arXiv:2508.17931v1 [cs.DB] 25 Aug 2025

Join Cardinality Estimation with OmniSketches

David Justen
TU Berlin & BIFOLD
david.justen @tu-berlin.de

Abstract—Join ordering is a key factor in query performance,
yet traditional cost-based optimizers often produce sub-optimal
plans due to inaccurate cardinality estimates in multi-predicate,
multi-join queries. Existing alternatives such as learning-based
optimizers and adaptive query processing improve accuracy but
can suffer from high training costs, poor generalization, or
integration challenges. We present an extension of OmniSketch—
a probabilistic data structure combining count-min sketches
and K-minwise hashing—to enable multi-join cardinality esti-
mation without assuming uniformity and independence. Our
approach introduces the OmniSketch join estimator, ensures
sketch interoperability across tables, and provides an algorithm
to process alpha-acyclic join graphs. Our experiments on SSB-
skew and JOB-light show that OmniSketch-enhanced cost-based
optimization can improve estimation accuracy and plan quality
compared to DuckDB. For SSB-skew, we show intermediate result
decreases up to 1,077x and execution time decreases up to 3.19x.
For JOB-light, OmniSketch join cardinality estimation shows
occasional individual improvements but largely suffers from a
loss of witnesses due to unfavorable join graph shapes and large
numbers of unique values in foreign key columns.

I. INTRODUCTION

Query optimization is a critical problem in database systems
that has been investigated for many decades [1]]-[3[]. For re-
lational analytics workloads, join ordering contributes heavily
to the overall performance as query plans with sub-optimal
join orders can be penalized with execution time increases of
multiple orders of magnitude [4].

Traditional Query Optimization: Database systems tradi-
tionally employ cost-based query optimization [3]]. In this pro-
cess, the optimizer enumerates sub-plans of the query, assigns
a cost to each sub-plan by estimating its cardinality, and finally
combines them to find the query plan with the lowest cost. One
of the key goals of join order enumeration is to minimize the
number of intermediate results. During cardinality estimation,
optimizers often rely on database statistics and sketches such
as histograms. However, for multi-predicate and multi-join
queries, these techniques resort to assuming data uniformity
and independence, leading to consistent under-estimations and
sub-optimal plan generation [5].

Learning-based Optimization: To address these limita-
tions, two major research directions have emerged. Learning-
based optimizers [6]-[9] have been introduced to improve
query plan quality. These approaches train machine learning
models on the database and sample queries and use the model
to predict query plans for incoming queries. While learning-
based optimizers have shown improvements over traditional

Matthias Boehm
TU Berlin & BIFOLD
matthias.boehm @tu-berlin.de

optimizers, some of them require extensive initial training
phases, and do not generalize well for unknown queries [10].

Adaptive Query Processing: As an alternative line of re-
search, numerous adaptive query processing (AQP) techniques
have been introduced over the last two decades [11]]-[14]].
Instead of relying on cardinality estimates during query opti-
mization, AQP approaches gather statistics such as selectivities
during query execution and continuously adapt the query plan
based on the collected telemetry. Although many of these
techniques have shown promising results, adaptive join re-
ordering approaches are often difficult to integrate into existing
systems or make substantial applicability concessions [14].

OmniSketch Cardinality Estimation: While learning-
based optimization and AQP are active areas of research,
new sketches that may improve traditional query optimization
are also emerging. The OmniSketch [15] combines count-
min sketches [16] with K-minwise hashing [[17] and allows
for multi-attribute cardinality estimates with probabilistic error
guarantees. In this work, we extend the OmniSketch to enable
cardinality estimation for multi-join queries and assess the
extended OmniSketch in the context of cost-based query
optimization to examine its trade-offs.

