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Abstract: Time series anomaly detection is a common problem across many domains. Despite
the existence of numerous algorithms leveraging deep learning, classical machine learning, and
data mining techniques, no dominating approach has emerged. A common challenge is extensive
parameter tuning and the high computational costs associated with many existing methods. To address
this problem, we propose a parameter-free anomaly detection algorithm, STAN (summary statistics
ensemble). STAN applies a set of summary statistics over sliding windows and compares the results
to the normal behavior learned during training. STAN’s flexibility allows for integrating different
statistical aggregates, which effectively handle diverse types of anomalies. Our evaluation shows that
STAN achieves a detection accuracy of 60.4%, close to the widely used MERLIN algorithm (63.6%)
while reducing execution time by more than an order of magnitude compared to all baselines.
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1 Introduction

Time series are extensively used in various fields, including medicine, science, and
finance [WK23]. Due to their critical importance, time series anomaly detection has attracted
substantial research interest [Ye16, SWP22, RDN23, Na20, TCJ22, DC22, Gu16, Ba19].
Despite advances in deep learning and the development of numerous methods utilizing
machine learning and data mining techniques, no single approach consistently outperforms
others [SWP22]. Recent studies [SWP22, RDN23, Li24] suggest that different methods are
better suited for detecting specific types of anomalies. Notably, a 2021 anomaly detection
competition [Ke21a] revealed that many top-performing teams employed relatively simple
techniques based on time series discords [KLF05].

Accuracy and Parametrization: In contrast to other fields, where deep learning models
often outperform simpler techniques, anomaly detection shows different results [SWP22].
These results are supported by a recent benchmark comparing three classical machine
learning algorithms and three deep learning algorithms for anomaly detection [RDN23].
The findings indicate that MDI [Ba19] and MERLIN [Na20] are among the most effective
algorithms. This insight is valuable as MDI and MERLIN require only the specification
of upper and lower bounds for subsequence lengths, significantly reducing the number of
parameters and hyperparameters that need to be tuned compared to deep learning models.
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However, even these two single parameters can significantly affect both the accuracy and
execution time of the algorithms.

The Execution Time Challenge: When including the training process, most supervised and
semi-supervised algorithms are among the slowest, with execution times of approximately
255 ms per data point [SWP22]. In contrast, for unsupervised algorithms such as MDI and
MERLIN, which have a time complexity of O(𝑛2) over the time series size 𝑛, the results are
mixed [RDN23]. Especially as the subsequence length increases, both algorithms experience
significant slowdowns, with execution times extending to several minutes [RDN23].

Contributions: The high parameter sensitivity and slow execution times of existing anomaly
detection algorithms have motivated the development of a more efficient, parameter-free
approach. In this paper, we introduce STAN (summary statistics ensemble), a fast, parameter-
free algorithm for time series anomaly detection. STAN operates in two main phases: a
training phase that computes summary statistics over sliding windows to capture normal
(non-anomalous) patterns and an evaluation phase that compares these statistics against new
patterns to identify anomalies. The window size is essential for the method’s accuracy and
is automatically determined using the autocorrelation function (ACF). This eliminates the
need for manual tuning. Our key contributions are:

• Background: We provide a description of various anomaly types in Section 2.2 and
an updated review of anomaly detection methods for time series in Section 2.3.

• Methodology: We introduce a novel framework for anomaly detection based on a
summary statistics ensemble, offering an efficient and parameter-free approach by
automatically computing the window size. Section 2.1 introduces the necessary
notation and definitions, while Section 3.1 outlines STAN’s overall design.

• Implementation: We holistically describe STAN, providing a proof-of-concept imple-
mentation using eight different summary statistics, including low-order (e.g., mean,
standard deviation), high-order (e.g., skewness, kurtosis), and custom functions (e.g.,
turning points, point anomaly). Details of the implementation and the ACF-based
window size computation are provided in Section 3.

• Experiments: We conduct multiple experiments on the UCR dataset [Ke21a] compar-
ing our STAN and relevant baseline methods. The results show that STAN achieves a
detection accuracy of 60.4%, close to MERLIN’s results (63.6%), while improving
execution time by more than an order of magnitude compared to all baselines. We
provide all the details in Section 4.

2 Background and Related Work

This section provides the essential background for time series anomaly detection and the
concepts underlying STAN. We review related work, discuss various anomaly types, and
introduce the autocorrelation function, which is crucial for our method.



2.1 Definitions and Notation

A univariate time series 𝑇 = (𝑡1, . . . , 𝑡𝑛) consists of 𝑛 real-numbered data points, each
indexed chronologically and separated by equal time intervals [Ye16]. A key aspect of
analyzing time series data involves extracting contiguous subsets of length 𝜅 from the time
series, also known as subsequences. Given a time series T, a time series subsequence starting
at index 𝑖 is defined as 𝑇 𝜅

𝑖
= (𝑡𝑖 , 𝑡𝑖+1 . . . , 𝑡𝑖+𝜅−1). Subsequence extraction allows for local

anomaly detection, as anomalies often manifest within specific data segments rather than
across the entire sequence.

Summary Statistics: We define a summary statistic as a function that computes a single
value 𝑠 over a subsequence 𝑇 𝜅

𝑖
such that 𝑓 (𝑇 𝜅

𝑖
) = 𝑠𝑖 . This statistical function can represent

any commonly used low- or higher-order statistic of a time series, such as the mean, variance,
or skewness. Alternatively, the statistics can be a custom function that takes a subsequence as
input and returns a single summary statistic. For example, 𝑓 (𝑇 𝜅

𝑖
) = max(𝑡𝑖 , 𝑡𝑖+1 . . . , 𝑡𝑖+𝜅−1),

which calculates the maximum value in the subsequence. Subsequence comparison can be
achieved by comparing their respective summary statistics. Furthermore, we can compute
an ensemble of summary statistics over sliding windows across a time series 𝑇 , providing
an alternative representation of 𝑇 .

