
Federated Data Preparation, Learning, and Debugging in
Apache SystemDS

Sebastian Baunsgaard
Graz University of Technology

Graz, Austria

Matthias Boehm
Graz University of Technology

Know-Center GmbH
Graz, Austria

Kevin Innerebner
Graz University of Technology

Graz, Austria

Mito Kehayov
Florian Lackner
Olga Ovcharenko

Graz University of Technology
Graz, Austria

Arnab Phani
Tobias Rieger

David Weissteiner
Graz University of Technology

Graz, Austria

Sebastian Benjamin Wrede
Graz University of Technology

Know-Center GmbH
Graz, Austria

ABSTRACT
Federated learning allows training machine learning (ML) models
without central consolidation of the raw data. Variants of such
federated learning systems enable privacy-preserving ML, and ad-
dress data ownership and/or sharing constraints. However, existing
work mostly adopt data-parallel parameter-server architectures
for mini-batch training, require manual construction of federated
runtime plans, and largely ignore the broad variety of data prepa-
ration, ML algorithms, and model debugging. Over the last years,
we extended Apache SystemDS by an additional federated runtime
backend for federated linear-algebra programs, federated parameter
servers, and federated data preparation. In this paper, we share the
system-level compiler and runtime integration, new features such
as multi-tenant federated learning, selected federated primitives,
multi-key homomorphic encryption, and our monitoring infrastruc-
ture. Our demonstrator showcases how composite ML pipelines
can be compiled into federated runtime plans with low overhead.

CCS CONCEPTS
• Information systems → Data management systems; • Com-
puting methodologies→Machine learning.

KEYWORDS
Federated Learning, Federated Raw Data, Monitoring
ACM Reference Format:
Sebastian Baunsgaard, Matthias Boehm, Kevin Innerebner, Mito Kehayov,
Florian Lackner, Olga Ovcharenko, Arnab Phani, Tobias Rieger, David Weis-
steiner, and Sebastian Benjamin Wrede. 2022. Federated Data Preparation,
Learning, and Debugging in Apache SystemDS. In Proceedings of the 31st
ACM International Conference on Information and Knowledge Management
(CIKM ’22), October 17–21, 2022, Atlanta, GA, USA. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3511808.3557162

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557162

Private
Data
(no

sharing)

Public Data
(full sharing,
w/ partners)

Privacy
Enhancing

Technologies
(FHE, MPC,
diff. privacy)

Anonymized
Data

(k-anonymity,
pseudonyms)

Surrogate
Data

(properties-
preserving

synthetic data)

Increasing
Utility/Perf

Increasing
Privacy

Aggregates
(Federated ML,

Federated w/
secure comm.)

Figure 1: Spectrum of Data Sharing.

1 INTRODUCTION
Data privacy requirements, data ownership, and other constraints
on data sharing render central data consolidation—and training
machine learning (ML) models on this data–infeasible in many ap-
plications. For this reason, privacy-preserving ML and data sharing
have been addressed with a variety of techniques. Figure 1 shows
the resulting spectrum of data sharing, covering techniques with
different tradeoffs of privacy, performance, and utility for ML ap-
plications. Private data and heavy-weight techniques like fully ho-
momorphic encryption (FHE) [2], multi-party computation (MPC)
[21], and differential privacy [15] provide the strongest privacy
guarantees with limited utility. Other techniques like anonymized
or surrogate data [9] are more prone to revealing the raw data.

Federated learning: In contrast, federated learning [7, 16] over-
comes sharing limitations by training models on the decentralized,
federated data. Often data-parallel parameter servers [11, 18, 27]
and similar distribution strategies [1, 19] are adopted [16]. A central
coordinator initializes the model; federated devices or sites now act
as workers, pull the current model, perform, for instance, a forward
and backward pass through a neural network to compute gradients,
and push these gradients or updated models to the coordinator,
where the updates are accumulated and shared with all workers.
Federated learning adds an interesting and practical design point
to the spectrum of data sharing by sharing aggregates—that reveal
data distributions but not the raw data—with moderate overhead.

