originally
formed using compression ratios that are estimated from a
sample, there may be false positives, i.e., purportedly com-
pressible groups that are in fact incompressible. Instead of
simply storing false-positive OLE/RLE groups as UC group,
we attempt to correct the group by removing the column
with largest estimated compressed size. The correction pro-
cess is repeated until the remaining group is either com-
pressible or empty. After each group has been corrected, we
choose the optimal encoding scheme for each compressible
group Gi using the exact parameter values di, zi, bij , and rij
together with the formulas (1) and (2). The incompressible
columns are collected into a single UC column group.

5. EXPERIMENTS
We present some highlights from an experimental study

of CLA as implemented in SystemML, emphasizing end-to-
end results; see [12] for details and additional experiments.
Overall, the results show that, for a variety of ML programs
and real-world datasets, CLA indeed achieves in-memory
matrix-vector multiplication performance close to uncom-
pressed while yielding substantially better compression ra-
tios than lightweight general-purpose compression. As a con-
sequence, CLA provides large end-to-end performance im-
provements when uncompressed or lightweight-compressed
matrices do not fit in local or aggregated memory.

Implementation: When CLA is enabled, SystemML au-
tomatically injects—for any multi-column input matrix—a
so-called compress operator via new rewrites. This applies
to both single-node and distributed Spark operations, where
the execution type is chosen based on memory estimates. For
Spark, we compress individual matrix blocks independently.
Making our compressed matrix block a subclass of the un-
compressed matrix block yielded seamless integration of all
operations, serialization, and buffer-pool interactions.

Experimental Setup: We ran all experiments on a clus-
ter of one head node and six additional nodes; see [12] for
details. For our end-to-end experiments, we ran versions of
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Figure 7: Matrix-Vector Multiplication Time.

various ML algorithms from Table 2 over scaled-up versions
of the real-world Mnist and ImageNet datasets introduced
in Table 1. Specifically, we used the InfiMNIST data gener-
ator [7] to create an Mnist480m dataset of 480 million obser-
vations with 784 features and binomial class labels (1.1 TB
in binary format), and also scaled up the ImageNet dataset
via replication. We used the ML algorithms in Table 2,
with the multinomial variant of logistic regression and the
Poisson-regression instantiation of GLM. To isolate the ef-
fects of compression, we compare against Apache SystemML
0.9 (Feb 2016) with uncompressed linear algebra (ULA),
heavyweight compression (Gzip), and lightweight compres-
sion (Snappy); for the latter, we use native compression li-
braries and ULA. We report end-to-end runtime (average
of 3 runs), including read from HDFS, Spark context cre-
ation, and compression. The baselines are ULA and Spark’s
RDD compression with Snappy. In [12], we also compare
with CSR-VI [18] and D-VI, a sparse (resp., dense) format
with dictionary encoding; our experiments show that CLA
has similar operations performance to these algorithms and
significantly better compression ratios.

Before describing end-to-end results, we briefly discuss the
empirical performance of the compression algorithm and of
matrix-vector operations over compressed data.

Compression Speed: Over all datasets, CLA shows rea-
sonably good compression times with a bandwidth ranging
from 75.2 MB/s to 121.4 MB/s, single-threaded. Our use of
sampling (with the default sampling fraction of 0.01) yielded
speedups of up to two orders of magnitude, especially for
datasets like Census and Covtype, where a substantial frac-
tion of time is spent on column grouping. In comparison, the
single-threaded compression bandwidth of Gzip and Snappy
ranged from 6.9 MB/s to 35.6 MB/s and from 156.8 MB/s to
353 MB/s, respectively.

Operations Speed: Figures 7(a) and 7(b) show the
single- and multi-threaded matrix-vector multiplication
time. Despite row-wise updates of the target vector (which
favors uncompressed row-major layout), CLA shows per-
formance close to ULA, with the exceptions of Higgs and
Mnist8m, where CLA performs significantly worse. This lat-
ter behavior is mostly caused by (1) a large number of val-
ues which require multiple passes over the output vector,
and (2) the size of the output vector. For Higgs (11M rows)
and Mnist8m (8M rows), the target vector does not entirely
fit into the L3 cache (15 MB). Accordingly, we see substan-
tial improvements by cache-conscious CLA operations, es-
pecially for multi-threaded due to cache thrashing effects.
Multi-threaded operations show a speedup similar to ULA
due to parallelization over logical row partitions, in some
cases even better. Results for vector-matrix multiplication
are similar. Overall, we obtain empirical confirmation of our

Table 3: Mnist8m Deserialized RDD Storage Size.
Block Size 1,024 2,048 4,096 8,192 16,384

ULA 18 GB 18 GB 18 GB 18 GB 18GB
Snappy 7.4 GB 7.4 GB 7.4 GB 7.4 GB 7.4GB

CLA 9.9 GB 8.4 GB 6 GB 4.4 GB 3.6GB
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Figure 8: L2SVM End-to-End Performance Mnist.

goals for CLA: superior compression ratios (per Table 1) and
operation performance comparable to uncompressed. The
overall impact on performance is discussed below.

RDD Storage Size: ULA and CLA use the dese-
rialized storage level MEM_AND_DISK, while Snappy uses
MEM_AND_DISK_SER because RDD compression requires se-
rialized data. ULA also uses MEM_AND_DISK_SER for sparse
matrices whose sizes exceed aggregated memory. Table 3
shows the RDD storage size of Mnist8m with varying Sys-
temML block size. For 16K, we observe a compression ratio
of 2.5x for Snappy but 5x for CLA. We obtained similar ra-
tios for larger Mnist subsets. CLA’s compression advantage
increases with larger block sizes because the common header
is stored only once per column group per block.

