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Abstract
Time series data from a variety of sensors and IoT devices need

effective compression to reduce storage and I/O bandwidth re-

quirements. While most time series databases and systems rely on

lossless compression, lossy techniques offer even greater space-

saving with a small loss in precision. However, the unknown

impact on downstream analytics requires a semi-manual trial-

and-error exploration. We initiate work on lossy compression

that provides guarantees on complex statistical features (which

are strongly correlated with the accuracy of downstream analyt-

ics). Specifically, we propose CAMEO, a new lossy compression

method that provides guarantees on the autocorrelation and

partial-autocorrelation functions (ACF/PACF) of a time series.

Our method leverages line simplification techniques as well as

incremental maintenance, blocking, and parallelization strategies

for effective and efficient compression. The results show that

our method improves compression ratios by 2x on average and

up to 54x on selected datasets, compared to previous lossy and

lossless compression methods. Moreover, we maintain, and some-

times even improve, the forecasting accuracy by preserving the

autocorrelation properties of the time series.

Keywords
Lossy Time Series Compression, Autocorrelation Function, Time

Series Forecasting Analytics, Anomaly Detection

1 Introduction
High-frequency time series are everywhere, from industrial man-

ufacturing to weather prediction. For instance, an offshore oil rig

typically has 30,000 sensors, of which only a few are utilized for

real-time control and anomaly detection [72]. Time series com-

pression can significantly reduce storage space, I/O bandwidth

(storage or network) and analysis requirements [23, 51–53, 110].

Motivated by these benefits, numerous algorithms have been pro-

posed for lossless [12, 67, 82, 83, 105] and lossy [6, 15, 29, 58, 73]

compression. While lossless methods preserve the raw data, lossy

methods offer an appealing trade-off: more effective compression

with only a small, typically bounded reconstruction error.

Lossy Compression Problem: In order to reduce the impact

on downstream applications, lossy compression often minimizes

the reconstruction error. These methods focus on maximizing

compression ratios, bounded to a maximum distortion of time

series values [15, 32, 46, 59, 71, 93]. Common techniques include

domain transformation (Fourier Transform) [2, 21, 55], functional

approximation (Polynomial Approximation) [11, 29, 32, 56], and

symbolic representation (Dictionary Encoding) [61, 69, 70, 70, 73,

88]. Reconstruction quality is typically measured by the Normal-

ized Root Means Square Error (NRMSE) or the Peak Signal-to-

Noise Ratio (PSNR) [92]. However, the impact on downstream
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Figure 1: (left) Pearson Correlation of Forecasting Errors
and Different Statistical Features. (right) Average Forecast-
ing Accuracy using Discrete Fourier Transform (DFT) and
our CAMEO method at a Fixed Compression Ratio.

time series analytics remains largely unclear, requiring a tedious,

semi-manual trial-and-error exploration [14, 29, 47, 74, 76, 79].

A Case for Autocorrelation Preservation: Minimizing re-

construction errors like NRMSE or PSNR treats data points in-

dependently, ignoring the temporal dependencies essential for

forecasting and anomaly detection. In contrast, complex statis-

tics like autocorrelation (ACF) and partial autocorrelation (PACF)

capture these dependencies. For stationary series, the ACF fully

characterizes the second-order structure (i.e., all pairwise covari-

ances), critical for many forecasting methods [8]. Preserving the

ACF also retains the signal’s spectral characteristics [102], cap-

turing both dominant and subtle temporal patterns including

periodicity. As the PACF also determines lag selection in ARIMA

models [8], preserving the ACF/PACF ensures the retention of

features essential for accurate forecasting.

Empirical Validation: For validating this intuition, we ran ex-

periments on three datasets: Pedestrian, Rideshare, and AirQual-

ity [42], comprising 2,831 time series. First, we compressed each

series at varying compression ratios using the Discrete Fourier

Transform (DFT) [21], measuring impacts on both reconstruction

metrics (NRMSE, PSNR) and downstream forecasting accuracy

(modified sMAPE from STL-ETS [19, 49]). Our analysis (Figure 1

left) shows that deviations in ACF and PACF features, notably

ACF1 and PACF5, correlate more strongly with forecasting errors

than traditional reconstruction metrics. Second, further experi-

ments at a fixed compression ratio of 5 compare DFT with our

proposed method CAMEO which preserves the ACF. Across two

forecasting models (STL-ETS, STLF-ARIMA) on the Pedestrian

dataset, CAMEO reduces forecasting errors by 10%–20% com-

pared to DFT (Figure 1 right).

Contributions:We introduce an auto-cor-relation-preserving

lossy time series compressor (CAMEO). Our objective is to max-

imize compression while guaranteeing a user-defined maximum

deviation of the ACF or PACF on the compressed data. CAMEO

uses an iterative greedy approach, removing points based on

their impact on the ACF or PACF. These statistics are updated

incrementally. To improve runtime, we leverage blocking and

parallelization strategies. In detail, our contributions are:

• We survey lossy time series compression and line simplifi-

cation methods through a new hierarchical and compara-

tive classification in Section 2.
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Figure 2: Hierarchy for Lossy Time Series Compression.

• We introduce a new general problem formulation for lossy

time series compression under user-specified statistical

feature constraints in Section 3.

• We instantiate this formulation by designing CAMEO,

a concrete framework that enforces user-defined error

bounds 𝜖 on ACF and PACF (Section 4). Key aspects in-

clude incremental updates, blocking heuristics, and paral-

lelization strategies.

• We conduct broad experiments to study CAMEO compared

to state-of-the-art lossy compressors, on different datasets,

and with different time series analytics in Section 5.

CAMEO yields improvements in compression ratios of 2x on

average (and up to 54x on some datasets) while preserving the

same deviation of the ACF. Due to the bounded impact on the

ACF, CAMEO better maintains, and sometimes even improves,

the accuracy of forecasting models and anomaly detection tasks.

2 Background
In this section, we describe the background of lossy time se-

ries compression (via a hierarchical classification), existing line

simplification algorithms, and autocorrelation functions.

2.1 Lossy Time Series Compression
Lossy time series compression converts an input time series X
of size 𝑛 into a compressed representation X′ of size 𝑛′, where

𝑛′ ≪ 𝑛. The sizes of X and X′ can be measured in number of

bits (e.g., under quantization) or number of elements (e.g., for

line simplification). The compression ratio 𝑐 = 𝑛
𝑛′ quantifies

compression effectiveness. Data distortion refers to the loss of

information in the reconstructed time series compared to the

original. For further details on compression methods, we refer

readers to recent surveys [17] and comparative analyses [7, 48].

Lossy Compression Categories: There is a plethora of lossy

time series compression methods with different trade-offs. Fig-

ure 2 shows the major categories arranged in a type hierarchy.

• Functional Approximation: The data is approximated

by one or more functions [9, 11, 16, 29, 32, 56, 59, 63],

where the time series is divided into segments, and we

store parameters of a low-order polynomial per segment.

Such methods guarantee a maximum distortion error per

value and are particularly effective on smooth trends.

• Domain Transformation: The data is transformed into

a different mathematical domain [2, 10, 21, 24, 50, 55, 64].

We compress the data by retaining significant components

in this new domain and discarding less important ones.

These techniques often assume stationarity or periodicity.

• Value Representation: The data is substituted with an-

other more compact representation [43, 58, 70, 73, 88]

(e.g., binning or quantization). Here, the compression is

Figure 3: ACF Importance Skew (Non-Uniform Importance)

achieved by limiting the number of distinct items—thus,

codeword size—while controlling the reconstruction error.

Symbolic methods enable efficient indexing and search.

• Line Simplification: All points are ranked according to

a certain criterion and removed in reverse order [18, 39,

40, 44, 89, 90, 108]. The ranks are often updated locally

within a small neighborhood of the removed point.

CAMEO Positioning: Our approach is inspired by Line Sim-

plification methods (which often preserve geometric properties

such as area-under-the-curve) but extends this idea to preserving

more complex statistical features. We introduce a new category,

Statistical Important Points, for methods that explicitly preserve

time series statistics such as the ACF and PACF. To the best of our

knowledge, CAMEO is the first method proposed in this category.

2.2 Line Simplification for Lossy Compression
Line simplification methods reduce the number of points while

preserving major geometric or visual characteristics. Keeping

relevant original points while approximating others via interpo-

lation can help maintain key patterns, e.g., total energy (area-

under-the-curve) in semiconductor degradation tests [22].

Turning Points: The central idea behind turning-points (TP)

compression is to store only the points at which the time series

changes direction, i.e., where it turns from increasing to decreas-

ing, or vice versa [89, 108]. This approach preserves key inflection

points and supports the reconstruction of linear trends, often

critical in applications such as stock trading [3].