Summary Statistics Ensemble: We refer to a summary statistics ensemble as a collection
of multiple summary statistics computed over the same subsequence or time window of 𝑇 .
By aggregating different statistics, the ensemble offers a richer, multi-dimensional view of
the time series. We define the ensemble over a non-overlapping sliding window operator as:

E(𝑇) =


𝑓1 (𝑇 𝜅

1 ) 𝑓2 (𝑇 𝜅
1 ) . . . 𝑓𝑚 (𝑇 𝜅

1 )
𝑓1 (𝑇 𝜅

𝜅 ) 𝑓2 (𝑇 𝜅
𝜅 ) . . . 𝑓𝑚 (𝑇 𝜅

𝜅 )
...

...
. . .

...

𝑓1 (𝑇 𝜅
𝑛′ ) 𝑓2 (𝑇 𝜅

𝑛′ ) . . . 𝑓𝑚 (𝑇 𝜅
𝑛′ )


=


𝑠11 𝑠12 . . . 𝑠1𝑚
𝑠𝜅1 𝑠𝜅2 . . . 𝑠𝜅𝑚
...

...
. . .

...

𝑠𝑛′1 𝑠𝑛′2 . . . 𝑠𝑛′𝑚


(1)

where 𝑇 𝜅
𝑖

represent the 𝑖-th subsequence of length 𝜅, 𝑓 𝑗 (𝑇 𝜅
𝑖
) = 𝑠𝑖 𝑗 , represents the 𝑗-th

summary statistic computed over the subsequence 𝑇 𝜅
𝑖

, 𝑚 is the total number of summary
statistics, 𝑛′ =

⌊
𝑛
𝜅

⌋
is the total number of non-overlapping windows and E(𝑇) ∈ R𝑛′×𝑚. We

can apply simple matrix operations on E(𝑇) to extract information about the statistics or
the subsequences. For example, E[:, 𝑗] returns all the values of the 𝑗-th statistic across all
subsequences, while E[𝑖, :] returns all the statistics for the subsequence 𝑇 𝜅

𝑖
. Additionally, to

simplify the notation, we use the name of the summary statistic as an index for the ensemble
matrix. For instance, E[mean] refers to retrieving all the values of the mean statistic across
all subsequences.

Autocorrelation Function: The autocorrelation function (ACF) of a time series is a
fundamental statistical tool that quantifies the correlation between observations in a time
series at different time lags [NB00, Pa17, A 08, Wa05]. The ACF measures the Pearson



Tab. 1: Frequent Anomaly Types in Time Series [RDN23]

Anomaly Type Example

Amplitude Change:
The signal amplitude was modified.

Frequency Change:
The periodic length of a subsequence was shortened
or elongated.
Local Peak:
An unusual peak, lower than the global maximum,
was added to a subsequence.

Noise:
Noise was included in a subsequence.

correlation between the time series and a lagged version of itself, computed for each lag
from 1 to a user-defined maximum 𝐾 . Given a time series 𝑇 , the ACF at lag 𝜏 is calculated
as follows:

𝜌𝑇 (𝜏) =
1

(𝑛 − 𝜏)𝜎2

𝑛−𝜏∑︁
𝑡=1
(𝑡𝑡 − 𝜇) (𝑡𝑡+𝜏 − 𝜇) (2)

where 𝜇 and 𝜎 are the mean and standard deviation of 𝑇 . Note that the ACF for all lags
can be efficiently computed in O(𝑛 log 𝑛) using the Discrete Fourier Transform [CLW69].
The ACF is essential for identifying patterns such as periodicity and seasonality in the time
series. The efficient computation and ability to capture temporal dynamics make the ACF a
valuable tool for determining an appropriate value for 𝜅 (the length of subsequences) since
a subsequence length that aligns with the periodic structure of the data will likely capture
the temporal dependencies [ESL22]. The peaks in the ACF can guide the selection of 𝜅, as
they indicate the lags where the time series exhibits significant autocorrelation. Section 3.1
describes STAN’s use of the ACF.

2.2 Time Series Anomaly Types

Identifying types of time series anomalies is complex, as they vary across different
applications. However, recent analyses of the UCR dataset [Ke21a, WK23], a widely-used
benchmark dataset for anomaly detection, identified 17 distinct anomaly types [RDN23]. We
extend this classification by introducing a new category to classify subsequences inverted
along the horizontal axis.

Basic Anomaly Characteristic: Table 1 illustrates that the anomalies disrupt the periodicity
and statistical properties of the time series within the cycles where they occur. This



Tab. 2: Complex Anomaly Types in Time Series [RDN23].

Anomaly Type Example

Reversed Vertically:
A subsequence was inverted along the vertical axis.

Sampling Rate:
The sampling frequency of a subsequence was
changed.

Steep Increase:
A smooth increase was sharpened.

Time Warping:
The peak of a subsequence was shifted, while the
periodic length was kept the same.

observation forms the foundation of our method STAN: detecting anomalies involves
comparing statistical properties across different periodic cycles in the time series. In other
words, significant deviations in summary statistics between regular, anomaly-free cycles
and those affected by anomalies serve as clear indicators of their presence. Based on this
idea, STAN proposes a unifying framework that leverages the ACF to extract the periodic
cycle and summary statistics to detect deviations from normal behavior.

