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Abstract
Machine learning (ML) enables forecasts, even in real-time, at ever lower cost and better

accuracy. Today, data scientists are able to collect more data, access that data faster, and apply
more complex data analysis than ever. As a result, ML impacts a variety of fields such as
healthcare, finance, and entertainment.

The advances in ML are mainly thanks to the exponential evolution of hardware, the avail-
ability of the large datasets, and the emergence of machine learning frameworks, which hide the
complexities of the underlying hardware, boosting the productivity of data scientists. On the
other hand, the computational need of the powerful ML models has increased several orders of
magnitude in the past decade. A state-of-the-art large language processing model can cost of
millions dollars to train in the cloud [52] without accounting for the electricity cost and carbon
footprint [17, 55]. This makes the current rate of increase in model parameters, datasets, and
compute budget unsustainable. To achieve a more sustainable progress in ML in the future, it is
essential to invest in more resource-/energy-/cost-efficient solutions.

In this Dagstuhl Seminar, our main goal was to reason critically about how we build soft-
ware and hardware for end-to-end machine learning. The crowd was composed of experts from
academia and industry across fields of data management, machine learning, compilers, systems,
and computer architecture covering expertise of algorithmic optimizations in machine learning,
job scheduling and resource management in distributed computing, parallel computing, and data
management and processing.

During the seminar, we explored how to improve ML resource efficiency through a holistic
view of the ML landscape, which includes data preparation and loading, continual retraining of
models in dynamic data environments, compiling ML on specialized hardware accelerators, hard-
ware/software co-design for ML, and serving models for real-time applications with low-latency
requirements and constrained resource environments. We hope that the discussions and the work
planned during the seminar will lead to increased awareness for understanding the utilization of
modern hardware and kickstart future developments to minimize hardware underutilization while
still enabling emerging applications powered by ML.
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1 Executive Summary

Oana Balmau (McGill University, CA oana.balmau@cs.mcgill.ca)
Matthias Boehm (TU Berlin & BIFOLD, DE, matthias.boehm@tu-berlin.de)
Ana Klimovic (ETH Zürich, CH, aklimovic@ethz.ch)
Peter Pietzuch (Imperial College London, GB, prp@imperial.ac.uk)
Pınar Tözün (IT University of Copenhagen, DK, pito@itu.dk)
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While the capabilities of machine learning models have become more and more impressive
in the last decade, one cannot overlook the computational footprint of their end-to-end
lifecycle. According to the Stanford AI Index Report [52], the computational complexity
of the state-of-the-art language models has increased 7 orders of magnitude since 2017. In
turn, this increases the estimated costs to train these models in the cloud by 5 orders of
magnitude, and the carbon footprint of training such models are equivalent to 10s of human
years. Furthermore, the cost of training is only a fraction of the whole costs. After training,
then comes the cost of continuously deploying these models, which depend on the way these
models are used for inference and the frequency of retraining to update the models.

The participants of the Dagstuhl Seminar on Resource-Efficient Machine Learning (ML)
targeted the computational efficiency challenges for machine learning, especially deep learn-
ing, from different angles and by focusing on the different stages. On the first day of the
seminar, we split into four groups, each with a specific focus. The groups identified the re-
search questions they want to focus on, delved deeper into the existing work, and identified
future steps to continue collaborations beyond the seminar.

The first group, Resource-Efficient Data Selection (Section 3), targets the efficiency
of data selection methods for training deep learning models. Data selection is a preliminary
step before any model training, but specifically for fine-tuning tasks, where a pre-trained
model must be specialized for a specific task. The effectiveness of a data selection method
is typically evaluated by the accuracy it achieves for the given task. The assumption is, as a
side effect, if one can achieve a certain accuracy while using less data, this would improve the
efficiency of training. This group questions this assumption and asks the following research
question: what are the trade-offs between the computational complexity of a data selection
method, its effectiveness in terms of model accuracy, and the end-to-end training efficiency?

The second group, The Future of Portable, Extensible, and Composable Ma-
chine Learning Systems (Section 4), aims at making the emerging ML systems support a
larger diversity of applications more efficiently. At the core of this support lies a departure
from the dominant reliance on dense tensor computations. Targeting a larger diversity in
applications also requires looking at a larger variety of hardware devices, beyond large accel-
erators that are highly optimized for dense matrix computations. Targeting such diversity
requires co-design and finding the right abstractions across software, compilers, and hard-
ware. The group’s vision results in several research challenges with the following overarching
research question: how to design holistic and composable software and hardware frameworks
for ML?