Perceptual Important Points: The core idea behind per-

ceptual important points (PIP) compression is to find and store

points that are significant or meaningful based on the human

perception [38, 54]. These points can include peaks, valleys, and

other visually salient features that may indicate important events

or changes in the data. In detail, PIP-based algorithms build a

reduced approximation iteratively by always inserting the point

with the largest vertical distance from the current approximation

line between two existing PIPs [18, 38, 62, 85]. Early versions of

this idea were proposed for polygonal curve simplification and

cartographic generalization [27, 84, 98].

Visvalingam-Whyatt Algorithm: The main idea behind

Visvalingam-Whyatt (VW) line simplification is to remove points

based on the areas of the triangles formed by triplets of sequential

points [98]. At each iteration, VW replaces the smallest triangle

with a straight-line segment by eliminating the middle point and

computing the areas of the newly formed left and right triangles.

The algorithm stops when the smallest triangle’s area does not

meet the error bound or a specified number of points is removed.

CAMEO Differentiation: While CAMEO shares the gen-

eral structure of progressive point selection with classical line

simplification methods, it fundamentally differs in its optimiza-

tion goal. Instead of preserving geometric properties (area, direc-

tion changes, or peaks), CAMEO selects points to preserve the

compressed-modified ACF/PACF within an error bound. Figure 3

illustrates this distinction by showing how the ACF importance
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distribution—measured as the distortion introduced by removing

each point—is highly non-uniform across four time series. This

pattern highlights the need for a more targeted point selection

strategy instead of treating all points equally. CAMEO’s shift

from geometry- or perception-driven importance to preserving

time series temporal structure marks a significant change from

previous approaches.

2.3 Quality Measures
To measure the deviation between the original and reconstructed

time series, or the original and compression-modified ACF and

PACF, or the forecasted and expected time series, one can use

different quality measures D(X,X′):
• Mean Absolute Error: MAE = 1

𝑛

∑𝑛
𝑖=1 |𝑥𝑖 − 𝑥 ′𝑖 |

• Root Mean Square Error: RMSE = 1

𝑛

√︁∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥 ′𝑖 )2

• Normalized RMSE: NRMSE = RMSE

max(X)−min(X)
• Modified Symmetric MAPE:

mSMAPE =
1

𝑛

𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑥 ′𝑖 |
max ( |𝑥𝑖 | + |𝑥 ′𝑖 | + 𝜖, 0.5 + 𝜖)/2

where 𝜖 is by default 0.1 [42].

2.4 Time Series Autocorrelation Functions
The ACF and PACF are two fundamental statistical concepts that

measure the correlation between the observations at a current

point in time and observations at different time lags [8].

Basic ACF: The ACF is the Pearson correlation of the time se-

ries X and a lagged version of itself—computed for lags 1 through

a user-provided max lag 𝐿—and is computed at lag 𝑙 as follows:

ACF𝑙 (X) =
1

(𝑛 − 𝑙)𝜎2

𝑛−𝑙∑︁
𝑡=1

(𝑥𝑡 − 𝜇) (𝑥𝑡+𝑙 − 𝜇) (1)

where 𝜇 and 𝜎 are the mean and standard deviation of X, and

𝑛 = |X| (number of points). Equation (1) assumes the time series

is stationary, and thus, 𝜇 and 𝜎 are the same at all time intervals. If

the time series is non-stationary, 𝜇 and 𝜎 should be computed for

X and its lagged version X𝑙 . Specifically, X spans [1 · · ·𝑛 − 𝑙] and

X𝑙 spans [𝑙 + 1 · · ·𝑛]. Thus, both time series have 𝑛 − 𝑙 elements.

Alternative ACF: An equivalent formulation of the ACF at

lag 𝑙 , but more convenient for later incremental updates, is:

ACF𝑙 =
(𝑛 − 𝑙)∑𝑥𝑡𝑥𝑡+𝑙 −

∑
𝑥𝑡

∑
𝑥𝑡+𝑙√︂(

(𝑛 − 𝑙)∑𝑥2𝑡 − (
∑
𝑥𝑡 )2

) (
(𝑛 − 𝑙)∑𝑥2

𝑡+𝑙 − (
∑
𝑥𝑡+𝑙 )2

)
(2)

whose basic aggregates can be maintained incrementally [101].

Basic PACF: The PACF measures the correlation between

current and past observations at lag 𝑙 , removing intermediate

lag influences. The PACF𝑙 = 𝜙𝑙,𝑙 , can be computed using the

Durbin-Levinson (DL) [28, 75] recursion in O(𝐿2) as follows:

𝜙1,1 = ACF1, 𝜙𝑙,𝑙 =
ACF𝑙 −

∑𝑙−1
𝑘=1

𝜙𝑙−1,𝑘ACF𝑙−𝑘

1 −∑𝑙−1
𝑘=1

𝜙𝑙−1,𝑘ACF𝑘
(3)

where 𝜙𝑙,𝑘 = 𝜙𝑛−1,𝑘 − 𝜙𝑛,𝑛𝜙𝑛−1,𝑛−𝑘 for 1 ≤ 𝑘 ≤ 𝑙 − 1.

Utility: The ACF and PACF are valuable tools in time series

analytics, often used for understanding the underlying patterns in

the series, assisting in selecting the type and order of forecasting

models, and enabling precise and reliable forecasts.

3 Problem Formulation
In this section, we introduce three variants for the problem of

compressing a time series while preserving statistical features.

This problem formulation is independent of concrete algorithms.

Definition 1 (Statistical Important Points). Given a time

series X, an error bound 𝜖 , a time series statistic S, and a quality
measure D, we aim to find a compressed time series X′ (in terms

of a subset of original data points) such that:

max

|X|
|X′ |

s.t. D(S(X),S(X′)) ≤ 𝜖
(4)

This optimization objective maximizes |X|/|X′ | (compression ratio),

while enforcing a bounded deviation of the user-provided statistic

S on the compressed data (measure by D) by at most 𝜖 .

Complexity: Similar to other line simplification methods,

finding the globally optimal solution efficiently is intractable [95,

96]. Thus, we aim to find approximate solutions with high com-

pression ratios but hard or high-probability guarantees on the

deviation from S. Furthermore, we may need to preserve statis-

tics on window aggregates of the time series. For example, a time

series in 4-second granularity with daily seasonality would re-

quire an ACF with 21,600 lags to capture a full season. Therefore,

we introduce a variant of the Statistical Important Points problem,

aiming to preserve statistical features on aggregated time series.

Definition 2 (Statistical Important Points on Aggre-

gates). Given a time series X, an error bound 𝜖 , a time series

statistic S, a quality measure D, and an additional aggregation

function Agg𝜅 over 𝜅 data points, we aim to find a compressed time

series X′ (in terms of a subset of original data points) such that:

max

|X|
|X′ |

s.t. D(S(Agg𝜅 (X)),S(Agg𝜅 (X′))) ≤ 𝜖
(5)

where Agg𝜅 (X) = [𝑎1, . . . , 𝑎𝑛/𝜅 ] and 𝑎𝑖 = Agg𝜅 (𝑥 [𝑖 :𝑖+𝜅 ]). The
aggregation function Agg𝜅 needs to be additive, semi-additive, or

additively-computable to enable incremental updates [101].

Example: To illustrate the SIP on Aggregates problem, assume

an original time series X sampled every minute, 𝜖 = 0.01, S =

ACF, Agg𝜅 =
∑𝑖+30

𝑖+1 𝑋𝑖/30 (the mean value every 𝜅 = 30 minutes),

and D =MAE. Here, Equation 5’s constraint renders to

MAE

(
ACF⟨1· · ·𝐿⟩

(∑𝑖+30
𝑖+1 X𝑖

30

)
,ACF⟨1· · ·𝐿⟩

(∑𝑖+30
𝑖+1 X′𝑖
30

))
≤ 0.01,

where 𝑖 iterates through and aggregates consecutive tumbling

(i.e., jumping) windows in the time series. Alternative problem

formulations exchange the hard and soft constraints of the above

optimization objectives to reach desired compression ratios with-

out unnecessary exploration of parameters.

Definition 3 (Compression-centric Statistical Impor-

tant Points). Given a time series X, a statistic S, a quality mea-

sure D, an optional aggregation function Agg𝜅 and a minimum

compression ratio 𝑐 , we aim to find a compressed time series X′

such that:

min D(S(Agg𝜅 (X)),S(Agg𝜅 (X′)))

s.t.

|X|
|X′ | ≥ 𝑐

(6)
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Figure 4: Linear Interpolation of x3 (Left) and x2 (Right).

This optimization objective minimizes the distortion between the

original and reconstructed statistical features while removing points

until the compression ratio 𝑐 is reached.

