

Architecture of DB Systems 05 Compression Techniques

Prof. Dr. Matthias Boehm

Last update: Dec 02, 2023

Technische Universität Berlin
Faculty IV - Electrical Engineering and Computer Science
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Announcements/Org

- #1 Lecture Format
 - Introduction virtual, remaining lectures blocked Dec 04 Dec 07
 - Optional attendance
 - Hybrid, in-person but live-streaming / video-recorded lectures
 - **HS i10** + Zoom: https://tu-berlin.zoom.us/j/9529634787?
 pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

Agenda

- Motivation and Terminology
- Compression Techniques
- Compressed Query Processing

Motivation and Terminology

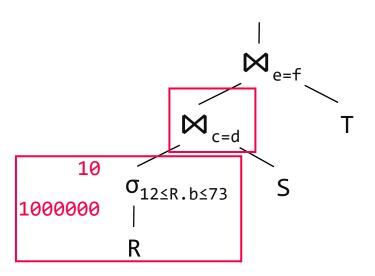
Recap: Access Methods and Physical Design

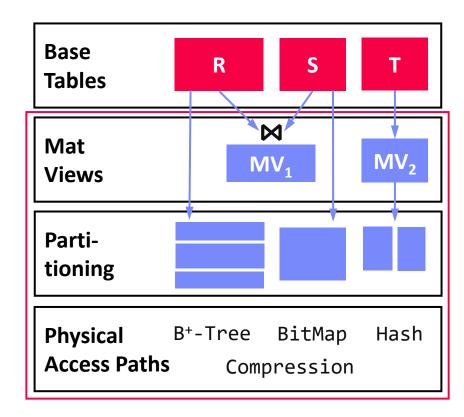
Performance Tuning via Physical Design

- Select physical data structures for relational schema and query workload
- #1: User-level, manual physical design by DBA (database administrator)
- #2: User/system-level automatic physical design via advisor tools

Example

```
SELECT * FROM R, S, T
WHERE R.c = S.d AND S.e = T.f
AND R.b BETWEEN 12 AND 73
```

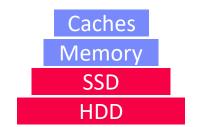




Motivation Storage Hierarchy

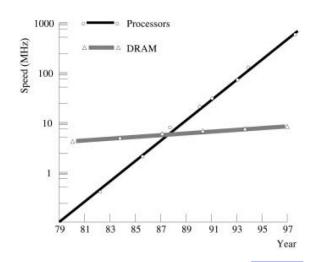
#1 Capacity

- Limited capacity of fast storage
- Keep larger datasets higher in storage hierarchy
- Avoid unnecessary I/O



#2 Bandwidth

- Memory Wall: increasing gap
 CPU vs Memory latency/bandwidth
- Reduce bandwidth requirements



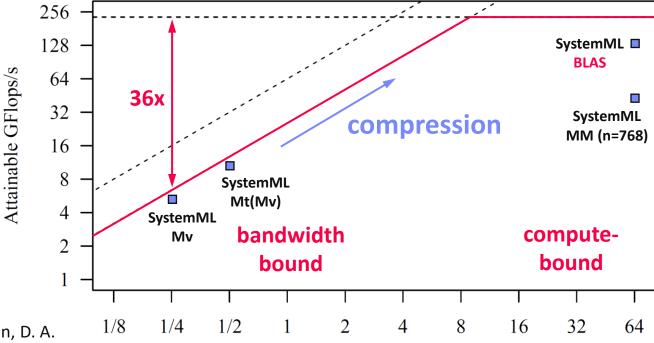
[Stefan Manegold, Peter A. Boncz, Martin L. Kersten: Optimizing database architecture for the new bottleneck: memory access. **VLDB J. 9(3) 2000**]

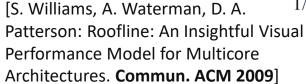
Excursus: Roofline Analysis

- Setup: 2x6 E5-2440 @2.4GHz-2.9GHz, DDR3 RAM @1.3GHz (ECC)
 - Max mem bandwidth (local): 2 sock x 3 chan x 8B x 1.3G trans/s → 2 x 32GB/s
 - Max mem bandwidth (QPI, full duplex) \rightarrow 2 x 12.8GB/s
 - Max floating point ops: 12 cores x 2*4dFP-units x $2.4GHz \rightarrow 2 \times 115.2GFlops/s$