The third group, Hardware-Software Co-Design for Machine Learning (Sec-
tion 5), target similar research challenges to the second group, but with a deeper focus on
hardware diversity. The group identifies that the conventional way of optimizing machine
learning tasks for a certain hardware device is through tight coupling between high-level
ML engineering and low-level performance optimizations. Certain high-level optimizations,
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with a specific hardware in mind, in turn, hinders portability to different hardware devices,
resulting in sub-optimal efficiency and missed opportunities for functionality. Therefore,
the key research question here is how does one create a hardware stack for ML that enables
better portability across different devices?

The fourth group, Workload-Aware Machine Learning Serving (Section 6), focus
on ML serving. Serving ML models, especially large language models (LLMs), at scale is
highly costly and requires substantial hardware resources. To achieve more resource- and
performance-efficient model ways of serving models, one needs to adaptively determine which
specialized model to serve or cache, or how to optimize a model. This adaptivity is highly
dependent on the workload needs that may be dynamic. This group, therefore, aims to
answer the following questions: (1) what is the behavior and needs of the real-world serving
workloads and (2) how does one build a framework that enables adaptive model serving based
on dynamic user and workload needs?
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3 Working Group 1: Resource-Efficient Data Selection

Maximilian Böther (ETH Zürich, CH, mboether@ethz.ch)
Dagmar Kainmüller (Max-Delbrück-Centrum, DE, dagmar.kainmueller@mdc-berlin.de)
Theodoros Rekatsinas (Apple, CH, trekatsinas@apple.com)
Ties Robroek (IT University of Copenhagen, DK, titr@itu.dk)
Stefanie Scherzinger (University of Passau, DE, stefanie.scherzinger@uni-passau.de)
Pınar Tözün (IT University of Copenhagen, DK, pito@itu.dk)
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Today’s foundation models are trained on vast amounts of data from collections such as
RedPajama [15], Dolma [49], FineWeb [44], or The Pile [24]. This data is typically collected
by scraping the Internet and applying various ad-hoc filters, such as semantic de-duplication
and filtering inappropriate content. In order to achieve high accuracy for a given task, these
base language models are subsequently fine-tuned on task-specific data. The result is a
process that is not resource-efficient: models are trained on huge amounts of data that are
irrelevant to the downstream tasks. Therefore, recent works in the large language model
community propose using gradients or attribution vectors derived from gradients to select the
most relevant training data [19, 56]. Under the assumption that the training set contains
a considerable share of data that is irrelevant to the task at hand, the goal is to select
relevant data to minimize the number of training points while maximizing the downstream
model accuracy on certain tasks. These techniques reportedly achieve downstream accuracy
comparable to full data training using just 1 to 5% of the training budget. While these data
selection techniques show promise, we propose to investigate their effectiveness in production
settings. Firstly, there is a lack of investigation of the end-to-end computational needs;
i.e., what is the overall training cost including the cost of data selection itself. Secondly,
comparisons to other, lighter, data selection techniques are missing in terms of both end-
to-end performance and accuracy. Thirdly, it is worthwhile to explore and improve the way
gradients are stored to reduce the end-to-end overheads of data selection.

In the following paragraphs, we briefly introduce the state-of-the-art data selection works,
and based on our discussions at the Dagstuhl Seminar, outline our vision on how to make
data selection more resource-efficient.

DsDm and LESS. In the context of large language models, two state-of-the-art methods for
data selection, DsDm [19] and LESS [56], emerged. Both of these methods utilize training
gradients to assess which data points to select, but do so in slightly different ways.

LESS uses LoRA adapters [27] to reduce the number of trainable parameters. It follows
this up by performing a forward pass to compute gradients on all input samples. Each
gradient is randomly projected to lower dimensionality to compress it and stored in a simple
gradient store. This concludes the preparatory step for data selection. Performing the actual
data selection starts with computing the gradients of a few task-relevant validation samples.
These samples indicate what sort of training data is required. Afterwards, training data is
selected based on which gradients are most cosine-similar to the gradients of the task-relevant
samples.