4 CAMEO Framework
CAMEO addresses the Statistical Important Points problem using

a greedy, iterative strategy that progressively removes points

while controlling the impact on the ACF. At each iteration, it

selects the point with the minimum ACF impact, interpolates

its value, updates internal aggregates, and checks whether the

user-defined error bound 𝜖 is still satisfied. This section intro-

duces the overall compression algorithm (Algorithm 1), as well as

three techniques for improving its runtime efficiency: incremen-

tal maintenance of the ACF (Section 4.2), blocking of local neigh-

borhoods (Section 4.3), and different parallelization strategies

(Section 4.4). The underlying greedy heuristics of our algorithm

include (1) selecting the next best point, and (2) updating the

ACF impact in a local neighborhood.

4.1 Overall Compression Algorithm
CAMEO begins by calling ExtractAggregates(X) (Line 1 of Al-

gorithm 1) to compute the basic aggregates needed for efficiently

evaluating the ACF using Equation 2. Rather than recomputing

the ACF from scratch after each removal, CAMEO incrementally

updates these aggregates based on the interpolation error intro-

duced by removing a point (Line 6). Figure 4 (left) illustrates this

process: removing 𝑥3 and interpolating its value from 𝑥2 and 𝑥4
introduces a small error Δ𝑥3, which is then used to update the

aggregates. This update enables maintaining the ACF in constant

time per lag. The compression process iterates over these steps

until the error bound 𝜖 is violated or no further points can be

removed (Lines 4–12).

Initialization: To rank points for removal, we compute for

each point its estimated impact on the ACF if removed (Line 3).

The function GetAllImpactACF (Algorithm 2) leverages the pre-

computed aggregates to evaluate the impact in O(𝐿𝑛) time and

stores the results in a heap H. This operation is vectorizable and

parallelizable, as each point’s impact can be calculated indepen-

dently. Specifically, GetAllImpactACF updates the ACF aggre-

gates based on the hypothetical removal of each point (Lines 4-9),

computes the new ACF (Line 10), and measures the distortion

using D (Line 11). The impacts are then organized into H, built

in O(𝑛) time using Floyd’s method [36]. The total initialization

time complexity is O(𝐿𝑛 + 𝑛).
Inner Loop and Updating Heuristic: Every time a point

x𝑖 is popped from the heap, we compute its interpolation er-

ror Δx𝑖 , update the ACF aggregates, and recompute the ACF

(Lines 5–8). We then check whether the updated ACF satisfies

the user-defined quality constraint D (Line 9). If so, the point

is permanently removed (Line 11). Since removing points alters

relationships between values at different lags, the previously com-

puted ACF impacts of neighboring points may become outdated.

To maintain consistency, CAMEO uses the ReHeap procedure

Algorithm 1 CAMEO

Input: Time Series X, Error Bound 𝜖 , Max Lag 𝐿

Output: List of Remaining Points X′

1: ACFAgg← ExtractAggregates(X) // Get ACF aggregates
2: PL ← GetACF(ACFAgg) // Get raw ACF

3: H← GetAllImpactACF(ACFAgg,X) // Heap of distortions
4: while Top(H) ≠ NULL do // Not empty

5: x𝑖 ← Pop(H) // Get next point

6: Δx𝑖 ← Interpolate(x𝑖 ) // Get interpolation error

7: ACFAgg← Update(ACFAgg,Δx𝑖 ) // Update ACFAgg

8: P̂𝐿 ← GetACF(ACFAgg) // Get new ACF

9: if D(P̂L, PL) ≥ 𝜖 then // Check error bound

10: return X′ // Error bound reached

11: X′ ← Remove(X, x𝑖 ) // Remove the point

12: H← ReHeap(H, x𝑖 ) // Update impact of points inNℎ (𝑥𝑖 )
13: return X′

Algorithm 2 GetAllImpactACF

Input: ACF aggregates ACFAgg, Time Series X, Raw ACF 𝑃𝐿
Output: Heap with Impact on ACF per each Point 𝐻

1: 𝑖 ← [1, · · · , 𝑛 − 1] // Get indices

2: 𝑙 ← [1, · · · , 𝐿] // Get lags

3: 𝑛 ← [𝑛 − 1, · · · , 𝑛 − 𝐿] // Get size for all lags

4: ΔX← 1

2
(X[2 :] − X[: −2]) − X[𝑖] // Get all deltas 𝑥𝑖 by LIP

5: 𝑠𝑥 ← ACFAgg.𝑠𝑥 + ΔX //

∑
𝑥

6: 𝑠𝑥𝑙 ← ACFAgg.𝑠𝑥𝑙 + ΔX //

∑
𝑥𝑙

7: 𝑠𝑥2 ← ACFAgg.𝑠𝑥2 + 1

𝑛
ΔX(ΔX + 2X[𝑖]) //

∑
𝑥2

8: 𝑠𝑥2
𝑙
← ACFAgg.𝑠𝑥2

𝑙
+ 1

𝑛
ΔX(ΔX + 2X[𝑖]) //

∑
𝑥2
𝑙

9: 𝑠𝑥𝑥𝑙 ← ACFAgg.𝑠𝑥𝑥𝑙 + 1

𝑛
ΔX(X[𝑖 − 𝑙] + X[𝑖 + 𝑙]) //

∑
𝑥𝑥𝑙

10: P̂𝐿 ← GetACF(𝑠𝑥, 𝑠𝑥𝑙 , 𝑠𝑥2, 𝑠𝑥2𝑙 , 𝑠𝑥𝑥𝑙 ) // Apply Equation 2

11: H← Heapify(D(P̂𝐿, P𝐿)) // Floyd’s method

12: return H

(Line 12) to selectively update these scores. A blocking heuristic

(see Section 4.3) limits this recomputation to a fixed number of

neighbors, balancing efficiency and accuracy.

Decompression: CAMEO uses linear interpolation as its de-

compression strategy, consistent with standard line simplification

methods. This choice aligns with CAMEO’s compression phase,

which assumes linear interpolation when estimating the ACF/-

PACF impact of removing a point. As a result, the reconstructed

time series is composed of piecewise linear segments. This ap-

proach is both efficient and practical, requiring only a single

forward pass over the retained points.

4.2 Incremental ACF and PACF
Computing the ACF or PACF from scratch for every removed

point is infeasible for large time series. Hence, we incrementally

maintain the autocorrelation functions—for constraint valida-

tion during compression—by keeping track of Equation 2’s basic

aggregates 𝑠𝑥 , 𝑠𝑥2, 𝑠𝑥𝑙 , 𝑠𝑥
2

𝑙
, and 𝑠𝑥𝑥𝑙 :

𝑠𝑥 =

𝑛−𝑙∑︁
𝑖=0

𝑥𝑖 𝑠𝑥𝑙 =

𝑛∑︁
𝑖=𝑙

𝑥𝑖 𝑠𝑥𝑥𝑙 =

𝑛−𝑙∑︁
𝑖=0

𝑥𝑖𝑥𝑖+𝑙

𝑠𝑥2 =

𝑛−𝑙∑︁
𝑖=0

𝑥2𝑖 𝑠𝑥2
𝑙
=

𝑛∑︁
𝑖=𝑙

𝑥2𝑖

(7)

These aggregates are computed by the function ExtractAggre-

gates for all lags 𝑙 ∈ [1, 𝐿] in Algorithm 1 with complexityO(𝐿𝑛)



CAMEO: Autocorrelation-Preserving Line Simplification EDBT ’26, 24-27 March 2026, Tampere (Finland)

dominated by 𝑠𝑥𝑥𝑙 . When removing the data point 𝑥𝑖 , we then

compute the distance Δ𝑥𝑖 between 𝑥𝑖 and its interpolated value

𝑥𝑖 , i.e., Δ𝑥𝑖 = 𝑥𝑖 −𝑥𝑖 . Figure 4 (left) shows an example. Given Δ𝑥𝑖 ,
we derive the following update rules:

𝑠𝑥+ = Δ𝑥𝑖 , 𝑠𝑥2+ = Δ𝑥𝑖 (2𝑥𝑖 + Δ𝑥𝑖 ), 𝑠𝑥𝑙+ = Δ𝑥𝑖

𝑠𝑥2
𝑙
+ = Δ𝑥𝑖 (2𝑥𝑖 + Δ𝑥𝑖 ), 𝑠𝑥𝑥𝑙+ = Δ𝑥𝑖 (𝑥𝑖−𝑙 + 𝑥𝑖+𝑙 )

(8)

Once the aggregates are updated, we can compute the ACF at a

specific lag using Equation 2. Similarly, to compute and preserve

the PACF, we incrementally maintain the ACF and apply the DL

recursion in Equation 3 albeit with higher computational cost.

