
SPOOF: Sum-Product Optimization and Operator Fusion
for Large-Scale Machine Learning

Tarek Elgamal2∗, Shangyu Luo3∗, Matthias Boehm1, Alexandre V. Evfimievski1,
Shirish Tatikonda4†, Berthold Reinwald1, Prithviraj Sen1

1 IBM Research – Almaden; San Jose, CA, USA
2 University of Illinois; Urbana-Champaign, IL, USA

3 Rice University; Houston, TX, USA
4 Target Corporation; Sunnyvale, CA, USA

ABSTRACT
Systems for declarative large-scale machine learning (ML)
algorithms aim at high-level algorithm specification and au-
tomatic optimization of runtime execution plans. State-of-
the-art compilers rely on algebraic rewrites and operator se-
lection, including fused operators to avoid materialized in-
termediates, reduce memory bandwidth requirements, and
exploit sparsity across chains of operations. However, the
unlimited number of relevant patterns for rewrites and op-
erators poses challenges in terms of development effort and
high performance impact. Query compilation has been stud-
ied extensively in the database literature, but ML programs
additionally require handling linear algebra and exploiting
algebraic properties, DAG structures, and sparsity. In this
paper, we introduce Spoof, an architecture to automatically
(1) identify algebraic simplification rewrites, and (2) gener-
ate fused operators in a holistic framework. We describe a
snapshot of the overall system, including key techniques of
sum-product optimization and code generation. Preliminary
experiments show performance close to hand-coded fused
operators, significant improvements over a baseline without
fused operators, and moderate compilation overhead.

1. INTRODUCTION
Declarative machine learning (ML) aims at simplifying the

usage and development of ML algorithms via a high-level
specification of ML tasks or algorithms [8, 29]. Systems for
declarative, large-scale ML algorithms allow data scientists
to express algorithms in a high-level, analysis-centric lan-
guage with physical data independence and automatically
generated, optimized execution plans. Traditional statisti-
cal computing platforms like R [46, 53] and MATLAB [35,
43], or the deep-learning-centric TensorFlow [1] also provide
high-level languages and APIs but interpret ML programs

∗Work done during an internship at IBM Research – Almaden.
†Work done while at IBM Research – Almaden

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2017.
8th Biennial Conference on Innovative Data Systems Research (CIDR ‘17)
January 8-11, 2017 , Chaminade, California, USA.

as specified. In contrast, state-of-the-art optimizing compil-
ers such as SystemML [9], OptiML [47], and Cumulon [17]
commonly rely on algebraic simplification rewrites [9, 47],
operator selection [9] and fused operators [9, 17, 47].

Example Rewrites and Fused Operators: Opportu-
nities for rewrites and fused operators are ubiquitous in ML
programs. For example, consider the following rewrites: (1)
X>y → (y>X)>, [7, 13] (2) sum(λ � X) → λ � sum(X),
and (3) trace(XY) → sum(X �Y>), where � denotes the
element-wise multiplication. These rewrites avoid large un-
necessary intermediates (e.g., X> and λ � X) and change
the asymptotic behavior (e.g., for trace(XY), from O(n3) to
O(n2)) via techniques similar to aggregation and selection
push-down. Furthermore, consider the example fused oper-
ator patterns: (1) sum(X�Y�Z) [18], (2) X>(Xv) [2, 7],
and (3) sum(X� log(UV>)) [9]. These fused operators also
avoid unnecessary intermediates, unnecessary scans of the
input X, and change the asymptotic behavior (e.g., for (3),
from the number of cells to the number of non-zeros in X,
by selectively computing dot products UV> for non-zeros
in X). However, fused operators require runtime support.

A Case for Automatic Rewrites and Fusion: Op-
timization with pattern-matching rewrites and hand-coded
fused operators faces two problems. First, the unlimited
number of patterns requires a large development effort, es-
pecially for multi-backend systems like SystemML. Also,
efficient support for dense and sparse matrices requires
many operator implementations (e.g., 23 for ternary opera-
tors). Second, even slightly changed patterns like sum(X �
log(UV> + ε))—to avoid log(0)—can render existing fused
operators inapplicable, with huge performance impact for
sparsity-exploiting operators. In this paper, we make a case
for automatic rewrites and operator fusion for unknown pat-
terns, while still leveraging existing rewrites and operators.

Vision: Our vision is a holistic optimization framework
for automatic rewrite identification and operator fusion.
Holistic reasoning is important due to increased optimiza-
tion opportunities and side effects such as common subex-
pressions and influences between rewrites and fusion poten-
tial. Rewrites and fusion of linear algebra operations have
been studied for decades [4, 35], but only individually, of-
ten with pattern matching rewrites, and without exploiting
sparsity across operations. Our core ideas are to break up
linear algebra operations into their basic operators, apply
elementary sum-product rewrites, and generate hybrid op-
erators of hand-coded skeletons and custom body code.

Contributions: We introduce Spoof (Sum-Product Op-
timization and Operator Fusion), an architecture for auto-
matic rewrite identification and fused operator generation.
In detail, we make the following technical contributions:

• Architecture: We describe the overall architecture of
Spoof and major design decisions in Section 2.

• Sum-Product Optimization: We provide an overview of
our sum-product framework in Section 3. It is based
on relational algebra, which opens up opportunities to
leverage and extend existing optimizer technology.

• Fused Operator Generation: We describe the auto-
matic code generation of efficient fused operators in
Section 4. This includes the handling of general DAG
structures, sparsity-exploiting operators, and effective
plan caching across DAGs and during recompilation.

• Experiments: Finally, we present preliminary results,
reporting on micro-benchmarks and end-to-end perfor-
mance of various ML algorithms in Section 5.

2. SYSTEM ARCHITECTURE
We integrated the Spoof compiler framework into Apache

SystemML [7, 9]. In this section, we describe its integration
into the SystemML compilation chain, as well as the archi-
tecture and components of the Spoof framework.

2.1 SystemML Compiler Integration
To describe the Spoof compiler integration, we introduce

our running example, review SystemML’s compilation chain,
and discuss a non-invasive integration approach.

Example ML Script: Our running example is Poisson
Nonnegative Matrix Factorization (PNMF) [32, 33], where
we try to approximate a typically very sparse input matrix
X with two factors W and H of low rank k, typically 10-500.

1: X = read("./input/X")
2: k = 100; eps = 1e-15; max_iter = 10; iter = 1;
3: W = rand(rows=nrow(X), cols=k, min=0, max=0.025)
4: H = rand(rows=k, cols=ncol(X), min=0, max=0.025)
5: while(iter < max_iter) {
6: H = (H*(t(W)%*%(X/(W%*%H+eps)))) / t(colSums(W));
7: W = (W*((X/(W%*%H+eps))%*%t(H))) / t(rowSums(H));
8: obj = sum(W%*%H) - sum(X*log(W%*%H+eps));
9: print("iter=" + iter + " obj=" + obj);
10: iter = iter + 1;
11: } # %*% .. matrix mult
12: write(W, "./output/W"); # * .. cell-wise mult
13: write(H, "./output/H");

SystemML uses fused operators wdivmm left/wdivmm right

for the update rules (lines 6 and 7) and wcemm for the objec-
tive (line 8) as well as rewrites sum(WH) to colSums(W) ·
rowSums(H). Together these changes have significant per-
formance impact—for a sparsity of 0.001, up to 1,000x—
because they avoid computing the dense intermediate WH.