Roofline Analysis

- Off-chip memory traffic
- Peak compute





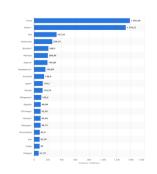
Operational Intensity (Flops/Byte) (Experiments from 2017)

Motivation Data Characteristics

Skew

- Highly skewed value distributions (frequencies of distinct values)
- Small number of distinct items

China **1.4**India **1.3**USA **0.33**Germany **0.08**Austria **0.009**



Correlation

- Correlation between tuple attributes
- Co-occurrences of attribute values

OrderDate < ReceiptDate (usually 2-3 days)

Lack of Tuple Order

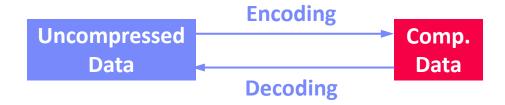
- Relations are multi-sets of tuples (no ordering requirements)
- Flexibility for internal reorganization

[Vijayshankar Raman, Garret Swart: How to Wring a Table Dry: Entropy Compression of Relations and Querying of Compressed Relations. **VLDB 2006**]

Compression Overview

Compression Codec

- Encoder
- Decoder

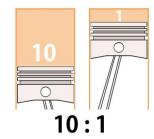


Lossless vs Lossy

- Lossless: guaranteed recovery of uncompressed data
- Lossy: moderate degradation / approximation
 - → Images, video, audio; ML training/scoring

Compression Ratio

- CR = Size-Uncompressed / Size-compressed
- Ineffective compression: CR < 1

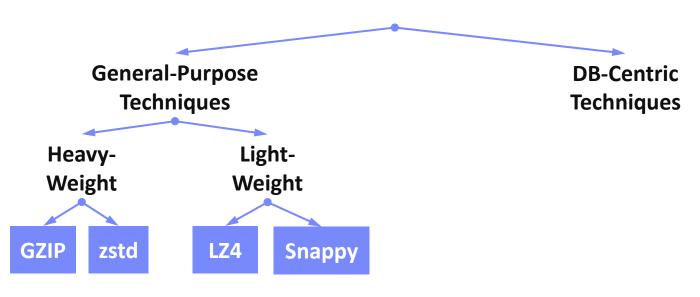


Metrics

- Compression ratio vs encode/decode time vs encode/decode space
- Block-wise vs random access, operation performance, etc

Classification of Compression Techniques

Lossless Compression Schemes



Huffman + Lempel-Ziv

Excursus: General-purpose Compression

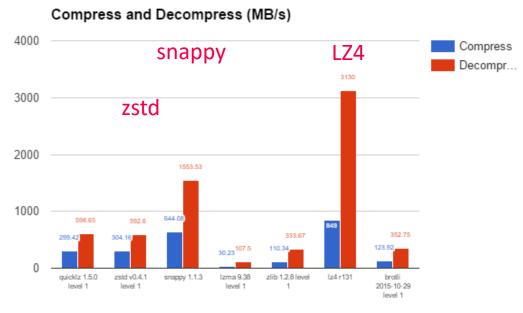
Compression/ Decompression

CR zstd: 5.24

CR snappy: 3.65

CR LZ4: 3.89

[https://web.archive.org/web/20200229 161007/https://www.percona.com/blog/ 2016/04/13/evaluating-databasecompression-methods-update/]