Update Rules for Multiple Elements: In some cases, re-

moving a point requires interpolating more than one element,

as shown in Figure 4 (right). In that case, the basic aggregates

are updated by summing over the deltas of every interpolated

point. Specifically, if removing point 𝑥𝑖 requires interpolating the

𝑚 points [𝑥 𝑗 , . . . , 𝑥𝑖 , . . . , 𝑥 𝑗+𝑚] (changed interpolations until the

next remaining points left and right), the update rules are:

𝑠𝑥+ =

𝑗+𝑚∑︁
𝑘=𝑗

Δ𝑥𝑘 ,

𝑠𝑥𝑙+ =

𝑗+𝑚∑︁
𝑘=𝑗

Δ𝑥𝑘 ,

𝑠𝑥2+ =

𝑗+𝑚∑︁
𝑘=𝑗

Δ𝑥𝑘 (2𝑥𝑘 + Δ𝑥𝑘 ),

𝑠𝑥2
𝑙
+ =

𝑗+𝑚∑︁
𝑘=𝑗

Δ𝑥𝑘 (2𝑥𝑘 + Δ𝑥𝑘 ),

𝑠𝑥𝑥𝑙+ =

𝑗+𝑚∑︁
𝑘=𝑗

Δ𝑥𝑘 (𝑥𝑘−𝑙 + 𝑥𝑘+𝑙 ) +
𝑗+𝑚−𝑙∑︁
𝑘=𝑗

Δ𝑥𝑘Δ𝑥𝑘+𝑙

(9)

Ideally, updating the basic aggregates should not materialize the

interpolation of the points from 𝑗 to 𝑗 + 𝑚 because they are

affine functions. However, there is no straightforward way to

update 𝑠𝑥𝑥𝑙 without any assumption on the time series. Note

that, updating 𝑠𝑥𝑥𝑙 has a time complexity of O(𝑚𝐿) since we

need to calculate a value for each lag 𝑙 and point from 𝑗 to 𝑗 +𝑚.

The rest of the basic aggregates can be updated in O(𝐿 +𝑚).
Update Rules with Aggregation Function: Solving the

Statistical Important Points on Aggregates problem requires ad-

ditional extensions. Given the aggregation function Agg𝜅 , we

first compute and store all 𝑎𝑖 ∈ Agg𝜅 (𝑋 ). Subsequently, while

removing the points 𝑥𝑖 , we incrementally update the aggregates:

𝑠𝑎 =

⌊𝑛/𝜅 ⌋−𝑙∑︁
𝑖=0

𝑎𝑖 𝑠𝑎𝑙 =

⌊𝑛/𝜅 ⌋∑︁
𝑖=𝑙

𝑎𝑖 𝑠𝑎𝑎𝑙 =

⌊𝑛/𝜅 ⌋−𝑙∑︁
𝑖=0

𝑎𝑖𝑎𝑖+𝑙

𝑠𝑎2 =

⌊𝑛/𝜅 ⌋−𝑙∑︁
𝑖=0

𝑎2𝑖 𝑠𝑎2
𝑙
=

⌊𝑛/𝜅 ⌋∑︁
𝑖=𝑙

𝑎2𝑖

(10)

When removing the point 𝑥𝑖 , we again consider two cases. First,

if only one point is interpolated, the update rules are:

𝑠𝑎+ = Δ𝑎𝑖 , 𝑠𝑎2+ = Δ𝑎𝑖 (2𝑎 𝑗 + Δ𝑎𝑖 ), 𝑠𝑎𝑙+ = Δ𝑎𝑖

𝑠𝑎2
𝑙
+ = Δ𝑎𝑖 (2𝑎𝑖 + Δ𝑎𝑖 ), 𝑠𝑎𝑎𝑙+ = Δ𝑎𝑖 (𝑎𝑖−𝑙 + 𝑎𝑖+𝑙 )

(11)

where Δ𝑎𝑖 = Agg𝜅 ( [𝑥𝑖 , . . . , 𝑥𝑖+𝜅 ])−𝑎𝑖 . Note, if Agg𝜅 is commuta-

tive and associative, it is possible to avoid computing Agg𝜅 over

all points. For example, if Agg𝜅 is the mean function, then Δ𝑎𝑖 =
(𝑥 −𝑥𝑖 )/𝜅 . Second, if𝑚 points are interpolated, we first compute

all Δ𝑎𝑖 by mapping the interpolated points 𝑥𝑖 ∈ [𝑥 𝑗 , . . . , 𝑥 𝑗+𝑚]
to their aggregates 𝑎𝑖 . Then, Δ𝑎𝑖 = Agg𝜅 (𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑖+𝜅 ) − 𝑎𝑖 ,
which requires recomputing Agg𝜅 for all elements if they are

interpolated. Finally, we reuse Equation 9 on the aggregates.

Figure 5: Blocking and Coarse-grained Parallelization.

4.3 Blocking
Inspired by blocking strategies in entity resolution (deduplica-

tion), CAMEO improves efficiency by updating the ACF impact

only for neighboring points around a removed point instead of

all points in the time series.

Blocking Heuristic: Our blocking heuristic relies on the as-

sumption of temporal locality. We assume that removing a point

affects the nearby points, and its impact further away diminishes.

Thus, we update the impact on the ACF of only non-removed

ℎ-neighboring points of x𝑖 . To efficiently identify neighbors, each

point maintains dynamic left and right pointers in the heap. When

a point is removed, we traverse up to ℎ hops in both directions,

collecting non-removed neighbors. After each removal, point-

ers are updated to maintain consistency. The ReHeap procedure

then updates the ACF impacts of the affected neighbors based on

the update rules (Equations 8 and 9). Updating the values takes

O(log𝑛) per point. Figure 5 (Left) illustrates this process.

Time Complexity: Let 𝑛 = |𝑋 |, 𝐿 be the number of lags,

and ℎ the blocking window. For each neighboring point within

ℎ hops, we update its score using the incremental rules in O(𝐿)
time and adjust its position in the heap in O(log𝑛) time. Thus,

the cost of a single removal is O
(
ℎ(𝐿 + log𝑛)

)
. As compressing

from 𝑛 points down to 𝑛′ points requires at most 𝑛 − 𝑛′ = O(𝑛)
removal steps, the overall complexity is O

(
𝑛ℎ(𝐿 + log𝑛)

)
. In

practice, setting ℎ = 10 log𝑛 retains compression quality while

substantially reducing runtime (see Section 5.5). Alternatively, ℎ

can be incrementally tuned by starting from a small value and

increasing it until no significant improvement in compression

ratio is observed. Exploring adaptive blocking strategies based on

seasonality or lag-correlation, and providing theoretical guaran-

tees on compression efficiency, remains an interesting direction

for future work.

4.4 Parallelization
When dealing with very large time series, the application of

parallelization strategies becomes indispensable to significantly

improve computational time. In CAMEO, we implement two dif-

ferent parallelization strategies, namely, fine- and coarse-grained

approaches with their specific advantages and disadvantages.

Fine-grained Parallelization: The first strategy is designed

with the primary objective of improving runtime efficiency with-

out additional heuristics that might impact the quality of compres-

sion. In CAMEO’s blocking strategy, each neighbor’s impact on

the ACF can be calculated independently during the look-ahead

phase. Given 𝑇 threads, we segment the number of neighbors, ℎ,

into static chunks of size ℎ/𝑇 , assigning each chunk to a thread.

Each thread independently computes the look-ahead impact on

the ACF for its designated chunk, thereby reducing execution

time. However, there are fine-grained synchronization barriers

for every removed point.

Coarse-grained Parallelization: This strategy is designed

for systems with many cores and very large time series data.
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Table 1: Datasets Summary. The standard deviation is denoted by 𝜎 , and the probability of a data point to be higher than,
equal to, or lower than that of the previous data point is denoted by (p↑), (p=) and (p↓).

Dataset Length
ACF
#Lag ACF1 ACF10 PACF5

Min
Value Range Median 𝜎 p↑ — p= — p↓

Mean
Delta

ElecPower [45] 2,977 48 0.768 3.38 0.94 0.099 5.7 0.29 0.74 48%–0%–52% 8e-04

MinTemp [80] 3,652 365 0.774 5.97 1.32 0.01 26.3 11.0 4.01 52%–1%–47% 0.002

Pedestrian [42] 8,766 24 0.896 1.02 -0.11 0.00 5,573 396 1,017 45%–0%–55% 0.004

UKElecDem [37] 17,520 48 0.988 7.2 0.37 16,309 30,124 27,857 6,071 44%–0%–56% 0.34

AUSElecDem [42] 230,736 7 on 48 0.762 5.09 1.09 3,498 9,367 6,783 1,361 42%–0%–58% 0.001

Humidity [78] 397,440 24 on 60 0.951 2.66 -0.07 12.65 87.27 76.38 19.73 55%–3%–42% 5e-06

IRBioTemp [77] 878,400 24 on 60 0.958 4.41 0.17 -5.47 54.6 23.21 8.55 45%–5%–50% -3e-06

SolarPower [42] 986,297 24 on 120 0.90 1.02 0.125 0.00 116.5 0.0 43.33 12.5%–75%–12.5% 0.0

The core idea is to partition the time series X into 𝑇 consec-

utive chunks, assign a thread to each partition, and compress

each partition independently using the single-threaded CAMEO

algorithm. Each thread independently computes and updates

its own aggregates while concurrently handling overlapping re-

gions of the partitions. Synchronization overhead is minimized

by allowing each thread to work independently within a local

ACF deviation threshold of 𝑝 · 𝜖/𝑇 . Once a partition reaches its

local error threshold, synchronization begins to update global

aggregates across all partitions. This way, we introduce synchro-

nization only when necessary to guarantee the global allowable

ACF deviation is not exceeded.