SystemML Compilation Chain: SystemML compiles
such scripts into a hierarchy of statement blocks and state-
ments, where blocks are delineated by control flow (e.g., lines
1-4, 5-11, 6-10). Each last-level block is then compiled into
a DAG of high-level operators (HOPs), where we also prop-
agate size information such as dimensions and sparsity from
the inputs through the entire program and perform opti-
mizations like constant folding, branch removal, common-
subexpression elimination, matrix multiplication chain opti-
mization, and algebraic rewrites. Each HOP DAG is then

1

Modified
HOP
DAG

(output)

HOP
DAG
(input)

 Analysis
(e.g. annotation)

3 Synthesis
(1-1, source code)

Sum-Product Optimization Code Generation

2 Transform
(e.g. rewrites)
Cost

Model

Templates
(local, dist)

Core
Primitives

SP-Plan C-Plan

Figure 1: SPOOF Compiler Framework.

compiled into a DAG of low-level operators (LOPs) and exe-
cutable runtime instructions by selecting physical operators
including existing fused operators, and additional rewrites.

SPOOF Compiler Integration: To leverage the exist-
ing compiler and runtime infrastructure, we made the design
decision to complement it by Spoof in a non-invasive man-
ner. We invoke the Spoof compiler after HOP DAG rewrites
and operator selection, separately for each HOP DAG.
The Spoof compiler creates a—potentially modified—HOP
DAG. Fused operators are represented via generic HOP and
LOP nodes that are parameterized with the generated class
name as well as generic instructions that load the generated
class into the JVM and call a common operator interface.
This HOP DAG integration also ensures a seamless integra-
tion with advanced techniques like inter-procedural analysis,
parfor optimization, and dynamic re-compilation [7].

2.2 SPOOF Compiler Framework
We now describe the Spoof compiler framework to op-

timize individual HOP DAGs, including its major compo-
nents, cost model, and constraints, as well as overall design.

Framework Overview: Figure 1 shows the Spoof com-
piler framework. The input HOP DAG also carries propa-
gated size information per operator. In a first analysis step,
we create Sum-Product Plans (SP-Plans), i.e., restricted re-
lational algebra plans, for relevant partial HOP DAGs. SP-
Plans represent operations like matrix multiply as basic op-
erators, i.e., multiply and sum. We also annotate matrix
properties and sparse-safeness, i.e., if zero inputs can be ig-
nored. In a second transform step, the sum-product opti-
mizer then enumerates alternative SP-Plans via elementary
rewrites like the distributive law rewrite. After pruning, we
generate Codegen Plans (C-Plans) that are overlay plans of
the HOP DAG and represent operator templates and core
code generation primitives like dotProduct. Costs are eval-
uated on C-Plans to account for side effects between sum-
product optimization and operator fusion. Once the optimal
plan is found, we perform a third synthesis step, where we
(1) map HOPs without C-Plan overlay directly to the output
HOP DAG, and (2) generate source code for each C-Plan.
Note that C-Plans can overlap, which avoids materializa-
tion of intermediates at the cost of redundant computation.
Sections 3 and 4 provide additional details of compilation
techniques. Finally, we invoke the programmatic Java com-
piler API to compile generated classes of fused operators.

Cost Model and Constraints: To cost individual C-
Plans, we extended our cost model of estimated plan ex-
ecution time [18] to (1) work directly over C-Plans, and
(2) reflect computation (floating point operations) and I/O
(HDFS and memory bandwidth). Costing C-Plans instead

ua(RC, +)

ba(+*)

W H

Subexpression:
sum(W%*%H)

b(+)

u(log)

b(*)

b(-)

X

...

...

ua(RC, +)

eps

(a) Original HOP DAG

⨝ j=k

Wijw Hklh

Π i,j,l,v=w*h

Γi,l; sum(v)

Matrix
Mult

Γsum(v)
Sum

* j=k

(b) SP-Plan 1

Wijw Hklh

Γsum(v)

* j=k

(c) SP-Plan 2

Wijw

Hklh

Γsum(v)

Γk; sum(h)

* j=k

(d) SP-Plan 3

Wijw Hklh

Γsum(v)

Γk; sum(h)Γj; sum(w)

Dot
Product

RowSumsColSums

* j=k

(e) SP-Plan 4

ba(+*)

W H

Modified Subexpression:
as.scalar(

colSums(W)%*%rowSums(H))

ua(C, +) ua(R, +)

u(cast_m2s)

(f) New HOP DAG

Figure 2: Sum-Product Optimization of sum(WH)→ colSums(W) · rowSums(H).

of runtime plans captures the semantics of generated fused
operators, avoids unnecessary compilation overhead, and al-
lows memoization. Furthermore, we impose two constraints
on fused operators. First, C-Plans are created for neither
single operators nor scalar-scalar operations. This restric-
tion prevents code generation for existing fused operators
and more understandable EXPLAIN output. Second, fused
operators of in-memory operations must satisfy the given
memory budget, which prevents out-of-memory errors.

Design Discussion: Finally, we review major design de-
cisions for the overall compiler framework. First, covering
both sum-product optimization and code generation in a
holistic framework accounts for side effects and opens up
more optimization opportunities because sum-product plans
do not necessarily need to map to existing operators but can
be compiled to custom fused operators. Second, comple-
menting the existing compiler and runtime infrastructure
by Spoof—for automatic rewrites and operator fusion—
allowed us to support the general case of all operations and
features but compile efficient fused operators where possi-
ble. Finally, note that the connection between linear and
relational algebra has been explored before. While we use
restricted relational algebra as our central plan represen-
tation for sum-product optimization and operator fusion,
existing work separately studied common language and run-
time support [30], ML algorithms over joins [28, 41, 44],
algebraic laws [13], a view-based SQL backend for R [53],
and instantiating low-level sparse operators [34].

3. SUM-PRODUCT OPTIMIZATION
Sum-product optimization aims to automatically perform

algebraic rewrites without coarse-grained pattern matching.
To accomplish that, we represent partial DAGs in restricted
relational algebra and apply elementary sum-product and
relational rewrites. Side effects between rewrites and oper-
ator fusion are evaluated by costing alternative plans.

3.1 Plan Representation
Sum-product plans (SP-Plans) are restricted relational al-

gebra plans of partial HOP DAGs. This conceptual frame-
work explicitly represents linear algebra operations like ma-
trix multiply as compositions of basic operators to allow
elementary rewrites over sums and products. We construct
SP plans for sub-plans with applicable operations.

Data and Operations: Input matrices are relations of
(i,j,v)-tuples, i.e., row-/column-indexes, and values. Inter-
mediate relations are tensors of arbitrary dimension. Our
framework supports the following operations: selection σ,
extended projection Π (for expression computation), aggre-

gation Γ (min, max, sum), and join 1. To simplify reasoning
and HOP DAG reconstruction, we further introduce

• Composite Operations such as multiply Aij∗j=kBkl :=
Πi,j,l,a·b(Aija 1j=k Bklb), and

• Two Restrictions: (1) a single value attribute per re-
lation, and (2) unique composite indexes per relation;
these restrictions ensure a single value per tensor cell.

Sparse-safeness properties are specified via join types: we
define element-wise multiplication as Aij ∗i=k∧j=l Bkl :=
Πi,j,a·b(Aija 1i=k∧j=l Bklb) but element-wise addition—
and similarly element-wise subtraction—as full outer join
Aij +i=k∧j=l Bkl := Πi,j,a+b(Aija 1 i=k∧j=l Bklb), where
NULL values are systematically treated as zeros.

Example SP-Plan sum(WH): Consider the partial
HOP DAG for line 8 of our running example, shown in Fig-
ure 2(a). The subexpression sum(WH) is represented via bi-
nary aggregate (matrix multiply) and unary aggregate (full
sum). Figure 2(b) then shows the related SP-Plan. The ma-
trix multiplication is mapped to (1) a ∗j=k (i.e., 1j=k over
the common dimension and Πi,j,l,w·h to compute element-
wise multiplications), and (2) Γi,l,sum to aggregate values per
output cell. Similarly, the sum is mapped to a final Γsum.

