
On-Demand Re-Optimization of Integration Flows

Matthias Boehm1, Dirk Habich, Wolfgang Lehner

Technische Universität Dresden; Dresden, Germany

Abstract

Integration flows are used to propagate data between heterogeneous operational
systems or to consolidate data into data warehouse infrastructures. In order to
meet the increasing need of up-to-date information, many messages are ex-
changed over time. The efficiency of those integration flows is therefore crucial
to handle the high load of messages and to reduce message latency. State-
of-the-art strategies to address this performance bottleneck are based on in-
cremental statistic maintenance and periodic cost-based re-optimization. This
also achieves adaptation to unknown statistics and changing workload charac-
teristics, which is important since integration flows are deployed for long time
horizons. However, the major drawbacks of periodic re-optimization are many
unnecessary re-optimization steps and missed optimization opportunities due to
adaptation delays. In this paper, we therefore propose the novel concept of on-
demand re-optimization. We exploit optimality conditions from the optimizer
in order to (1) monitor optimality of the current plan, and (2) to trigger directed
re-optimization only if necessary. Furthermore, we introduce the PlanOptimali-
tyTree as a compact representation of optimality conditions that enables efficient
monitoring and exploitation of these conditions. As a result and in contrast to
existing work, re-optimization is immediately triggered but only if a new plan
is certain to be found. Our experiments show that we achieve near-optimal
re-optimization overhead and fast workload adaptation.

Keywords: Integration Flows, Optimization, Workload Adaptation

1. Introduction

Increasing amounts of data as well as technical and organizational issues, like
new technologies and pragmatic behavior, fundamentally changed the scope
of data management towards distributed data management across numerous
heterogeneous systems, applications, and small devices [1]. For this reason,
the seamless and efficient integration of these systems becomes more and more

Email address: mboehm@us.ibm.com ( Matthias Boehm )
1IBM Research - Almaden, San Jose, CA, USA. Work done while the author was at TUD.

Preprint submitted to Elsevier September 21, 2013



crucial for an IT infrastructure and it is seen as one of the most expensive
challenges information technology faces today [2].

In order to cope with the high degree of system heterogeneity and complex
procedural integration tasks, imperative integration flows are modeled and ex-
ecuted to exchange data between these systems [3]. There are many important
application domains such as enterprise information systems, financial messag-
ing, energy data management, telecommunications, or health care management
[4]. Integration flows are deployed once and then repeatedly executed by an inte-
gration platform, often over months and years. Examples of such platforms are
ETL tools (Extraction Transformation Loading), EAI servers (Enterprise Ap-
plication Integration) or MOM systems (Message-Oriented Middleware), which
have converged more and more in the past [3, 5].

In general, there are two major types of use cases for integration flows.
First, horizontal integration refers to data synchronization between operational
systems by EAI or MOM tools. Data exchange is triggered on updates and
hence realized by propagating many small messages [6]. Second, vertical inte-
gration refers to consolidating data of operational systems into data warehouse
infrastructures by ETL tools. There is an increasing demand of operational
business intelligence that also requires immediate data synchronization in order
to achieve up-to-date operational reports [7, 8, 9]. This immediate synchro-
nization is realized with techniques like increased delta load frequencies or even
update-driven data propagation (trickle feeds) [7, 10].

Both types of use cases lead to the execution of many independent plan in-
stances of integration flows over time. Additionally, often low message latency
is required due to the need for up-to-date information and potentially blocking
source systems. The high load combined with low latency requirements inher-
ently leads to a need for optimization to overcome the performance bottleneck.
Existing work on optimizing integration flows can be classified as follows into
rule-based, cost-based, and adaptive cost-based approaches:

Rule-Based Optimization applies static rewrite rules (e.g., algebraic sim-
plifications) during initial deployment of an integration flow (optimize-once)
[11, 12, 13, 14]. While this approach imposes low optimization overhead, many
optimization opportunities cannot be exploited because rewriting often requires
dynamic cost-based decisions.