Complex Anomaly Characteristic: While many anomalies in Table 1 can be detected
using simple, low-order statistics, some anomaly types exhibit more subtle deviations from
regular cyclical patterns. These anomalies require more sophisticated or custom statistics
for effective detection. Table 2 shows an example of anomalies like Reversed Vertically or
Time Warping, which do not disrupt basic summary statistics but instead alter temporal or
structural relationships. STAN’s framework supports the integration of advanced statistics,
enabling the detection of these more complex anomalies.

Custom Summary Statistics: Anomalies such as those in Table 2 require more advanced
summary statistics for detection. In response, we designed STAN to be flexible, allowing
any summary statistic to be incorporated without altering the core algorithm. In Section 3.1,
we detail how we achieve this modularity, and in Section 4.1, we present the full set of
statistics used in our experiments. Below, we introduce additional anomaly types, offering a
complete overview of the challenges in developing custom statistics for detection:

• Local Drop: An unusual drop was added to a subsequence.

• Flat: An unusual flat subsequence was included.

• Missing Drop: An expected drop in a subsequence was removed.

• Missing Peak: An expected peak in a subsequence was removed.

• Outlier: The anomaly is a global maximum or minimum.



• Reversed Horizontally: A subsequence was inverted along the horizontal axis.

• Signal Shift: A subsequence was moved up or down.

• Smoothed Increase: A sharp increase was smoothed.

• Time Shift: The interval between two peaks was extended.

• Unusual Pattern: A part of the data was replaced with an unusual sequence.

2.3 Related Work

Time series anomaly detection has been a long-standing area of research, with approaches
ranging from traditional statistical methods to more recent machine learning and deep
learning techniques [BPP23, Li24]. Over time, researchers have developed various methods,
making anomaly detection applicable to a broad range of domains. However, accurate
anomaly detection at a low computation overhead and minimum parameter tuning has
remained the core challenge of this research area.

Matrix Profile: The introduction of the Matrix Profile marked a significant advancement
in anomaly detection and time series analysis in general. STAMP (Scalable Time Series
Anytime Matrix Profile) [Ye16] efficiently computes the nearest neighbor subsequences
within a time series, identifying the subsequence that is most dissimilar to all others, also
referred to as discord. Matrix Profile has been praised for its simplicity, effectiveness, and
extensive body of work expanding its applicability [Zh16, Me21, De22, De23]. However,
its primary limitation lies in its sensitivity to the subsequence length. Setting this parameter
requires extensive trial-and-error or domain knowledge to select an optimal value, which in
turn can affect its usability in automated applications.

MERLIN: MERLIN [Na20] addresses Matrix Profiles’ limitation by detecting discords
across a range of subsequence lengths. By automating the search over subsequence lengths
between specified lower and upper bounds, MERLIN removes the need to predefine a
specific subsequence length, making it more adaptable. MERLIN’s minimal requirement for
hyperparameter tuning (only needing bounds for subsequence length) makes it especially
appealing for a broad range of applications with minimal user intervention. However, the
need to set the subsequence bounds and their long execution time affects their application in
scenarios where scalability is critical.

Deep Learning for Anomaly Detection: In contrast, deep learning approaches such as
Autoencoders (AE) [RHW86], Transformer-based models like TranAD [TCJ22], and Graph
Augmented Normalizing Flows (GANF) [DC22] offer powerful solutions for handling
complex, high-dimensional time series data. However, these models often come with
significant drawbacks, including high computational costs and the need for extensive
hyperparameter tuning. The reliance on large amounts of labeled training data, which may
not be available in all anomaly detection applications, is another significant challenge. While



deep learning models can capture complex non-linear patterns, the results from benchmark
studies (e.g., Schmidl et al. [SWP22]) suggest that they do not consistently outperform
simpler, less computationally expensive models, mainly when applied to univariate or
low-dimensional multivariate time series.

Benchmark Studies and Contests: Many benchmark studies have provided critical insights
into the relative performance of different anomaly detection methods. Schmidl et al. [SWP22]
conducted a comprehensive benchmark study comparing 71 anomaly detection methods
from diverse categories: classical machine learning, deep learning, and signal processing.
They evaluated the performance of these algorithms on 976 uni- and multivariate time series
across three different metrics. The study revealed that despite their high computational costs
and extensive hyperparameter tuning, deep learning methods did not consistently outperform
simpler, classical algorithms. This finding highlights the importance of context-specific
solutions and challenges the assumption that deep learning is always superior. Rewicki et al.
[RDN23] further reinforced these findings by comparing three classical machine learning
methods and three deep learning models on the UCR Anomaly Archive [Ke21a]. Their
results revealed that classical methods, such as MDI (Maximally Divergent Intervals) [Ba19]
and MERLIN, outperformed deep learning models in accuracy and simplicity. In a more
extensive and recent experimental analysis, Liu and Paparrizos [LP24] demonstrate again
that simpler architectures and statistical methods frequently outperform advanced neural
network architectures. In 2021, the Hexagon ML/UCR Time Series Anomaly Detection
contest, held at SIGKDD, provided further insights into the practical challenges of time
series anomaly detection [Ke21b, WK23, Ke21a]. Teams competed to detect anomalies
in the UCR dataset [WK23, Ke21a] employing various strategies, including ensembling
techniques and discord-based methods like STAMP and MERLIN. However, while ensemble
methods enhance robustness, balancing and weighing different models is difficult. On the
other hand, discords-based algorithms, used by many top-performing teams, were also
complex to apply due to the subsequence length selection process.

STAN Positioning: The challenges outlined above underscore the need for a method that can
accurately detect anomalies in time series data while minimizing the overhead of parameter
tuning and computational time. STAN offers such a solution by combining a summary
statistical ensemble, which can be efficiently computed, with the ACF to determine the
optimal subsequence length automatically. This approach reduces the need for parameter
tuning with a very efficient execution time without sacrificing detection accuracy.