3.2 Rewrites and Interesting Properties
Initial SP-Plans are transformed into modified SP-Plans

via elementary sum-product rewrites leveraging algebraic
properties. Examples are distributive and associative laws of
addition and multiplication (e.g., x1y1+x1y2 → x1(y1+y2)).
The distributive law rewrite applies to ΓA,sum(X∗J Y) with
respect to index i ∈ Y, iff i /∈ A ∧ i /∈ J . Additionally, we
use traditional relational rewrites like selection, projection,
and aggregation push-down/pull-up [11, 51].

Example SP-Plan Rewrite sum(WH): Given the SP-
Plan shown in Figure 2(b), we iteratively apply elementary
transformation rewrites. First, in Figure 2(c), we collapse
the two subsequent aggregations into a single aggregation
over indexes i, j, l, corresponding to Σijl(wij · hjl). Second,
in Figure 2(d), we apply the distributive law rewrite of sum-
product and push the aggregation over index l under the
join of ∗j=k, corresponding to Σij(wij · Σlhjl). Third, in
Figure 2(e), we similarly apply the distributive law rewrite
to the left matrix and push down the aggregation over in-
dex i, corresponding to Σj((Σiwij) · (Σlhjl)). Finally, we
map the SP-Plan back to the modified HOP DAG shown in
Figure 2(f), where for example Γj,sum(Wijw) is identified as
colSums(W) due to aggregation over the row index i.

Additional Examples: Sum-product rewrites are very
simple yet highly flexible, allowing the composition of a va-

riety of complex rewrites. Consider the following examples,
which we classify by relational rewrite categories along with
the major sources of performance improvements:

• Aggregation Push-Down (reduces number of ma-
trix intermediates and floating point operations):

sum(λ�X)→ Γsum(Πi,j,λ·x(Xij))

→ Πλ·x(Γsum(Xij))→ λ� sum(X)

sum(X + Y)→ Γsum(Xij +i=k∧j=l Ykl)

→ Γsum(Xij) + Γsum(Ykl))→ sum(X) + sum(Y)

(1)

• Selection Push-Down (improves the asymptotic be-
havior, e.g., O(n3)→ O(n2) and O(n3)→ O(n) in be-
low examples, assuming squared n×n input matrices):

trace(XY)→ Γsum(σi=l(Γi,l;sum(Xij ∗j=k Ykl)))

→ Γsum(Xij ∗i=l∧j=k Ykl))→ sum(X�Y>)

(XY)[a, b]→ σi=a∧l=b(Γi,l;sum(Xij ∗j=k Ykl))

→ Γsum(σi=a(Xij) ∗j=k σl=b(Ykl))→ X[a,]Y[, b]

(2)

• Join Elimination (reduces number of matrix inter-
mediates and floating point operations; changes binary
to unary operations, which increases fusion potential):

X�X→ Xij ∗i=i∧j=j Xij → Πi,j,x2 (Xij)→ X2

X−X�Y → Xij −i=i∧j=j (Xij ∗i=k∧j=l Ykl)

→ Xij ∗i=k∧j=l Πk,l,1−y(Ykl)→ X� (1−Y)

X� (X > 0)→ Xij ∗i=i∧j=j Πi,j,x>0(Xij)

→ σx>0(Xij)→ codegen required, or max(X, 0)

X− µ� (X 6= 0)→ Xij −i=i∧j=j Πi,j,µ·(x 6=0)(Xij)

→ Πi,j,x−µ(σx 6=0(Xij))→ codegen required

(3)

• Join Ordering (improves the asymptotic behavior,
e.g., O(n3)→ O(n2) in below example, assuming n×n
input matrices X and Y and an n× 1 input vector v):

(XY)v→ Γi;sum(Γi,l;sum(Xij ∗j=k Ykl) ∗l=m vm)

→ Γi;sum(Xij ∗j=k Γk;sum(Ykl ∗l=m vm))

→ X(Yv)→ enables fusion in case X>(Xv)

(4)

• Aggregation Elimination (reduces number of ma-
trix intermediates and floating point operations; can
enable merge of surrounding operations):

rowSums(X)→ Γi;sum(Xi)→ Xi → X

X� (v [1, 1, . . .])→ Xij ∗i=k∧j=l Γk,l;sum(vk ∗ 1l)

→ Xij ∗i=k vk → X� v

diag(v)X→ Γi,l;sum(Πi,j=i,v(vi) ∗j=k Xk,l)

→ vi ∗i=k Xk,l → X� v

(5)

Note that some of these rewrite examples require a tight
integration with operator fusion, i.e., code generation, be-
cause their output plans cannot be directly mapped back to
HOP DAGs. Furthermore, many rewrites also exploit size
information and various structural matrix properties. For
example, in Equation (5), we exploit vectors of ones and di-
agonal matrices to reduce matrix multiplications to simple
element-wise multiplications. Therefore, we are interested
in systematically leveraging interesting properties.
Interesting Properties: Sum-product optimization

aims to annotate enumerated plans with interesting prop-
erties [19] of two categories: (1) physical properties of inter-
mediate results, and (2) operation properties. First, as phys-
ical properties of intermediates, we track row/column/block

partitioning, ordering, co-partitioning, and special matrix
properties (constant values, sequences, diagonal matrices).
Second, we determine types of sparse-safeness for operations
and DAGs of operations. For example, the b(*)-rooted op-
erations in Figure 2(a) are fully sparse-safe even though in-
dividual operations like b(+)-eps are not sparse-safe.

We leave the transformation rules, the search space analy-
sis, the enumeration algorithms, and further pruning strate-
gies as interesting directions for future work.

3.3 Optimization
Alternative plans are passed to operator fusion for cost-

ing without code generation. This allows reasoning about
side effects. For example, in Figure 2(a), the sum-product
rewrite of sum(WH) alone is counterproductive, as it does
not leverage the common subexpression WH. However,
since we also create a sparsity-exploiting fused operator for
sum(X� log(WH+ ε)), it is indeed crucial for performance
because only if applied together, the asymptotic behavior
is changed. Furthermore, sum-product rewrites can increase
or decrease fusion potential. Similarly, operator fusion fixes
the execution order of chains of operations, which in turn
decreases rewrite potential. Hence, it is important to reason
about sum-product rewrites and fusion in a holistic manner.

Limitations: Our current sum-product framework ex-
changes plans as HOP DAGs, applies only transformation-
based rewrites, and only considers trees. It is interesting fu-
ture work to integrate it into a dynamic programming plan
generator for DAGs [38] with direct mapping to fusion plans,
potentially based on a more fine-grained plan representation.

4. FUSED OPERATOR GENERATION
Given a rewritten operator DAG, we then compile fused

physical operators in order to (1) exploit sparsity over chains
of operators, and (2) reduce the number of materialized
intermediates. Our hybrid approach relies on a small set
of meta templates and core operation primitives to compile
Java source code for the body of generic fused operators.

4.1 Plan Representation
Code-generation plans (C-Plans) are overlay plans of par-

tial HOP DAGs, where multiple—potentially overlapping—
C-Plans can be associated with a single HOP DAG. C-Plans
consist of C-Nodes that are either template or primitive
nodes. Template nodes are generic fused operator skeletons
that contain a DAG of C-Nodes and exhibit a specific data
binding and constraints. Primitive nodes are operations,
and edges are scalar or matrix data dependencies.

Templates and Core Primitives: Template skeletons
with a generated operator body and core primitives allow
efficient handling of sparse and dense input matrices, cache-
conscious implementations, single- and multi-threaded skele-
tons, and the use of vector primitives tuned for instruction-
level parallelism. At the same time, custom body code al-
lows a wide variety of operation patterns. Example tem-
plates are SpoofOuterProduct (sparse-safe operations over
outer-product-like matrix multiplications), SpoofRowAggre-
gate (row-wise operations with aggregation), and Spoof-

Cellwise (cell-wise operations with and without aggrega-
tion). All these templates can leverage scalar primitives
(unary or binary) or vector primitives (e.g., dotProduct,
vectMult, vectAdd, vectMultAdd), which also allow for a
seamless integration of tuned BLAS level 1 routines.

ba(+*)

W H

b(+)

eps

...

b(/)

X

ba(+*)

r(t)

b(*) Subexpression:
(X/(W%*%H+eps))%*%t(H)

(a) Original HOP DAG

b(dotProduct)

W HT

eps

b(/)

b(vectMultAdd)

X

cells Xij
≠ 0

SpoofOuter
Product

Wi Hj

b(+)

(b) C-Plan

W H

...