DsDm, on the other hand, relies on datamodels [29]. A datamodel is a function that,
given a target sample and a subset of data, outputs the expected loss on the sample as if we
had actually trained a model on that data. In DsDm’s case, TRAK [42] is a linear datamodel
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that assumes every piece of data contributes fixed to the expected loss, i.e., independent
of the other included examples. TRAK uses projected gradients from the task we want
to optimize to construct the vector containing these influences. DsDm, a data selection
algorithm, then uses TRAK by choosing the subset of training samples that minimizes the
loss of the samples, maximizing the accuracy.

Data selection analysis. As mentioned before, the DsDm and LESS papers show impress-
ive results in terms of training budget reduction. However, a performance characterization
of these two data selection methods compared to previously proposed techniques is missing.
For example, they are not compared to selection functions based on loss and gradient norm-
based sampling [30], DLIS [30], uncertainty sampling [14], RHO-LOSS [38], CRAIG [39],
and techniques such as Grad-Match [32]. Therefore, we propose to conduct a thorough
benchmarking study of data selection methods for large language model training to com-
plement all these works, especially in terms of end-to-end resource-efficiency for models of
different scales and complexity.

Data selection literature frequently claims that their proposed algorithms drastically im-
prove training efficiency. These algorithms, however, come with their own computational
demands and complexity, which is often under-reported. After all, scoring data samples
to determine which to select for training is not a free process. While, e.g., modern pro-
duction models in deep learning feature billions of parameters, the results reported in the
literature are on smaller ≈120 million parameter models. Therefore, we propose to explore
the scalability of all the aforementioned algorithms and whether these methods are actually
resource-efficient or are impractical due to their wall-clock time overhead. In particular, we
want to thoroughly compare whether these modern methods that rely on training gradients
can compare to other literature, not just on accuracy, but also on total compute efficiency.

Optimizing gradient storage. DsDm and LESS are both gradient-based selection meth-
ods. LESS computes these gradients before selection and stores them in a gradient store,
for which they utilize a file-based implementation. The DsDm paper does not elaborate on
how the gradients resulting from computing TRAK are stored. We assume that this could
become a bottleneck depending on the embedding sizes, especially for larger models.

Additionally, there are many more applications where storing gradients might be useful:
For explainability, we can better understand the selection decisions if we keep the gradi-
ents stored, similar to the examples shown in the TRAK paper [42].
To maximize accuracy while minimizing inference cost, we could derive an n-shot prompt
optimization algorithm which runs a similarity search in the embedding space and then
picks the minimum number of examples required to maximize task accuracy.
To reduce redundant compute, we could incrementally compute attribution scores for new
tasks without computing the gradients for all samples in the training set again.

Hence, from a systems perspective, we propose to explore if we can improve the state-
of-the-art of storing gradients in the context of data selection. A good starting point is
the very recent MetaStore [59], which proposes a compression mechanism to make the
storage more efficient. An alternative option is utilizing modern hardware capabilities, such
as the fast interconnects on the new NVIDIA GH200 machines, to accelerate the movement
of gradients to e.g. save them in the gradient store.

Summary. Data selection can be valuable for resource-efficient machine learning by drastic-
ally reducing the computation required to train task-specific large language models. How-
ever, the actual wall-clock runtime and scalability of state-of-the-art methods have yet not
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been properly explored. We propose investigating these methods through two proposals.
With a holistic benchmarking study, we hope to step forward towards actual resource ef-
ficiency and an understanding of data selection functions. With our proposed gradient
storage, we want to improve the efficiency of the state-of-the-art data selection methods.
We hope that these results will contribute to the transparency of data selection techniques
w.r.t. both accuracy and resource efficiency, as well as improve the scalability of techniques
reliant on gradient storage.