Limitations of Existing Work: Existing work on federated
learning made valuable contributions to system infrastructure [7],
optimization algorithms [16, 23, 25], and the integration with pri-
vacy enhancing technologies [12, 13, 20, 29, 31]. However, exist-
ing work primarily focuses on data-parallel parameter servers (for
mini-batch training), which ignores data preparation and feature
transformations, a wide variety of batch ML algorithms, as well as
end-to-end ML pipelines. Systems like TensorFlow federated [14]

https://doi.org/10.1145/3511808.3557162
https://doi.org/10.1145/3511808.3557162

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Sebastian Baunsgaard et al.

allow for general federated analytics, but require users or devel-
opers to construct federated runtime plans. Creating new libraries
of federated ML algorithms and primitives [12, 13, 29] becomes
difficult for complex, composite ML pipelines.

Federated Learning in SystemDS: A key observation under-
pinning Apache SystemDS [4] is that state-of-the-art data cleaning
and debugging techniques are based on machine learning, and thus,
can be expressed in linear algebra. For this reason, we build a hi-
erarchy of built-in functions for data preparation, training, and
debugging on top of a domain-specific language for ML training
and scoring. An optimizing compiler then generates efficient hy-
brid runtime plans of local, in-memory and distributed operations.
This design allows a seamless integration of federated learning by
dedicated compilation and runtime techniques. In the larger ExDRa
project, SystemDS is already used as the backbone for federated
learning [3]. Key differentiators are generic abstractions for feder-
ated data and request types; federated instructions for a variety of
linear algebra operations and statistical functions; federated param-
eter servers; federated data preparation; as well as the automatic
generation of valid and efficient federated runtime plans.

Contributions: In this demonstration proposal, we share the
end-to-end system integration of SystemDS’ federated backend,
including new features on compiling federated plans, multi-tenant
federated learning, and selected federated primitives (Section 2), as
well as a monitoring tool for federated learning (Section 3). All fea-
tures are fully integrated in Apache SystemDS1. The demonstration
scenarios (Section 4) then utilize these components and provide
an in-depth understanding of how ML pipelines are compiled into
federated runtime plans, and how these plans are executed.

2 SYSTEM ARCHITECTURE
In this section, we recap the system architecture of Apache Sys-
temDS’ federated backend [3] and describe recent extensions of
handling federated data, compiling federated runtime plans, multi-
tenant federated learning, and selected federated operations.

2.1 Federated Runtime Backend
Federated Data: Our federated backend comprises abstractions
for federated data, federated linear algebra operations for ML algo-
rithms, federated parameter servers for mini-batch training, and
federated feature transformations [3]. Federated frames or matrices
are virtual objects whose physical parts are located at SystemDS
workers in federated sites. Such federated matrices can be read
from meta data, or constructed at script level:

F = federated(
addresses=list("node1:8001/finput1.csv",

"node2:8001/finput2.csv"),
ranges=list(list(0,0), list(50K,70), #50K rows

list(50K,0), list(120K,70))); #70K rows
F = scale(X=F, center=TRUE, scale=TRUE);
[C,Y] = kmeans(X=F, k=4, runs=10, max_iter=20);

User scripts at the coordinator (e.g., scale and k-Means above) are
compiled into a hierarchy of program blocks and instructions, and
all instructions on federated data become federated operations.

1The source code is available at https://github.com/apache/systemds, in packages
runtime/controlprogram/federated, runtime/instructions/fed, and hops/fedplanner.

Federated Requests: Federated operations are implemented
via a small set of federated requests (READ_VAR, PUT_VAR, GET_VAR,
EXEC_INST, EXEC_UDF, and CLEAR). For example, a matrix-vector
multiplication on row-partitioned federated data broadcasts the
vector via PUT_VAR, executes partial matrix-vector multiplications
via EXEC_INST, and optionally obtains and concatenates the feder-
ated outputs. Batches of these requests are executed concurrently
via Netty remote procedure calls (RPCs) for all federated workers.

Partitioning and Replication: Federated data allows for arbi-
trary disjoint partitioning. In order to simplify federated operations,
we employ specific partitioning and replication types (FType). In
this context, a row-partitioned federated matrix has an FType.ROW
(partitioning ROW, replication NONE), while a broadcast variable has
FType.BROADCAST (partitioning NONE, replication FULL).