Contributions: Our primary contribution is the extension
of OmniSketches for multi-join cardinality estimation. The
code is open-source as a C++ library on GitHutﬂ Our detailed
contributions are the following:

o We introduce an OmniSketch design adaption that ensures
the multi-table interoperability via primary and foreign
key constraints (Section [[IT-A).

o We define a strategy for join cardinality estimation that
reformulates joins to sampled set membership predicates
and a second approach that makes use of secondary
sketches (Section [[II-B).

o We contribute an algorithm to derive OmniSketch oper-
ation plans from alpha-acyclic join graphs for multi-join
cardinality estimates (Section [[II-C).

o With the JOB-light and SSB-skew benchmarks, we sys-
tematically study the benefits, shortcomings, and trade-
offs of cost-based query optimization with OmniSketches
as opposed to DuckDB (Section [IV).

II. BACKGROUND

The OmniSketch [15] addresses a critical limitation in
streaming synopses: traditional sketches such as Bloom fil-

IC++ library available at |https://github.com/d-justen/OmniSketchCpp.

https://github.com/d-justen/OmniSketchCpp
https://arxiv.org/abs/2508.17931v1

i
v, =38

count: 5
[00110, 10000,
10001]

count: 4
[01001, 01010,
10100]

count: 3
[00010, 01101,
10111]

CM;[1]

count: 4
[00010, 01101,
10111]

count: 4
[01001, 01010,
10100]

count: 4
[00110, 10000,
11011]

CM;[2]

v
Sn = [0010, 1000], Tppee = D

fla) = “5#I50|= § + 2~ 3.33

Fig. 1. OmniSketch Overview. An Omnisketch C'M; with depth d = 2, width
w = 3, and min-hash sample size B = 3. To estimate the count-aggregate

for a predicate value v}z = 8, we determine the cell index k for each row

CM;[j],1 < j < d by hashing k = h; (Uf]) mod w, and compute Sn by
intersecting the contained record id hashes. The estimate f(q) is determined
by scaling the intersection cardinality with the maximum record count nmax
divided by the min-hash sample size B.

ters [18], count-min sketches [16]], or HyperLogLog [19]
are designed for single-attribute aggregates and do not sup-
port multi-attribute predicates. OmniSketch is a novel sketch
designed to provide count-aggregates over complex, high-
velocity streams with point and range predicates on arbitrary
attributes. The sketch provides probabilistic error bounds and
a tunable space—accuracy trade-off. Figure T gives an overview
of the sketch structure and the cardinality estimation process.

Sketch Structure: OmniSketches internally consist of a
count-min sketch with d rows, w cells per row and one hash
function h; per row. An OmniSketch CM; is built for each
searchable attribute a; € A of a single table. The sketches
have a counter cnt;[j, k] in each cell CM;[j, k] (analogous
to count-min sketches) but also store a sample of record ids
Sil4, k] using K-minwise hashing [[17] with a sample size of
B. To insert a record R with attribute values r; and a record id
ro, for each j € {1,--- ,d} we determine a cell CM;[j, k| by
hashing the attribute with k = h;(r;) mod w. We increment
its record count cnt;[j, k|, compute a record id hash g(r() and
add it to the sample S;[j, k] if ent;[j, k] < B. Otherwise, if
g(ro) < maz(S;[4, k]), we replace maz(S;[j, k)]) with g(ro).

Cardinality Estimation: To estimate the cardinality under
a given predicate value vé, we hash the value to find d Om-
niSketch cells, their record counts and record id samples. We
set N4 t0 the maximum record count in these matches and

compute the sample intersection S = () Sy[j, h;(vl)].
1<j<d

By scaling up the size of the intersection, we compute the

cardinality estimate: f(q) = Numaz/B * |Sn|. Multi-attribute

cardinality estimation follows the same logic. We probe each

i

vg € Vy into CM;, compute 7,4, from all matching cells,

and compute the intersection of |V;| * d samples.