3 Anomaly Detection Framework

STAN involves two main phases: (1) a training phase where a reference summary statistics
ensemble matrix E(𝑇train) is constructed from the training data, and (2) an evaluation phase
where a new summary statistics ensemble matrix E(𝑇test) is generated from the test data and
compared against E(𝑇train). STAN then identifies anomalies by detecting deviations that
exceed the bounds of the expected values in the training ensemble matrix. The subsequence
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Fig. 1: Anomaly Detection Using min and max Statistics. The Green Vertical Line Separates the
Training from the Testing. The Red Horizontal Lines Show the Bounds Found in E(𝑇train).

with the largest deviation is flagged as a potential anomaly. Figure 1 illustrates an example
where the minimum (E(𝑇test) [min]) and maximum (E(𝑇test) [max]) summary statistics are
plotted, with STAN successfully detecting anomalies at index 67 by identifying values
outside the normal range defined by the training data. In the remainder of this section, we
detail the process of constructing E(𝑇train) and explain how E(𝑇train) is applied to detect
anomalies in the testing set. Additionally, we discuss several important considerations in
the design of STAN to ensure its effectiveness and flexibility.

3.1 Overall Method Design

Algorithm 1 presents the pseudocode for STAN. Given the input training and testing
time series, STAN begins by computing the subsequence size (𝜅) using the training data
(ComputeWindowSize, line 4). Next, STAN detrends the data by using first-order
differencing and normalizes the time series. Our method then constructs the summary
statistics ensemble matrices Etrain and Etest by calculating a set of predefined summary
statistics such as minimum, maximum, and mean, over sliding windows of length 𝜅 for both
the training and testing sets. After constructing the ensemble matrices, STAN compares the
summary statistics between the training and testing sets, identifying deviations that exceed
the maximum and minimum values observed in the training set. STAN then selects the
subsequence with the largest deviation as the anomaly and returns the corresponding index.

Computing the Window Size: A key contribution of this paper is the use of the ACF
to set the window size. The intuition behind this approach is that the period length, or
seasonal cycle of the time series, contains critical information that can effectively compare
subsequences of the same length. Disruptions in the regular patterns within a seasonal
period often indicate anomalies in the time series. Based on this assumption, we employ a
simple yet effective method to estimate the seasonal period using the ACF [ESL22]. We
outline the steps as follows:

1. Compute the ACF of the time series for a range of lags. Refer to Section 2 for an
overview of the ACF.



Algorithm 1 STAN
Input Ttrain = [𝑡1, . . . , 𝑡𝑛], Ttest = [𝑡1, . . . , 𝑡𝑧] : Training and testing time series
Output Index ∈ {1, . . . , 𝑧}: Index of the anomaly

1: Deviations← [] // Initialize list to store deviations for each summary statistic
2: Indices← [] // Initialize list to store indices of the largest deviations
3: Statistics← [min, max, mean, · · · ] // Initialize the list of summary statistics
4: 𝜅 ← ComputeWindowSize(𝑇train) // Compute the subsequence size using ACF
5: Ttrain ← DeTrend(𝑇train) // Detrend the training data
6: Ttest ← DeTrend(𝑇test) // Detrend the testing data
7: Ttrain ← Normalize(𝑇train) // Normalize the training data in range [0,1]
8: Ttest ← Normalize(𝑇test) // Normalize the testing data in range [0,1]
9: E𝑡𝑟𝑎𝑖𝑛 ← Empty(

⌊
𝑛
𝜅

⌋
, Size(Statistics)) // Initialize the ensemble matrix for training data

10: E𝑡𝑒𝑠𝑡 ← Empty(
⌊
𝑧
𝜅

⌋
, Size(Statistics)) // Initialize the ensemble matrix for testing data

11: for all w ∈ SlidingWindows(𝑇train, 𝜅) do
12: for all ss ∈ Statistics do
13: Etrain [𝑤, ss] ← ss(𝑤) // Compute and store the statistic for each window in training data
14: for all w ∈ SlidingWindows(𝑇test, 𝜅) do
15: for all ss ∈ Statistics do
16: Etest [𝑤, ss] ← ss(𝑤) // Compute and store the statistic for each window in testing data
17: for all ss ∈ Statistics do
18: dv, idx← ComputeLargestDeviation(Etrain [ss],Etest [ss]) // Find largest deviation
19: Deviations← Append(Deviations, dv) // Store the deviation in the list
20: Indices← Append(Indices, idx) // Store the corresponding index of the deviation
21: max_dv← ArgMax(Deviations) // Identify the statistic with the largest deviation
22: index← Indices[max_dv] // Retrieve the index corresponding to the maximum deviation
23: return index · 𝜅 + 𝜅

2 // Return the final detected anomaly index, adjusted by the window size

2. Identify the ACF’s significant peaks, local maxima, and minima. The highest local
maximum that occurs after the first local minimum is selected as the dominant
periodic length of the time series.

3. Set this peak lag as the window size 𝜅.

Figure 2 shows an example of a time series sampled every 15 minutes and a daily seasonal
period. Thus, the peak in ACF is found at lag 96, as indicated by the red dot. Although this
method is not the only one that can be used to compute the window size, empirical results
show it is the most effective. Section 4 provides evidence supporting this claim.