Broadcasting: Broadcasting in a federated setting is similar
to broadcasting in data-parallel frameworks like Spark [30] or
Dask [24]. However, meta data about federated ranges allows
more control. We provide internal primitives for broadcast and
broadcastSliced. For a row-partitioned matrix, a matrix-vector
multiplication needs the full vector at every worker, whereas a
vector-matrix multiplication only needs vector slices, avoiding un-
necessary data transfer and memory consumption. Furthermore, in
contrast to RDD and broadcast variables in Spark, all broadcasts are
managed as federated data. Thus, a sliced broadcast simply becomes
a federated matrix, and all federated operations apply.

2.2 Compiling Federated Plans
Besides a basic runtime conversion—which robustly works even for
conditional control flow—we now support configurable types for
compiling federated runtime plans. The compilation of federated
plans facilitates debugging, controls the execution of cost-optimal
plans, and adheres to user-provided privacy constraints.

• None: Obtain the federated data and run local operations.
• Runtime: Convert all operations on federated inputs to fed-
erated operations during runtime (Section 2.1) [3].

• Compile-Fed_All: Compile federated operations with the ob-
jective of keeping intermediates federated if possible.

• Compile-Fed_Heuristic: Compile federated operations with
the same heuristics as Runtime (e.g., collect agg. vectors).

• Compile-Fed_Cost-based: Recursively enumerate optimal
subplans for interesting properties of intermediates (e.g.,
FType.ROW, FType.COL, Local) and finally, select the global
cost-optimal plan from terminal operators (write and print).

Table 1 shows the runtime of L2-SVM (support vector machines)
on federated data, where Fed-All is—even in a local area network—
almost 2x slower than Fed-Heuristic/Fed-Cost due to the RPC la-
tency of many federated vector operations for a line search on
the gradients in an inner loop. Instead, these operations can be
performed at the coordinator because the gradients are aggregates.

Enumeration Mechanics: After extracting the federated data
specification from reads or federated initializations, we obtain the

Table 1: L2SVM Training w/ Federated Planners (3 workers).

Local Fed-None Fed-Runtime Fed-All Fed-Heuristic

5.2s (9.6s) 89.2s 5.9s 9.4s 5.8s

https://github.com/apache/systemds
https://github.com/apache/systemds/tree/main/src/main/java/org/apache/sysds/runtime/controlprogram/federated
https://github.com/apache/systemds/tree/main/src/main/java/org/apache/sysds/runtime/instructions/fed
https://github.com/apache/systemds/tree/main/src/main/java/org/apache/sysds/hops/fedplanner

Federated Data Preparation, Learning, and Debugging in SystemDS CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

SystemDS
Worker 1

SystemDS
Worker 2

SystemDS
Worker 3

SystemDS
Coordinator 1

SystemDS
Coordinator 2

3001@node2
7001@node1

3
7

3
7
9

7001@node1 3001@node2

Reuse

Figure 2: Multi-tenant Federated Learning with Reuse.

specific FType of inputs. The federated planners then iterate over
the program structure, and propagate the type of intermediates.
Operations can be forced to federated operations, and their outputs
can be fixed to local or federated. Additional primitives exist for
collecting (fed-to-local) and broadcasting (local-to-fed) data.

Privacy Constraints: We further support propagating and
checking privacy constraints—both during compilation and
runtime—from the inputs through the program. Example con-
straints include types such as public, private-aggregate, and private
partitions or features; and valid purposes such as specific operations.
If existing, these constraints change the objective to a constrained
minimization of cost subject to these privacy constraints, which
raises errors if no plan satisfies the constraints. In the future, we will
also integrate privacy enhancing technologies (e.g., homomorphic
encryption) in this framework to handle strictly private data.

2.3 Multi-tenant Federated Learning
Federated workers are long-running server processes that receive
concurrent requests from multiple coordinators. This scenario re-
quires robust multi-tenant federated learning as shown in Figure 2.

Tenant Isolation: For robust isolation, we use a tree of tenant-
specific execution contexts, where each context also holds a map
of life variables (mapping from variable ID to unpinned data ob-
jects). Tenants are uniquely identified by a combination of their
coordinator process ID (included in requests) and IP address as seen
from the worker. For each request, we construct the coordinator
ID, lookup the tenant context, and read/store intermediates in this
context. This approach guarantees that no intermediates are over-
written, even if coordinators run on the same host. Furthermore, a
single coordinator might run a parallel for-loop and spawn multiple
concurrent requests. The parfor worker IDs are also included in the
requests and create an additional hierarchy level of contexts.