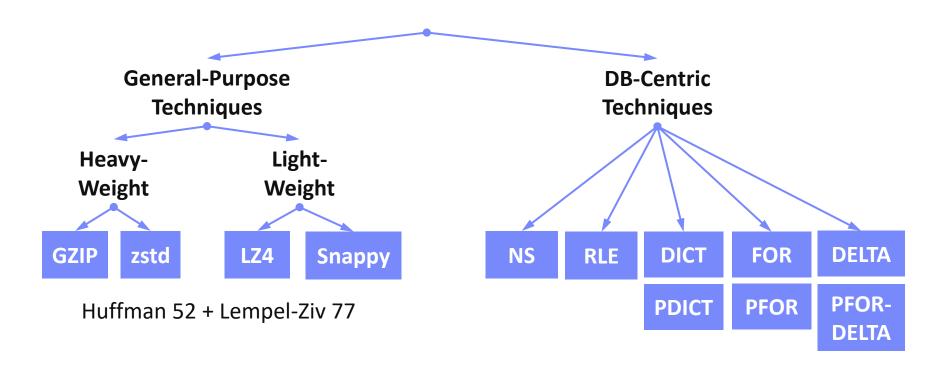
Compression Method

Example Apache Spark RDD Compression

- org.apache.spark.io.LZ4CompressionCodec (default in 2.x, 3.x)
- org.apache.spark.io.SnappyCompressionCodec (default in 1.x)
- org.apache.spark.io.LZFCompressionCodec (default in 0.x)
- org.apache.spark.io.ZStdCompressionCodec

Classification of Compression Techniques, cont.

Lossless Compression Schemes



(all heavy-weight from a DB perspective)

Compression Techniques

42

Null Suppression (NS)

[Benjamin Schlegel, Rainer Gemulla, Wolfgang Lehner: Fast integer compression using SIMD instructions. DaMoN 2010]

Overview

Compress integers by omitting leading zeros via variable-length codes 00000000 000000000 00000000 00101010

- Universal compression scheme w/o need for upper bound
- **Byte-Aligned** (Example)
 - Store mask of two bits to indicate leading zero bytes

42 |00101010

2 bits + [1,4] bytes \rightarrow max CR (INT32) = 3.2

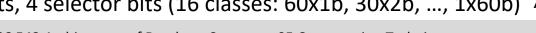
0000011

- Bit-Aligned (Example: Elias Gamma Encoding)
 - Store $N = \lfloor \log_2 x \rfloor$ zero bits followed by effective bits

|<mark>|00000|</mark>101010

■ $2 * [1,32] - 1 \text{ bits } \rightarrow \text{max CR (INT32)} = 32$

- Word-Aligned (Example: Simple-8b)
 - Pack a variable number of integers (max 2⁶⁰-1) into 64bit
 - 60 data bits, 4 selector bits (16 classes: 60x1b, 30x2b, ..., 1x60b)



Null Suppression (NS), cont.

[Jeff Dean: Challenges in Building Large-Scale Information Retrieval Systems, Keynote **WSDM 2009**]

Varint (Variable-Length Integers)

[also Byte-Aligned]

- **Base 128 Varint** 0000001 |1111111||<mark>|0</mark>||0000011 .|1111111||<mark>1</mark>|1111111||<mark>0</mark>|0000111 (continuation bits) 511 131071 **Prefix Varint** 1111111 | 00000111 00 000001 11111111 00000111 (2 bit #bytes) 511 131071 **Group Varint** |00000001||11111111||0000001 11111111 |11111111||000000001| 00000011 131071
- Examples:
 - Google Protobuf messages, SQLite custom varint

Zig-Zag Encoding

Map signed integers to unsigned integers to have small varint byte length

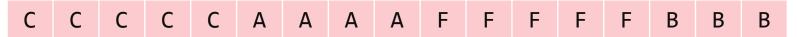
Run-Length Encoding (RLE)

Overview

- Compress sequences of equal values via runs of (value[,start],run-length)
- Redundant 'start' allows parallelization / unordered storage
- Applicable to arbitrary data types (defined equals())

Example

Uncompressed



Compressed

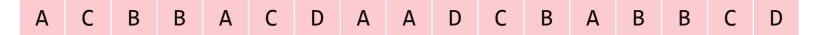
- Different physical encodings for values and lengths:
- E.g., split runs w/ length $\geq 2^{16}$ to fit into fixed 2 byte

Dictionary Encoding (DICT)

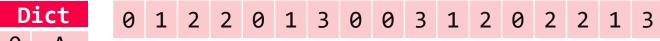
- Overview
 - Build dictionary of distinct items and encode values as dictionary positions
 - Applicable to arbitrary data types → integer codes

Example

Uncompressed



Compressed



0 A

1 C

2 B

3 D

Explicit or implicit (position) codes

Fixed bit width: log₂ |Dict|

Different ordering of dictionary (alphanumeric, frequency)

Dictionary Encoding (DICT), cont.