X

spoof(TMP5)

b(*)

r(t)

(c) New HOP DAG

W

H

X /

HT

eps

1) Selective sparse-safe
computation

+

3) Leverage HT for
sequential row-major access

2) Cache-conscious blocked
execution over W and H

(d) Access Pattern of Fused Operator TMP5

Figure 3: Fused Operator Generation for (X/(WH + ε))H>.

Example C-Plan (X/(WH+ε))H>: Figure 3(a) shows
the partial HOP DAG for line 7 of our running example.
The associated C-Plan—shown in Figure 3(b)—leverages
the SpoofOuterProduct template that binds non-zero cells
Xij of a matrix X and corresponding rows Wi and Hj

of an outer-product-like matrix multiply WH>. The tem-
plate body encodes the computation per Xij cell, using a
dotProduct of Wi and Hj , scalar addition and division,
as well as vectMultAdd (element-wise scalar-vector multiply
and add to an output vector). As shown in Figure 3(d), we
work over H> for sequential access of our row-major matrix
representation. Note that the final b(*) is not fused because
this would incur redundant computation before aggregation.

4.2 Plan Alternatives and Cost Model
On C-Plan construction, there are again plan alternatives.

For example, overlapping C-Plans require decisions on ma-
terialization points, i.e., to create overlapping fused opera-
tors with redundant computation, or to materialize results
of the shared sub-plan. Another example is the decision on
different templates applying to overlapping sub-DAGs. We
explore these alternatives with a MEMO structure and cost
comparisons. The same cost model—extended for entire op-
erator DAGs—is also used for sum-product alternatives.

Cost Model: We use a simple analytical cost model of
C(oi) = max(CMEM(oi), CCPU(oi))—to explore trade-offs
of redundant computation—where CMEM(oi) indicates the
time for off-chip memory transfers, and CCPU(oi)) indicates
compute time based on the number of floating point opera-
tions. Similar to a roofline analysis [50], this model allows
determining the influencing cost factor without profiling. In
detail, we recursively compute the input data size and the
number of weighted floating point operations of the C-Plan,
and finally derive CMEM and CCPU times based on peak
memory bandwidth and peak floating point performance.

Example C-Plan Costs (X/(WH+ ε))H>: Recall the
C-Plan from Figure 3(b) and assume a 100K × 100K input
X with sparsity 0.01 (1.2 GB), two dense 100K×100 factors
W and H, and peak memory bandwidth of 64 GB/s and
peak floating point performance of 230 GFLOP/s. For this
scenario, we compute the costs C as follows:

CMEM = (1.2 GB + 80 MB + 80 MB) / 64 GB/s = 21.25 ms

CCPU = 100,0002 · 0.01 · (100 · 2 + 1 + 22 + 100 · 2) FLOP

/ 230 GFLOP/s = 183.91 ms

C = max(CMEM, CCPU) = 183.91 ms,

(6)

where CCPU scales the number of floating point operations
of the inner C-Plan by the number of non-zero cells in X,
and we use a weight of 22 for divisions [20, p. C-14].

4.3 Code Generation
We generate code from each C-Plan by recursively call-

ing codegen on its root node. Template nodes instantiate a
class template, and call codegen on its DAG outputs to pro-
duce the body code. Row- and column-wise templates create
sparse and dense code separately. Each node has a unique
ID from which we derive temporary variable names that are
used by all parent nodes. Depth-first code generation en-
sures the ordering of code fragments by data dependencies.
We further adapted register allocation heuristics to handle
temporary vector memory requirements. Note that we gen-
erate Java source code instead of native code via LLVM to
avoid Java-native boundary crossing (via JNI) and because
compile time is usually negligible on large data.

Example (X/(WH + ε))H>: The generated code for
our C-Plan from Figure 3(b) is shown below. The generated
operator TMP5 inherits its skeleton from SpoofOuterProduct

but implements the cellwise computation with custom code.
This hybrid of implemented skeletons and generated body
allows carefully tuned data access, as shown in Figure 3(d),
and generated code similar to hand-coded UDFs [15, p. 6].

1: public final class TMP5 extends SpoofOuterProduct {
2: public TMP5() {
3: _type = OuterProductType.RIGHT;
4: }
5: protected void exec(double a, double[] b, int bi,
6: double[] c, int ci,...,double[] d, int di, int k) {
7: double TMP1 = dotProduct(b, c, bi, ci, k); // WH
8: double TMP2 = TMP1 + 1.0E-15; // +eps
9: double TMP3 = a / TMP2; // X/
10: vectMultiplyAdd(TMP3, c, d, ci, di, k); // t(H)
11: }}

HOP DAG/Runtime Integration: After code gener-
ation, we replace the partial HOP DAGs associated with
C-Plans—i.e., with generated fused operators—by generic
spoof HOPs as shown in Figure 3(c). These HOPs simply
refer to the generated classes by name. Similarly, we provide
generic spoof LOPs and instructions for a seamless compiler
and runtime integration. For distributed Spark operations,
the generated classes are shipped via task closures from the
driver to the executors and deserialized at the executors.

Limitations: Our code generator does so far neither al-
low nested templates (e.g., cell-wise within row-wise) nor
operations over compressed matrices [14], and supports only
a basic generation of distributed Spark operators.

4.4 Plan Caching
For various ML algorithms, the size of intermediates—i.e.,

their dimensions and sparsity—are unknown during initial
compilation. Examples are complex function call patterns,

UDFs, data-dependent operators, size expressions, or chang-
ing sizes. Therefore, SystemML uses dynamic recompilation
at the granularity of HOP DAGs to adaptively recompile
plans during runtime [7]. Size information is also important
for Spoof as many rewrites and templates have size con-
straints, regarding memory requirements and applicability.
Hence, we integrated Spoof into SystemML’s recompiler.

Dynamic Recompilation: Similar to the basic com-
piler integration described in Section 2.1, we invoke the
Spoof compiler after the update of size information, mem-
ory estimates, and HOP DAG rewrites. Dynamic recompila-
tion works on deep copies of original HOP DAGs to enable
non-reversible rewrites, which also allows a seamless inte-
gration of operator fusion. However, applying operator fu-
sion näıvely during recompilation creates huge overhead be-
cause code generation and compilation—with ≈100 ms per
fused operator—dominates the basic HOP DAG recompila-
tion, which only takes ≈1 ms for average DAGs.

Plan Cache Probing: As source code compilation is the
major bottleneck, we establish a simple yet very effective
plan cache to reuse generated operators across DAGs and
during dynamic recompilation. This plan cache is a hash
map from CPlans to compiled classes, where we recursively
compute the hash of a CPlan over its relevant, canonicalized
features. For any CPlan constructed during initial compi-
lation or recompilation, we then probe this plan cache, and
reuse the generated class in case of an exact match; other-
wise we invoke code generation and compilation as described
before. Comparing CPlans allows adaptation of optimiza-
tion decisions but avoids redundant class compilation.

Literal Handling: Dynamic recompilation also includes
constant folding and literal replacement. By default, our
Spoof compiler generates constants instead of input vari-
ables for literals. However, these literals limit reuse poten-
tial because variables like step sizes change in each itera-
tion. Hence, we use a context-sensitive heuristic for literal
handling (CSLH): during initial compilation, all literals are
generated as constants, whereas during recompilation, any
non-integer literals are generated as variables. This heuristic
has shown to provide a good compromise between efficiency
of generated code and reuse potential of operators.