III. JOIN EXTENSION

In order to extend the OmniSketch structure for multi-
table cardinality estimation, we create OmniSketches for all
searchable attributes in each table and assume the availability
of a primary key column in each of them, so that the min-

hash samples are built on each table’s primary keys. This
design allows us to retrieve primary key hashes from single-
table queries. As it is not possibly by default to probe these
hashes into an OmniSketch on a foreign key column, we unify
the OmniSketch hashing strategy to allow for interoperability.
With the extended OmniSketch, we devise and discuss a
strategy to estimate one-to-many joins by probing primary key
hashes. We also introduce an alternative strategy for better
accuracy and lower latency with secondary OmniSketches.
Finally, we define OmniSketch inter-table operations and intro-
duce a join graph traversal algorithm that produces operation
sequences to estimate multi-join queries.

A. Sketch Interoperability

In order to make OmniSketches interoperable so that an
OmniSketch on a foreign key column can be probed with a
primary key hash, we unify the hash functions used in all
OmniSketches. To that end, we base all hash functions on
a single 64-bit hash function ¢'(r;). The min-hash samples
contained in the OmniSketch cells use only that hash function.
To determine the OmniSketch cells in C'M; for a given value
r;, we compute ¢'(r;) and split the result into two 32-bit
hashes g7, g5 [20]]. With these partial hashes, we construct a
hash function for each row in CM; as h;(r;) = (g1+795) [21].
This adaption results in two different probing methods. For
attribute values we compute the hash g’(vé) and split it to
find the cell indices in each row, and for a hashed primary
key we skip the hashing and split the hash directly.

B. Join Cardinality Estimation

We introduce two strategies for single join estimation: a uni-
versal strategy that estimates joins as sampled set membership
predicates and an alternative strategy that builds secondary
sketches for additional accuracy and lower latency.

PK Sample Joins: For the PK sample join strategy, we
treat joins like set membership predicates (e.g., a IN (1,
2, 3), in which each join key vfI € V:j is part of the set to
be probed. We can estimate the cardinality of such a query
by probing each key individually into an OmniSketch and
summating the estimates. In the OmniSketch join estimation
case, we do not know the full set of primary keys. Consider
a join query such as SELECT count (x) FROM R, T
WHERE R.sid = T.id And T.a = 3 with a primary
key constraint on T.id. We probe the OmniSketch on T. a,
producing a cardinality estimate for 'T.a = 3’ and a min-hash
sample SH on T.id. We compute the sampling probability
p = |Sn|/f('T.a=3') and probe the samples into the Om-
niSketch on R.sid. Given an n!,,, and S for each sample
probe, we estimate the cardinality and scale it up with:

)

> el

1<i<|Sn|

s 1
p

For multi-join support, we compute the union of all samples
S!;, and store them with their respective n?, .. in a map. That

map is used as an intermediate result that can be intersected

with other min-hash samples on the same primary key. By
associating each sample with its nf, ,, we can compute a
single n-way intersection with other min-hash sample unions
instead of intersecting each probe result individually with other
predicate or join estimation results. This strategy introduces
the ability estimates to estimate join cardinalities but also
comes with substantial shortcomings. Since the primary key
hashes of T.id are uncorrelated with the minimal hashes
of R.1id, they act as a random sample. Thus, the upscaling
with the sampling probability introduces an assumption that
the sample is representative for all qualifying primary keys.
However, this may not be the case if the data distribution in
the foreign key column is non-uniform. In the worst case, the
foreign key column could contain a heavy hitter that is also
a qualifying primary key, leading to severe under-estimation.
Another drawback of this method is its high compute cost
as each individual probe requires a multi-way intersection.
Finally, for join graphs in which a fact table joins multiple
dimension tables, the estimation relies on the intersection of
multiple random primary key samples. As the probability for
a match to be in all random samples can become very low
(i.e., the product of individual sampling probabilities), these
join graphs are likely to run out of witnesses.