Computing the Largest Deviation: Once both summary statistic ensemble matrices Etrain
and Etest are computed, STAN finds the anomaly index by comparing the deviations between
the values observed during training and those during evaluation. Specifically, as shown
in line 18 of Algorithm 1, STAN calls the function ComputeHighestDeviation for
each summary statistic ss. This function first checks if all values in the test set fall within
the range defined by the minimum and maximum values in the training set. If the values
fall within this range, ComputeHighestDeviation returns a deviation and index of -1,
indicating no anomaly is detected. Suppose the test values exceed the training range. In
that case, the function computes two differences: the deviation of the maximum test value



Algorithm 2 ComputeLargestDeviation
Input Etrain [ss]: All training subsequences for summary statistics ss

Etest [ss] : All testing subsequences for summary statistics ss
Output deviation ∈ [0, 1] : Distance to the closest training data point

index ∈ [1, . . . , |Etest [ss] |] : Index of the anomaly
1: if (Max(Etest [ss]) ≤ Max(Etrain [ss])) and (Min(Etest [ss]) ≥ Min(Etrain [ss])) then
2: deviation← −1
3: index← −1
4: return deviation, index
5: max_test_mean_diff← Max(Etest [ss]) −Mean(Etrain [ss])
6: min_test_mean_diff← Mean(Etrain [ss]) −Min(Etest [ss])
7: if max_test_mean_diff > min_test_mean_diff then
8: deviation← Max(Etest [ss]) - Max(Etrain [ss])
9: index← ArgMax(Etest [ss])

10: else
11: deviation← Min(Etest [ss]) - Min(Etrain [ss])
12: index← ArgMin(Etest [ss])
13: return deviation, index

from the mean of the training values and the deviation of the minimum test value from
the mean of the training values. ComputeHighestDeviation then selects the larger
deviations to identify the most significant anomaly. The function returns the maximum
or minimum deviation and the corresponding index in the test set depending on the most
significant deviation. This process allows STAN to pinpoint the subsequence in the test
data that deviates most from the regular behavior during training. Algorithm 2 shows a
pseudocode of the function.

Returning a Valid Index: To identify a valid anomaly index in the original time series,
STAN calculates index · 𝜅 + 𝜅

2 in Line 23, where index is the outlier index from Etest. This
index is first multiplied by the window size 𝜅 to map it back to the time series’ original
scale, pointing to the start of the anomalous subsequence. Adding 𝜅

2 shifts the position to
the middle of the subsequence, providing a more precise location for the detected anomaly
and reducing potential errors in its identification.
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Fig. 2: Example of Seasonal Period Detected Using the ACF.



3.2 Summary Statistics

The choice of summary statistics in STAN significantly influences the accuracy and
computational efficiency of anomaly detection. STAN is agnostic to the number and type
of summary statistics used, allowing flexibility in capturing different characteristics of the
time series. Among the basic statistics to use with STAN, we include the mean, maximum,
minimum, and standard deviation. The mean provides information about the central tendency
of each subsequence, helping in the detection of the following anomaly types: Local Drop,
Flat, Amplituded Change, and basic Outliers. On the other hand, minimum and maximum
values help identify spikes or dips, for example, Steep Increase or Missing Peak. Finally,
the standard deviation and variance measure the spread of values, which can help identify
changes in volatility inserted by Unusual Patterns. These basic statistics are computationally
inexpensive, which makes them suitable for real-time or large-scale applications. However,
their simplicity may limit their ability to detect more complex anomalies, such as Time
Warping, Reversed Vertically or Reversed Horizontally. The reader can revisit Section 2
for background on anomaly types.

High-Order and Custom Summary Statistics: In addition to basic statistics, STAN
incorporates higher-order statistics such as skewness and kurtosis to capture more complex
patterns in the data. For example, skewness measures the asymmetry of the distribution
within a subsequence, helping identify anomalies where the data exhibits an unexpected
bias toward higher or lower values. On the other hand, kurtosis can help detect anomalies
that involve outliers. Custom summary statistics can also be incorporated. For example,
we propose a function that counts the number of turning points. This function counts the
local minima and maxima in a subsequence, which helps detect changes in trends within a
subsequence. While high-order and custom functions like these can improve accuracy, they
introduce additional computational costs, especially if they involve complex calculations.

Time Complexity: STAN’s execution time increases linearly with the number of summary
statistics, allowing the inclusion of multiple statistics without significantly impacting
performance. However, complex statistics can significantly affect execution time. Therefore,
we recommend using summary statistics of linear or sublinear complexity to keep the
execution time of STAN manageable. Specifically, given 𝑚 = |𝑠𝑠_𝑠 |, representing the
number of summary statistics, if all statistics have linear complexity, then STAN’s overall
complexity is O(𝑛 ·max(log 𝑛, 𝑚)), where the log 𝑛 factor comes from the ACF computation
with complexity O(𝑛 log 𝑛). However, if any summary statistic has a higher complexity,
such as O(𝑛𝑝) for 𝑝 > 1, the overall complexity is dominated by this function rendering
a O(𝑛𝑝) complexity. Thus, selecting efficient summary statistics is key to maintaining
STAN’s performance.



4 Experiments

Our experiments study STAN’s accuracy and efficiency versus relevant anomaly detection
baselines. As part of this analysis, we evaluate the accuracy of STAN in detecting specific
anomaly types compared to several baselines. Additionally, we study the contribution of
each summary statistic to the overall accuracy and their contribution to detecting specific
anomaly types. Finally, we evaluate the accuracy of STAN under two other strategies to find
the window size parameter and compare it with our strategy using the ACF.

4.1 Experimental Setup

This section provides information about the hardware and software specifications, the
dataset, the metrics, and the selected baselines for conducting our experiment.

Hardware and Software Specifications: The experiments ran on a machine with an Intel
Core i5-1035G1 @ 1.00-3.60 GHz CPU, 8 GB RAM, and 1 TB SSD. Furthermore, we use
Python 3.11.6, MATLAB R2023b Update 4 (23.2.0.2428915), MERLIN 3.1 [Na20].