Order-preserving Dictionaries

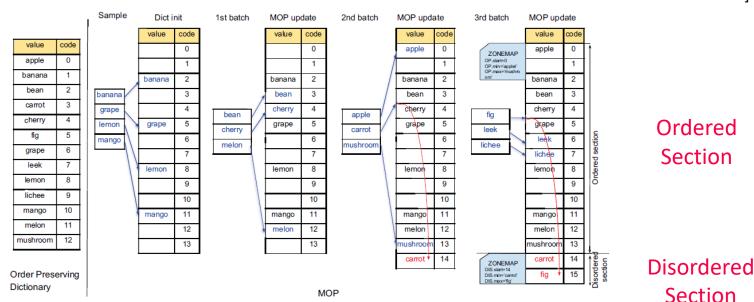
Create sorted dictionary where order(codes) = order(values) [Carsten Binnig, Stefan Hildenbrand, Franz Färber: Dictionary-based order-preserving string compression for main memory column stores. **SIGMOD 2009**]

- Support for updates via sparse code assignment (e.g., 10, 20, 30)
- CS-Array-Trie / CS-Prefix-Tree as encode/decode index w/ shared leafs

Mostly Order-preserving Dictionaries

Ordered and disordered dictionary sections

[Chunwei Liu et al: Mostly Order Preserving Dictionaries. ICDE 2019]



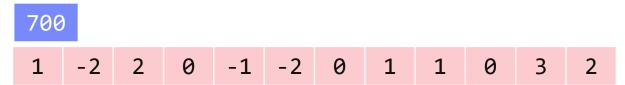
Frame of Reference Encoding (FOR)

- Overview
 - Compress values by storing delta (difference) to reference value
 - Mostly integer types → smaller integer domain

Example

Uncompressed

Compressed



Cannot handle trends very well

Delta Encoding (DELTA)

Overview

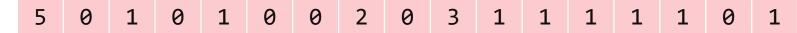
- Compress values by storing delta (difference) to previous value
- Mostly integer types (good when sorted) → smaller integer domain
- Dedicated techniques for differences of file contents (diff/git)

Example

Uncompressed

5	5	6	6	7	7	7	9	9	12	13	14	15	16	17	17	18

Compressed



- Delta
- Double Delta (differences of differences)

Can create RLE opportunities for linear trend

Patched Compression Methods (PFOR)

- Patched Frame of Reference (PFOR)
 - Store positive offsets to reference value

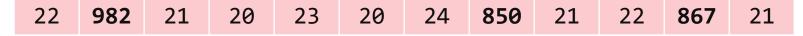
[Marcin Zukowski, Sándor Héman, Niels Nes, Peter A. Boncz: Super-Scalar RAM-CPU Cache Compression. **ICDE 2006**]

- Exceptions in uncompressed form (accessible via entry points and offsets to next exception)
- Branchless two-pass decoding

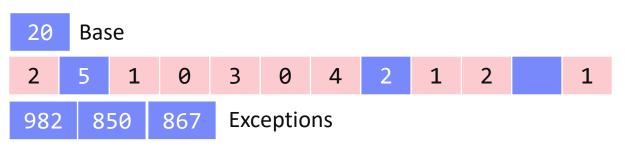
Example

Uncompressed

Outliers would destroy fixed-width codes



Compressed



Patched Compression Methods (Others)

PFOR-DELTA

 Apply cascade of DELTA – PFOR (PFOR on differences) [Marcin Zukowski, Sándor Héman, Niels Nes, Peter A. Boncz: Super-Scalar RAM-CPU Cache Compression. **ICDE 2006**]

Handling of exceptions to handle large differences of subsequent values

Patched Dictionary Compression (PDICT)

- Dictionary encoding, where only frequent values are encoded
- Exceptions for infrequent values, previous/new dictionary per block
- Reduces dictionary size

Removes long tail of infrequent distinct items from dictionary

Excursus: SIMD Implementation

- How to reduce overhead of (de)compression?
 - Vectorization of (de)compression by SIMD instructions
 - (De)compress several data elements at once
 - Main driver of research on database-centric lightweight compression for years
- SIMD-BP128

[Daniel Lemire, Leonid Boytsov: Decoding billions of integers per second through vectorization.