Secondary Sketches: For faster join estimation with higher
accuracy, we can build secondary OmniSketches on dimension
tables that map attribute values of the dimension tables directly
to their corresponding primary keys of a fact table. For that,
we first build the OmniSketches for the fact table. Once these
sketches are built, we create the dimension sketches. Instead
of inserting their primary keys into the min-hash samples,
we probe each primary key into the referencing foreign key
column sketches, insert the resulting S sample into the
dimension side samples and increment their record counts
by the cardinality estimate. Note that the resulting secondary
OmniSketch suffers some information loss (as opposed to a
sketch that could be built by probing a hash table on the
foreign key column). However, our experiments show that this
effect is negligible for cardinality estimation accuracy, and it
can be further reduced by increasing the sample size for the
primary sketch. Building secondary sketches trades a higher
upfront sketch buildup time with a lower estimation latency
as all joins and predicates on a fact table and its dimension
tables only require a single multi-way intersection. Moreover,
this approach resolves the previous method’s problem of
assuming representativeness as all OmniSketches contain min-
hash samples on the same primary key column.

C. Join Graph Traversal

While multi-join cardinality estimation with secondary
sketches works analogous to single-table table estimation,
using these sketches is not always possible. If the database
is not organized in a star-schema, we resort to the default join
sampling technique. Estimating arbitrary alpha-acyclic join
graphs requires computing a legal sequence of OmniSketch
probe operations due to the directional constraint that probing
T.id primary keys into a R.sid OmniSketch yields a min-

OO

Fig. 2. Probe Sequence Example. Given a join graph with directed edges of
foreign key columns pointing to primary key columns and a predicate on T.
The only legal sequence of OmniSketch probes is (1) the predicate on T, (2)
probing the resulting primary key hashes into S, and (3) probing the resulting
S.1id hashes into R.

OO0
i

Fig. 3. Expansion Example. Given a join graph, where foreign keys of R and
foreign keys of T join with primary keys of S. In that case, neither sequence
(1), (2) or (2), (1) is legal for cardinality estimation with regular OmniSketch
probes. With a primary key expansion, we can estimate any join first, and
then perform a join probe on the remaining relation.

hash sample of R.id. Therefore, all additional filters on T
must be applied to T.id before probing into R.sid. An
illustrative example for this problem can be found in Figure [2]
Primary Key Expansions: In certain situations, we must
loosen the sequence constraint. Consider the directed join
graph from Figure [3] in which foreign key sides point to
the primary key side. As S.1id must be probed into R.sid
as well as T.sid, we either produce a sample on R.id
that cannot be used to probe T.sid or a sample on T.id
that cannot probe the OmniSketch on R. sid. To resolve this
stalemate, we introduce a second kind of OmniSketch join
estimator: the primary key expansion. For this operation, we
perform the PK sample join and intersect the result with any
other predicate or join probe results on the foreign key side.
However, instead of returning the resulting hashes, we filter
the input sample based on whether it has led to matches or
not. In our example, we would expand the S.id hashes on
R.sid, resulting in a filtered min-hash sample on S. id with
a cardinality estimate for R b S. After that, we include T in
the estimate with a PK sample join of the filtered sample into
T.sid. Note that also a secondary sketch, if available, can
be used either for the expand step or the probe step.
Traversal Algorithm: Algorithm|[I] gives an overview of the
graph traversal strategy for multi-join cardinality estimation,
inspired by the GYO ear removal algorithm [22]. Instead of
hypergraphs, it operates on a directed join graph G < (V, E)
with relations V' and joins E, connecting a primary key side
e.pk and a foreign key side e.fk. We also expect to know
the predicates on each v € G.V and evaluate them with an
EstimatePredicate method. The strategy of the algorithm is to
find graph “ears” that are only connected to one other relation
via their primary key column (line 3-7). We remove those ears
by applying them as set membership predicates to the foreign
key side (line 9). If a relation has multiple joins on its primary
key column (line 12), we use the primary key expansion on any
foreign key side that does not have other edges (line 13-17) and

Algorithm 1 Join Graph Traversal Algorithm Overview. The
algorithm iteratively merges join graph ears and expands
primary keys whenever necessary.
Input: Join Graph G < (V, E)
Output: Cardinality Estimate

1: while |G.V|>1do

2. forallv;, € G.V do

3 if {de € G.E|v; = e.fk} then

4 continue

5: end if

6: EY + {e € G.E|v; = e.pk}

7 if |[EVi| =1 then

8 SRi < EstimatePredicates(v;)

9: AddSetPredicate(e]*.fk, SA)