UCR Anomaly Archive: We used the UCR Anomaly Archive (UCR) benchmark dataset
[WK23, Ke21a]. The UCR dataset consists of 250 univariate time series from different
scientific areas. UCR is designed to be more robust than existing benchmarks by including
manually verified anomalies and avoiding common flaws like mislabeled events. This
benchmark dataset contains synthetic and real-world time series with diverse patterns
and anomaly types, ensuring a comprehensive evaluation of anomaly detection methods.
In Section 2.2, we introduce the anomaly types that can be found in this dataset. A
common characteristic across the time series is that each one contains exactly one anomaly,
representing a single data point or a subsequence from the time series. Each dataset is split
into training and test data, where the training data is considered non-anomalous. Table 3
shows a summary description of this dataset.

Anomaly Detection Criteria and UCR-Score: The UCR dataset’s scoring system evaluates
anomaly detection algorithms by assigning a binary score to each detected anomaly, which
is then aggregated into a final percentage score [Ke21a]. The scoring system uses a flexible
error margin based on the length of the ground truth anomaly (L) to accommodate different
types of anomalies and detection methods. A data point 𝑡𝑖 returned by an algorithm is

Tab. 3: Summary Statistics of the UCR Dataset.

Statistic Mean Std. Dev. Min Max
Time Series Length 77,415 120,080 6,684 900,000
Time Series Length (Train) 21,209 32,416 1,000 250,000
Time Series Length (Test) 56,205 92,099 3,302 707,630
Anomaly Length (L) 197 237 1 1,701



considered a correct detection if it lies within a specified range around the ground truth
anomaly’s begin and end positions. For example, in time series 𝑇𝑗 , if an algorithm returns
the point 𝑡 𝑗

𝑖
and the ground truth anomaly spans from begin 𝑗 to end 𝑗 , the score for that time

series is defined as:

Score( 𝑗) =
{

1 if (begin 𝑗 −max(L 𝑗 , 100)) ≤ 𝑡 𝑗
𝑖
≤ (end 𝑗 +max(L 𝑗 , 100))

0 otherwise
(3)

The margin of error is set to the maximum between the anomaly length L 𝑗 or 100 data
points, allowing the score to handle both short and long anomalies. If an algorithm detects
a whole subsequence as an anomaly, the suggested approach is to return its central data
point [Ke21a]. The final UCR-Score is calculated as the percentage of correctly detected
anomalies across the entire dataset as:

UCR-Score =
100
250

250∑︁
𝑗=1

Score( 𝑗) (4)

Anomaly Detection Baselines: To perform our comparison, we partially reuse the baselines
and results from a previous benchmark study in the UCR dataset [RDN23]. In this study,
the authors selected three deep-learning and three classical machine-learning methods for
unsupervised anomaly detection. Besides these baselines, we also evaluate a matrix profile
algorithm. Below, we introduce our baselines:

• Robust Random Cut Forest (RRCF) [Gu16]: RRCF is an extension of the Random
Cut Forest algorithm, designed to detect anomalies in streaming data. It works
by constructing an ensemble of random trees (forests) using random data splits.
Anomalies are identified based on the structure of these trees; data points that result
in unusual splits (cuts) are flagged as anomalies.

• Maximally Divergent Intervals (MDI) [Ba19]: MDI identifies intervals with
significant deviations by computing the Kullback-Leibler (KL) [KL51] divergence
between the statistical distribution of candidate intervals and a baseline distribution
representing expected behavior. Intervals with the highest KL divergence scores are
flagged as anomalies.

• MERLIN [Na20]: An extension of the Matrix Profile, MERLIN searches for
anomalies over a range of subsequence lengths, removing the need to predefine a
fixed window size. MERLIN constructs an ensemble of Matrix Profiles for different
subsequence lengths and detects anomalies by finding the subsequences with the
highest distances to their nearest neighbors.

• Autoencoder (AE) [RHW86]: An autoencoder is a neural network model designed
to learn a compressed representation of the input data. The network is trained on
normal (anomaly-free) data for anomaly detection. During testing, anomalies are
identified by measuring the reconstruction error; if the error exceeds a predefined
threshold, the input is considered an anomaly.



• Graph Augmented Normalizing Flows (GANF) [DC22]: GANF extends normaliz-
ing flows by incorporating graph structures into the model, allowing GANF to learn
complex data distributions.

• Transformer Network for Anomaly Detection (TranAD) [TCJ22]: TranAD lever-
ages the Transformer neural network architecture, known for its ability to capture
long-term dependencies in sequential data. The model is trained to predict the next
data point in a sequence, and anomalies are detected based on the prediction error.

• Matrix Profile (STUMPY) [La19]: Matrix Profile is a technique for finding patterns,
motifs, and anomalies in time series data by computing the distances between all
subsequences in the series. STUMPY is a highly efficient implementation of the
Matrix Profile that allows for fast and scalable analysis. Anomalies are identified as
subsequences with the most significant distance to their nearest neighbor.

MERLIN Configuration: MERLIN requires two input parameters: a lower bound l and an
upper bound u for the subsequence lengths. We evaluate two configurations of MERLIN
based on different values of l and u:

• MERLIN (ACF): In this variant, the lower and upper bounds are set using our
method for determining the window size 𝜅 with the ACF. Specifically, we define
l = 𝜅 − 5 and u = 𝜅 + 5, providing a narrow range around the detected window size.
This limited range helps keep the execution time manageable.

• MERLIN (fixed): This configuration uses fixed values for the lower and upper
bounds, following the reference benchmark study [RDN23]. Here, we set l = 75 and
u = 125. This range was selected in an unsupervised manner to allow the detection of
a wide range of anomalies.

STUMPY Configuration: STUMPY requires an input parameter: the subsequence size.
Like MERLIN, we evaluate two different configurations of STUMPY based on different
strategies to set ss.