Cost-Based Optimization exploits the full optimization potential by ap-
plying dynamic rewritings based on estimated costs [10, 13, 15, 16]. Existing
approaches are still only executed once during initial plan deployment (optimize-
once). These works are important steps towards adaptive behavior but they can-
not adapt the deployed integration flows to changing workload characteristics
[17, 18, 19] such as varying cardinalities, selectivities, or execution times.

Reasons for workload changes are manifold such as varying usage schemes of
external systems [20] or varying network properties [18]. For example, consider
a web shop, where new orders are immediately propagated to a central sys-
tem. Time-varying numbers of orders cause changing input cardinalities (load
shifts). Fluctuating order frequencies per product category reason changing
selectivities (data shifts). Varying utilization of external systems or network

2



speeds—especially, in wide-area networks—influence execution times. Work-
load characteristics in real productive systems change significantly over time as
shown by surveys on eLearning query workloads [21], Website requests [20], and
storage workload traces [22]. Missing adaptation to such workload changes is a
serious problem because integration flows are deployed for long time horizons.
Clearly, existing approaches could easily be extended to an adaptive optimize-
always model by triggering optimization for each new plan instance or even
permanently. However, due to many short-running plan instances, this is inef-
ficient and thus reasons the need for dedicated re-optimization models.

Adaptive Cost-Based Optimization tries to repeatedly improve the cur-
rent plan according to the changing workload characteristics. In contrast to tra-
ditional adaptive query processing [17], many consecutive instances of deployed
integration flows are executed over time. This allows for efficient, asynchronous,
inter-instance plan re-optimization. Here, the state-of-the-art is periodic re-
optimization, where optimization is triggered with fixed optimization interval
[4, 23]. On the positive side, this simple model ensures full optimization poten-
tial and robust workload adaptation with moderate optimization overhead. On
the negative side, it has the drawbacks of (1) many unnecessary re-optimization
steps, (2) adaptation delays, where we miss optimization opportunities, (3)
maintenance of statistics that might not be used by the optimizer, and (4)
the optimization interval as a high-influence parameter.

Contributions

The main contribution of this paper is the novel concept of on-demand re-
optimization for integration flows. This overcomes drawbacks of existing tech-
niques and ensures near-optimal adaptive re-optimization. The core idea is to
exploit optimality conditions from the optimizer for monitoring optimality of
the current plan and triggering directed re-optimization only if necessary. Fur-
thermore, we make the following detailed contributions that also reflect the
structure of this paper (an extended and revised version of [4], Chapter 6):

• First of all, we give a concise background description of integration flows
and their optimization in Section 2. Additionally, we present the vision
and solution overview of on-demand re-optimization in Section 3.

• Second, we introduce the monitoring of optimality in Section 4. We define
the PlanOptTree as a compact representation of optimality conditions as
well as we describe algorithms for creating PlanOptTrees and for moni-
toring optimality during statistic maintenance.

• Third, we introduce the directed re-optimization in Section 5. This in-
cludes algorithms for determining the re-optimization search space, di-
rected re-optimization for example optimization techniques and updating
PlanOptTrees after re-optimization.

• Fourth, we describe detailed results of our experiments in Section 6, where
we achieve near-optimal optimization overhead and workload adaptation.

3



• Finally, we extensively survey related work in Section 7 and conclude the
paper in Section 8.

2. Background and Preliminaries

As a foundation, we first briefly describe the background of integration flows
and their optimization. Subsequently, we systematically analyze drawbacks of
existing techniques for adaptive cost-based optimization.