10: G.V ¢ G.V\uv

11: else

12: Evi «+ {e € E,,|e.fk has exactly one edge}
13: if £Vt = () then

14: continue

15: end if

16: S3 « EstimatePredicates(v;)

17: AddExpansion(v;, Ezpand(e]*.fk, S5))
18: GV« G.V\ej'fk

19: end if

20: G.E+ G.E\¢€]

21: end for
22: end while
23: return FEstimatePredicates(vy)

remove the foreign key side (line 18). The depicted algorithm
only provides an overview and does not include processing
steps for join graphs containing rings. However, these rings
can be processed as well by applying a join predicate to the
foreign key side and remove the common edge, if the node is
reachable through other edges of the primary key side.

Running Out of Witnesses: If we run out of witnesses
during the join graph traversal, we fallback to heuristics to
compute a cardinality estimate. For simple predicates, set
membership predicates, and sample joins, we set the cardinal-
ity estimate for each probe with an empty result to 7,4, /B,
which is the minimal cardinality estimate the OmniSketch
would have been able to give for a single matching hash. If
we run out of witnesses while intersecting multiple join or
predicate results, we multiply the associated selectivities. With
these heuristics, we pick up the common assumptions of data
uniformity and independence but are less likely to do so for
plans with large cardinalities as these have a lower probability
of running out of witnesses.

IV. EXPERIMENTS

Our experimental evaluation studies the performance and
accuracy of join cardinality estimation with OmniSketches. To
this end, we integrate our join graph traversal algorithm with
DPsize and enumerate join plans for the SSB-skew [/14]] bench-
mark on scale factor 100 and the JOB-light benchmark [S]].

==

-
g
T ——

I Primary Sketches Only
I Secondary Sketches

102 4

=

O le}
o [e]
o 8
(e}

=

o
4
!

Duration (us)

=

o
)
!

1 2 3 4 5
Number of Relations

Fig. 4. Cardinality Estimation Latency by Number of Relations in Sub-plan
on SSB-skew.

We compare the resulting plans with the default plans from
DuckDB [23] v1.2.2. For the SSB-skew dataset, we set the
min-hash sample size B < 128, depth d < 3, fact table
width wy < 256, and dimension table width wgq < 32.
We build OmniSketches on each attribute used in predicates
and joins, resulting in a total estimated space consumption of
about 4.15MiB for all primary sketches and 4.93 MiB with
secondary sketches included. For the JOB-light, we use depth
d < 3, width w < 256 and B < 256 across all tables on all
attributes used in the benchmark, resulting in a total estimated
size of 12.1 MiB. We do not build any secondary sketches for
JOB-light, as all joins in the benchmark are performed on the
primary key of the t it 1e table. All benchmarks are executed
on a Macbook Pro M3 Max with 36 GiB of main memory.

Estimation Latency: Figure 4] shows the latencies for query
sub-plan cardinality estimation on SSB-skew, grouped by the
number of relations per sub-plan. We compare the durations
for the case, in which we only use primary OmniSketches
with the PK sample join strategy with the case with secondary
sketches enabled. While the primary-only case shows substan-
tially longer estimation times for 2+ relations, the secondary
sketch case only mildly deteriorates in performance for each
additional join. The longest measured end-to-end estimation
time for a whole query was 1.87 ms in the primary-only case
and 0.59 ms with secondary sketches. We omit the individual
sub-plan estimation times for JOB-light as they are similar
to the primary-only case of SSB-skew. However, the longest
end-to-end estimation time for JOB-light was 7.02ms. We
conclude that estimation times are neglibible if secondary
sketches can be used. For queries with larger numbers of
joins, the estimation overhead may become notable if query
processing is cheap and only primary sketches are available.