4 Working Group 2: The Future of Portable, Extensible, and
Composable Machine Learning Systems

Patrick Damme (TU Berlin, DE, patrick.damme@tu-berlin.de)
Jens Hagemeyer (Bielefeld University, DE, jhagemey@cit-ec.uni-bielefeld.de)
Fredrik Kjolstad (Stanford University, USA, kjolstad@stanford.edu)
Tom St. John (Meta, USA, tomstjohn617@gmail.com)
Cliff Young (Google DeepMind, USA, cliffy@google.com)

License Creative Commons BY 4.0 International license
© Patrick Damme, Jens Hagemeyer, Fredrik Kjolstad, Tom St. John, and Cliff Young

Applications driven by machine learning (ML) are profoundly changing the world. These
applications are both data-access-intensive and compute-intensive. Thus, the efficient ex-
ecution of these applications on modern hardware is essential to their success. For the
past decade, ML systems have been highly optimized to support dense tensor operations.
However, we begin to see the limits of this approach when advancing the state of machine
learning, e.g., through ever-growing model sizes. Continuing this trend will lead to an
increasing divergence between system architectures and new machine learning paradigms.
Even today, exponential costs are required for each increment of quality improvement, and
sustainability and environmental aspects are also of concern. To support the emergence
of diverse machine learning workloads, we require a new system paradigm including new
specifications throughout the system stack ranging from language abstractions and software
over compilers down to the computer architecture and underlying hardware.

In that context, we propose and discuss a vision of future ML systems, perhaps in 5–10
years from today. We expect such systems will go beyond the current focus on dense,
tensor arithmetic and incorporate aspects of wider computer science and high-performance
computing calculations. As examples of the kinds of richness the future might hold, we
draw inspiration from what we call the Four Languages taxonomy that spans four different
algebras:

Tensor algebras work on tensors (linear relationships between sets of objects) expressed
as an array of values as supported by modern ML frameworks [8, 43] and numerical
systems [11, 53].
Relational algebras work on relations between objects (a subset of the Cartesian com-
bination of one or more sets) as supported by relational database management systems
[18, 28, 40, 45, 50].
Graph algebras work on edge relationships between sets of objects (such as knowledge
graphs, social network graphs, and meshes) as supported by graph engines [3, 36].
Spatial algebras work on metric spaces that express distance relationships between sets
of objects as supported by graphics rendering engines [4], molecular dynamics packages
[1, 2] and ML-based recommender models.

24311

mailto:patrick.damme@tu-berlin.de
mailto:jhagemey@cit-ec.uni-bielefeld.de
mailto:kjolstad@stanford.edu
mailto:tomstjohn617@gmail.com
mailto:cliffy@google.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


160 24311 – Resource-Efficient Machine Learning

We base our vision on three suppositions regarding the future of ML systems. We
believe these suppositions to be likely, given past trends in the ML computing space:
1. ML applications will be exciting and diverse. ML models will not be limited to

dense tensor computations composed in different ways. Instead, we expect them to evolve
in unexpected ways, to incorporate components from the four algebras above. Perhaps,
this involves increased reliance on hierarchies, irregular and sparse models, spatial em-
beddings, and computation with irregular data models such as relational models and
graphs.

2. Hardware will be exciting and diverse. Hardware will be unexpected in various
ways, and not limited to CPUs, programmable GPUs, and dense vector or matrix units.
As ML models increase in complexity and embrace components from different algebras,
we will see hardware to cater to those algebras. In addition, we will increasingly find ways
to build adaptation and reconfigurability into hardware substrates, perhaps through pro-
grammable networks, configurable collection-oriented operations, and through support
for different data-types and precision.

3. Computation will be distributed across centers and edges. We also expect that
this heterogeneity goes far beyond the data center focus of current large language model
(LLM) training and inference systems to incorporate a wide range of edge, mobile, in-
ternet of things (IoT), and other deployment scenarios. Each of these areas will have
different economies and trade-offs among cost, compute and memory performance, power
(both dissipated and battery capacity), and latency/bandwidth/reliability of communic-
ation links.

With these many dimensions of heterogeneity, we imagine a complex, potentially fully
connected, graph of interfaces between components with various diverse strengths and cap-
abilities, even potentially changing at runtime by adaptation and reconfigurability to deal
with changing requirements and environments. Components (which combine hardware ac-
celerators, software stacks, runtimes, and application software) may have to talk to other
components that speak a different language, which makes each interface an opportunity for
co-design optimization across the languages.

Each of the languages can express many of the computations of the others. However, each
language is conceptually very different, lends itself to a different style of thoughts, and comes
with some degree of induced awkwardness or structure in expressing particular computations.
And similarly for the reductions or translations from one language to another (as is typical
of theoretical reductions). But the structure of these equivalences and reductions induces
interesting trade-offs and opportunities for cross-domain optimization and expressiveness.
Such fused systems might have huge opportunities for whole-system efficiency. But to realize
those opportunities, we need to build first the individual components, then the interfaces
between them, and lastly the entire system in a way that allows us to move work fluidly
across and into these future ML computing systems.