Event-Loop: Workers listen for federated requests, execute
these requests, and return federated responses with optional SSL-
encryption. The configuration of this event-loop has high impact
on performance. By default, we limit the number of concurrent
connections to the number of virtual cores because typically the
number of coordinators is moderate. For incoming EXEC_* requests,
the workers further set the operation parallelism to the number of
virtual cores for adapting to heterogeneous worker hardware and
avoiding under-utilization with time-varying workloads.

Lineage-based Reuse: Fully isolating the individual tenants
leads to unnecessary redundancy. First, the federated data is read
and kept in memory multiple times. Second, exploratory data sci-
ence exhibits high redundancy in and across ML pipelines of a
single tenant, but also across multiple tenants. We address this
challenge by a dedicated read cache and lineage-based reuse [22]

with placeholders for synchronization during execution. Files are
assumed unchanged during uptime of federated workers. We then
trace lineage of all operations, which takes the lineage of inputs and
constructs the output lineage. This lineage is the key in a process-
wise lineage cache across all contexts. For obtaining the lineage
of received data (in PUT_VAR requests), coordinators can send the
data’s lineage, and if unavailable, we construct a high-probability
identifier based on CRC checksums and additional meta data.

2.4 Selected Federated Primitives
Basic Federated Operations: Meanwhile SystemDS reached fea-
ture completeness for all operations that can be supported on fed-
erated data. Basic operations that map cleanly to federated oper-
ations include feature transformations (encode, apply, decode), a
variety of linear algebra and arithmetic operations, statistical func-
tions, aggregations, indexing, and reorganizations. Recently, we
also added fused operator pipelines [6], and second-order opera-
tions like map(F, v -> v.substring(5)). With these federated
operations, many DSL-based built-in functions for data preparation,
ML algorithms, and model debugging can process federated data.

Advanced Federated Operations: Several operations require
multi-pass implementations. These operations include cumulative
aggregates, and remove empty row/column operations, which have
cross-row/-column dependencies but can be efficiently computed
via aggregation trees [5]. Other operations like ordering are im-
possible on row-partitioned data. Quantiles—which in turn rely on
ordering—are, however, the basis for many statistics, data cleaning
primitives (e.g., outlier removal), and equi-height histograms. Ac-
cordingly, we support federated quantiles via a recursive histogram
refinement approach. First, we determine the min and max values
of a row-partitioned feature and split this range into 256 buckets.
Second, every federated worker counts the frequency of values per
bucket on its local data. Third, the coordinator collects and aggre-
gates these histograms. On the cumulative sum of these bucket
frequencies, we determine in which bucket the required quantile
falls (e.g., 0.5 quantile for the median). This bucket is then again
split into 256 buckets and we repeat steps 2 and 3 until we get the
result. Due to the large fan-out, federated quantiles only require
few round-trips and the transferred data is very small.

Federated Parameter Server: For mini-batch training, Sys-
temDS provides a dedicated paramserv built-in function for data-
parallel (multi-threaded or distributed) parameter-servers. This
parameter server infrastructure has been extended for federated
operations by respecting the boundaries of federated data, and han-
dling data imbalance (different data size) and skew (different data
distribution). With parameters for update frequencies, this infras-
tructure is able to run FedAvg and similar optimization algorithms
[16, 23]. Recently, we added support for multi-key homomorphic
encryption [20] of gradients, which relies on Microsoft’s SEAL
library [8, 26], and guards against plain-text exchange of gradients.

3 MONITORING INFRASTRUCTURE
As an additional debugging and demonstration tool, we are cur-
rently building a dedicated monitoring infrastructure for Apache
SystemDS Federated. In this section, we describe the backend and
frontend (see Figure 3) designs of this infrastructure in detail.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Sebastian Baunsgaard et al.

Figure 3: SystemDS Federated – Monitoring Frontend.