Estimation Error: We measure the Q-Error to determine
the quality of the OmniSketch cardinality estimation and
compare it with DuckDB’s default cardinality estimator. We
define the Q-Error as CardEst/ActualCard to differentiate
between under-estimation (Q-Error < 1) and over-estimation
(Q-Error > 1). Figure |§] depicts the Q-Errors for all sub-
plans enumerated in the SSB-skew benchmark, grouped by
the number of relations in the sub-plan. The experiment
using only primary OmniSketches vastly over-estimates sub-
plans with more than three relations, partly because of hash

105] EEE Primary Sketches Only o © o
,] EEE Secondary Sketches o °
10" 1 == puckpB
S W
. o
g 1074 o
& 1014 o
ey ==
10_1] %
1072 4

1 2 3
Number of Relations

Fig. 5. Q-Error by Number of Relations in Sub-plan on SSB-skew.

o
o) o

8

104 4
102 4

g
8
100-4—%—7*3'
M

10-4 - I Primary Sketches Only
3 DuckDB

ag{'c’g

%ég

1 2 3 4 5
Number of Relations

Q-Error

Fig. 6. Q-Error by Number of Relations in Sub-plan on JOB-light.

collisions but also because the fallback heuristics tend to over-
estimate sub-plans with negatively correlated predicates. With
secondary sketches enabled, the amount of over-estimation
can be drastically reduced. The DuckDB cardinality estimator
suffers from over- and under-estimation but tends towards
under-estimation for three or more relations. Figure [6] shows
the Q-Errors for sub-plans from the JOB-light benchmark.
Note that we only compare primary OmniSketches in this
experiment as all relations in the JOB-light benchmark join
on the primary key of the title table. Effectively, these
join graphs are processed with n — 1 primary key expansions
and one PK sample join for each sub-plan with n relations.
In this benchmark, the OmniSketch join estimation strategy
systematically over-estimates sub-plans with three or more
relations. As our approach frequently runs out of witnesses
during primary key expand operations for these sub-plans, it
resorts to the heuristics, which tend to over-estimate individual
joins and propagate these over-estimations with an increasing
number of relations. Nevertheless, the majority of absolute Q-
Errors, especially for sub-plans with four or more relations is
smaller than DuckDB’s absolute Q-Errors.

Plan Quality: Finally, we examine the quality of query
plans emitted from DPSize join enumeration with Om-
niSketches. For that, we run SSB-skew (using secondary
sketches) and JOB-light on DuckDB with eight threads. We
execute the plans generated from DuckDB’s optimizer and our
plans in DuckDB and measure end-to-end execution times and
the cumulated join cardinalities (C,,¢). For the OmniSketch
plan execution times, we also add the individual cardinality es-
timation latencies. Table [l shows a summary of the experiment

TABLE I
END-TO-END EXECUTION TIME AND INTERMEDIATE RESULT
IMPROVEMENTS AND REGRESSIONS FOR SSB-SKEW AND JOB-LIGHT OF
OUR APPROACH (OMNI) COMPARED TO DUCKDB.

SSB-skew JOB-light

Omni DuckDB Omni DuckDB
>~ Execution time [s] 4.61 7.57 12.46 10.65
Max. improvement 3.19x 2.14x
Max. regression 0.98x 0.25x
> Intermediates 367M 2,620M 14,932 M 14,467 M
Max. improvement 1077x 3.97x
Max. regression 0.86x 0.92x

results. For SSB-skew, the total execution time decreases from
9.16 seconds to 6.02 seconds, with a maximum execution time
improvement of 3.19x. The OmniSketch approach reduces
the total number of intermediates from 2.6 billion to 367
million with a maximum decrease of 1,077x. However, for
JOB-light, the experiment shows an increase in total execution
time from 10.65 seconds to 12.46 seconds, even though the
number of total intermediates is only slightly larger and most
queries show a slight decrease of intermediate results. One
of the reasons for this deterioration is a single query that
has a much larger execution time than all other queries of
the benchmark. This query produces 4 % more intermediates
with OmniSketches but deteriorates in performance from 4.75
seconds to 5.92 seconds. Another factor comes from a large
portion of small queries that have identical query plans and low
execution times, where our approach suffers from the overhead
of cardinality estimation. These results show that OmniSketch
join estimation can be useful with large performance and
intermediate result improvements for star-schema workloads,
even if the intermediate result decreases do not fully translate
to execution time decreases. For other schema shapes, the
applicability of OmniSketch may be limited due to frequent
loss of witnesses.

