
cbe

T. Grust et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 1

Efficient Data-Parallel Cumulative Aggregates for
Large-Scale Machine Learning

Matthias Boehm1, Alexandre V. Evfimievski2, Berthold Reinwald3

Abstract: Cumulative aggregates are often overlooked yet important operations in large-scale
machine learning (ML) systems. Examples are prefix sums and more complex aggregates, but also
preprocessing techniques such as the removal of empty rows or columns. These operations are
challenging to parallelize over distributed, blocked matrices—as commonly used in ML systems—due
to recursive data dependencies. However, computing prefix sums is a classic example of a presumably
sequential operation that can be efficiently parallelized via aggregation trees. In this paper, we describe
an efficient framework for data-parallel cumulative aggregates over distributed, blocked matrices.
The basic idea is a self-similar operator composed of a forward cascade that reduces the data size by
orders of magnitude per iteration until the data fits in local memory, a local cumulative aggregate over
the partial aggregates, and a backward cascade to produce the final result. We also generalize this
framework for complex cumulative aggregates of sum-product expressions, and characterize the class
of supported operations. Finally, we describe the end-to-end compiler and runtime integration into
SystemML, and the use of cumulative aggregates in other operations. Our experiments show that this
framework achieves both high performance for moderate data sizes and good scalability.

Keywords: Cumulative Aggregates, ML Systems, Large-Scale Machine Learning, Data-Parallel
Computation, Apache SystemML

1 Introduction

Large-Scale ML Systems: Machine learning (ML) and artificial intelligence in general are
transforming our lives from recommendations and driving assistants to finance, health care,
and enterprise ML. Large data collections are essential for learning these ML models [Co09;
Da10], especially for complex models with many parameters. Thanks to feedback loops
for label acquisition like active learning [CAL94; CGJ94; RMJ06] and weak supervision
techniques [Ra16; Tr18], there is also abundant labeled data. These large labeled data
collections in turn necessitate large-scale ML systems with the ability for distributed
computation whenever necessary. State-of-the-art large-scale ML systems, therefore, follow
either of two predominant distributed architectures: data-parallel operations for batch
algorithms, often on top of data-parallel computation frameworks such as MapReduce
[DG04], Spark [Za12], or Flink [Al14]; or parameter servers for mini-batch algorithms
1 Graz University of Technology, Graz, Austria, m.boehm@tugraz.at
2 IBM Research – Almaden, San Jose, USA, evfimi@us.ibm.com
3 IBM Research – Almaden, San Jose, USA, reinwald@us.ibm.com

https://creativecommons.org/licenses/by-nc/3.0/
m.boehm@tugraz.at
evfimi@us.ibm.com
reinwald@us.ibm.com

2 Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald

[De12]. In SystemML [Bo14; Bo16], we support the general case of local and distributed
data-parallel operations, task-parallel parfor loops, as well as local and distributed parameter
servers, which can be seamlessly combined in a high-level language with R-like syntax.

Cumulative Aggregates: While data-parallel matrix multiplication [Bo16; Gh11; HBY13;
Ro17; YSC15; Yu17], element-wise operations and aggregations [Bo18], meta learning
[Sc15], and statistical functions [TTR12] have received lots of attention, important and
challenging distributed operations like cumulative aggregates are largely overlooked in the
literature. An example is the computation of column-wise prefix sums via

Z = cumsum(X) with Zi j = Σ
i
k=1Xk j = Xi j + Z(i−1)j, (1)

where Z and X are n × m matrices, and output cells Zi j are defined as the column-
wise sum from 1 through i, or recursively (with Z0j = 0). Other common cumulative
aggregates include cummin(X), cummax(X), cumprod(X) for cumulative minima, maxima,
and products. Applications of cumulative aggregates include (1) iterative algorithms for
survival analysis such as Cox hazard regression or Kaplan-Meier, (2) spatial and structural
data processing via linear algebra, and (3) data preprocessing such as the sub-sampling of
rows or the removal of empty rows, which both internally rely on cumulative aggregates.

Parallel Cumulative Aggregates: Although the recursive formulation in Equation (1)
seems inherently sequential, computing prefix sums is a classic example of an operation
that allows for efficient parallelization via aggregation trees [Bl93; CBZ90]. The basic
idea is a logical tree over the input data, level-wise parallel aggregation (up sweep) and
redistribution of offsets (down sweep) to compute the final output. This general approach of
parallel cumulative aggregates is broadly applicable, but the integration into large-scale ML
systems—with unordered distributed datasets—has received little attention so far.

Contributions: Our primary contribution is a holistic description of a framework for
distributed, data-parallel cumulative aggregates and its integration in Apache SystemML,
which is representative for state-of-the-art, large-scale ML systems:

• Background: In Section 2, we provide background on SystemML’s compiler and
matrix representations, and introduce straw-man solutions for cumulative aggregates.

• DistCumAgg Framework: In Section 3, we then describe our self-similar framework
for distributed cumulative aggregates. Besides basic aggregates, we also introduce
complex cumulative aggregates for common sum-product recurrence expressions.

• System Integration: Furthermore, in Section 4, we describe the end-to-end compiler
and runtime integration of the DistCumAgg framework in SystemML, and the use of
cumulative aggregates in other operations such as the removal of empty rows.

• Experiments: Finally, in Section 5, we report on experiments in SystemML, including
baseline comparisons with R, Julia, and MPI, micro benchmarks, as well as scalability
experiments with increasing data and cluster sizes.

Data-Parallel Cumulative Aggregates 3

2 SystemML Preliminaries

To provide the necessary background of large-scale ML systems for data-parallel operations,
we first describe Apache SystemML’s [Bo14; Bo16] compiler and distributed matrix
representations. Subsequently, we introduce straw-man cumulative aggregates at script level
and give an overview of support for cumulative aggregates in other ML and DB systems.

Script Compilation: SystemML provides a high-level language with R-like syntax to
express algorithms via linear algebra such as matrix multiplications, aggregations, and
statistical functions. These scripts are parsed into a hierarchy of statement blocks, delineated
by control flow. For each basic block, we then compile directed acyclic graphs (DAGs) of
high-level operators (HOPs) and perform various simplification rewrites. Size information
is propagated from the inputs over the entire program and bottom-up through these HOP
DAGs to compute memory estimates per operation. These estimates—together with driver
and executor memory budgets—are in turn used to select physical operators for local and
distributed operations, which eventually yield an executable runtime plan. For this purpose,
we provide single-node CP (control program), as well as distributed Spark and MapReduce
operators for all supported operations4 and computation primitives.

Distributed Matrix Representation: Large-scale ML systems for data-parallel operations
commonly rely on blocked matrix representations, where matrices are stored as distributed
collections of block indexes and fixed-size blocks [Bo16; Lu17; Ma16; Ro17; Yu17; Za16].
Individual blocks—also known as tiles [HBY13; ZHY09] or chunks [St11]—are then stored
in dense, sparse, or ultra-sparse formats. The use of squared b × b blocks (e.g., with block
size b = 1K in SystemML) works very well in practice because it ensures aligned blocks
during join processing and aggregations independent of the join dimension, transpose
operations can be computed in a block-local manner, and even dense blocks (8 MB) still fit
in L3 cache, while block overheads are usually amortized across many values. For local CP
operations, the entire matrix is represented as a single block to reuse runtime operations,
avoid unnecessary overheads, and simplify local operations.