5. EXPERIMENTS
Our experiments study the impact of sum-product opti-

mization and operator fusion on individual operations and
end-to-end ML algorithms, including our running example.

5.1 Experimental Setting
Our setup was a 1+6 node cluster, i.e., one head node of

2x4 Intel E5530 @ 2.40 GHz-2.66 GHz with hyper-threading
and 64 GB RAM @800 MHz, as well as 6 nodes of 2x6 Intel
E5-2440 @ 2.40 GHz-2.90 GHz with hyper-threading, 96 GB
RAM @1.33 GHz (registered ECC), 12x2 TB disks, 10Gb
Ethernet, and Red Hat Enterprise Linux Server 6.5. We
used OpenJDK 1.8.0, Apache Hadoop 2.2.0, and Apache
Spark 1.5.2. Spark was configured with 6 executors, 24
cores/executor, 30 GB driver memory, and 60 GB executor
memory. Our baselines are Apache SystemML 0.10 (May
2016), Julia 0.5 (Sep 2016) that uses an LLVM-based just-
in-time compiler [5], and peak memory and compute band-
width. All datasets have been synthetically generated to
evaluate a range of scenarios, where we used algorithm-
specific data generators for the end-to-end experiments.

0.0001 0.001 0.01 0.1

Base Fused SPOOF

1

10

100

1000

10000

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Sparsity

(a) ST, Var. Sparsity, 10K

0.0001 0.001 0.01 0.1

Base Fused SPOOF

1

10

100

1000

10000

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Sparsity

(b) MT, Var. Sparsity, 10K

25K 50K 100K 200K

Base
Fused

SPOOF

1

10

100

1000

10000

1e+05

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Data Size

(c) ST, Var. Data Size, 0.01

25K 50K 100K 200K

Base
Fused

SPOOF

1

10

100

1000

10000

1e+05

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Data Size

(d) MT, Var. Data Size, 0.01

Figure 4: Single-/Multi-Threaded X/(WH + ε)H>.

5.2 Operations Performance
To understand the runtime characteristics of generated

fused operators, we first present single-threaded (ST) and
multi-threaded (MT) micro-benchmarks. We use one worker
node with 80 GB heap size and report the mean of 20 runs of
a baseline without fused operators (Base), hand-coded fused
operators (Fused) and generated fused operators (Spoof).
Fused X/(WH + ε)H>: The fused wdivmm operator ex-

ploits sparsity and aggregation. Figures 4(a) and 4(b) show
the execution time (in log-scale) over a 10K× 10K input X
with varying sparsity (ratio of non-zeros) and factor rank
100. For a sparsity of 10−4, we see an improvement of three
orders of magnitude over the baseline without fused opera-
tors. Further, our Spoof code generation approach matches
the performance of the existing wdivmm operator; sometimes
we even slightly outperform it due to branchless generated
code. Figures 4(c) and 4(d) show consistent results with
increasing data size at sparsity 0.01. The baseline without
fused operators cannot execute the larger scenarios from 50K
onwards as the intermediate exceeds the dense block limita-
tion of 16 GB. At MT 200K, we observe a runtime that is
at 1/12 of peak floating point performance (230GFLOP/s),
which is good considering the sparse input, large factors of
160 MB, the complex operator pattern, and multi-threading.

Fused sum(X � Y � Z): Complementary to the above
operator, the fused tak+ operator avoids unnecessary inter-
mediates for I/O-bound operations. Figures 5(a) and 5(b)
show the execution time (in log-scale) over three dense vec-
tors with varying data size. For single-threaded execution,
we see only moderate improvements as the memory band-
width is not fully utilized yet. However, for multi-threaded
execution of large data, we see a substantial improvement of
one order of magnitude, achieving peak single-socket local or
remote memory bandwidth of ≈ 25 GB/s. The small 3x1M

3x1M 3x10M 3x0.1G 3x1G

Base
Fused
SPOOF

1

10

100

1000

10000

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Data Size

(a) ST, Var. Data Size, 1.0

3x1M 3x10M 3x0.1G 3x1G

Base
Fused
SPOOF

1

10

100

1000

10000

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Data Size

(b) MT, Var. Data Size, 1.0

Figure 5: Single-/Multi-Threaded sum(X�Y � Z).

Table 1: Julia Comparison X/(WH + ε)H>, MT.
Dataset Base Julia Spoof

10K× 10K, 0.0001 2,211 ms 1,611 ms 6ms
10K× 10K, 0.001 2,892 ms 1,621 ms 9ms
10K× 10K, 0.01 4,034 ms 1,709 ms 31ms
10K× 10K, 0.1 6,012 ms 1,871 ms 201ms

Table 2: Julia Comparison sum(X�Y � Z), MT.
Dataset Base Julia Spoof

3× 1M, 1.0 16 ms 8 ms 9ms
3× 10M, 1.0 93 ms 76 ms 21ms
3× 100M, 1.0 877 ms 733 ms 119ms

3× 1G, 1.0 10,249 ms 11,271 ms 1,189ms

case is an exception because the intermediates of 1M rows
(8 MB) still fit into L3 cache (15 MB). These results were
obtained with the -server configuration; we observed an
additional 30% improvement using the -XX:+UseNUMA flag.

Comparison to Julia: So far, we compared Spoof
exclusively with SystemML baselines. To further under-
stand the results, we now also compare with Julia that uses
an LLVM-based just-in-time compiler. Specifically, we re-
evaluate the representative scenarios of Figures 4(b) and
5(b). We ran Julia with -compile=all and report the aver-
age of 100 runs to amortize compilation overheads. Table 1
shows the results for X/(WH+ε)H>, comparing SystemML
Base, Julia, and Spoof. Julia uses by default OpenBLAS for
matrix multiplications which shows moderately better per-
formance than SystemML Base for this compute-intensive
scenario. As the number of non-zeros increases, SystemML
Base also suffers from an expensive sparse-dense divide due
to repeated output allocations. However, we observe that
Julia does not generate sparsity-exploiting code leading to
huge performance differences compared to Spoof. Further-
more, Table 2 shows the results for sum(X �Y � Z). For
this scenario, SystemML Base and Julia show almost identi-
cal performance as both become memory bandwidth bound
and create two large intermediates. In contrast, Spoof gen-
erates a fused operator without intermediates, leading to
performance improvements of up to an order of magnitude.

5.3 End-to-End Performance
We now investigate the impact of fused operators on

end-to-end performance, i.e., total elapsed time, includ-
ing compilation and I/O, where we report the mean of 5
runs. As complementary algorithm use cases, we use our
running example Poisson Nonnegative Matrix Factorization
(PNMF), L2-regularized Support Vector Machine (L2SVM),
and Multinomial Logistic Regression (Mlogreg).

PNMF: For PNMF, we generated sparse nonnegative in-
put data of varying dimensions and sparsity 0.001. Table 3
reports the runtime of 20 iterations with rank 100. Simi-
lar to our micro-benchmarks, we see huge improvements of
sparsity-exploiting fused operators. Spoof compiled four op-
erators and matches the performance of Fused except a 2 s
overhead for compilation. The baseline on scenario 200K re-
sulted in distributed operations, as the dense intermediates
were 320 GB, exceeding the driver memory. With the Spark
runtime, it failed due to a 2 GB limitation of shuffle files,
whereas with the MR runtime it took more than 39 h.