V. CONCLUSION

We introduced a new concept for join cardinality estimation
with OmniSketches. OmniSketches can be used to estimate the
cardinality of multi-join, multi-predicate queries and are espe-
cially useful if the data is organized in a star-schema so that
we can build secondary sketches on dimension tables. For such
a case, our experiments with the SSB-skew benchmark show
intermediate result decreases of up to 1,077x and performance
improvements of up to 3.19x. In other cases, OmniSketch
join estimation may suffer from long cardinality estimation
latencies and running out of witnesses. Interesting directions
of future work include the applicability for galaxy schemas,
cardinality estimation for additional operators, and deriving
error bounds for multi-join OmniSketch estimates.

ACKNOWLEDGMENT

We gratefully acknowledge funding from the German Fed-
eral Ministry of Research, Technology and Space under the
grant BIFOLD25B.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

B. Babcock and S. Chaudhuri, “Towards a robust query optimizer: A
principled and practical approach,” in SIGMOD, 2005, pp. 119-130.
[Online]. Available: https://doi.org/10.1145/1066157.1066172

K. Ono and G. M. Lohman, “Measuring the complexity of join
enumeration in query optimization,” in PVLDB, 1990, pp. 314-325.
[Online]. Available: http://www.vldb.org/conf/1990/P314.PDF

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price, “Access path selection in a relational database

management system,” in SIGMOD, 1979, pp. 23-34. [Online].
Available: https://doi.org/10.1145/582095.582099
V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. A. Boncz,

A. Kemper, and T. Neumann, “Query optimization through the
looking glass, and what we found running the join order benchmark,”
VLDB J., vol. 27, no. 5, pp. 643-668, 2018. [Online]. Available:
https://doi.org/10.1007/s00778-017-0480-7

V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper,
and T. Neumann, “How good are query optimizers, really?”
PVLDB, vol. 9, no. 3, pp. 204-215, 2015. [Online]. Available:
http://www.vldb.org/pvldb/vol9/p204-leis.pdf]

R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul, “Neo: A learned query optimizer,”
PVLDB, vol. 12, no. 11, pp. 1705-1718, 2019. [Online]. Available:
http://www.vldb.org/pvldb/vol12/p1705-marcus.pdf]

Z. Yang, W. Chiang, S. Luan, G. Mittal, M. Luo, and I. Stoica,
“Balsa: Learning a query optimizer without expert demonstrations,” in
SIGMOD, 2022, pp. 931-944. [Online]. Available: https://doi.org/10.
1145/3514221.3517885

A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper,
“Learned cardinalities: Estimating correlated joins with deep learning,”
in CIDR, 2019. [Online]. Available: http://cidrdb.org/cidr2019/papers/
pl01-kipt-cidr19.pdf

Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel,
J. M. Hellerstein, S. Krishnan, and I. Stoica, “Deep unsupervised
cardinality estimation,” PVLDB, vol. 13, no. 3, pp. 279-292, 2019.
[Online]. Available: http://www.vldb.org/pvldb/vol13/p279-yang.pdf

Y. Zhang, Y. Chronis, J. M. Patel, and T. Rekatsinas, “Simple
adaptive query processing vs. learned query optimizers: Observations
and analysis,” PVLDB, vol. 16, no. 11, pp. 2962-2975, 2023. [Online].
Available: https://www.vldb.org/pvldb/vol16/p2962-zhang.pdf

R. Avnur and J. M. Hellerstein, “Eddies: Continuously adaptive query
processing,” in SIGMOD, 2000, pp. 261-272. [Online]. Available:
https://doi.org/10.1145/342009.335420

S. Babu and P. Bizarro, “Adaptive query processing in the
looking glass,” in CIDR, 2005, pp. 238-249. [Online]. Available:
http://cidrdb.org/cidr2005/papers/P20.pdf