Example 4.1 (Coarse-grained Parallelization). Consider a time

series X divided into three partitions 𝑃1, 𝑃2, and 𝑃3, as shown

in Figure 5 (Right). Let 𝑠𝑥 (𝑃𝑖 ) denote the sum of all points of

partition 𝑃𝑖 . Each partition computes and updates its own aggre-

gates independently: 𝑠𝑥 (𝑃1), 𝑠𝑥 (𝑃2), and 𝑠𝑥 (𝑃3). Similarly, the

aggregates 𝑠𝑥𝑙 (𝑃𝑖 ), 𝑠𝑥2 (𝑃𝑖 ), and 𝑠𝑥2
𝑙
(𝑃𝑖 ) are handled indepen-

dently within each partition 𝑃𝑖 . For the dot product between the

lagged time series, the overall aggregate 𝑠𝑥𝑥𝑙 is computed from

the aggregates per partition 𝑠𝑥𝑥𝑙 (𝑃𝑖 ) and the contributions of

overlapping regions: 𝑠𝑥𝑥𝑙 =
∑

3

𝑖=1 𝑠𝑥𝑥𝑙 (𝑃𝑖 ) + 𝑠𝑥𝑥𝑙 (Overlap
12
) +

𝑠𝑥𝑥𝑙 (Overlap
23
), where 𝑠𝑥𝑥𝑙 (Overlap𝑖 𝑗 ) =

∑
𝑡 ∈𝑃𝑖 ,𝑡+𝑙∈𝑃 𝑗 𝑥𝑡𝑥𝑡+𝑙 ac-

counts for cross-products where 𝑥𝑡 is in 𝑃𝑖 and 𝑥𝑡+𝑙 is in 𝑃 𝑗 . Only

the threads handling 𝑃𝑖 and 𝑃𝑖+1 need to synchronize when ac-

cessing the small overlapping regions, and thus, synchronization

overhead is negligible. Given these aggregates, each partition can

operate independently until meeting the error bound 𝑝 ·𝜖/3. Once

a partition reaches its local error threshold, the global ACF can

be computed by synchronizing access to the aggregates across all

the partitions, ensuring that the overall ACF deviation remains

within the specified error bound 𝜖 .

5 Experiments
Our experiments study CAMEO’s compression ratio, reconstruc-

tion error, and runtime across various datasets, and compare

them with those of lossless and lossy compression techniques.

5.1 Experimental Setup
We conduct the experiments on a Linux server equipped with two

Intel Xeon Gold 6338 @ 2.0 GHz CPUs (in total 128 virtual cores),

48 MB L3 caches, and 1 TB of DDR4 @ 3200 MHz main memory.

We implemented CAMEO in Cython 3.0.0, compiled with GCC

9.4.0 at optimization level O3 and OpenMP 4.5. Cython provides

performance enhancements through static typing of variables

while supporting NumPy [34], and avoiding the problems of

Python’s Global Interpreter Lock (GIL). By default, our experi-

ments use the SIP problem (Equation 4), the mean aggregation

function Agg𝜅 , quality measure D =MAE.

Line-Simplification Baselines: We compare CAMEO’s per-

formance with three line-simplification algorithms (Section 2.2),

which we adapt to support an ACF constraint by incrementally

maintaining each point’s impact on the ACF.

• the Visvalingam-Whyatt (VW) algorithm [98],

• the Turning Points (TP) algorithm [89] (w/ Sum of the

Absolute Values TP, and Mean Absolute Error TPm [89]),

• the Perceptual Important Points (PIP) algorithm [38, 54]

(w/ Vertical PIPv and Euclidean PIPe distances [38]).

Additional Baselines: We also compare CAMEO with four

well-known lossy compression algorithms: Sliding Window and

Bottom Up (SWAB) [57], Poor Man’s Compression Mean (PMC)

[63], Swing Filter (SWING) [32], Sim-Piece (SP) [59], and the Dis-

crete Fourier Transform (DFT) [21]. SWAB, PMC, SWING, and

SP learn constant and linear approximations which are prevalent

functional approximation approaches. FFT can compress the data

by discarding the less important high-frequency components

of the frequency spectrum. Since enforcing the ACF constraint

while compressing is not straightforward, we perform a trial-and-

error exploration of the parameters of these methods. In addition,

we compare with Gorilla (GHR) [82] and Chimp (CHM) [67] as

lossless compressors, and SZ3 [68] and Mix-Piece (MXP) [60] as

lossy compressors. Gorilla and Chimp rely on XOR compression

of consecutive floating-point values, whereas SZ3 relies on pre-

diction and quantization and integrates lossless compressors like

Zstandard (Zstd) [20]. MXP extends SP with segment grouping

strategies and also integrates Zstd.

Datasets: We use eight publicly available datasets. Our pri-

mary selection criterion was the presence of a seasonal compo-

nent, which is discernible via the ACF. This seasonal component

was then used to guide dataset-specific configurations of the

number of lags. Table 1 summarizes their main characteristics:

• ElecDem [45]: contains the electric power consumption

of one household with a 15-minute sampling rate during

the month 07-2007.

• MinTemp [80]: contains daily min temperature in Mel-

bourne (Australia) from 1981 through 1990.

• Pedestrian [42]: contains hourly pedestrian counts of 66

sensors in Melbourne from May 2009 through 05-2020.

• UKElecDem [37]: contains the national electricity de-

mand every half-hour of Great Britain for 2021.

• AUSElecDem [42] contains the electricity demand every

half-hour in Victoria (Australia) from 2002 to 2015.
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Figure 6: Compression Ratio as the ACF Error Increases
for Line Simplification Baselines (VW, TP, PIP).

• Humidity [78]: contains relative humidity measurements

averaged over 1 minute from 04-2015 through 06-2023.

• IRBioTemp [77]: contains biological surface temperature

averaged over 1 minute from 04-2015 through 06-2023.

• SolarPower [42]: contains solar power production stored

every 30 seconds from 08-2019 through 06-2020.

We divide the datasets into two groups of four datasets, where for

group 1, we preserve the ACF directly; for group 2, we preserve

the ACF on window aggregates. Table 1 also specifies the number

of points per window and the number of lags, e.g., for "7 on 48",

we aggregate 48 points per window and keep 7 ACF lags.

Number of Lags: For all experiments, we select the number

of ACF lags as a full seasonality period. For example, MinTemp

contains daily measurements with yearly seasonality, and thus,

we compute the ACF for 365 lags. This parameter can also be

set automatically using seasonality detection techniques based

on ACF peaks, spectral density estimation, or heuristic meth-

ods [5, 33, 49]. We select the aggregation period based on the

seasonality we aim to preserve. For example, Humidity has one-

minute granularity, we aggregate over hours and computed the

ACF of 24 lags (a day) instead of an ACF with 1,440 lags.

Compression Ratio Computation: We compute compres-

sion ratios primarily at the logical level, i.e., based on the number

of elements retained. For line simplification methods such as

CAMEO, which subsample points, we define the compression

ratio as 𝑐 = 𝑛/𝑛′, where 𝑛′ is the number of points preserved.

For functional approximation methods like PMC and SWAB, we

count the number of segments, whereas for SP (which tightly

integrates timestamps and values), we conservatively count all

elements. To evaluate MXP and SZ3, which perform byte-level

encoding and output compact binary representations, we report

Figure 7: Compression Ratio as the ACF Error Increases
for Lossy Compressor Baselines.

compression efficiency using the 𝐵𝑖𝑡𝑠/𝑣 = 𝐵𝑖𝑡𝑠 (X′)/|X| met-

ric, where 𝐵𝑖𝑡𝑠 (X′) is the number of bits required to store the

compressed output. For fair comparison under this metric, we

also apply delta encoding to the timestamps and compress both

timestamps and values using Zstd on CAMEO’s output. While

this comparison may underestimate the compression ratio of

some methods, we adopt this approach to better separate the

influence of the output’s logical structure from the physical-level

compression effectiveness across techniques.