Straw-man Cumulative Aggregates: ML systems with language support for loops and
indexing can emulate cumulative aggregates at script level. In fact, we used these alternatives
in various SystemML use cases before we added built-in support in 2014. Figure1 shows
two examples that both compute cumulative column sums B of an n × m input matrix A.
We will use these straw-man implementations for baseline comparisons. Although both
functions perform only O(nm) additions, they have very different characteristics and thus, it
is useful to understand the resulting time complexity. First, cumsumN2 is the most obvious
implementation, where we maintain a row vector of column sums csums as we make a
single pass over the input and output matrices. However, due to copy on write semantics,
each row-wise matrix left-indexing B[i,]= internally copies the entire matrix B, which
results in O(n2m) time complexity. Due to the absence of loop-carried dependencies over

4 There are few exceptions such as specific solvers and deep neural network operations for which distributed
operations are rarely necessary and thus, not yet supported.

4 Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald

 1: cumsumN2 = function(Matrix[Double] A)
 2: return(Matrix[Double] B)
 3: {
 4: B = A; csums = matrix(0,1,ncol(A));
 5: for(i in 1:nrow(A)) {
 6: csums = csums + A[i,];
 7: B[i,] = csums;
 8: }
 9: }

 1: cumsumNlogN = function(Matrix[Double] A)
 2: return(Matrix[Double] B)
 3: {
 4: B = A; m = nrow(A); k = 1;
 5: while(k < m) {
 6: B[(k+1):m,] = B[(k+1):m,] + B[1:(m‐k),];
 7: k = 2 * k;
 8: }
 9: }

Fig. 1: Straw-man Cumsum Functions (amenable to update-in-place).

B, this pattern qualifies for update in-place (with O(nm)), but only for local, in-memory
operations whereas distributed RDDs are always immutable. Second, cumsumNlogN aims to
overcome this issue by using a trick of shifted addition and exponentially increasing k, which
results in a time complexity of O(n log n · m) with copy on write. This shifting is similar to
the data-parallel plus-scan by Hillis and Steele [HS86]. For local operations, SystemML
again uses update-in-place because the data dependencies between right- and left-indexing
correctly serialize the reads and writes on B. Finally, both script-level alternatives were
unsatisfactory in practice—especially for distributed operations—which motivated the
support for local and distributed built-in operations in SystemML.

Cumulative Aggregates in ML Systems: Numerical computing frameworks such as R,
Matlab, and Julia all support cumsum(X), cummin(X), cummax(X), cumprod(X), while
NumPy provides only cumsum(X) and cumprod(X). For handling matrix inputs, Matlab,
Julia, and NumPy use overloaded functions that specify the aggregation dimension with
mostly column-wise defaults. In contrast, R users explicitly apply vector operations, for
example, via apply(X, 2, cumsum) for computing column-wise prefix sums. R also provides
parallel apply functions, but they require X to fit in memory of a single node. In contrast,
SystemML provides built-in support for local and distributed cumulative aggregates, as well
as complex aggregates like cumsumprod(X), which we will discuss in Section 3.3.

Cumulative Aggregates in SQL: Given the importance in practice, we further review
support for cumulative aggregates in SQL. Besides naïve approaches via self-joins and
recursive formulations, the most practical approach is based on window functions as
introduced in SQL:2003’s OLAP operations [Me03]:

SELECT Rid, V, sum(V) OVER(ORDER BY Rid) AS cumsum FROM X

which defaults to a row range of ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.
While cumulative aggregation with a running sum—as used in PostgreSQL [Le15]—works
well for this scenario, Leis et al. further introduced a so-called segment tree to avoid
unnecessary redundancy for semi-additive aggregation functions like min and max over
variable-sized frames [Le15]. Interestingly, this segment tree is very similar to the concept
of aggregation trees from the HPC literature [Bl93; CBZ90]. In contrast to these settings
with ordered input data and direct access, we focus on data-parallel cumulative aggregates.

Data-Parallel Cumulative Aggregates 5

(4,1)

(1,1)

local
fcumagg

(1,2)

(2,1) (2,2)

(3,1) (3,2)

(4,1) (4,2)

(5,1) (5,2) (1,1) (1,2)

(6,1) (6,2) (2,1) (2,2) (1,1) (1,2) (1,1) (1,2)
fagg

fagg

Input Matrix
18 x 5, block size 3

Output Matrix
18 x 5, block size 3

fcumagg

foff

foff

fcumagg

(1,1) (1,2)

(2,1) (2,2)

(1,1) (1,2)

(2,1) (2,2)

(3,1) (3,2)

(4,2)

(5,1) (5,2)

(6,1) (6,2)

collect distribute

Forward Cascade (k iterations) Backward Cascade (k iterations)

(cached)

 block index

 matrix cell
 matrix block

Fig. 2: Overview of the Distributed Cumulative Aggregate Framework (with k=2).

3 Data-Parallel Cumulative Aggregates

In this section, we describe DistCumAgg a framework for distributed, data-parallel cumu-
lative aggregates. We first give an overview of the generic framework and subsequently
discuss basic and complex cumulative aggregates as instantiations of this framework.

3.1 DistCumAgg Framework Overview

Framework Design: A major goal of our DistCumAgg framework is a seamless integration
with blocked matrix representations, and hybrid runtime plans of local and distributed
operations. At the same time, we do not make assumptions about the size of inputs or
intermediates. The key idea to accomplish that is a self-similar operator chain as shown
in Figure 2, consisting of a forward cascade of aggregations until the data fits into driver
memory, a local cumulative aggregate over aggregates, and a backward cascade to produce
the final result. Self-similarity allows for arbitrary lengths of cascades k (aggregates of
aggregates) and the reuse of local cumulative aggregate operators as block operations.

Forward Cascade: Each iteration of the forward cascade applies an aggregation function
fagg to each matrix block to yield a row vector of column aggregates. These aggregates
are then merged into an intermediate blocked matrix by mapping the input block index
(i,j) to row i and column block j. Given typical block sizes of b = 1K, this aggregation
reduces the data size by three orders of magnitude for dense input data. However, the data
might still be too large. We, therefore, perform k iterations until the data fits into the driver
memory. Assuming the aggregate intermediates are dense, estimating the size is simply
done by scaling the input dimensions down by bk . We do not perform these aggregations at
once—as one might consider for optimization—because the intermediates are needed for
the backward pass to ensure data-local operations without data shuffling.

6 Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald

Tab. 1: Instantiation of Basic and Complex Distributed Cumulative Aggregates.