• STUMPY (ACF): We automatically compute the subsequence length using our
ACF-based method.

• STUMPY (fixed): The subsequence length is fixed to 100, which is the middle point
of the lower and upper bounds used in the MERLIN (fixed) variant.

Other Baselines Configurations: For the remaining baseline methods, we utilize the accu-
racy results reported in the reference benchmark study [RDN23]. For detailed information
on these methods’ configuration and parameter settings, we refer the reader to the original
paper and the available artifacts at https://gitlab.com/dlr-dw/is-it-worth-it-benchmark.

STAN Configuration: STAN provides flexibility in choosing summary statistics. However,
we recommend a default configuration that covers eight summary statistics: four low-order,
two high-order, and two custom implementations. The low-order statistics include mean,

https://gitlab.com/dlr-dw/is-it-worth-it-benchmark


standard deviation, minimum, and maximum. For high-order statistics, we use kurtosis
and skewness. Lastly, the custom summary statistics are turning points and point anomaly.
The point anomaly statistic computes the standard deviation over every three consecutive
data points, aiming to enhance the detection of single-point outliers that aggregates might
obscure over longer subsequences. The turning points statistic counts the number of local
minima and maxima in a subsequence, which is particularly useful for identifying changes
in trends and potential time-warping anomalies. While STAN is not limited to these eight
summary statistics, our experimental results show that this selection is already sufficient to
achieve comparable accuracy and a significant execution time improvement. We make our
STAN code available at https://git.tu-berlin.de/kristiyanblagov/btw2025.

4.2 Anomaly Detection Accuracy

In this set of experiments, we evaluate the anomaly detection accuracy of the UCR dataset.
Figure 3 presents the UCR-Score for STAN and the baseline methods. STAN achieves the
second-highest score at 60.4%, correctly identifying 151 out of 250 anomalies. At the same
time, MERLIN (fixed) performs best with a score of 63.6%. The choice of subsequence
length plays a critical role in these results. STUMPY benefits from the ACF-based method,
while MERLIN performs better with a fixed length. This difference suggests that a broader
range of subsequence lengths, like the 50 lengths used by MERLIN’s fixed strategy, captures
more anomalies. However, expanding the ACF-based range would increase computational
costs, especially when the suggested ACF-based length is large. For example, the optimal
subsequence length suggested by ACF can be 1,440 for a time series sampled every minute
and with a daily seasonality. The accuracy difference between STUMPY and MERLIN
also emphasizes the importance of the subsequence length parameter. Although MERLIN
essentially extends STUMPY’s operations across multiple lengths, the results highlight how
the choice of subsequence length directly impacts anomaly detection accuracy.
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Fig. 3: UCR Score for our STAN and Baseline Methods.
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Fig. 4: Percentage of Correctly Detected Anomaly per Type. In Brackets is the Number of Anomalies.

On the other hand, the accuracy difference between STUMPY and MERLIN underscores
the importance of the subsequence size parameter. The core operations are identical since
MERLIN applies STUMPY efficiently across a range of subsequence lengths. However, the
results vary significantly, highlighting the impact that the choice of subsequence size can
have on anomaly detection accuracy.

Accuracy per Anomaly Type: Figure 4 presents the accuracy of our STAN and MERLIN
(fixed) across different anomaly types. The figure shows significant variations across
different time series anomalies. STAN substantially outperforms MERLIN (fixed) in
detecting complex anomalies such as Noise (96% vs. 57%), Frequency Change (70% vs.
56%), and Flat (83% vs. 0%). Additionally, STAN shows high accuracy in identifying
anomalies like Signal Shift, Steep Increase, and Time Warping, achieving perfect detection
(100%), although the number of instances is quite limited. Another key strength of STAN
is its ability to detect anomalies in more diverse categories, such as Sampling Rate and
Smoothed Increase, where MERLIN either struggles or fails to detect anomalies altogether.
These results suggest that the combination of summary statistics in STAN, especially those
designed to capture complex patterns like turning points, provides a better detection strategy.

Limitations: MERLIN outperforms STAN in detecting Outlier anomalies (83% vs. 56%)
and has better results in detecting Reversed Vertical (61% vs. 52%) and Reversed Horizontal
(88% vs. 63%) anomalies. These results indicate that while STAN’s summary statistics are
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effective for a broad range of anomalies, additional statistics may be needed to enhance its
accuracy for these specific types. In future work, we will explore complex statistics tailored
specifically to improve the detection of these anomaly types.

Contribution per Summary Statistic: We also analyze the individual contribution of each
summary statistic to anomaly detection accuracy. Figure 5 displays the accuracy obtained
for each summary statistic, broken down by anomaly type. Below, we rank the summary
statistics based on their overall performance and describe their specific contributions:

1. Standard Deviation (SD): With 108 out of 250 correctly detected anomalies (43.2%),
SD is the best-performing stand-alone statistic. SD demonstrates consistent perfor-
mance across various anomaly types, particularly excelling in detecting Amplitude
Change (76%), Noise (78%) while showing relative success detecting Outlier (39%).

2. Minimum (Min): Detecting 107 out of 250 anomalies (42.8%), Min shows good



performance in detecting Outlier (56%) and Sampling Rate (60%) anomalies. However,
Min struggles with certain anomaly types like Flat (17%), indicating its strength lies
in capturing pronounced value drops.

3. Maximum (Max): Detecting of 99 out of 250 (39.6%). Max is effective for Local
Drop (50%) and Reversed Horizontal anomalies (75%), for which it achieves the best
among all statistics.

4. Kurtosis (KU): Detecting of 95 out of 250 (38%), KU shows good performance in
detecting Local Peak and Noise anomalies with 56% and 74%, respectively.