Softw. Pract. Exp. 45(1) (2015)]

- Targets compression of 32-bit ints using Intel's SSE with 128-bit vectors (16 byte)
- Sub-divide integer sequence into blocks of 128 integers
- Determine maximum bit width in a block by bitwise OR
- Pack all integers in a block using that number of bits
- Dedicated vectorized (un)packing routine for each bit width
- Store bit width in [0, 32] as one byte, combine 16 of those in memory

bit widths: 16x 1 byte block 0 (1 bit/int) block 1 (0 bit/int)

block 15 (3 bit/int)

Comparative Evaluation

Experimental Survey

- Different data characteristics
- Compression methods:

DELTA, RLE, FOR, RLE, DICT, SIMD-BP128, SIMD-FastPFOR, 4-Wise NS, 4-Gamma, Masked VByte, Simple-8b, SIMD-GroupSimple

Cascades of compression methods

[Patrick Damme, Dirk Habich, Juliana Hildebrandt, Wolfgang Lehner: Lightweight Data Compression Algorithms: An Experimental Survey (Experiments and Analyses). **EDBT 2017**]

"[...] there is no single-best lightweight integer compression algorithm. The compression rates and performances of all algorithms differ significantly, depending on the data characteristics and the employed SIMD extension."

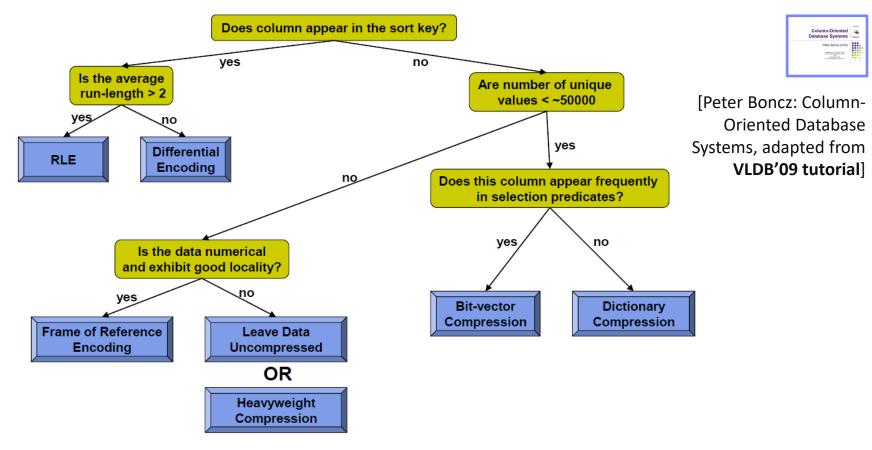
Towards a Cost-based Selection

- Logical and physical level
- Cost estimation functions

[Patrick Damme, Annett Ungethüm, Juliana Hildebrandt, Dirk Habich, Wolfgang Lehner: From a Comprehensive Experimental Survey to a Cost-based Selection Strategy for Lightweight Integer Compression Algorithms.

ACM Trans. Database Syst. 44(3) 2019]

Selecting Compression Methods

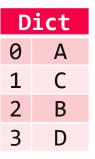


Inspired by C-Store Compression Paper [Daniel J. Abadi, Samuel Madden, Miguel Ferreira: Integrating compression and execution in column-oriented database systems. **SIGMOD 2006**]

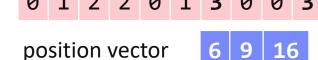
Compressed Query Processing

Selection Predicates

- Equivalence Predicates σ_{attr='D'}(R)
 - DICT: code lookup



 $D \rightarrow 3$



RLE: return RLE runs

C 5 A 4 D 5 F	2
---------------	---

- Range Predicates σ_{3<a<7} (R)
 - #1 sort the dictionary by value (insert tradeoff)
 - #2 expand small integer domains + dictionary lookup (e.g., $\sigma_{a=4 \text{ V a=5 V a=6}}$ (R))
 - #3 decompress otherwise

Selection Predicates, cont.