A. Deshpande, Z. G. Ives, and V. Raman, “Adaptive query processing,”
Found. Trends Databases, vol. 1, no. 1, pp. 1-140, 2007. [Online].
Available: https://doi.org/10.1561/1900000001

D. Justen, D. Ritter, C. Fraser, A. Lamb, N. Tran, A. Lee, T. Bodner,
M. Y. Haddad, S. Zeuch, V. Markl, and M. Boehm, “POLAR: adaptive
and non-invasive join order selection via plans of least resistance,”
PVLDB, vol. 17, no. 6, pp. 1350-1363, 2024. [Online]. Available:
https://www.vldb.org/pvldb/voll7/p1350-justen.pdf

W. R. Punter, O. Papapetrou, and M. N. Garofalakis, “Omnisketch:
Efficient multi-dimensional high-velocity stream analytics with arbitrary
predicates,” PVLDB, vol. 17, no. 3, pp. 319-331, 2023. [Online].
Available: https://www.vldb.org/pvldb/vol17/p319-punter.pdf]

G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” J. Algorithms,
vol. 55, no. 1, pp. 58-75, 2005. [Online]. Available: https:
/ldoi.org/10.1016/].jalgor.2003.12.001

R. Pagh, M. Stockel, and D. P. Woodruff, “Is min-wise hashing optimal
for summarizing set intersection?” in PODS, 2014, pp. 109-120.
[Online]. Available: https://doi.org/10.1145/2594538.2594554

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” CACM, vol. 13, no. 7, pp. 422-426, 1970. [Online]. Available:
https://doi.org/10.1145/362686.362692

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm,” Discrete
Mathematics & Theoretical Computer Science, 03 2012.

[20]

[21]

[22]

[23]

S. Krassovsky, “Modern bloom filters: 22x faster!” 2024, accessed:
2025-08-25. [Online]. Available: https://save-bufter.github.io/bloom_
filter.html

A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better bloom filter,” in Algorithms - ESA, ser. Lecture
Notes in Computer Science, vol. 4168, 2006, pp. 456—467. [Online].
Available: https://doi.org/10.1007/11841036_42

C. T. Yu and M. Z. Ozsoyoglu, “An algorithm for tree-query
membership of a distributed query,” in COMPSAC, 1979, pp. 306-312.
[Online]. Available: https://doi.org/10.1109/CMPSAC.1979.762509

M. Raasveldt and H. Miihleisen, “Duckdb: an embeddable analytical
database,” in SIGMOD, 2019, pp. 1981-1984. [Online]. Available:
https://doi.org/10.1145/3299869.3320212

https://doi.org/10.1145/1066157.1066172
http://www.vldb.org/conf/1990/P314.PDF
https://doi.org/10.1145/582095.582099
https://doi.org/10.1007/s00778-017-0480-7
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
http://www.vldb.org/pvldb/vol12/p1705-marcus.pdf
https://doi.org/10.1145/3514221.3517885
https://doi.org/10.1145/3514221.3517885
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://www.vldb.org/pvldb/vol13/p279-yang.pdf
https://www.vldb.org/pvldb/vol16/p2962-zhang.pdf
https://doi.org/10.1145/342009.335420
http://cidrdb.org/cidr2005/papers/P20.pdf
https://doi.org/10.1561/1900000001
https://www.vldb.org/pvldb/vol17/p1350-justen.pdf
https://www.vldb.org/pvldb/vol17/p319-punter.pdf
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1145/2594538.2594554
https://doi.org/10.1145/362686.362692
https://save-buffer.github.io/bloom_filter.html
https://save-buffer.github.io/bloom_filter.html
https://doi.org/10.1007/11841036_42
https://doi.org/10.1109/CMPSAC.1979.762509
https://doi.org/10.1145/3299869.3320212

	Introduction
	Background
	Join Extension
	Sketch Interoperability
	Join Cardinality Estimation
	Join Graph Traversal

	Experiments
	Conclusion
	References