We do not yet have a strong enough signal to recommend embarking on a four languages
commercial systems project. Due to the involved complexity this could be a too aggressive
jump towards a single grand unified theory of four very different styles of computation.
However, we see a range of research challenges to approach this vision:
1. How to design a holistic and composable framework at the software and hardware level?
2. How to design user-facing language abstractions and a system-internal unified interme-

diate representations for combining the different data models and algebras?
3. How to do transformations across the different data representations (i.e., tensor, rela-

tional, graph, spatial) enabling portability across the different hardware substrates?
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4. How to design the interfaces between these components and how to ensure efficient data
exchange?

5. How to assign components to different heterogeneous compute architectures such as
CPUs, GPU, TPUs, or even more specialized substrates, and use heterogeneous commu-
nication links between them?

6. How to compose domain-specific hardware blocks and at what degree of programmabil-
ity?

7. How to make hardware reconfigurable and adaptable at run-time, and exploit such ad-
aptability throughout the framework (i.e., language, compiler, runtime)?

8. How to allow experts to fine-tune the system by extending it with hand-written code
where automatic approaches are still missing or insufficient?

To conclude, we think there is value in the vision of uniting the four languages and the
rich, effective, and expressive future for ML that such a unification might support. Even if
we only partially unify some of the areas (as physics did with the electromagnetic and weak
forces), it could still be valuable to ML in both theory and practice.

5 Working Group 3: Hardware-Software Co-Design for Machine
Learning

Marco Canini ((KAUST - Thuwal, SA, marco@kaust.edu.sa)
Jeronimo Castrillon (TU Dresden, DE, jeronimo.castrillon@tu-dresden.de)
Steven Hand (Google, USA sthand@google.com)
Peter R. Pietzuch (Imperial College London, GB, prp@imperial.ac.uk)
Foteini Strati (ETH Zurich, CH, foteini.strati@inf.ethz.ch)
Shinya Takamaeda-Yamazaki (The University of Tokyo, JP, shinya@is.s.u-tokyo.ac.jp)
Lluís Vilanova (Imperial College London, GB vilanova@imperial.ac.uk)
Eiko Yoneki (University of Cambridge, GB, eiko.yoneki@cl.cam.ac.uk)
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The current ML stack is structured across multiple levels. At the top, an ML engineer
writes code in a high-level framework such as PyTorch [5] or Tensorflow [6], defining an
abstract dataflow graph. To achieve high performance, the high-level graph undergoes a
compilation process, involving transformations at multiple levels (in the form of Intermediate
Languages [7]), that target a specific hardware setup (i.e. N machines of type X). High-
level optimizations such as operator fusion are applied first, followed by low-level, hardware-
dependent operations such as buffer materialization and padding [60, 13, 46]. As a result,
the compiler outputs operators and libraries that target only the specific hardware setup.

Although the current compilation process leads to high performance, we identify some
key issues that make it incompatible with the current and future landscape of heterogeneous
ML models and hardware. First, we observe an excessive coupling between high-level ML
engineering and low-level performance optimization, hindering portability, both for function-
ality and performance. ML engineers often perform premature optimization at the model
definition stage to maximize efficiency, without having full knowledge of the hardware and its
attributes (for example deciding on a specific memory layout or operator fusing). However,
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fully decoupling high-level model definitions from low-level implementation and optimiza-
tions is impractical since the compiler needs some guidance to navigate the large search
space [13] and discover efficient plans in a reasonable time. Additionally, as ML is moving
at such a fast pace, the current ML stack fails to keep up with the recent advances in a prin-
cipled way, compromising correctness and soundness. Finally, the tight coupling between
ML model definition and hardware setup, and the focus on real-world performance, makes
us unable to reason about performance at different scales and limits access for academic
researchers.