5.2 Compression Ratio
In the first set of experiments, we assess the compression ratio

achieved for the eight datasets. We report CAMEO’s compression

ratio without blocking to understand CAMEO’s maximal com-

pression capability. Figure 6 shows the results CAMEO achieved

compared to other line-simplification baselines under varying

error bounds for the ACF deviation. CAMEO consistently de-

livers the best compression ratio among all baselines, mainly

because it is the only technique that directly optimizes for the

ACF. CAMEO achieves a 1.1x to 54x higher compression ratio,

even at very small error bounds. Our extensions of the PIPs and

TPs line-simplification methods to ensure a constraint on the ACF

deviation were effective in most datasets except Pedestrian, Aus-

ElecDem, and SolarPower. In these instances, the initial phase of

the TP method, which involves removing all non-turning points,

results in an ACF that deviates more than the allowed error

bounds. Among the line-simplification baselines, VW shows the

best performance on average.

Additional Baselines Results: We compare CAMEO with

the additional lossy compression baselines. As shown in Figure 7,

CAMEO delivers the best compression ratio among all baselines.
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Table 2: Bits/value (B/v) Result of Lossless and Additional
Lossy Compression Baselines.

Dataset GRL CHM Zstd SZ3 MXP CAMEO

B/v B/v B/v B/v 𝜖 B/v 𝜖 B/v 𝜖

ElecPower 32.6 28.2 26.2 1.9 0.01 2.8 0.02 3.5 0.01

MinTemp 31.0 25.6 13.5 2.2 0.05 3.7 0.04 2.3 0.01

Pedestrian 16.1 21.0 16.4 1.3 0.03 2.3 0.03 3.2 0.01

UKElecDem 18.3 21.3 20.7 0.8 0.03 1.5 0.05 1.4 0.01

AUSElecDem 27.5 24.8 27.6 5.6 1e-5 4.3 2e-3 4.1 1e-5

Humidity 24.3 21.0 17.2 3.5 5e-6 1.8 4e-4 1.6 1e-6

IRBioTemp 24.9 21.4 14.4 3.2 7e-6 1.6 2e-3 1.6 1e-6

Solar 2.3 2.8 5.1 1.7 1e-4 1.3 1e-3 0.7 1e-6

Some methods outperform CAMEO in a few instances. For ex-

ample, DFT outperforms CAMEO in Pedestrian and UKElecDem,

which suggests that these datasets predominantly consist of low-

frequency components. Similarly, SWING outperforms CAMEO

on ElecPower, showing higher compression ratios at larger er-

ror bounds after an initially weaker performance. This higher

compression ratio suggests that, in these cases, the error bound

is large enough to allow the fitting of a few linear functions

without significantly affecting the ACF. Despite these exceptions,

CAMEO consistently demonstrates superior compression ratios.

Bits-per-Value Analysis: We further evaluate CAMEO’s

compression effectiveness by comparing it against lossless com-

pressors Gorilla (GRL), Chimp (CHM), and Zstd, as well as lossy

compressors SZ3 and MXP, using the Bits-per-Value metric (𝐵/𝑣).

Table 2 shows that lossy compression can outperform lossless

methods by a significant margin while introducing only a small

distortion on the ACF (𝜖). CAMEO achieves compression levels

that are competitive with or better than SZ3 and MXP across most

datasets. On larger datasets like Solar and IRBioTemp, CAMEO

significantly outperforms all baselines despite preserving the

ACF under a stricter error bound (𝜖 = 10
−6

). For smaller series,

SZ3 and MXP benefit from their low-level optimizations (e.g.,

quantization and byte encoding), yielding slightly better com-

pression in some cases. Interestingly, GRL and CHM significantly

outperform Zstd on the Solar dataset, likely due to the long flat

segments (e.g., nighttime with zero values), where XOR-based

delta encoding is especially effective.

5.3 Decompression Error
In a second set of experiments, we evaluate the reconstruction

error by collecting the decompressed series produced during

the compression ratio evaluation. We use NRMSE to quantify

the distortion. Figure 8 illustrates the results. Overall, no single

method consistently outperforms the others, with performance

highly dependent on the characteristics of each dataset. On av-

erage, CAMEO performs on par with the baselines in terms of

NRMSE, achieving similar reconstruction quality for comparable

compression ratios. Notably, CAMEO never performs the worst

and achieves the best results on the SolarPower dataset. These

results are particularly interesting, as CAMEO is optimized for

preserving temporal structure rather than reconstruction error,

yet still retains point-wise accuracy comparable to methods tai-

lored for it. Preserving the ACF seems to help maintain local

trends and smooth transitions in the time series, which indirectly

limits large deviations and keeps a low NRMSE. In contrast, PIPe

exhibits the highest NRMSE across several datasets among the

line simplification methods, suggesting that Euclidean distance

Figure 8: NRMSE as the Compression Ratio Increases.

may not be a suitable importance function. Notably, DFT per-

forms well on some datasets, highlighting its effectiveness for

time series dominated by low-frequency components.

5.4 Blocking Strategy
In a third series of experiments, we conduct micro-benchmarks

for the blocking strategy and how it impacts CAMEO’s compres-

sion performance and the decompression error. We showcase the

results using four datasets: Pedestrian, MinTemp, AUSElecDem,

and Humidity (two of both groups). For the case of AUSElec-

Dem and Humidity, the number of blocking hops is multiplied by

the size of the aggregation window to cover the necessary lags.

Figure 9 shows CAMEO’s compression ratio as the error bound

increases, using different numbers of hops in our blocking strat-

egy. The results show only a slightly reduced compression ratio

when using different factors of log𝑛 (from 5 to 20), compared to

no blocking (𝑤/𝑜𝑏). In contrast, using log𝑛 results in an inferior

compression ratio on all datasets. This result supports our hy-

pothesis that temporal locality influences how point removals

affect the ACF, and that insufficient blocking fails to update ACF

contributions at relevant lags. Complementary, Figure 10 shows

the decompression error (NRMSE) on two of the datasets. The

NRMSE trends mirror those of the compression ratios, suggesting

that moderate blocking has no negative impact on decompres-

sion accuracy; instead, the observed variation is driven by the

underlying compression ratio. The next section also examines

the impact of blocking on compression time.

5.5 Compression Time
In a fourth set of experiments, we compare CAMEO’s single-

threaded compression time with all other baselines. We show
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Table 3: Compression Times (sec) of the Baselines and Singled-threaded CAMEO (with different blocking sizes).

Dataset SWAB PMC SWING SP DFT TP PIP VW CAMEO
1 log𝑛 3 log𝑛 5 log𝑛 7 log𝑛 10 log𝑛 𝑤/𝑜𝑏

ElecPower 0.02 6e-4 6e-4 2e-3 4e-4 3e-3 0.04 0.01 0.02 0.02 0.09 0.2 0.33 0.4 2.5

MinTemp 0.03 7e-4 1e-3 2e-3 4e-4 0.01 0.2 0.02 0.06 0.07 0.6 0.42 1.49 2.75 17.7

Pedestrian 0.2 1e-3 2e-3 5e-3 1e-3 - 0.02 8e-3 0.03 0.09 0.2 0.3 0.5 0.68 9.2

UKElecDem 0.7 3e-3 5e-3 1e-2 1e-3 8e-3 0.05 0.02 0.05 0.2 0.76 1.08 1.49 2.39 64.1

AUSElecDem 0.16 0.04 0.06 0.13 0.03 0.04 0.3 0.27 0.25 0.6 0.3 3.6 8.0 12.2 2,554

Humidity 0.34 0.04 0.07 0.15 0.05 0.3 0.9 0.52 1.24 10.3 21.9 25.3 35.6 48.6 6,837

IRBioTemp 0.74 0.10 0.15 0.29 0.16 0.25 2.1 1.6 2.5 24.9 51.8 78.9 91.7 121 17,602

SolarPower 0.87 0.11 0.17 0.34 0.42 - 21 0.72 1.19 13.8 32.8 44.7 52.7 63.3 5,718

Figure 9: Compression Ratio using Blocking.

Figure 10: NRMSE using Blocking.

the results for an error bound of 0.01 for all the small datasets

and 0.001 for the rest. We also terminate the algorithms once

we reach a compression ratio of 10. PMC, SWING, and SP are

implemented in Zig [111], DFT uses NumPy [35], while SWAB,

PIP, TP, VW, and CAMEO are implemented in Cython. Ultimately,

all implementations run as native code, making their comparison

broadly possible. We run SWAB with a window size of 50% on

the small datasets and 100% on the big datasets. Table 3 shows

the runtime for all baselines and CAMEO as we increase the

blocking hops from 1 to 10 log𝑛, and without blocking (w/ob, i.e.,

full coverage of the series).

Runtime Analysis: CAMEO’s single-threaded implementa-

tion performs comparably to other line simplification baselines

when using a single hop for blocking. As the number of hops

increases, the execution time increases slightly sublinearly. While

its execution time increases with more hops, this trade-off en-

ables CAMEO to achieve significantly higher compression ratios.