L2SVM: The L2SVM algorithm is a representative iter-
ative ML algorithm, using two nested while loops as well
as matrix-vector multiplications and vector operations. We
generated dense feature and label inputs X and y of a vary-
ing number of rows and only 10 features. In this scenario,

Table 3: PNMF End-to-End Execution Time.
Dataset Base Fused Spoof

10K× 10K, 0.001 251 s 6 s 9 s
25K× 25K, 0.001 4,748 s 9 s 11 s

200K× 200K, 0.001 >24h 121 s 125 s

Table 4: L2SVM End-to-End Execution Time.
Dataset Base Fused Spoof

100K× 10, 1.0 (8 MB) 3 s 3 s 5 s
1M× 10, 1.0 (80 MB) 9 s 7 s 8 s

10M× 10, 1.0 (800 MB) 50 s 34 s 17 s
100M× 10, 1.0 (8 GB) 525 s 320 s 114 s

Table 5: Mlogreg End-to-End Execution Time.
Dataset Base Fused Spoof

5K× 200, 1.0 (8 MB) 4 s 5 s 6 s
50K× 200, 1.0 (80 MB) 6 s 6 s 8 s

500K× 200, 1.0 (800 MB) 18 s 14 s 14 s
5M× 200, 1.0 (8 GB) 122 s 68 s 57 s

50M× 200, 1.0 (80 GB) 1,044 s 749 s 627 s
50M× 1000, 1.0 (400 GB) 20,152 s 13,380 s 14,156 s

the vector operations become the bottleneck. Table 4 re-
ports the runtime of 20 outer iterations with λ = 10−3 and
ε = 10−14. The larger the data size, the more we bene-
fit from fused operators such as sum(A�B�C) (twice in
the inner loop), due to fewer intermediates, which determine
the amount of data read and written from and to memory
as well as potential evictions. Spoof compiled the entire in-
ner loop into two overlapping fused operators for substantial
improvements compared to existing fused operators.

Mlogreg: The Mlogreg algorithm also comprises two
nested while loops but with two matrix multiplications for
X>(w � (Xv)) in the inner loop. We generated dense in-
puts with 200 features and binomial labels. Table 5 shows
the runtime of 20 outer iterations, with up to 5 inner itera-
tions, and λ = 10−3 and ε = 10−14. The larger the data size,
the more we benefit from a fused operator for X>(w�(Xv))
because it avoids an unnecessary scan of X from memory.
This fused mmchain operator computes the chain of oper-
ations row-wise, reusing rows of X from L1 cache. Spoof
additionally compiles various cell-wise operators for a total
improvement of more than 2x compared to Base. The same
applies to distributed in-memory and out-of-core datasets.

5.4 Example Fused Operators
In order to better understand the end-to-end performance

results in Section 5.3, we provide additional details of gener-
ated fused operators. Since we already discussed PNMF, we
specifically focus on the algorithms L2SVM and Mlogreg.

5.4.1 L2SVM Fused Operators
Below script shows the general algorithm structure and

the inner loop operations of L2SVM [18]:

1: while(continueOuter & iter < maxi) {
2: while(continueInner) {
3: out = 1 - Y * (Xw + step_sz*Xd);
4: sv = (out > 0);
5: out = out * sv;
6: g = wd + step_sz*dd - sum(out * Y * Xd);
7: h = dd + sum(Xd * sv * Xd);
8: step_sz = step_sz - g/h;
9: } } ...

Fusion Potential: Figure 6 shows the HOP DAG of the
inner loop (lines 3-7) without fused operators. Vector inputs
and operations are highlighted in bold on gray background;
the remaining scalar operations are negligible. This HOP

DAG creates ten vector intermediates and computes two vec-
tor sums, where the computation paths of both sums share a
large common subexpression. SystemML Fused compiles the
fused operators tak+ (twice for sum(X�Y�Z)), selp (for
X� (X > 0)), and -1* (for 1−XY), reducing the number
of intermediates to five. SystemML 0.11 would additionally
compile a +* (for X+s�Y). However, pattern-specific fused
operators usually comprise only few operations, which fails
to exploit the full potential. In contrast, Spoof eliminates
all intermediates by generating two overlapping fused oper-
ators of type SpoofCellwise with full aggregation.

Example Cell-wise Fused Operator: Understanding
the generated source code requires some details of the hand-
coded SpoofCellwise template. It supports cell-wise oper-
ations over one input matrix and arbitrary sideways input
vectors with (1) dense and sparse inputs, (2) sparse-safe and
-unsafe operations, (3) computation with and without aggre-
gation, as well as (4) single- and multi-threaded execution.
This template defines and uses an abstract exec method to
process one value at-a-time. Refraining from generating all
these aspects greatly simplified the code generator and en-
sures efficiency close to hand-coded operators. Generated
cell-wise operators then extend the SpoofCellwise operator
by implementing a custom exec method. Below source code
was generated for SPOOF TMP2 in Figure 6 using Xd as the
main input matrix, and Y and Xw as sideways vectors:

1: public final class TMP2 extends SpoofCellwise {
2: public TMP2() {
3: _type = CellType.FULL_AGG;
4: }
5: protected double exec(double a, double[][] vectors,
6: double[] scalars, ..., int rowIndex) {
7: double TMP3 = vectors[1][rowIndex];
8: double TMP4 = vectors[0][rowIndex];
9: double TMP5 = a * scalars[0];
10: double TMP6 = TMP4 + TMP5;
11: double TMP7 = TMP3 * TMP6;
12: double TMP8 = 1 - TMP7;
13: double TMP9 = (TMP8 > 0) ? 1 : 0;
14: double TMP10 = TMP8 * TMP9;
15: double TMP11 = TMP10 * TMP3;
16: double TMP12 = TMP11 * a;
17: return TMP12;
18: }}

Under certain conditions (e.g., single SpoofCellwise oper-
ator), the JVM JIT compiler is able to inline these calls
per value; otherwise, the invocation overhead is still often
negligible compared to reading from memory.

5.4.2 Mlogreg Fused Operators
Similar to L2SVM, Mlogreg also exhibits two nested while

loops but with matrix multiplications in the inner loop. Be-
low script shows the major operations of this inner loop:

1: Q = P [, 1:K] * (X %*% ssX_V);
2: HV = t(X)%*%(Q-P[,1:K]*(rowSums(Q)%*%matrix(1,1,K)));

For binomial labels, where P[,1:K] and Q are column vec-
tors, this reduces after rewrites such as X� (v [1, 1, . . .])→
X�v, rowSums(X)→ X, or X−X�Y → X�(1−Y)—as
shown in Equations (3) and (5)—to the following expression:

1: HV = t(X)%*%((P[,1:K]*(1-P[,1:K]))*(X %*% ssX_V));

Fusion Potential: Without fused operators, this expres-
sion creates five column vector intermediates and requires
two scans over X. SystemML Fused compiles the operators

b(*)

Xd Xwstep_sz

b(+)

b(*)

b(-)

1

b(>)

0

b(*)

Y

b(*)

b(*)

ua(RC,+)

b(-)

write g...

b(+)

b(+)

dd

wd

b(*)

b(*)

ua(RC,+)

b(+)

write h

SPOOF
TMP1

SPOOF
TMP2

Figure 6: L2SVM HOP DAG of Inner Loop.

sprop (sample proportion) for P � (1− P) and mmchain for
X>(w� (Xv)), which only creates two vector intermediates
and requires only a single scan over X. In contrast, Spoof
generates a single fused operator for the entire expression,
except for the right indexing operation P[,1:K], which elim-
inates one additional vector intermediate.