5. Skewness (SK): Detecting 94 out of 250 anomalies (37.6%), SK is among the best
detecting Reversed Horizontally (63%) anomalies. At the same time, most other
statistics fail to detect at least one of these anomalies.

6. Point Anomaly (PA): Detecting 84 out of 250 anomalies (33.6%), this custom
function is, as expected, strong in identifying Noise (78%) and Outlier (56%)
anomalies. By focusing on local variance over small segments, PA successfully
detects subtle changes that aggregates miss over long subsequence lengths.

7. Turning Points (TP): With 58 out of 250 anomalies correctly detected (23.2%), TP
is effective in detecting Missing Drop and Frequency Change anomalies. In the case
of Missing Drop, only Max and TP are capable of detecting anomalies.

8. Mean: With 46 out of 250 anomalies (18.4%), Mean shows limited effectiveness
overall, with modest accuracy in detecting most of the anomaly types. Nonetheless,
Mean is the best detecting Missing Peak (43%). Thus, despite its lower performance,
it can still improve accuracy with very little computational overhead.
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Accumulated Impact: In the next set of ex-
periments, we evaluate the incremental con-
tribution of summary statistics to STAN’s
performance. Starting with SD (the best-
performing statistic individually), we pro-
gressively added more statistics, ending
with Mean (the least effective individually).
The results, shown in Figure 6, demonstrate
that as additional statistics are incorporated,
STAN’s performance steadily improves, ul-
timately achieving a UCR Score of 60.4.
These results confirm that while statistics like SD and Max are highly effective at detecting
a broad range of anomalies, others such as PA, TP, and Mean play a complementary role by
targeting specific anomaly types, making them valuable additions to the ensemble. For future
work, we plan to explore strategies to further enhance STAN’s performance by combining
the strengths of each statistic through a weighting scheme informed by preprocessing and
feature extraction of the time series.
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Fig. 7: STAN’s and Baselines Runtime (a) and Accumulated Runtime per Summary Statistics (b).

4.3 Execution Time Evaluation

Figure 7 presents two key aspects of STAN’s runtime performance. Specifically, Figure 7(a)
shows the mean runtime (in seconds) of STAN compared to baseline methods, while
Figure 7(b) illustrates STAN’s cumulative runtime as additional summary statistics are
incrementally incorporated. The reported runtimes include both the training and evaluation
phases for STAN and all baselines. We use (F) and (A) to refer to the fixed- and ACF-based
strategies for computing the window size, respectively. Overall, STAN achieves the fastest
execution time, requiring approximately 2 seconds per time series, compared to STUMPY,
which takes over an order of magnitude longer (close to 45 seconds). MERLIN and MDI,
the baselines closest to STAN in terms of accuracy, take between 74 and 87 seconds per
time series, making STAN at least 40x faster. On the other hand, Figure 7(b) shows a linear
increase in runtime as summary statistics are added. A slight increase of 0.5 seconds is
observed when PA, one of our custom-designed summary statistics, is added. This sudden
increase is due to PA’s use of sliding windows of size one, which introduces additional
computations compared to the other statistics. These results, combined with STAN’s high
detection accuracy, make a strong case for the proposed approach and highlight its potential
as a foundation for future methods employing similar strategies.

4.4 Window Size Evaluation

In this set of experiments, we evaluate the performance of STAN using different strategies
to compute the window size parameter. Specifically, we compare our ACF-based method
(referred to as ACF for simplicity) with two alternative methods: the Fast Fourier Transform
(FFT) and the Multi-Window-Finder (MWF) [ESL22, IK21]. The FFT method identifies
the dominant frequency in the time series by applying the Fourier transform and sets the
window size based on the most dominant Fourier coefficient. In contrast, the MWF method
selects the window size by comparing the variance of moving averages across a range of
candidates, choosing the one with the smallest variance as the most suitable. These methods
were selected based on their strong performance in a previous benchmark study [ESL22].
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Results Analysis: Figure 8 presents the results of STAN
using the window sizes derived from these three methods
on the UCR dataset. As shown, the ACF method achieves
the highest accuracy (60.4%), consistent with the results re-
ported in previous sections. When using the MWF method,
STAN correctly detects 137 out of 250 anomalies (54.8%),
outperforming most baseline methods. In comparison, the
FFT-based approach identifies 120 out of 250 anomalies
(48%), resulting in approximately a 12% decrease in accu-
racy for STAN.

5 Conclusions and Future Work

We introduced STAN, a fast and parameter-free algorithm for time series anomaly detection.
STAN leverages an ensemble of summary statistics to capture the diverse patterns of
non-anomalous time series during the training phase. These summary statistics are then
used in the evaluation phase to identify divergences from regular patterns, thereby detecting
anomalies. Together with an ACF-based window size computation, our method is accurate
and eliminates the need for user intervention and hyperparameter tuning. Based on our
experimental results, we draw the following conclusions: 1) STAN achieves high detection
accuracy, surpassing more complex anomaly detection methods such as MDI and Matrix
Profile. 2) STAN is more efficient than the baselines, with an execution time of at least
an order of magnitude faster. 3) Combining different, low- and high-order summary
statistics positively impacts detection accuracy. 4) Our ACF-based strategy for automatically
selecting the window size parameter improves detection accuracy and frees users from
manually setting this parameter. Together, these results strongly support using summary
statistics ensembles in anomaly detection, which reduces the need for extensive parameter
tuning and computational costs. For future work, we plan to explore the addition of more
summary statistics and develop strategies for weighting their contribution to the ensemble.
We will also investigate runtime improvements by leveraging parallelization to achieve
high-performance anomaly detection. Finally, we will test STAN’s performance in recently
published benchmark datasets [LP24].
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