Removing blocking (w/ob) makes CAMEO infeasible for real-

life applications. Among the baselines, PMC and DFT are the

fastest, which is expected considering PMC linear time complex-

ity and DFT’s highly optimized implementation. However, they

still have the limitation of requiring trial-and-error exploration

for preserving bounds on the ACF. Finally, TP’s initial phase,

which preserves only the turning points, positively impacts its

Table 4: Decompression Times (ms).

Dataset PMC SWING SP DFT CAMEO
AUSElecDem 19 17 14 20 12

Humidity 26 23 18 33 21

IRBioTemp 80 77 60 97 54

SolarPower 88 79 66 352 55

execution time, albeit risking not meeting the error-bound guar-

antee on the ACF. Overall, CAMEO is the preferred choice when

optimizing compression ratio over speed while providing strong

guarantees on the ACF deviation.

PACF Preservation Runtime Analysis: We also evaluate

CAMEO when preserving the PACF. The results show that while

its compression ratio is still superior to the baselines, preserving

the PACF entails a significantly higher execution time. For ex-

ample, when running CAMEO on ElecPower, with blocking at

10 log𝑛, we obtain an execution time of 2.6 seconds, around 6x

slower than preserving the ACF in Table 3. This increased execu-

tion time is due to the quadratic execution time of DL recursion

with complexity O(𝐿2), computed multiple times per iteration. In

future work, we will focus on preserving specific lags to enhance

execution speed without sacrificing forecasting accuracy.

5.6 Decompression Time
In a fifth series of experiments, we evaluate decompression time.

Specifically, we compute the execution time of the linear inter-

polation used as the decompression strategy for CAMEO while

directly measuring the decompression times for the other lossy

compressors after achieving a 10x compression ratio. Table 4

presents the results in milliseconds, with CAMEO represent-

ing all line simplification methods due to their decompression

runtime. The results show that CAMEO achieves significantly

faster decompression than the baselines, which is particularly

important in scenarios where quick decompression is critical. In-

terestingly, DFT has the slowest decompression time, contrasting

its fast compression performance. This discrepancy arises be-

cause the decompression logic of other baselines is much simpler,

while DFT has a complexity of O(𝑛 log𝑛).

5.7 Parallelization Strategies
We evaluate CAMEO’s parallelization strategies across four of

the datasets: MinTemp, Humidity, IRBioTemp, and Solar in order

to cover various sizes and ACF lags.

Fine-grained Parallelization: We run CAMEO with the ob-

jective from Equation (6) fixing the compression ratio to 10 and

thus, making the execution time comparable across different

configurations. Figure 11(a) shows the relative improvements
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(a) Fine-grained (b) Coarse-grained

Figure 11: Results with Different Parallelization Strategies.

Figure 12: Joint Fine- and Coarse-Grained Parallelization.

when applying fine-grained parallelization, with varying block-

ing sizes and the number of threads. MinTemp, with the larger

ACF (365 lags), achieves the highest speedup of 4x at a hop size of

10 log𝑛 using 8 threads. We observe speedups across all blocking

configurations except 𝑙𝑜𝑔(𝑛) (12 points), where parallelization

overheads dominate. In contrast, the Solar dataset exhibits a mod-

est speedup of approximately 2x at 14 threads. This discrepancy

is due to MinTemp’s larger number of lags compared to Solar’s

24. The more lags, the more workload per thread, which makes

parallelization more effective.

Coarse-Grained Parallelization: To showcase the benefits

of coarse-grained parallelization, we use the Humidity and IR-

BioTemp datasets. For both, we set the ACF error bound to 1e-4

(Equation (4)) and record the compression ratio and impact on

the overall ACF. Figure 11(b) shows the results for increasing

the number of threads. The compression ratio is shown relative

to single-threaded execution. Humidity achieves significant run-

time reductions, up to an 8x speedup with minimal impact on

the compression ratio. IRBioTemp, however, shows a 2.5x run-

time improvement coupled with a notable increase (up to 3x) in

compression ratio. This compression ratio improvement occurs

because local partitions independently achieve better compres-

sion due to dataset-specific patterns.

Hybrid Parallelization: Figure 12 shows the speedup when

combining fine- and coarse-grained parallelization. Using a block-

ing size of 10 log𝑛, MinTemp shows the most significant improve-

ment among all datasets, with a speedup of up to 14x when using

6 fine-grained and 8 coarse-grained threads. This speedup repre-

sents an execution time reduction from 2.75 seconds (see Table 3)

to 0.2 seconds. Other datasets show smaller but good speedups as

well, primarily driven by coarse-grained parallelism. This result

aligns with Figure 11(a) as these datasets only need to preserve

an ACF of 24 lags. However, increasing the number of lags from

24 to 168 notably benefits from fine-grained parallelism, resulting

in improved hybrid speedups (e.g., 15x and 13x improvement for

IRBioTemp and Humidity, respectively).

Discussion: The results show the complementary strengths

of CAMEO’s parallelization strategies. Fine-grained parallelism

provides deterministic and straightforward runtime improve-

ments without affecting compression quality or accuracy. How-

ever, the speedup is inherently sub-linear due to thread synchro-

nization overhead and limited per-thread workloads. In some

cases, particularly with smaller blocking sizes or fewer lags, fine-

grained parallelization can even lead to performance degradation.

Coarse-grained parallelism provides good scalability but intro-

duces slight variability in compression ratios due to processing

partitions independently. If predictable compression ratios are

desired, adopting the compression-centric strategy (Equation (6))

gives users explicit control over the compression ratio. Together,

these strategies allow users to tune CAMEO’s runtime.

5.8 Impact on Time Series Forecasting
We now investigate our original hypothesis: preserving the ACF

during compression is beneficial for forecasting analytics. To test

this hypothesis, we conduct four complementary experiments.

These experiments use different preprocessing steps, datasets,

and forecasting models to cover multiple analytical scenarios.

Experiments (1) and (2) leverage linear forecasting models ap-

plied to subsets of the Pedestrian dataset [42] comprising 66 time

series of varying lengths and statistical properties. Experiment

(1) involves controlled preprocessing (segmentation, Box-Cox

transform, and standardization) generating a total of 3,400 series.

In this setting, we explicitly vary the compression ratio from 2 to

10 and test multiple CAMEO’s ACF preservation metrics (MAE,

RMSE, and Chebyshev Distance (CHEB) [13]) against baseline

line simplification methods (VW, TP, PIP). In contrast, Experi-

ment (2) closely replicates the standard forecasting benchmark

established by Godahewa et al. [42], applying STL-ETS and STL-

ARIMA models without additional preprocessing. Since standard

lossy compressors do not allow setting the compression ratios, we

evaluate these compressors separately under their typical trial-

and-error conditions until reaching a similar compression ratio

of 10. Experiment (3) focuses explicitly on datasets (UKElecDem,

SolarPower, MinTemp) with high seasonal strength [100]. We

evaluate Dynamic Harmonic Regression (DHR), ARIMA [49, 109],

LSTM [41], and Transformer [97] models. Finally, Experiment (4)

reuses the setup of Experiment (2), and compares CAMEO with

SZ3 and Mix-Piece using the Bits/value metric.

Linear Forecasting Models Accuracy (1/2): Figure 13(a)

compares the forecasting accuracy under moderate compression

ratios (up to 10x) across the CAMEO configurations and baselines.

We only report MSE and mSMAPE [42], but we observed similar

or even better results across other metrics. The results show that

CAMEO variants outperform traditional line-simplification and

lossy baselines. Among CAMEO’s variants, CAMEO(CHEB) was

the best in both subexperiments. Intuitively, CHEB distributes

the ACF error evenly, avoiding distortion on specific lags. Among
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(a) Linear Forecasting Models Accuracy under Moderate Compression.

(b) Forecasting Accuracy on Highly Seasonal Time Series.

Figure 13: Impact on Forecasting Accuracy of CAMEO and
Baselines as the Compression Ratio Increases under Dif-
ferent Configurations, Quality Metrics, and Time Series.

the baselines, PMC shows better results than the rest of the lossy

compression baselines. Accordingly, we select PMC, and VW (as

a close line simplification baseline) to conduct additional tests

with higher compression ratios and non-linear models.

In-Depth Forecasting Accuracy Analysis (3): Figure 13(b)

compares the impact on forecasting accuracy using non-linear

and linear models of CAMEO, VW, and PMC. Across the three

highly seasonal datasets, CAMEO consistently preserves fore-

casting accuracy, even under aggressive compression of 100x.