Operation Init fagg foff fcumagg

cumsum(X) 0 colSums(B) B1: = B1: + a cumsum(B)
cummin(X) ∞ colMins(B) B1: = min(B1:,a) cummin(B)
cummax(X) −∞ colMaxs(B) B1: = max(B1:,a) cummax(B)
cumprod(X) 1 colProds(B) X1: = B1: � a cumprod(B)

cumsumprod(X) 0 cbind(cumsumprod(B)n1, B11 = B11 + B12 � a cumsumprod(B)
prod(B:2))

Local Cumulative Aggregate: The output of the last forward iteration is then collected
into a local matrix at the driver, where we perform a local cumulative aggregate fcumagg
over the partial aggregates, yielding cumulative aggregates that can be used as offsets.

Backward Cascade: The backward cascade produces the final results based on the previously
computed aggregates of all iterations and cumulative aggregate of the innermost iteration.
We first parallelize (i.e., distribute) the innermost cumulative aggregate, and then perform k
backward iterations inside-out. Each iteration splits the blocks of cumulative aggregates into
rows and joins this collection with the corresponding input blocks of the forward cascade.
The partial cumulative aggregates are then applied via foff as offsets to the first row of each
data block. Finally, we compute a block-local cumulative aggregate fcumagg to yield the
cumulative aggregate of the given iteration or final result, respectively.

Caching and Broadcasting: Regarding data-flow optimization, there are two simple
techniques that greatly improved performance. First, for Spark distributed operations, we
optionally cache aggregates of the forward cascade in storage level MEMORY_AND_DISK to
avoid lazily recomputing these intermediates and thus, reading the main input multiple times.
Second, to avoid unnecessary shuffling in the backward cascade, we perform a broadcast
join—instead of a repartition join [Bl10]—of the data input and offsets, if the offsets fit into
the broadcast memory budget. Using Spark, this applies to the innermost iteration because
the broadcast variable must fit twice in memory of the driver as the broadcast operation
serializes, compresses, and divides the in-memory object into chunks.

Instantiation: The generic DistCumAgg framework allows instantiating a variety of
distributed cumulative aggregates by assigning concrete functions to fcumagg, fagg and foff.

3.2 Basic Cumulative Aggregates

We now give an overview of instantiating the basic cumulative aggregates cumsum(X),
cummin(X), cummax(X), and cumprod(X) for distributed operations. Table 1 shows the
function mapping, where B refers to a single matrix block of X, a is a row vector of cumulative
aggregates joined to the data block B, and � denotes an element-wise multiplication. Note
that the functions fagg, foff, fcumagg reuse existing unary aggregates, element-wise operations,

Data-Parallel Cumulative Aggregates 7

local
fcumagg

3
6
-1

7
2
5

init

8
4
3

5
1

8

14

15

6

8
14
15
6

8
22
37
43

8

22

37

3
6
-1

15
2
5

30
4
3

42
1

0
3
9
8

15
17
22

30
34
37

42
43X Z

Fig. 3: Example Distributed Cumulative Sum (with k=1, Zi = Xi + Zi−1).

and cumulative aggregates, respectively. Since foff is applied shifted by one block, we
further need initialization values for the first block, which are—by operation semantics—0,
∞, −∞, and 1 for cumsum, cummin, cummax, and cumprod.

Example 1 (Distributed Cumulative Sum) Figure 3 shows a distributed cumsum with
k = 1 iterations. We have an 11 × 1 input matrix, again with block size 3, resulting in
4 blocks. To compute the cumulative sum in a distributed manner, we first compute the
block aggregates and merge them into a single in-memory matrix. Now we can perform
cumsum(A) over the partial aggregates and distribute the intermediate. However, we need
to shift these intermediates by one before the join because we want to use these as offsets
for the next block. Accordingly, the first value is padded by the initialization value (0 for
sum). We apply these offsets via element-wise addition to the first row of each block. Finally,
we compute the block-local cumulative sum to produce the result. If we can broadcast the
partial cumulative aggregates, the entire pipeline does not require any shuffle of the input
matrix but only of partial aggregates, which are significantly smaller than the input.

3.3 Complex Cumulative Aggregates

Apart from basic cumulative aggregates, SystemML also supports the complex cumulative
aggregate cumsumprod that is recursively defined as follows:

Z = cumsumprod(X) = cumsumprod(Y,W) with Zi = Yi +Wi � Zi−1. (2)

Common applications of cumsumprod are weighted (e.g., decayed) cumulative sums and
frame-wise cumulative sums, where any Wi = 0 acts as a frame boundary. The inter-
leaved additions and multiplications seem to complicate preaggregation, but because
multiplication distributes over addition we can still instantiate the DistCumAgg frame-
work as shown in Table 1. Intuitively, we factor out the scaling per block, which allows
again self-similar preaggregation. First, fagg now returns a 1 × 2 matrix computed via
cbind(cumsumprod(B)n1,prod(B:2)). Second, fcumagg remains the local cumsumprod(B)
operation which produces a scalar a per block. And third, we reapply the scaling through
foff via B11 = B11 + B12 � a before the final block-local cumsumprod(B).

8 Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald

local
fcumagg

3
6
-1

7
2
5

init

8
4
3

5
1

0.5

0

4

0.5

8
6
43
3.5

8
6
67
37

8

6

67

3
6
-1

11
2
5

14
4
3

72
1

0
3
9
8

11
2
6

14
32
67

72
37

0.5
1
1

0.5
0

0.5

1
2
2

1
0.5

8

6

43

3.5

0.5
0
4

0.5

0.5
1
1

0.5
0

0.5

1
2
2

1
0.5

X =
(Y,W) Z

Fig. 4: Example Distributed Cumulative Sum-Product (with k=1, Zi = Yi +Wi � Zi−1).

Data-Parallel Computation: To fit into the DistCumAgg framework for data-parallel
operations, we restrict cumsumprod(X) to the special case where X is an n × 2 matrix that
concatenates the column vectors Y and W. This restriction ensures that all cumulative
aggregates are unary operations and that related entries in Y and W appear in the same
block, which enables efficient, block-local operations.

Example 2 (Distributed Cumulative Sum-Product) Figure 4 shows a distributed cum-
sumprod with k = 1 iterations. Similar to Example 1, the input matrix has 11 rows, block
size 3, and thus, 4 blocks. The second column is the weight vector W. For a distributed
cumsumprod, we first compute a 1 × 2 aggregate per block, holding cumsumprod(B)n1
and prod(B:2). These aggregates are merged into a local matrix on which we apply a
cumsumprod to yield a vector of scaling factors. The factors a are then applied to the first
element of respective blocks via B11 = B11 + B12 � a for computing the final result Z.

3.4 Characterization of Applicable Operations

Following the instantiation of basic and complex cumulative aggregates, we aim to
characterize the operations that are applicable to our data-parallel DistCumAgg framework.