3.1 Monitoring Services
Infrastructure Registration: Given the nature of long-running
federated workers, the monitoring service is configured with a set
of workers (via IP and port) to monitor. Monitoring interactions
are performed through EXEC_UDF requests, and the workers have
configurations for accepting and answering these requests. In con-
trast, coordinators may point to a running monitoring service and
register and deregister themselves for monitoring.

Statistics Monitoring and Aggregation: Once the connec-
tions are established, the monitoring service sets up groups of
statistics for tracking at the different locations. These groups in-
clude node-specific statistics such as live data objects, memory
consumption, executed instructions (with frequency/times), JVM
statistics (e.g., JIT compilation and GC frequency/times), as well as
channel-specific statistics such as histograms of request types, and
the number and size of incoming/outgoing data transfers. These sta-
tistics are periodically collected, aggregated, and optionally logged.

3.2 User Interface and Debugging
Infrastructure View: Figure 3 shows the infrastructure view can-
vas of registered coordinators and workers as well as their active
communication channels. This canvas already provides an overview
of memory consumption and data transfers over time, along with
basic statistics such as the number of heavy hitter instructions at
the federated workers. This canvas is also the entry point for more
details via the node and channel views.

Node and Channel Views: The summary views for individual
nodes (coordinators and workers) as well as individual or aggregate
channels then show the detailed statistics mentioned in Section 3.1.
This drill-down to individual nodes, channels, or channel groups
(e.g., all channels of coordinator 2) then allows detailed debugging
of potential performance problems, data transfer characteristics,
and suspicious behavior. Additionally, these views also provide—
inspired by Spark [30]—event timelines with different tenants in
separate lanes, color-encoding for different federated request types,
and the length of events indicating their runtime.

4 DEMONSTRATION SCENARIOS
This demonstration will utilize Apache SystemDS, its federated
backend, and the monitoring tool as is, allowing the audience to
clone the public repository and reproduce the scenarios as needed.
In detail, we plan the following setup and scenarios.

Demo Setup: Our example scenario setup involves three (or
more) federated workers, which are started via shell scripts either

locally on laptops at the demonstration site or in a cluster in Graz,
Austria for showcasing wide-area-network access. Theses workers
have access to prepared real and synthetic datasets (row-partitioned
across federated workers, but also other partitioning schemes):

• Public Data: We use the Adult (census data) [28], Nashville
(traffic accidents) [10], and Criteo (click logs) [17] datasets
as a basis for our demonstration of federated ML pipelines.

• Paper Production: In addition, we use an anonymized paper
production (paper quality) dataset from our industry partner
[3], representing federated data across production sites.

On local laptops, we then start the monitoring tool as well as one
or multiple coordinators for simulating data scientists exploring
the federated data and developing ML pipelines.

Single-tenant Scenario: A first scenario shows a single coor-
dinator working alone on the federated data. First, we start with
individual operations (e.g., colSums(X) or quantile(X, 0.95))
and basic DSL-based built-in functions (e.g., outlierByIQR(X=X,
k=1.5)). With the help of SystemDS’ explain functionality and
the monitoring tool, the audience will be able to observe and un-
derstand federated runtime plans, federated operations, and their
characteristics (including data transfers). The coordinator scripts
can be changed in seconds, allowing the interactive exploration
of workloads (including end-to-end ML algorithms for batch and
mini-batch training) and their runtime and accuracy characteristics.

Multi-tenant Scenario: A second scenario then brings up mul-
tiple tenants that work concurrently with the federated data. These
tenants run entire ML pipelines (some of which use the same pre-
processing primitives), hyper-parameter optimization, and cross-
validation. In these more complex and partially redundant scenarios,
we will show how the reuse cache is populated, as well as how reuse
and evictions happen over time. Furthermore, the event timelines
and summary of data objects also enables a deeper understanding
of tenant isolation. Finally, there are plenty of configurations (e.g.,
BLAS libraries, event-loop configs, SSL-encrypted communication)
that can be explored based on the interests of the audience.

5 CONCLUSIONS
In this demonstration, we presented the—now feature-complete—
federated backend of Apache SystemDS for compiling and execut-
ing federated end-to-end ML pipelines. New components include
the compilation of federated runtime plans, multi-tenant federated
learning with robust isolation and reuse, new federated primitives
for data preparation and debugging, as well as a new monitoring
infrastructure. In contrast to existing systems, federated learning
in SystemDS seamlessly applies to a wide variety of DSL-based ML
algorithms and other primitives, reuses existing runtime infrastruc-
ture, and thus makes federated learning practical.