Example Row-Aggregate Fused Operator: The
SpoofRowAggregate template supports row-wise processing
over one input matrix and arbitrary sideways vectors with fi-
nal aggregation over columns or rows. Similar to SpoofCell-

wise, it supports dense and sparse inputs, as well as single-
and multi-threaded execution. Since entire rows are exposed
to the generated body, this templates comprises two abstract
methods execDense and execSparse for efficient handling of
dense and sparse inputs. The generated fused operator for
the inner loop of Mlogreg then extends SpoofRowAggregate

by implementing these two methods as follows:

1: public final class TMP29 extends SpoofRowAggregate {
2: public TMP29() {
3: _colVector = true;
4: }
5: protected void execDense(double[] a, int ai,
6: double[][] vectors, double[] scalars, double[] c,
7: int len, int rowIndex) {
8: double TMP17 = vectors[1][rowIndex];
9: double TMP18 = 1 - TMP17;
10: double TMP19 = TMP18 * TMP17;
11: double TMP20 = dotProduct(a,vectors[0],ai,0,len);
12: double TMP21 = TMP19 * TMP20;
13: vectMultiplyAdd(TMP21, a, c, ai, 0, len);
14: }
15: protected void execSparse(double[] avals, int[] aix,
16: int ai, double[][] vectors, double[] scalars,
17: double[] c, int len, int rowIndex) {
18: double TMP23 = vectors[1][rowIndex];
19: double TMP24 = 1 - TMP23;
20: double TMP25 = TMP24 * TMP23;
21: double TMP26 = dotProduct(avals,
22: vectors[0], aix, ai, 0, len);
23: double TMP27 = TMP25 * TMP26;
24: vectMultiplyAdd(TMP27, avals, c, aix, ai, 0, len);
25: }}

Note that for execSparse, we directly pass avals and aix—
the value and column index arrays of non-zeros—along with

Table 6: Mlogreg 500K× 200 Plan Cache Statistics.
Statistic Spoof Spoof Spoof

no PC PC constant PC CSLH
Total runtime 49.29 s 19.87 s 14.48 s
PC hit rates 0/462 388/462 449/462

Javac compile time 34.45 s 6.88 s 1.97 s
JIT compile time 25.36 s 18.84 s 10.50 s

the current position ai in these arrays. This applies to the
sparse formats CSR (compressed sparse row) and MCSR
(modified CSR), which are both used by SystemML [9].

5.5 Plan Caching Effects
The Mlogreg algorithm is an example that heavily relies

on dynamic recompilation because the size of many interme-
diates depends on the number of classes in the label vector y,
which is unknown during initial compilation. Therefore, we
use Mlogreg with moderate data size of 500K×200 (800 MB)
to evaluate the impact of our plan cache (PC) described in
Section 4.4. We compare Spoof without PC, Spoof with
PC and constant literals, and Spoof with PC and our lit-
eral heuristic CSLH (our default), as the mean of 5 runs.

Plan Cache Summary Statistics: Table 6 shows the
plan cache statistics representing an end-to-end run of Mlo-
greg. The Spoof compiler, optimized 473 HOP DAGs, com-
piled 939 C-Plans (not counting any subsumed plans), and
created 462 Java classes. We see that the plan cache has
large impact on the total runtime, improving performance
by more than 3x on this scenario, with even larger improve-
ments for smaller inputs. Furthermore, we observe that our
literal heuristic improves the hit rate from 84% to 97%,
which directly affects total Javac compilation time. The
remaining Spoof compilation overheads, including C-Plan
construction, are negligible as they did not exceed 300 ms
in all runs. Finally, note that the plan cache hit rates
also significantly affect just-in-time (JIT) compilation over-
heads, which in turn indirectly—due to asynchronous JIT
compilation—affect the total runtime as well.

Discussion: The simple yet very effective plan cache sig-
nificantly contributed to the practicability of Spoof. Most
importantly, the good hit rates enable the application of
the Spoof compiler during dynamic recompilation to ex-
ploit the full rewrite and fusion potential without worrying
about unjustified compilation overhead or code inefficiency.

6. RELATED WORK
We review related work of query compilation as well as

sum-product optimization and operator fusion for ML.
Query Compilation: Compiled queries have been stud-

ied as far back as in System R [10]. Krikellas et al. reconsid-
ered query compilation and introduced holistic query eval-
uation [26] to generate query- and hardware-specific code
via operator templates. DBToaster further introduced query
compilation techniques to generate incremental view mainte-
nance programs [23]. Later Neumann also showed the prac-
ticability of LLVM-based query compilation for modern in-
memory database systems [36]. Recent systems with query
compilation include Hyper [37], Impala [49], Hekaton [16],
and Tupleware [12], most of which follow similar template
expansion mechanisms. LegoBase [25] and DBLAB/LB [45]
further focused on generative programming and a modular
compilation chain. Additional work explored query compi-
lation tradeoffs for scans over compressed blocks with het-

erogeneous compression schemes in Hyper [31], and query
engine specialization for heterogeneous data formats like
CSV and JSON in Proteus [22]. Orthogonal to query com-
pilation, sideways information passing [21] aims to exploit
predicates across chains of operators and sub-queries. None
of these query compilers, however, supports linear algebra,
sum-product optimization, or sparsity-exploiting operations.

Sum-Product Optimization: Pure sum-product prob-
lems have also been studied in various areas [27, 39]. Re-
cent work on regression and factorization over relational
block structures [41], generalized linear models over joins
[28], and linear regression over factorized joins [44] also im-
plicitly exploit sum-product optimizations over known join
dependencies. Similarly, relational rewrites like eager group-
by [11, 51] and its generalization for factorized databases [3]
can be considered special cases of sum-product optimization.
Khamis et al. further generalized sum-product optimization
to so called functional aggregate queries [24], where they also
showed the relation to matrix multiplication chains. How-
ever, none of these works considered the general case of lin-
ear algebra programs and its integration into an optimizing
compiler. Systems like OptiML [47] and SystemML [7] apply
algebraic simplification rewrites, but rely on coarse-grained
pattern matching, which does not exploit the full potential.
Desharnais et al. further already presented selected alge-
braic laws of linear algebra, derived from laws of relational
algebra [13]. The closest work to sum-product optimization
in Spoof, however, is the AMF (Abstract Matrix Form)
framework [35]. Similar to our elementary rewrites, AMF
uses a set of axioms, scalar algebraic properties, and axiom-
driven transformation rules. Our work differs by using re-
stricted relational algebra plans, and holistically reasoning
about sum-product optimization and operator fusion.

Automatic Operator Fusion: Loop or operator fusion
has been investigated in high performance computing and
database research. First, example systems with hand-coded
fused operators are SystemML [9] and Cumulon [17]. Sys-
temML provides various fused operators to exploit sparsity
[9] and reduce the number of intermediates or scans over the
input [2, 7]. Cumulon uses a so-called MaskMult operator to
exploit sparsity [17] over sparse-safe, element-wise opera-
tions. Ashari et al. [2] relies on source code generation to
specialize SystemML’s mmchain operator for GPUs. Second,
Tupleware [12], Kasen [52], and Latte [48] support automatic
operator fusion for distributed UDF- and vertex-centric ap-
plications. Prior work also tackled the automatic fusion of
BLAS level 1 and 2 kernels with an cost-based refine and
optimize approach [4]. However, all of these systems neither
exploit sparsity nor do they apply algebraic simplifications.
Finally, OptiML [47] provides automatic operator fusion for
CPUs and GPUs but applicable cases are limited by pattern
matching and generated operators do not exploit sparsity.
Third, there is also work on generating sparse linear alge-
bra kernels, for different formats, from dense specifications
[6, 40]. Mateev et al. further introduced a generic program-
ming approach based on dual APIs, where a restructuring
compiler translates from high- to low-level APIs [34]. Inter-
estingly, this work uses relational algebra to model the loop
structure within sparse kernels. However, these works have
a scope of individual operations and hence cannot exploit
sparsity across operations. Recently, Sparso [42] optimizes
entire sparse programs by passing context information along
chains of operations, but still relies on BLAS libraries.

7. CONCLUSIONS
To summarize, we introduced Spoof, an architecture for

automatic rewrite and fused operator generation, where we
discussed a non-invasive compiler integration that comple-
ments the existing SystemML compiler and runtime infra-
structure. We presented plan representations and compi-
lation techniques for sum-product optimization and source
code generation. Our preliminary results show performance
close to hand-coded fused operators, huge end-to-end im-
provements in case of non-existing rewrites or operators, and
moderate compilation overhead, even in the context of dy-
namic recompilation. This paper describes a snapshot of an
initial study. We are working on extended operation sup-
port for code generation, improved optimization algorithms
for sum-product optimization and operator fusion, as well
as code generation for distributed Spark operations.