Theoretical Foundation: The HPC literature has studied the parallel evaluation of recurrence
equations extensively [Bl93; HK77]. Hence, we directly reuse known results from [Bl93]
and impose additional restrictions for our DistCumAgg framework. Given a recurrence
xi = ai ⊕ (bi ⊗ xi−1), it can be efficiently parallelized if (1) ⊕ is associative, (2) ⊗ is semi-
associative (with an associative companion operator) or associative, and (3) ⊗ distributes
over ⊕. These conditions apply to first- and higher-order recurrences.

Additional Restrictions: Efficient, data-parallel computation over blocked matrices, and
the integration into our self-similar framework further require two restrictions:

• No Higher-Order Recurrences: Due to limited data access across blocks, higher-order
recurrences such xi = ai ⊕ xi−1 ⊕ xi−2 are disallowed. We also limit the number of
inputs to less or equal the block size to ensure co-partitioning of inputs.

Data-Parallel Cumulative Aggregates 9

• Vectorized Operations: We require that ⊕ and ⊗ have existing aggregate and element-
wise operations, which enables the composition from existing block operations.

Strength Reduction: Note that cumsumprod(X) uses cumsumprod(B)n1—i.e., the last block
entry—as part of fagg. Similarly, for cumsum(X), we could use cumsum(B)n:. However,
this simplifies to colSums(B), which avoids materializing the cumsum output block.

4 System Integration

A robust and holistic system integration faces additional requirements. In this section, we
discuss the end-to-end compiler and runtime integration of our DistCumAgg framework
into SystemML as well as the use of cumulative aggregates in other operations.

4.1 Compiler and Runtime Integration

After script parsing and validation, a cumulative aggregate is represented by a single
high-level operator (HOP), specifically a typed unary operator like u(cumsum). This HOP
is then compiled into plans of physical operators as follows.

Simplification Rewrites: At HOP-level, we perform multiple rounds of size propagation and
simplification rewrites. First, during intra- and inter-procedural analysis, we infer the output
sizes of cumulative aggregates by propagating the input dimensions and assuming dense
outputs. Second, we apply the following simplification rewrites in terms of transformation
rules, which avoid unnecessary intermediates and data shuffling in distributed environments:

rev(cumsum(rev(X))) → X + colSums(X) − cumsum(X)
colSums(cumsum(X)) → colSums(X � seq(nrow(X),1))

X � cumsum(diag(matrix(1,nrow(X),1))) → lower.tri(X)
cumsum(X) → X iff nrow(X) = 1.

(3)

Examples of static—i.e., size-independent—rewrites are the computation of suffix sums
rev(cumsum(rev(X))) from the prefix sums, as well as the computation of aggregates such
as sum(cumsum(X)) or colSums(cumsum(X)) from entries in X scaled by their inclusion
frequencies. Furthermore, the expression X � cumsum(diag(matrix(1,nrow(X),1))) selects
the lower triangular matrix of a squared matrix X (with nrow(X) = ncol(X)) and thus, can
be extracted via lower.tri(X). In contrast, dynamic rewrites have additional size constraints:
for example, cumsum(X) → X only applies if X is a single-row matrix. Finally, we also
support cumulative aggregates in SystemML’s code generation framework, which similarly
requires size information for costing and validity constraints [Bo18].

Execution Plan Generation: After rewrites, we then use the size information for computing
memory estimates. Compared to the local memory budget, these estimates are in turn

10 Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald

High-Level
Operator
(HOP)

Low-Level
Operators
(LOPs)

 1: ...
 2: SP ucumack+ _mVar1 _mVar2
 3: CP ucumk+ _mVar2 _mVar3 24 T
 4: CP rmvar _mVar2
 5: SP bcumoffk+ _mVar1 _mVar3 _mVar4 0 T
 6: CP rmvar _mVar1 _mVar3
 7: ...

Runtime Plan

XX

u(cumsum)

u(cumsum) cumagg

cumoff

SP, k+

SP, k+,
broadcast

broadcast

#threads
in-place

 CP, 24,
in-place

Fig. 5: Compilation Chain of Cumulative Aggregates.

used for execution type selection of local (CP) or distributed Spark (SP) operations. A CP
operation maps to a multi-threaded physical operator, while an SP operation maps to a DAG
of operators as shown in Figure 5. For a single-iteration cumsum(X), we compile a unary SP
cumagg, a CP cumsum, and a binary SP cumoff. These operators are annotated with the
execution types, operation types (e.g., Kahan addition [TTR12]) and additional flags like
broadcasting, number of threads, and in-place updates. This LOP DAG may also include
checkpoints for caching if needed. In case of nrow(X) ≤ b, we compile only a cumoff
of X and a constant vector because the single row block does not require offsets. Finally,
we generate runtime instructions from the LOP DAG in a depth-first traversal. Based on
live variable analysis, this runtime plan also includes rmvar instructions for cleaning up
temporary intermediates and their lineage-aware broadcasts and RDD variables [Bo16].

Runtime Operators: Important aspects of the runtime integration are the different physical
operators and data transfer between local and distributed operations:

• CP cumsum operator: For local in-memory operations of fcumagg, we provide a
basic operator with copy-on-write semantics. This operator is parameterized with
the specific fcumagg and allows for single- or multi-threaded operations. In case of
multi-threading, we compute offsets similar to the DistCumAgg framework but with
static range partitioning in the number of threads. Optionally, this operator performs
in-place updates—as shown in Figure 5—to avoid the expensive output allocation.

• Spark Partial Cumulative Aggregate: The data-parallel Spark ucumac aggregation
(e.g., ucumack+ in Figure 5) is an operator for performing fagg during the forward
cascade. In detail, this entails (1) a data-local block aggregation into a row of partial
column aggregates, (2) the insertion of this row into its position of an empty target
block, and (3) the global merge of these partial blocks. For memory efficiency and
scalability, partial blocks are communicated in sparse format.

• Spark Cumulative Offset: The data-parallel Spark bcumoff offset aggregation, then
applies the offsets via foff and performs the final block-local fcumagg. Performance is
largely influenced by the join of data and offsets. If configured for broadcast, we use
an efficient broadcast join that avoids data shuffling and overcomes Spark’s limitation
of 2GB broadcasts with partitioned broadcasts [Bo16]. Otherwise, we parallelize the
offsets, split them into rows, and fall back to a repartition join. Similarly, if the data is

Data-Parallel Cumulative Aggregates 11

hash partitioned, we also use a repartition join because Spark exploits the partitioning
for shuffling only offsets [Bo16]. Finally, we perform a zero-copy offset aggregation
during fcumagg to avoid an additional copy-on-write, and thus, GC overheads.

The data transfer between CP and Spark operations is handled through SystemML’s
bufferpool [Bo16]. For example, each CP operation pins its inputs via acquireRead, which
under the covers evaluates pending RDD operations and collects the output. To reduce
latency, we overlap the RDD evaluation with the allocation of the local matrix.

4.2 Cumulative Aggregates in Other Operations

Cumulative aggregates are not just versatile tools at script level but also used as key primitives
in other operations with complex dependencies. Examples are the removal of empty rows or
columns via removeEmpty, the subsampling of rows and columns via permutation matrix
multiplication, and the computation of cumulative distribution functions.