ACKNOWLEDGEMENTS
This work is a result of the ExDRa project, funded through the
bilateral program “ICT of the Future – Smart Data Economy" by the
Austrian Federal Ministry for Climate Action, Environment, Energy,
Mobility, Innovation and Technology (BMK, 873838). Contributions
by Sebastian B. Wrede were made in the DDAI COMET module
(funded by BMK, BMDW, FFG, SFG, and industrial partners).

Federated Data Preparation, Learning, and Debugging in SystemDS CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

REFERENCES
[1] Martín Abadi et al. 2016. TensorFlow: A System for Large-ScaleMachine Learning.

InOSDI. 265–283. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/abadi

[2] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. 2018. A Survey
on Homomorphic Encryption Schemes: Theory and Implementation. ACM
Comput. Surv. 51, 4 (2018), 79:1–79:35. https://doi.org/10.1145/3214303

[3] Sebastian Baunsgaard et al. 2021. ExDRa: Exploratory Data Science on Federated
Raw Data. In SIGMOD. 2450–2463. https://doi.org/10.1145/3448016.3457549

[4] Matthias Boehm et al. 2020. SystemDS: A Declarative Machine Learning System
for the End-to-End Data Science Lifecycle. In CIDR. http://cidrdb.org/cidr2020/
papers/p22-boehm-cidr20.pdf

[5] Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald. 2019. Efficient
Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning. In BTW.
267–286. https://doi.org/10.18420/btw2019-17

[6] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexan-
dre V. Evfimievski, and Niketan Pansare. 2018. On Optimizing Operator Fusion
Plans for Large-Scale Machine Learning in SystemML. PVLDB 11, 12 (2018),
1755–1768. https://doi.org/10.14778/3229863.3229865

[7] Keith Bonawitz et al. 2019. Towards Federated Learning at Scale: System Design.
In MLSys. https://proceedings.mlsys.org/book/271.pdf

[8] Hao Chen, Kim Laine, and Rachel Player. 2017. Simple Encrypted Arithmetic
Library - SEAL v2.1. In Financial Cryptography and Data Security (Lecture Notes
in Computer Science, Vol. 10323). Springer, 3–18.

[9] Graham Cormode and Divesh Srivastava. 2009. Anonymized data: generation,
models, usage. In SIGMOD. 1015–1018. https://doi.org/10.1145/1559845.1559968

[10] Data.Nashville.gov. 2020. Nashville Traffic Accidents Dataset. https://data.
nashville.gov/Police/Traffic-Accidents/6v6w-hpcw

[11] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.
Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker,
Ke Yang, and Andrew Y. Ng. 2012. Large Scale Distributed Deep Net-
works. In NeurIPS. 1232–1240. https://proceedings.neurips.cc/paper/2012/hash/
6aca97005c68f1206823815f66102863-Abstract.html

[12] Fangcheng Fu, Yingxia Shao, Lele Yu, Jiawei Jiang, Huanran Xue, Yangyu Tao,
and Bin Cui. 2021. VF2Boost: Very Fast Vertical Federated Gradient Boosting
for Cross-Enterprise Learning. In SIGMOD. 563–576. https://doi.org/10.1145/
3448016.3457241

[13] Fangcheng Fu, Huanran Xue, Yong Cheng, Yangyu Tao, and Bin Cui. 2022.
BlindFL: Vertical Federated Machine Learning without Peeking into Your Data.
In SIGMOD. 1316–1330. https://doi.org/10.1145/3514221.3526127

[14] Google. 2020. TensorFlow Federated: Machine Learning on Decentralized Data .
https://www.tensorflow.org/federated

[15] Zhanglong Ji, Zachary Chase Lipton, and Charles Elkan. 2014. Differential
Privacy and Machine Learning: a Survey and Review. CoRR abs/1412.7584 (2014).
http://arxiv.org/abs/1412.7584