Acknowledgments: We thank Guy Lohman and our re-
viewers for their valuable comments and suggestions.

8. REFERENCES
[1] M. Abadi et al. TensorFlow: A System for Large-Scale

Machine Learning. In OSDI, 2016.

[2] A. Ashari et al. On Optimizing Machine Learning
Workloads via Kernel Fusion. In PPoPP, 2015.

[3] N. Bakibayev et al. Aggregation and Ordering in Factorised
Databases. PVLDB, 6(14), 2013.

[4] G. Belter et al. Automating the Generation of Composed
Linear Algebra Kernels. In SC, 2009.

[5] J. Bezanson et al. Julia: A Fresh Approach to Numerical
Computing. CoRR, 2014.

[6] A. J. C. Bik et al. The Automatic Generation of Sparse
Primitives. ACM Trans. Math. Softw., 24(2), 1998.

[7] M. Boehm et al. SystemML’s Optimizer: Plan Generation
for Large-Scale Machine Learning Programs. IEEE Data
Eng. Bull., 37(3), 2014.

[8] M. Boehm et al. Declarative Machine Learning – A
Classification of Basic Properties and Types. CoRR, 2016.

[9] M. Boehm et al. SystemML: Declarative Machine Learning
on Spark. PVLDB, 9(13), 2016.

[10] D. D. Chamberlin et al. A History and Evaluation of
System R. Commun. ACM, 24(10), 1981.

[11] S. Chaudhuri and K. Shim. Including Group-By in Query
Optimization. In VLDB, 1994.

[12] A. Crotty et al. An Architecture for Compiling
UDF-centric Workflows. PVLDB, 8(12), 2015.

[13] J. Desharnais et al. Relational Style Laws and Constructs
of Linear Algebra. J. Log. Algebr. Meth. Prog., 83(2), 2014.

[14] Elgohary et al. Compressed Linear Algebra for Large-Scale
Machine Learning. PVLDB, 9(12), 2016.

[15] X. Feng et al. Towards a Unified Architecture for
in-RDBMS Analytics. In SIGMOD, 2012.

[16] C. Freedman et al. Compilation in the Microsoft SQL
Server Hekaton Engine. IEEE Data Eng. Bull., 37(1), 2014.

[17] B. Huang et al. Cumulon: Optimizing Statistical Data
Analysis in the Cloud. In SIGMOD, 2013.

[18] B. Huang et al. Resource Elasticity for Large-Scale Machine
Learning. In SIGMOD, 2015.

[19] I. F. Ilyas et al. Estimating Compilation Time of a Query
Optimizer. In SIGMOD, 2003.

[20] Intel. Intel 64 and IA-32 Architectures Optimization
Reference Manual, 2016.

[21] Z. G. Ives and N. E. Taylor. Sideways Information Passing
for Push-Style Query Processing. In ICDE, 2008.

[22] M. Karpathiotakis et al. Fast Queries Over Heterogeneous
Data Through Engine Customization. PVLDB, 9(12), 2016.

[23] O. Kennedy et al. DBToaster: Agile Views for a Dynamic
Data Management System. In CIDR, 2011.

[24] M. A. Khamis et al. FAQ: Questions Asked Frequently. In
PODS, 2016.

[25] Y. Klonatos et al. Building Efficient Query Engines in a
High-Level Language. PVLDB, 7(10), 2014.

[26] K. Krikellas et al. Generating code for holistic query
evaluation. In ICDE, 2010.

[27] F. R. Kschischang et al. Factor Graphs and the
Sum-Product Algorithm. IEEE Trans. Information Theory,
47(2), 2001.

[28] A. Kumar et al. Learning Generalized Linear Models Over
Normalized Data. In SIGMOD, 2015.

[29] A. Kumar et al. Model Selection Management Systems:
The Next Frontier of Advanced Analytics. SIGMOD
Record, 44(4), 2015.

[30] A. Kunft et al. Bridging the Gap: Towards Optimization
Across Linear and Relational Algebra. In BeyondMR, 2016.

[31] H. Lang et al. Data Blocks: Hybrid OLTP and OLAP on
Compressed Storage using both Vectorization and
Compilation. In SIGMOD, 2016.

[32] D. D. Lee and H. S. Seung. Algorithms for Non-negative
Matrix Factorization. In NIPS, 2000.

[33] C. Liu et al. Distributed Nonnegative Matrix Factorization
for Web-Scale Dyadic Data Analysis on MapReduce. In
WWW, 2010.

[34] N. Mateev et al. Next-Generation Generic Programming
and its Application to Sparse Matrix Computations. In
ICS, 2000.

[35] V. Menon and K. Pingali. High-Level Semantic
Optimization of Numerical Codes. In ICS, 1999.

[36] T. Neumann. Efficiently Compiling Efficient Query Plans
for Modern Hardware. PVLDB, 4(9), 2011.

[37] T. Neumann and V. Leis. Compiling Database Queries into
Machine Code. IEEE Data Eng. Bull., 37(1), 2014.

[38] T. Neumann and G. Moerkotte. Generating Optimal
DAG-Structured Query Evaluation Plans. Computer
Science - R&D, 24(3), 2009.

[39] H. Poon and P. M. Domingos. Sum-Product Networks: A
New Deep Architecture. In UAI, 2011.

[40] W. Pugh and T. Shpeisman. SIPR: A New Framework for
Generating Efficient Code for Sparse Matrix Computations.
In LCPC, 1998.

[41] S. Rendle. Scaling Factorization Machines to Relational
Data. PVLDB, 6(5), 2013.

[42] H. Rong et al. Sparso: Context-driven Optimizations of
Sparse Linear Algebra. In PACT, 2016.

[43] L. D. Rose et al. FALCON: A MATLAB Interactive
Restructuring Compiler. In LCPC, 1995.

[44] M. Schleich et al. Learning Linear Regression Models over
Factorized Joins. In SIGMOD, 2016.

[45] A. Shaikhha et al. How to Architect a Query Compiler. In
SIGMOD, 2016.

[46] S. Sridharan and J. M. Patel. Profiling R on a
Contemporary Processor. PVLDB, 8(2), 2014.

[47] A. K. Sujeeth et al. OptiML: An Implicitly Parallel
Domain- Specific Language for Machine Learning. In
ICML, 2011.

[48] L. Truong et al. Latte: A Language, Compiler, and
Runtime for Elegant and Efficient Deep Neural Networks.
In PLDI, 2016.

[49] S. Wanderman-Milne and N. Li. Runtime Code Generation
in Cloudera Impala. IEEE Data Eng. Bull., 37(1), 2014.

[50] S. Williams et al. Roofline: An Insightful Visual
Performance Model for Multicore Architectures. Commun.
ACM, 52(4), 2009.

[51] W. P. Yan and P. Larson. Eager Aggregation and Lazy
Aggregation. In VLDB, 1995.

[52] M. Zhang et al. Measuring and Optimizing Distributed
Array Programs. PVLDB, 9(12), 2016.

[53] Y. Zhang et al. RIOT: I/O-Efficient Numerical Computing
without SQL. In CIDR, 2009.

	1 Introduction
	2 System Architecture
	2.1 SystemML Compiler Integration
	2.2 SPOOF Compiler Framework

	3 Sum-Product Optimization
	3.1 Plan Representation
	3.2 Rewrites and Interesting Properties
	3.3 Optimization

	4 Fused Operator Generation
	4.1 Plan Representation
	4.2 Plan Alternatives and Cost Model
	4.3 Code Generation
	4.4 Plan Caching

	5 Experiments
	5.1 Experimental Setting
	5.2 Operations Performance
	5.3 End-to-End Performance
	5.4 Example Fused Operators
	5.4.1 L2SVM Fused Operators
	5.4.2 Mlogreg Fused Operators

	5.5 Plan Caching Effects

	6 Related Work
	7 Conclusions
	8 References