Semantics of removeEmpty: We use removeEmpty as an example. For instance, the expres-
sion removeEmpty(target=X, margin="rows", select=rowSums(X!=0)>=thrU) removes
users—i.e., rows—with too few ratings (< thrU) from a ratings matrix X in preparation for
matrix factorization. Generally, removeEmpty selects non-empty rows or columns, or if a
select vector is provided all rows or columns whose vector entry is non-zero.

Data-Parallel removeEmpty: Parallelizing removeEmpty is challenging over distributed,
blocked matrices because the decision on the removal of a row depends on all columns of
this row, and the output position of a row depends on the removal decisions of all previous
rows. However, with cumulative aggregates, parallelization becomes simple. To explain this,
we decompose removeEmpty into separate phases. Local operations exploit sparse formats
and early-out opportunities, but here we focus on data-parallel operations only:

• Selection Vector Computation (No-op if user-provided): For distributed data-parallel
operations, we simply compile distributed rowMaxs(X , 0) or colMaxs(X , 0)
operations, respectively. These operations result in a 0/1 indicator vector s.

• Row/Column Selection: Subsequently, we want to select rows/columns from the
blocked representation of X according to s into the blocked representation of the
output. The key to accomplish that is a potentially distributed r = cumsum(s), where
ri holds the output position of the ith input row. This is similar to parallel packing
of selected elements [CBZ90] and filtering through compaction [Ho05]. Finally, we
simply reshuffle and merge relevant rows/columns into the target representation.

During compilation of removeEmpty, we construct a temporary HOP DAG including
u(cumsum) to prepare the r vector. This way, we reuse the entire compiler and runtime inte-
gration described in Section 4.1 including hybrid runtime plans and internal optimizations.

12 Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald

5 Experiments

Our experiments study both local and distributed cumulative aggregates. First, we compare
SystemML with numerical computing frameworks such as R and Julia for singlenode
operations. Second, we investigate the scalability of distributed cumulative aggregates,
including the impact of internal optimizations, and a comparison with MPI.

5.1 Experimental Setting

Cluster Setup: We ran our experiments on a commodity 2+10 node cluster of two head
nodes, and 10 worker nodes. All nodes have two Intel Xeon E5-2620 CPUs @ 2.1 GHz-
2.5 GHz (24 virtual cores), 128 GB DDR3 RAM @ 1.3 GHz, six 3 TB disks, 1Gb Ethernet,
a nominal peak memory bandwidth of 2 × 43 GB/s, and run CentOS Linux 7.2. We used
OpenJDK 1.8.0_151, Hortonworks 2.5, Apache Hadoop 2.7.3, and Apache Spark 2.3.1, in
yarn-client mode, with 10 executors, 19 cores per executor, 40 GB driver memory, 60 GB
executor memory, and default memory fractions (0.5/0.6), which results in an aggregate
cluster memory for data between 10 · 60 GB · 0.5 = 300 GB and 360 GB.

Baselines and Data: Our baselines are cumsum built-in operations and the straw-man
scripts from Figure 1 in SystemML 1.2++ (12/2018) [Bo16], Julia 0.7 [Be17], and R 3.5, as
well as a C-based MPI baseline using OpenMPI 3.1.3. All systems use double precision (i.e.,
FP64); SystemML is configured with a default block size of b = 1K and a local memory
budget of 70% of the maximum heap size. Finally, we use synthetic data for studying these
baselines on a variety of scenarios with different data sizes.

5.2 Baseline Comparison

In a first set of experiments, we compare the script-level straw-man implementations and
built-in support in SystemML, R, and Julia to provide a baseline for distributed operations.
We use a single worker node, with -Xmx96g -Xms96g -server for SystemML, unlimited
memory for R and Julia, and we report the average runtime of 100 operations.

Increasing Data Size: For a basic comparison, we fix the number of columns as m = 256
and systematically increase the number of rows. Figure 6 shows the results with log-scaled
axes. First, although cumsumN2 and cumsumNlogN are amenable to update-in-place5, these
script level functions are one to two orders of magnitude slower than the built-in functions.
Here, cumsumNlogN shows higher overhead than cumsumN2 due to larger intermediates.
However, without update-in-place rewrite in SystemML, cumsumNlogN largely outperforms
cumsumN2 (e.g., 0.9 s vs. 86.7 s for 10K rows). Second, Julia performs best on cumsumN2

5 SystemML and R have copy-on-write semantics but apply update-in-place via rewrites and reference counting.
In contrast, Julia uses update-in-place by default and requires an explicit B = copy(A) if this is not desired.

Data-Parallel Cumulative Aggregates 13

1K 10K 100K 1M

SystemML
Julia
R

1

10

100

1000

10000

100000

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Number of Rows

#Cols: 256

(a) Script cumsumN2

1K 10K 100K 1M

SystemML
Julia
R

1

10

100

1000

10000

100000

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Number of Rows

#Cols: 256

(b) Script cumsumNlogN

1K 10K 10K 1M

SystemML
Julia
R

1

10

100

1000

10000

100000

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Number of Rows

#Cols: 256

(c) Built-in cumsum

Fig. 6: Cumsum Performance with Increasing Number of Rows, Constant Number of Columns.

10 100 1K 10K

SystemML
Julia
R

200

500
1000
2000

5000
10000
20000

50000
100000

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Number of Columns

#Cells: 64M

(a) Script cumsumN2

10 100 1K 10K

SystemML
Julia
R

200

500
1000
2000

5000
10000
20000

50000
100000

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Number of Columns

#Cells: 64M

(b) Script cumsumNlogN

10 100 1K 10K

SystemML
Julia
R

200

500
1000
2000

5000
10000
20000

50000
100000

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Number of Columns

#Cells: 64M

(c) Built-in cumsum

Fig. 7: Cumsum Performance with Increasing Number of Columns, Decreasing Number of Rows.

and cumsumNlogN because for SystemML and R, instruction interpretation overhead
constitutes a bottleneck at n = 256 columns. Third and most importantly, the built-in
functions of SystemML, and Julia show very similar performance, while R has additional
overhead for its column-wise apply. SystemML slightly outperforms Julia due to multi-
threaded operations, which are, however, dominated by result allocation.

Varying Matrix Shape: To validate the observation of high instruction interpretation
overheads, Figure 7 shows the results for a constant data size of 64M cells (512 MB) but
increasing number of columns (and thus, decreasing number of rows). First, Figure 7(c) shows
that all built-in functions are rather invariant to the number of columns. Second, Figures 7(a)
and 7(b) show that SystemML’s and R’s performance increases with increasing number of
columns and thus decreasing number of operations, which is especially pronounced for
cumsumN2 (Figure 7(a)) where the number of operations is linear in the number of rows. In
fact, SystemML outperforms R and Julia for these script-level algorithms if the number of
columns is sufficiently large. Surprisingly, Julia shows a slowdown with increasing number
of columns, especially for cumsumNlogN, which is likely due to GC overheads.