We propose a principled redesign of the ML software stack and identify key research
questions that need to be addressed at each level. The proposed ML stack is illustrated in
Figure 1. At the top level, ML engineers focus on abstract model design (i.e. mathematical
formulation) without considering hardware specifications. A critical first step here is defin-
ing the input at this high level (i.e. is it the whole ML model graph, or several such that
interact via some programming constructs). We also argue that there should be restrictions
on which high-level operations are supported. Next, as in the current ML stack, multiple
transformations are performed. However, instead of targeting a specific hardware setup,
we propose targeting an abstract multi-level SPMD execution model, representing a virtual,
multi-level Hardware stack. This would allow the compiler to generate “executables” at
different levels of abstraction and understand tradeoffs and optimizations at different levels.
It would also enable modeling of existing and future hardware in an abstract way, enabling
portability in terms of functionality and performance, accelerating the design of new hard-
ware and software in a principled manner, and allowing correctness guarantees at different
levels.

For this Hardware stack to be effective, we need to identify what types of information
we need to pass to the compiler at different levels. We propose three key levels. At the
first level, we define distinct classes of abstract heterogeneous devices, each with a specific
memory hierarchy and access granularity, number of compute units, supported functions,
and compute-to-memory ratio. At a second level, we view each possible system setup as a
collection of these heterogeneous abstract devices, that can communicate with a specific set
of primitives. An example of a step in this direction are the abstractions for operations and
communication primitives in the CINM and C4CAM [31, 20] multi-level compiler frame-
works for emerging near and in-memory accelerators. Finally, the last level handles runtime
optimizations, mapping abstract (virtual) to physical devices. At this stage, the compiler
decides on specific memory layouts and operator mapping.

In conclusion, we propose reimagining the ML stack in a principled way with explicit con-
sideration of semantics and correctness guarantees across multiple abstract hardware layers.
To implement this, it is essential to clearly define interfaces and intermediate representations
required at each level of the ML stack, and evaluate the tradeoffs between performance and
adaptability in the fast-moving ML space.
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Figure 1 The proposed ML software-hardware stack, consisting of various levels of abstractions.
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Serving machine learning (ML) models at scale, particularly modern large language mod-
els (LLMs), is extremely resource-intensive and costly. We observe two major trends that
increase resource requirements of ML serving workloads. First, there is increasing scale in
terms of number of client requests and model sizes. Increasing context-lengths in conver-
sational LLM interactions also generates large state per client. Second, we see increasing
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model personalization for different domains and user groups (through fine tuning and prompt
engineering), model specialization for different tasks (through custom models), as well as
multi-modal and multi-component models. There are, however, new opportunities to mitig-
ate these challenges. Weight pruning and other forms of sparsity exploitation are becoming
more practical. Combined with new hardware features for reconfiguration and tuning, these
increase the optimization potential for ML serving.

Limitations of Existing Work. Many ML serving systems have been developed to optim-
ize latency and throughput, such as TensorFlow Serving [41], TorchServe, Clockwork [26],
vLLM [33], ServerlessLLM [22], Clipper [16], Pretzel [34], and Rafiki [54]. Optimizations for
different throughput-latency-accuracy trade-offs include data/request batching [9, 58], model
pruning and quantization [21, 35], result caching [51, 23], multi-model optimizations [47],
and specialized or fine-tuned model serving [37, 48, 12, 57]. Despite promising performance
impact, these strategies are mostly applied in a heuristic manner, in isolation, and/or in a
static offline step before deployment. Recent work explores dynamically tuning key-value
cache compression [25], context pruning [10], and sparsity [61]. We see an opportunity to
build on prior work to design an algorithm and system to adaptively tune these optimization
knobs holistically on a per-request basis.

Vision. These opportunities motivate a new paradigm for serving ML models: adaptive
and workload-aware ML serving. Inspired by two decades of research on adaptive query
processing, we make a case for adaptive, workload-aware optimization and reconfiguration
of ML serving pipelines. To this end, we envision deploying multiple variants of sparsified and
specialized models, periodically profiling samples of client requests (with several variants) for
accuracy and resource consumption, and dynamically reconfiguring serving configurations
(variant selection, placement, and parameter tuning) to maximize throughput subject to
accuracy, energy, and latency constraints. Working towards this vision, we aim to (1) share
a workload characterization of real serving traces, the potential of sparsification, and oppor-
tunities of adaptation; (2) devise a holistic reconfiguration framework including objectives,
tuning knobs, and optimization algorithms; and (3) conduct preliminary experiments on two
different prototypes for LLMs and traditional ML models.
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