We attribute this robustness to CAMEO’s effective point selec-

tion strategy, which retains key seasonal patterns. Overall, the

results show that preserving the ACF is beneficial for forecasting

accuracy even when using non-linear models. To statistically

validate these results, we conducted a Friedman test followed by

a Nemenyi post-hoc analysis [25] interpolating forecasting errors

across compression ratios from 2x to 100x. CAMEO achieved the

lowest median forecasting error and the lowest mean rank (1.45),

significantly outperforming both PMC and VW according to the

Nemenyi test. We obtain the same results when applying the test

using RMSE as the metric.

Forecasting Accuracy vs. Bits/value (4): Figure 14 illus-

trates the trade-off between forecasting accuracy and compres-

sion efficiency (measured in Bits/Value) for the lossy compres-

sors CAMEO, SZ3, and MXP, evaluated on the STLF-ETS and

STLF-ARIMA models. We refined our experimental setup from

Section 5.1 by applying a simple bit-packing step before using

Zstd to compute CAMEO’s effective Bits/Value. The results show

that all lossy compressors maintain forecasting accuracy while

significantly reducing the number of bits per value to about half

compared to the lossless baselines CHIMP and Zstd. Notably,

Figure 14: Impact on the Forecasting Accuracy for Linear
Models versus the Bits/Value Compression Metric.

Figure 15: NRMSE and ACF Impact on Pedestrian.

MXP and CAMEO even improve the forecasting accuracy in a

few instances. For STLF-ETS, SZ3 and CAMEO yield comparable

results, whereas for ARIMA, CAMEO clearly outperforms the

other compressors. More advanced physical compression layouts

are orthogonal to logical line simplification, and could further

reduce CAMEO’s bits/value without affecting the forecasting

accuracy, which remains an interesting direction for future work.

Discussion: These results demonstrate that CAMEO consis-

tently outperforms the baselines across datasets, forecasting mod-

els, and evaluation metrics. In more detail, we compared CAMEO

and PMC on the Pedestrian dataset at a moderate compression

ratio (5x) across the 66 time series. We evaluated two dimensions:

the decompression error (NRMSE), and the ACF preservation

(MAE). As shown in Figure 15, CAMEO achieves slightly lower

NRMSE than PMC on average, yielding low pointwise recon-

struction errors. Additionally, CAMEO’s ACF distortions are at

least an order of magnitude smaller than for PMC. This combina-

tion of pointwise reconstruction accuracy and preservation of

temporal dependencies leads to CAMEO’s very good forecasting

accuracy. Error propagation from compression to forecasting

models is not straightforward to predict though. We observe a

few cases where the baselines achieve better forecasting results in

Figure 13. Therefore, there is "no such thing as a free lunch" [103],

and CAMEO should be just regarded as an additional tool.

5.9 Impact on Anomaly Detection
Finally, we investigate two alternative hypotheses: (1) preserving

the ACF during compression is beneficial for anomaly detection,

and (2) CAMEO execution time is amortized if the downstream

analytics can exploit the resulting (much smaller) irregular time

series. First, we use the UCR dataset [104] consisting of 250 time

series and the Matrix Profile (MP) algorithm [107]. We measure

the accuracy using the UCR-score [104], where higher scores

indicate better detection. We detect all discords using the MP al-

gorithm with segment sizes ranging from 75 to 125 and select the

one with the maximum distance [87]. Second, we implement an

algorithm that calculates the Euclidean distance between all pairs

of segments of size𝑚— MP’s core idea—over the irregular time

series (iMP). iMP avoids materializing the data and directly com-

putes distances with linear interpolation during decompression

using the remaining𝑚′ points per segment. This method reduces
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Figure 16: (left) Impact on the Anomaly Detection Accuracy
as the Compression Ratio Increases. (right) Execution Time
of the MP Algorithm over the Irregular Time Series.

the complexity from O(𝑁 2𝑚)—the complexity of naive imple-

mentation over regular time series (rMP)—to O(𝑁 2𝑚′), where

𝑚′ ≪ 𝑚 and 𝑁 is the time series length. We conduct tests on

synthetically generated data of size 2
𝑝
, where 𝑝 ranges from 10

to 16, and segment size𝑚 = 150.

Accuracy Results Analysis: Figure 16 (left) illustrates the

UCR-score as the compression ratio increases. The results show

that CAMEO preserves the UCR score more effectively than

lossy compression baselines, achieving a compression ratio of

≈ 28x while minimally impacting accuracy. The results support

our hypothesis (1) that preserving the ACF is advantageous for

forecasting analytics and other applications such as anomaly

detection. However, it is noteworthy that the effectiveness of

preserving the ACF diminishes at higher compression ratios, as

shown in Figure 16 (left) beyond a 30x ratio. This trend is likely

because removing extreme outliers has a negligible impact on

the ACF since these points do not significantly affect temporal

dependencies. Thus, removing these points negatively affects

the Euclidean distance computation. In contrast, the VW strat-

egy implicitly retains such points, as an outlier typically has a

significant triangular area.

Execution Time Results Analysis: Figure 16 (right) displays

the execution time results for iMP as the compression ratio in-

creases, specifically for 𝑝 = 14. The results reveal a significant

reduction in execution time, decreasing from 550 seconds with

the naive implementation rMP to 250 at a compression ratio of

20x. Furthermore, the compression process with CAMEO is negli-

gible, requiring only 0.94 seconds to complete at that compression

ratio and less than 1.2 seconds at ratio 100x. Experiments for dif-

ferent 𝑝 values show similar results. This improvement of the

end-to-end runtime of the analytics, coupled with the minimal

impact on detection accuracy, highlights the substantial benefits

of using compression algorithms like CAMEO that preserve key

statistical features while significantly reducing the data size.

6 Additional Related Work
Here we position CAMEO in the context of additional work,

including time series segmentation, representation, lossless com-

pression, and matrix compression.

Time Series Segmentation and Representation: In con-

trast to lossy time series compression, time series segmentation

and representation techniques focus on extracting patterns while

also reducing data. Prominent methods like SWAB [57] segment

time series to enhance analytics, while SAX [69] transforms data

into symbolic representations for efficient indexing and pattern

recognition. More recently, GRAIL [81] introduces compact repre-

sentations preserving user-specific comparison functions, while

ASAX_EN [26] proposes segmentation based on entropy mea-

surement to maximize information gain. While these methods

reduce storage and retain useful patterns, these works do not

address forecasting analytics. In contrast, CAMEO’s preservation

of the ACF retains good accuracy of forecasting models even at

high compression levels. There are comprehensive surveys on

these two topics [94, 99].

Lossless Time Series Compression: Work on lossless time

series compression yielded increasing improvements and shows

a balance of good compression ratios and computational effi-

ciency [1, 6, 12, 86, 106]. Gorilla [82], widely known for its im-

plementation within Facebook’s time-series database, is simple

yet very efficient, making it amenable for real-time applications.

Gorilla’s XOR operator has recently inspired the Chimp [67] and

Elf [66] lossless compression algorithms. Both methods preserve

Gorilla’s linear time complexity while improving its compression

ratio for time series without many repeating values. However, the

achieved compression ratios of these methods are still limited.

In contrast, CAMEO is positioned between lossless and lossy

compression by preserving key statistical features while yielding

very good compression ratios.

Lossless Matrix and Workload-aware Compression: Be-

sides lossy matrix compression, which are mainstream in ML

model training and inference, there is also work on lossless ma-

trix compression. Examples are compressed linear algebra [30, 31]

and tuple-oriented coding [65], which also apply to time series

data but only in combination with binning or quantization. Re-

cent work also explored workload-aware lossless compression [4]

and workload-aware dimensionality reduction [91], which are re-

lated to compressing for downstream analytics. A holistic, unified

strategy that dynamically applies the principles of lossless com-

pression, lossy compression, and workload-aware compression

(especially for statistical features) is non-existent so far.

7 Conclusions
We introduced CAMEO, a lossy time series compression frame-

work that guarantees a user-provided maximum deviation of

the original ACF/PACF. Inspired by line simplification methods,

CAMEO iteratively removes points while continuously validat-

ing the error constraint. To improve efficiency, CAMEO utilizes

incremental maintenance, blocking, and parallelization strategies.

Based on our experimental evaluation, we draw the following

conclusions: 1) CAMEO obtains higher compression ratios than

existing line-simplification techniques while keeping the same

ACF deviation. 2) CAMEO provides a competitive alternative to

the well-known lossy compressors SWAB, PMC, SWING, and SP

with better compression ratios and direct guarantees on the ACF.

3) Preserving the ACF during compression yields better accu-

racy across different time series analytics. Together, these results

make a great case for lossy compression under awareness of sta-

tistical properties and downstream applications, which helps to

remove trust concerns and tedious semi-manual trial-and-error

exploration. Future work includes the extension of CAMEO to

other time series properties such as entropy (which might be

highly correlated to classification or clustering), and seasonal-

strength, as well as runtime improvements for high-performance

compression and approximation analyses [96].
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