In-Place Operations: For the sake of a better understanding of builtin operations perfor-
mance, Figure8(a) shows the impact of multi-threading and in-place updates, as well as
a break-down of computation times. Here, ST/MT stand for single- and multi-threading,

14 Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald

R Julia ST MT STi MTi

Compute
Allocate

0

100

200

300

400

500

600

700

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Baselines and Op Configurations

1.9s

Dims: 64K x 1K

(a) In-Place Operations (512 MB)

64 128 256 512 1024 2048

SystemML broadcast
SystemML repartition
SystemML co−partition

1

10

100

1000

10000

Ex
ec

ut
io

n
Ti

m
e

[s
]

Block Size (per dimension)

default

#Rows: 10M
#Cols: 2K

(b) Impact of Broadcasting and Block Sizes

Fig. 8: Impact of Multi-Threading, In-place Updates, Broadcasting and Block Sizes.

while the i-suffix indicates in-place updates. Multi-threading improves the compute time by
4.7x, but its runtime is then dominated by result allocation. Hence, in-place operations—as
applied between forward and backward cascade—further significantly improve performance.

5.3 Impact of Broadcasting and Block Sizes

In a second set of experiments, we evaluate distributed cumulative aggregates in SystemML
for the common scenario of dense matrices that fit in aggregate cluster memory and require
only k = 1 iterations. We use a—randomly generated—dense 10M × 2K input matrix (i.e.,
160 GB) and study the impact of broadcasting, partitioning, and block sizes. To force Spark’s
lazy evaluation, we report the average runtime of 100 print(min(cumsum(X))) evaluations,
including creating the Spark context once (≈ 15 s).

Broadcast vs Repartition Join: As described in Section 4.1, joining the data and computed
offsets via a broadcast or co-partition join instead of a repartition join, allows for data-local
computation without shuffling of the main input. Broadcast joins apply only to the innermost
iteration, while co-partition joins apply to all iterations, except the outermost iteration
unless the data is already partitioned. Here, we force the individual types and repartition
the data for co-partition joins just once. Figure 8(b) shows significant improvements with
broadcast/co-partition joins—whose differences will be analyzed separately—compared to
a repartition join by up to 19.6x (17.3x at default block size of b = 1K).

Impact of Block Sizes: In SystemML, we use 1K as the default block size because it offers a
great balance between (1) low per-block memory requirements and good cache behavior, as
well as (2) amortized block overheads. For distributed cumulative aggregates, the block size
also influences the size reduction per iteration, and thus, the number of partial aggregates,
the number of iterations, and the broadcast overhead. In Figure 8(b), we observe—despite
the moderate range of block sizes from 64 to 2048—significant performance impact of up to
more than an order of magnitude. Repartition joins are less sensitive to block sizes because
they are dominated by shuffling, but the default of 1K is generally a good compromise.

Data-Parallel Cumulative Aggregates 15

0.1

1

10

100

1000

10000

500K 5M 50M 500M 5G 50G 500G
(4 MB) (4 TB)

Ex
ec

ut
io

n
Ti

m
e

[s
]

Data Size (#Cells)

data fits in
cluster memory

360 GB

k=1

#Cols: 1K

SystemML forced spark
SystemML (hybrid)
SystemML forced singlenode

(a) SystemML End-to-End Performance

#Cells SystemML MPI
165M 0.97 s 0.14 s
500M 4.2 s 0.26 s
1.65G 5.3 s 0.61 s

5G 7.4 s 1.96 s
16.5G 13.9 s 6.20 s
50G 44.8 s 19.8 s
165G 1,531 s N/A
500G 8,291 s N/A

(b) MPI_Scan Baseline

Fig. 9: Scalability with Increasing Data Size (from 4 MB to 4 TB).

5.4 Scalability

In a third set of experiments, we test the scalability of cumulative aggregates over a spectrum
of data and cluster sizes. We use a 10 GB driver and report the average runtime of r
print(min(cumsum(X))) evaluations, including creating the Spark context once.

From 4 MB to 4 TB: Figure 9(a) shows the runtime of SystemML’s execution modes—
with 10 GB driver and r = 10 repetitions—with increasing data size. Forced single-node
operations are fast for small data but run out-of-memory at 40 GB. Already at 4 GB, we
see a slowdown because pinning 2 × 4 GB in a 10 GB driver leads to evictions on every
cumsum. In contrast, forced Spark operations show high overhead for small data due to Spark
context creation, low parallelism in the number of partitions, and distribution overheads, but
good performance for distributed, in-memory data and scalability for larger datasets. When
the data size exceeds cluster memory at > 50G cells, we see a 34.2x slowdown for 3.3x
increase in data size. Similarly, multi-iteration, repartition-based operations cause another
5.4x slowdown for the next 3.3x size increase. SystemML’s default hybrid mode combines
the advantages and provides efficiency for small as well as scalability for large datasets.
Table 9(b) further shows an idealized MPI baseline (implemented in C) using 10 nodes and
19 slots per node. This baseline performs worker-local data generation, as well as r = 10
repetitions of a local fagg, MPI_Scan (MPI_SUM), local fcumoff, fcumagg, and aggregation, as well
as a final MPI_Reduce (MPI_MIN). For sufficiently large data, SystemML shows—despite the
handling of unordered blocks—only a 2.3x slowdown and thus, competitive performance.

Weak and Strong Scaling: Finally, we study the weak and strong scaling behavior of
broadcast- and co-partition-based cumulative aggregates with r = 100 repetitions. First, for
weak scaling (WS), we simultaneously increase the data and cluster size and thus, expect
constant runtime. Figure 10(a) shows moderately increasing runtimes but generally good
scaling behavior. Specifically, we have a 2.3x and 1.7x slowdown when increasing from
(2 nodes/40 GB) to (10 nodes/200 GB). Second, for strong scaling (SS), we increase the
cluster size but keep the data size constant at 40 GB. Comparing the runtime with 2 and 10

16 Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald

Ex
ec

ut
io

n
Ti

m
e

[s
]

0

5

10

15

20

2 4 6 8 10
Number of Nodes (20GB/node)

#Rows: #Nodes * 2.5M
#Cols: 1K

SystemML broadcast
SystemML co−partition
Ideal

(a) Weak Scaling (WS)

Ex
ec

ut
io

n
Ti

m
e

[s
]

0

2

4

6

8

2 4 6 8 10
Number of Nodes

#Rows: 5M
#Cols: 1K

SystemML broadcast
SystemML co−partition
Ideal

(b) Strong Scaling (SS)

Fig. 10: Scalability with Increasing Cluster Size (from 2 to 10).

nodes, we expect a speedup of 5x but observe only 1.7x and 2.3x. This is due to the small
data size of 40 GB, a moderate number of ≈ 40 GB/128 MB = 312 partitions (and thus,
tasks), and a decreasing number of task waves d312/(19 · #Nodes)e. Overall, co-partitioning
scales better because the initial partitioning is amortized over 100 repetitions, and piecewise
broadcast fetching shows high latency over 1Gb Ethernet. To validate this explanation, we
repeated the broadcast experiments on a 6 node cluster of similar HW but 10Gb Ethernet.
When scaling from 2 to 6 nodes, we see a significantly better WS runtime overhead of 1.3x
instead of 1.6x, and an SS speedup of 2.3x instead of 1.5x.