Order Preserving Dictionaries

- Direct support for range predicates on encoded data
- Support for LIKE predicates (suffix)

[Carsten Binnig, Stefan Hildenbrand, Franz Färber: Dictionary-based order-preserving string compression for main memory column stores. **SIGMOD 2009**]

String-dictionary (order preserving)

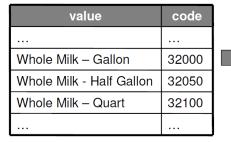
value	code
Whole Milk - Gallon	32000
Whole Milk - Quart	32100

Product column (encoded)

rid	p_name
1	32000
499	32100

Query (original):

Select SUM(o_total), p_name
 From Sales, Products
Where p_name='Whole Milk*'
 Group by p_name



rid	p_name
499	32100
500	32000
999	32050

Query (rewritten):

Select SUM(o_total), p_name
From Sales, Products
Where p_name ≥ 32000
And p_name ≤ 32100
Group by p_name

Grouping and Aggregations

Basic Hash Aggregates

- Grouping directly with compressed codes
- DICT, FOR, RLE, etc

Dict						
0	Α					
1	C					
2	В					
3	D					

Has	h Table
0	Agg A
3	Agg D
1	Agg C
2	Agg B

0	1	2	2	0	1	3	0	0	3	1	2	0	2	2	1	3
	_	_	_		_					_	_			_	_	

- RLE sum → agg += run-length*run-value
- RLE min \rightarrow agg = min(agg, run-value)
- FOR sum → for all codes: agg += code; agg += |codes| * base-value

Joins

Overview Compressed Joins

- (Equi-)Joins directly over compressed data
- Beware: binary operation
 → encodings need to match (global code)
- Recoding of one of the inputs if necessary (e.g., DB2 BLU recode inner)

		RID=	SID	
R	RID		SID	S
	9		7	
	1		3	
	7		1	
iı	nner	M	9	
 			7	
sma	inner ller)		oute	er

Encoding-Specific Aggregation

- One input RLE: decompress other and output RLE encoded data
- One input bitvector: decompress other and output RLE encoded data (obtained from bitvector)

Abstractions for Simpler Code

Motivation

- Code complexity for combinations of encoding schemes
- Affects all operators → maintenance operators/compression schemes
- Compressed Block Properties

[Daniel J. Abadi, Samuel Madden, Miguel Ferreira: Integrating compression and execution in column-

- isOneValue(): block contains just oriented database systems. SIGMOD 2006]
 one value and many positions for that value
- isValueSorted(): all values of the block are sorted
- isPosContig(): block contains consecutive subset of column
- Iterator Access:
 getNext(), asArray()
- Block Information: getSize(), getStartValue(), getEndPosition()

Encoding Type	Sorted?	1 value?	Pos. contig.?
RLE	yes	yes	yes
Bit-string	yes	yes	no
Null Supp.	no/yes	no	yes
Lempel-Ziv	no/yes	no	yes
Dictionary	no/yes	no	yes
Uncompressed	no/yes	no	no/yes

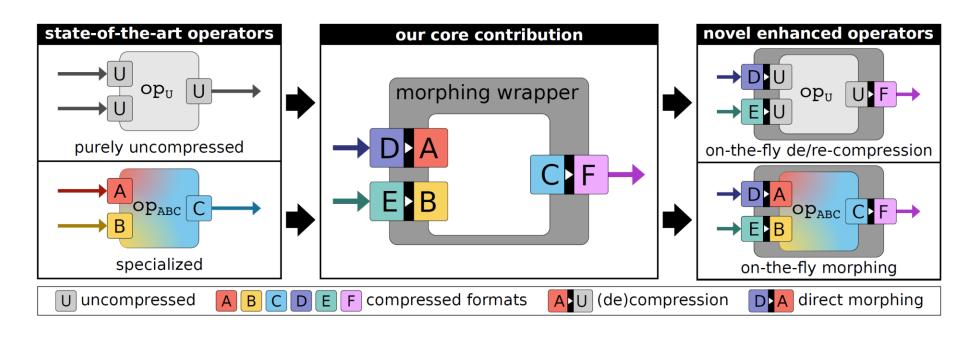
Abstractions for Simpler Code, cont.