[16] Peter Kairouz, Brendan McMahan, and Virginia Smith. 2020. Federated Learning
Tutorial. In NeurIPS. https://slideslive.com/38935813/federated-learning-tutorial

[17] Criteo AI Lab. 2020. Criteo 1TB Click Logs Dataset. https://ailab.criteo.com/
download-criteo-1tb-click-logs-dataset/

[18] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling
DistributedMachine Learningwith the Parameter Server. InOSDI. 583–598. https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu

[19] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.
2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.
PVLDB 13, 12 (2020), 3005–3018. https://doi.org/10.14778/3415478.3415530

[20] JingMa, Si-AhmedNaas, Stephan Sigg, and Xixiang Lyu. 2022. Privacy-preserving
federated learning based on multi-key homomorphic encryption. Int. J. Intell.
Syst. 37, 9 (2022), 5880–5901. https://doi.org/10.1002/int.22818

[21] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. In IEEE Symp. on Security and Privacy.
19–38. https://doi.org/10.1109/SP.2017.12

[22] Arnab Phani, Benjamin Rath, and Matthias Boehm. 2021. LIMA: Fine-grained
Lineage Tracing and Reuse in Machine Learning Systems. In SIGMOD. 1426–1439.
https://doi.org/10.1145/3448016.3452788

[23] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečný, Sanjiv Kumar, and Hugh Brendan McMahan. 2021. Adaptive Fed-
erated Optimization. In ICLR. https://openreview.net/forum?id=LkFG3lB13U5

[24] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms
and Task Scheduling. In SciPy.

[25] Felix Sattler, Klaus-Robert Müller, andWojciech Samek. 2021. Clustered Federated
Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy
Constraints. IEEE Trans. Neural Networks Learn. Syst. 32, 8 (2021), 3710–3722.
https://doi.org/10.1109/TNNLS.2020.3015958

[26] SEAL 2022. Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA..

[27] Alexander J. Smola and Shravan M. Narayanamurthy. 2010. An Architecture for
Parallel Topic Models. PVLDB 3, 1 (2010), 703–710. https://doi.org/10.14778/
1920841.1920931

[28] UCI. 2020. Adult Data Set. https://archive.ics.uci.edu/ml/datasets/adult
[29] Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi. 2020.

Privacy Preserving Vertical Federated Learning for Tree-based Models. PVLDB
13, 11 (2020), 2090–2103. https://doi.org/10.14778/3407790.3407811

[30] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Clus-
ter Computing. In NSDI. 15–28. https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/zaharia

[31] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu. 2020.
BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated Learn-
ing. In ATC. 493–506. https://www.usenix.org/conference/atc20/presentation/
zhang-chengliang

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/3214303
https://doi.org/10.1145/3448016.3457549
http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf
https://doi.org/10.18420/btw2019-17
https://doi.org/10.14778/3229863.3229865
https://proceedings.mlsys.org/book/271.pdf
https://doi.org/10.1145/1559845.1559968
https://data.nashville.gov/Police/Traffic-Accidents/6v6w-hpcw
https://data.nashville.gov/Police/Traffic-Accidents/6v6w-hpcw
https://proceedings.neurips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://doi.org/10.1145/3448016.3457241
https://doi.org/10.1145/3448016.3457241
https://doi.org/10.1145/3514221.3526127
https://www.tensorflow.org/federated
http://arxiv.org/abs/1412.7584
https://slideslive.com/38935813/federated-learning-tutorial
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.1002/int.22818
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1145/3448016.3452788
https://openreview.net/forum?id=LkFG3lB13U5
https://doi.org/10.1109/TNNLS.2020.3015958
https://github.com/Microsoft/SEAL
https://doi.org/10.14778/1920841.1920931
https://doi.org/10.14778/1920841.1920931
https://archive.ics.uci.edu/ml/datasets/adult
https://doi.org/10.14778/3407790.3407811
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang

	Abstract
	1 Introduction
	2 System Architecture
	2.1 Federated Runtime Backend
	2.2 Compiling Federated Plans
	2.3 Multi-tenant Federated Learning
	2.4 Selected Federated Primitives

	3 Monitoring Infrastructure
	3.1 Monitoring Services
	3.2 User Interface and Debugging

	4 Demonstration Scenarios
	5 Conclusions
	References