6 Related Work

We review related work from high-performance computing (HPC), database systems, recent
large-scale ML systems, and the more general problem of sum-product optimization.

HPC Parallel Prefix Scans: Parallel prefix sums are a key building block in many HPC
applications and therefore well-studied in the literature. Hillis and Steele presented an
O(n log n) parallel scan6 (prefix) operation [HS86] for computing prefix sums—similar
to cumsumNlogN in Figure 1—that generalized to associative operations. Blelloch later
publicized more efficient parallel prefix scans, where for n data items and p processors,
each processor sums up dn/pe elements, and partial offsets are computed via an up- and
down-sweep through a virtual aggregation tree [Bl89; Bl93; CBZ90]. These scan primitives
are widely applicable to evaluate polynomials, solve recurrences or tridiagonal linear
systems, and even implement radix- and quick-sort [CBZ90]. Sanders further analyzed and
compared alternatives for MPI_Scan [ST06]. Parallel algorithms for first- and higher-order
recurrences have also been theoretically investigated [CK75; HK77; KMW67; KS73]. More
recently, several works introduced efficient scan primitives for GPU [Ho05; HSO07] and
FPGA [AS14] devices. However, all of these works focused on traditional message-passing
or shared-memory HPC systems with random data access. In contrast, we described efficient

6 The name scan was derived from the APL [FI73] plus-scan for computing vector prefix sums [Bl93].

Data-Parallel Cumulative Aggregates 17

cumulative aggregates for data-parallel ML systems with blocked matrix representations on
top of frameworks such as MapReduce [DG04], Spark [Za12], or Flink [Al14].

Window Functions in Database Systems: Recently, the parallelization of cumulative
aggregates has also received attention in the context of efficiently evaluating SQL window
functions [Be13; Le15]. Database systems primarily parallelize over independent partitions
of the PARTITION BY clause, but additional approaches exist for large partitions. First,
Bellamkonda et al. introduced a method [Be13] that includes the ORDER BY keys into
Oracle’s data distribution keys to create artificial partitions. Based on an existing range
partitioning and sorting, the query coordinator then collects partial aggregates and distributes
offsets back. Second, Leis et al. introduced the dynamic classification of partitions for
inter- and intra-partition parallelism [Le15], where the latter relies on parallel sorting, and
materializing a segment tree of partial aggregates, which can be computed in parallel. In
contrast to our DistCumAgg framework, these works rely on partitioning and sorting, focus
primarily on shared memory, and do not support complex cumulative aggregates.

Large-Scale ML Systems: Predominant architectures for large-scale—i.e., distributed—ML
Systems are (1) data- or model-parallel parameter servers [De12; Li14], and (2) systems
for data- and/or task-parallel distributed operations. Distributed cumulative aggregates
are only relevant for the second category of data-parallel ML systems. In this context,
systems such as RIOT [ZHY09], PEGASUS [KTF09], SystemML [Bo16], SciDB [St11],
Cumulon [HBY13], Distributed R [Ma16], DMac [YSC15], Spark MLlib’s block matrices
[Za16], Gilbert [Ro17], MatFast [Yu17], and SimSQL [Lu17] all rely on blocked matrix
representations, which means that our DistCumAgg framework could seamlessly be applied
in these systems. Yet, to the best of our knowledge, SystemML is the only ML system that
provides built-in support for distributed cumulative aggregates.

Sum-Product Optimization: In contrast to most ML systems like OptiML [Su11], Theano
[Be10], SystemML [Bo16], and TensorFlow XLA [Go] that perform simplification rewrites
via heuristic pattern matching, sum-product optimization aims at a systematic exploration of
rewrite opportunities. Existing work such as AMF [MP99] and SystemML-SPOOF [El17]
use axioms and algebraic properties, or elementary transformation rewrites to systematically
explore valid, alternative plans. Due to the complexity of reasoning about recurrences,
none of these sum-product frameworks support cumulative aggregates yet. However, it is
an interesting direction for future work to automatically derive rewrites for these complex
cumulative aggregates, especially regarding the interactions with other operations.

7 Conclusions

To summarize, we introduced the generic DistCumAgg framework for efficient, data-parallel
cumulative aggregates over distributed, blocked matrix representations. We described the
end-to-end compiler and runtime integration in SystemML, and physical operators that
seamlessly fit into hybrid runtime plans of local and distributed operations. Our experiments

18 Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald

have shown competitive performance for local and distributed in-memory operations, as well
as almost linear scalability with increasing data size and degree of parallelism. In conclusion,
many presumably sequential operations can be efficiently computed over distributed, blocked
matrix representations on top of data-parallel frameworks like Spark. Cumulative aggregates
are used in a variety of algorithms and for data preprocessing, which makes them valuable
tools for data scientists. Interesting future work includes sum-product rewrites, dedicated
GPU operators, and other recursive computations like time series analysis.

Acknowledgments: We thank José Molero for help with the MPI experiments and our
anonymous reviewers for their valuable comments and suggestions.

References

[Al14] Alexandrov, A. et al.: The Stratosphere platform for big data analytics. VLDB
J. 23/6, 2014.

[AS14] Arap, O.; Swany, M.: Offloading MPI Parallel Prefix Scan (MPI_Scan) with
the NetFPGA. CoRR abs/1408.4939/, 2014.

[Be10] Bergstra, J. et al.: Theano: a CPU and GPU Math Expression Compiler. In:
SciPy. 2010.

[Be13] Bellamkonda, S. et al.: Adaptive and Big Data Scale Parallel Execution in
Oracle. PVLDB 6/11, 2013.

[Be17] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V. B.: Julia: A Fresh Approach
to Numerical Computing. SIAM Review 59/1, 2017.

[Bl10] Blanas, S. et al.: A comparison of join algorithms for log processing in
MapReduce. In: SIGMOD. 2010.

[Bl89] Blelloch, G. E.: Scans as Primitive Parallel Operations. IEEE Trans. Computers
38/11, 1989.

[Bl93] Blelloch, G. E.: Prefix Sums and Their Applications, tech. rep., CMU-CS-90-
190, https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf, 1993.

[Bo14] Boehm, M. et al.: SystemML’s Optimizer: Plan Generation for Large-Scale
Machine Learning Programs. IEEE Data Eng. Bull. 37/3, 2014.

[Bo16] Boehm, M. et al.: SystemML: Declarative Machine Learning on Spark. PVLDB
9/13, 2016.

[Bo18] Boehm, M. et al.: On Optimizing Operator Fusion Plans for Large-Scale
Machine Learning in SystemML. PVLDB 11/12, 2018.