Motivation

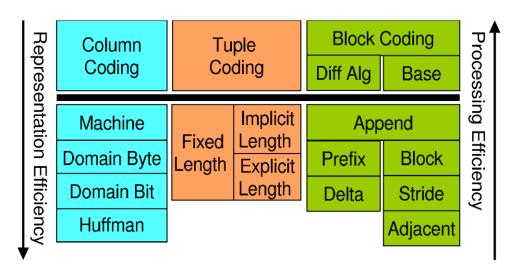
Improve query performance by (re)compressing intermediates [Patrick Damme, Annett Ungethüm, Johannes Pietrzyk, Alexander Krause, Dirk Habich, Wolfgang Lehner: MorphStore: Analytical Query Engine with a Holistic Compression-Enabled Processing Model.

PVLDB 13(11) 2020]

Change from one compressed format to another



Data Layout – Compression Granularity



[Allison L. Holloway, Vijayshankar Raman, Garret Swart, David J. DeWitt: How to barter bits for chronons: compression and bandwidth trade offs for database scans. **SIGMOD 2007**]

"All the results have shown that the Huffman coded and delta coded formats compress better but normally take more CPU time. [...] When I/O and memory subsystem times are also included in the decision, the format to choose becomes less clear-cut. If a physical format optimizer or system administrator had this information and a fast scan generator, they could make a more informed choice as to the best way to store the data."

Column Coding

Select encoding for individual attributes (column values) – tradeoffs

Tuple Coding

Combine column codes into tuple codes (fixed, variable)

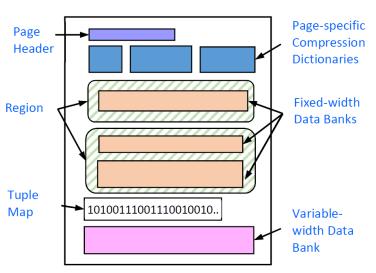
03 Buffer Pool Management

Block Coding

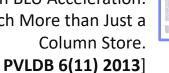
Compress a sequence of tuples into a compressed block (concat, diff)

Data Layout – Example Block Layouts

DB2 BLU

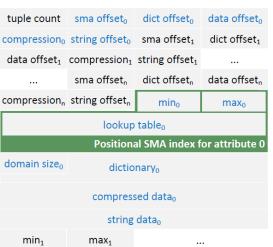


[Vijayshankar Raman et al: DB2 with BLU Acceleration: So Much More than Just a



Data Blocks

03 Buffer Pool **Management** 04 Index Structures and **Partitioning 07 Query Compilation** and Parallelization



[Harald Lang: Data Blocks: Hybrid **OLTP** and **OLAP** on Compressed Storage using both Vectorization and Compilation. **SIGMOD 2016**]

DB-Compression Beyond Relational Databases

Information Retrieval

- (web) search engines
- Inverted index, postings lists (sorted lists of document ids)

Time Series

- Internet of Things, sensor networks, server/application metrics, etc.
- Sequences of data points (measurement + time)

Machine Learning

- Various application fields
- Matrices/tensors of various characteristics

Graph Databases

- Social networks, road networks, proteins, etc.
- Graphs represented as adjacency lists, matrices

Also benefit from the compression techniques discussed today

Summary and Q&A

- Motivation and Terminology
- Compression Techniques
- Compressed Query Processing
- Next Lectures (Part B)
 - 06 Query Processing (operators, execution models)
 - 07 Query Compilation and Parallelization
 - 08 Query Optimization (rewrites, costs, join ordering)
 - 10 Adaptive Query Processing