L2SVM on Mnist: We first investigate the common
classification algorithm L2SVM. An L2SVM model is fit to
training data by adjusting its parameters to minimize train-
ing error via iterative gradient-descent. For each gradient
step, an inner loop searches for the optimal step size. In our
setup the aggregated memory size is 216 GB. SystemML uses
hybrid runtime plans, where only operations that exceed the
driver memory are executed as distributed Spark instruc-
tions; all other vector operations are executed—similarly
for all baselines—as single-node operations at the driver.
For L2SVM, we have two scans of X per outer iteration
(matrix-vector and vector-matrix), whereas all inner-loop
operations are purely single-node for the data at hand. Fig-
ure 8 shows the results. In reference to our goals from Fig-
ure 1, Spark spills data to disk at the granularity of par-
titions (128 MB as read from HDFS), leading to a graceful
performance degradation. As long as the data fits in aggre-
gated memory (Mnist80m, 180 GB), all runtimes are almost
identical, with Snappy and CLA showing overheads of up to
25% and 10%, respectively. However, if the ULA format no
longer fits in aggregated memory (Mnist160m, 360 GB), we
see significant improvements from compression because the
size reduction avoids spilling, i.e., reads per iteration. The
larger compression ratio of CLA allows to fit larger datasets
into memory (e.g., Mnist240m). Once the CLA format no
longer fits in memory, the runtime differences converge to
the differences in compression ratios.

Other ML Algorithms on Mnist: Next, we study a
range of algorithms, including algorithms with RDD opera-
tions in nested loops (e.g., GLM, Mlogreg) and non-iterative
algorithms (e.g., LinregDS and PCA). Table 4 shows the re-
sults for the interesting points of Mnist40m (90 GB), where
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Table 4: End-to-End Performance Mnist40m/240m.
Algorithm Mnist40m (90 GB) Mnist240m (540 GB)

ULA Snappy CLA ULA Snappy CLA
Logreg 630 s 875 s 622 s 83,153 s 27,626 s 4,379 s
GLM 409 s 647 s 397 s 74,301 s 23,717 s 2,787 s

LinregCG 173 s 220 s 176 s 2,959 s 1,493 s 902 s
LinregDS 187 s 208 s 247 s 1,984 s 1,444 s 1,305 s

PCA 186 s 203 s 242 s 1,203 s 1,020 s 1,287 s

Table 5: End-to-End Performance ImageNet15/150.
Algorithm ImageNet15 (65 GB) ImageNet150 (650 GB)

ULA Snappy CLA ULA Snappy CLA
L2SVM 157 s 199 s 159 s 25,572 s 8,993 s 3,097 s
Mlogreg 255 s 400 s 250 s 100,387 s 31,326 s 4,190 s

GLM 190 s 304 s 186 s 60,363 s 16,002 s 2,453 s
LinregCG 69 s 98 s 71 s 3,829 s 997 s 623 s
LinregDS 207 s 216 s 118 s 3,648 s 2,720 s 1,154 s

PCA 211 s 215 s 119 s 2,765 s 2,431 s 1,107 s

all datasets fit in memory, and Mnist240m (540 GB), where
neither uncompressed nor Snappy-compressed datasets en-
tirely fit in memory. For Mnist40m and iterative algorithms,
we see similar ULA/CLA performance but a 50% slowdown
with Snappy. This is because RDD compression incurs de-
compression overhead per iteration, whereas CLA’s initial
compression cost is amortized over multiple iterations. For
non-iterative algorithms, CLA is up to 32% slower while
Snappy shows less than 12% overhead. Beside the initial
compression overhead, CLA also shows less efficient TSMM
performance, while the RDD decompression overhead, is
mitigated by initial read costs. For Mnist240m, we see signif-
icant performance improvements by CLA—of up to 26x and
8x—compared to ULA and RDD compression for Mlogreg
and GLM. This is due to many inner iterations with RDD
operations in the outer and inner loop. In contrast, for Lin-
regCG, we see only moderate improvements due to a single
loop with one matrix-vector chain per iteration, where the
CLA runtime was dominated by initial read and compres-
sion. Finally, for LinregDS, CLA shows again slightly inferior
TSMM performance but moderate improvements compared
to ULA. Overall CLA shows positive results with significant
improvements for iterative algorithms due to smaller mem-
ory bandwidth requirements and reduced I/O.

ML Algorithms on ImageNet: To validate the end-
to-end results, we study the same algorithms over replicated
ImageNet datasets. Due to block-wise compression, repli-
cation did not affect the compression ratio. Table 5 shows
the results for ImangeNet15 (65 GB) that fits in memory,
and ImageNet150 (650 GB). For LinregDS and PCA, CLA
performs better than on Mnist due to superior vector-matrix
and thus TSMM performance. Overall, we see similar results
with improvements of up to 24x and 7x.

6. CONCLUSIONS
We have shown that compressed linear algebra (CLA)—in

which matrices are compressed with lightweight techniques
and linear algebra operations are performed directly over
the compressed representation—can yield significant per-
formance benefits for common ML algorithms over real-
world data. CLA is enabled by declarative ML, which hides
the underlying physical data representation. CLA general-
izes sparse matrix representations, encoding both dense and
sparse matrices in a universal compressed form. CLA is also
broadly applicable to any system that provides blocked ma-

trix representations, linear algebra, and physical data in-
dependence. Meanwhile, we have also made our CLA pro-
totype available open source in Apache SystemML’s 0.11
release. Interesting future work includes (1) full optimizer
integration, (2) global planning and physical design tuning,
(3) integrating additional compression schemes, and (4) ef-
ficient operations beyond matrix-vector.
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