[CAL94] Cohn, D. A.; Atlas, L. E.; Ladner, R. E.: Improving Generalization with Active
Learning. Machine Learning 15/2, 1994.

[CBZ90] Chatterjee, S.; Blelloch, G. E.; Zagha, M.: Scan primitives for vector computers.
In: SC. 1990.

Data-Parallel Cumulative Aggregates 19

[CGJ94] Cohn, D. A.; Ghahramani, Z.; Jordan, M. I.: Active Learning with Statistical
Models. In: NIPS. 1994.

[CK75] Chen, S.; Kuck, D. J.: Time and Parallel Processor Bounds for Linear Recur-
rence Systems. IEEE Trans. Computers 24/7, 1975.

[Co09] Cohen, J.; Dolan, B.; Dunlap, M.; Hellerstein, J. M.; Welton, C.: MAD Skills:
New Analysis Practices for Big Data. PVLDB 2/2, 2009.

[Da10] Das, S. et al.: Ricardo: integrating R and Hadoop. In: SIGMOD. 2010.
[De12] Dean, J. et al.: Large Scale Distributed Deep Networks. In: NIPS. 2012.
[DG04] Dean, J.; Ghemawat, S.: MapReduce: Simplified Data Processing on Large

Clusters. In: OSDI. 2004.
[El17] Elgamal, T. et al.: SPOOF: Sum-Product Optimization and Operator Fusion

for Large-Scale Machine Learning. In: CIDR. 2017.
[FI73] Falkoff, A. D.; Iverson, K. E.: The Design of APL. IBM Journal of Research

and Development 17/5, 1973.
[Gh11] Ghoting, A. et al.: SystemML: Declarative machine learning on MapReduce.

In: ICDE. 2011.
[Go] Google: TensorFlow XLA (Accelerated Linear Algebra), tensor-

flow.org/performance/xla/.
[HBY13] Huang, B.; Babu, S.; Yang, J.: Cumulon: Optimizing Statistical Data Analysis

in the Cloud. In: SIGMOD. 2013.
[HK77] Hyafil, L.; Kung, H. T.: The Complexity of Parallel Evaluation of Linear

Recurrences. J. ACM 24/3, 1977.
[Ho05] Horn, D.: Stream Reduction Operations for GPGPU Applications. In: GPU

Gems 2. 2005.
[HS86] Hillis, W. D.; Steele Jr., G. L.: Data Parallel Algorithms. Commun. ACM 29/12,

1986.
[HSO07] Harris, M.; Sengupta, S.; Owens, J. D.: Parallel Prefix Sum (Scan) with CUDA.

In: GPU Gems 3. 2007.
[KMW67] Karp, R. M.; Miller, R. E.; Winograd, S.: The Organization of Computations

for Uniform Recurrence Equations. J. ACM 14/3, 1967.
[KS73] Kogge, P. M.; Stone, H. S.: A Parallel Algorithm for the Efficient Solution of a

General Class of Recurrence Equations. IEEE Trans. Computers 22/8, 1973.
[KTF09] Kang, U.; Tsourakakis, C. E.; Faloutsos, C.: PEGASUS: A Peta-Scale Graph

Mining System. In: ICDM. 2009.
[Le15] Leis, V.; Kundhikanjana, K.; Kemper, A.; Neumann, T.: Efficient Processing

of Window Functions in Analytical SQL Queries. PVLDB 8/10, 2015.

20 Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald

[Li14] Li, M. et al.: Scaling Distributed Machine Learning with the Parameter Server.
In: OSDI. 2014.

[Lu17] Luo, S.; Gao, Z. J.; Gubanov, M. N.; Perez, L. L.; Jermaine, C. M.: Scalable
Linear Algebra on a Relational Database System. In: ICDE. 2017.

[Ma16] Ma, E.; Gupta, V.; Hsu, M.; Roy, I.: dmapply: A Functional Primitive to
Express Distributed Machine Learning Algorithms in R. PVLDB 9/13, 2016.

[Me03] Melton, J.: ISO-ANSI Working Draft SQL/Foundation, 2003.
[MP99] Menon, V.; Pingali, K.: High-Level Semantic Optimization of Numerical

Codes. In: ICS. 1999.
[Ra16] Ratner, A. J.; Sa, C. D.; Wu, S.; Selsam, D.; Ré, C.: Data Programming:

Creating Large Training Sets, Quickly. In: NIPS. 2016.
[RMJ06] Raghavan, H.; Madani, O.; Jones, R.: Active Learning with Feedback on

Features and Instances. Journal of Machine Learning Research 7/, 2006.
[Ro17] Rohrmann, T.; Schelter, S.; Rabl, T.; Markl, V.: Gilbert: Declarative Sparse

Linear Algebra on Massively Parallel Dataflow Systems. In: BTW. 2017.
[Sc15] Schelter, S. et al.: Efficient Sample Generation for Scalable Meta Learning. In:

ICDE. 2015.
[ST06] Sanders, P.; Träff, J. L.: Parallel Prefix (Scan) Algorithms for MPI. In:

PVM/MPI. 2006.
[St11] Stonebraker, M.; Brown, P.; Poliakov, A.; Raman, S.: The Architecture of

SciDB. In: SSDBM. 2011.
[Su11] Sujeeth, A. K. et al.: OptiML: An Implicitly Parallel Domain-Specific Language

for Machine Learning. In: ICML. 2011.
[Tr18] Tremblay, J. et al.: Training Deep Networks With Synthetic Data: Bridging

the Reality Gap by Domain Randomization. In: CVPR Workshops. 2018.
[TTR12] Tian, Y.; Tatikonda, S.; Reinwald, B.: Scalable and Numerically Stable De-

scriptive Statistics in SystemML. In: ICDE. 2012.
[YSC15] Yu, L.; Shao, Y.; Cui, B.: Exploiting Matrix Dependency for Efficient Dis-

tributed Matrix Computation. In: SIGMOD. 2015.
[Yu17] Yu, Y. et al.: In-Memory Distributed Matrix Computation Processing and

Optimization. In: ICDE. 2017.
[Za12] Zaharia, M. et al.: Resilient Distributed Datasets: A Fault-Tolerant Abstraction

for In-Memory Cluster Computing. In: NSDI. 2012.
[Za16] Zadeh, R. B. et al.: Matrix Computations and Optimization in Apache Spark.

In: KDD. 2016.
[ZHY09] Zhang, Y.; Herodotou, H.; Yang, J.: RIOT: I/O-Efficient Numerical Computing

without SQL. In: CIDR. 2009.

	Introduction
	SystemML Preliminaries
	Data-Parallel Cumulative Aggregates
	DistCumAgg Framework Overview
	Basic Cumulative Aggregates
	Complex Cumulative Aggregates
	Characterization of Applicable Operations

	System Integration
	Compiler and Runtime Integration
	Cumulative Aggregates in Other Operations

	Experiments
	Experimental Setting
	Baseline Comparison
	Impact of Broadcasting and Block Sizes
	Scalability

	Related Work
	Conclusions