2.1. Integration Flows

An integration flow is an imperative workflow description consisting of
control-flow-, data-flow-, and interaction-oriented operators that receive, ex-
tract, transform, and propagate data in the form of messages. Often control-
flow-oriented languages such as BPEL (Business Process Execution Language),
extended by relational operators, are used to specify these integration flows
[4, 7, 14]. Compared to pure data flows, these imperative control flows addition-
ally express temporal dependencies between operators, e.g., execute operator o1
before o2. Intermediate results of integration flows are represented as messages,
where each message is modeled as msgi = (ti, di) with ti ∈ Z+ being the message
creation timestamp and di being a tree of name-value data elements. Formally,
an integration flow is defined as follows:

Definition 1 (Integration Flow). A plan P of an integration flow is a
sequence of atomic or complex operators o = {o1, o2, . . .}, where com-
plex operators recursively contain operator sequences. We denote the to-
tal number of operators as m = |o|. Each operator oi may have an arbi-
trary number of input variables {dsin1

(oi), . . . , dsink1
(oi)} and output variables

{dsout1(oi), . . . , dsoutk2
(oi)} spanning a directed graph of (temporal and data)

dependencies δ. An instance pi of a plan P is instantiated in a time-based
manner or for each received message, and it executes o once. Due to complex
operators such as iterations and alternatives some operators may be executed
multiple times or not at all.

The following example shows such an integration flow. We use this as run-
ning example throughout the whole paper.

Example 1 (Integration Flow). New product orders are propagated from a
specific ERP system s1 to a DWH s2 using plan P as shown in Figure 1. An
ERP adapter instance receives the incoming messages and transforms them into
an internal XML representation. Plan instances are initiated and executed for
each received message in arrival order (Receive operator). We then execute
three different Selection operators in order to filter special-purpose orders,
where in this case each Selection applies an expensive probe filter. Such a
filter probes all returned elements of a given XPath expression against a hashset
of disjunctive predicates and discards elements where this probe is unsuccessful.
Subsequently, a Switch operator redirects the control flow using content-based

4



Receive (o1)
[s1, out: msg1]

Assign (o8)
[in: msg5, out: msg6]

Invoke (o9)
[s2, in: msg6]

Selection (o2)
[in: msg1, out: msg2]

Selection (o3)
[in: msg2, out: msg3]

Selection (o4)
[in: msg3, out: msg4]

Switch (o5)
[in: msg4]

Translation (o6)
[in: msg4, out: msg5]

Translation (o7)
[in: msg4, out: msg5]

oc1

oc4

oc2

oc3

|dsout1(o1)|, W(o1)

Example Monitored Statistics
(per plan instance):

|dsin1(o4)|, |dsout1(o4)|, W(o4)

|dsin1(o5)|, P(expA), P(expB)

|dsin1(o9)|, W(o9)

’s1’
(adapter

type 
SAP R/3)

’s2’
(adapter

type 
JDBC)

Figure 1: Running Example Integration Flow.

predicates to specific Translation operators that apply XML message transfor-
mations. Finally, the result is loaded into the DWH using Assign and Invoke

operators as well as a DB adapter instance.

Integration flows such as our example are deployed once into an integration
platform and then repeatedly executed.

System Architecture: The major commercial integration platforms such
as SAP Process Integration, IBM Message Broker, or MS Biztalk Server all
exhibit a common system architecture. Inbound adapter instances (e.g., s1
in Example 1) receive messages from external systems, transform them into
an internal presentation (e.g., XML), and append them to persistent inbound
message queues. For each received message a plan instance is executed, in
serial order of message arrival. Those plans interact (read/write) with external
systems via outbound adapter instances (e.g., s2), which are—similar to inbound
adapters—an abstraction of different types and instances of external systems.

2.2. Optimization of Integration Flows

Regarding the existing high performance demands on integration platforms,
we now give an overview of adaptive cost-based re-optimization of integration
flows [4, 23].

Cost Model: As a foundation for cost-based optimization and due to the
specific characteristics of (1) missing statistics (external and unknown data),
(2) arbitrary interactions with external systems (black-box), and (3) control-
flow-oriented operators, we employ a double-metric cost model. Essentially, we
monitor and incrementally maintain runtime statistics such as execution times
W (oi) and input/output cardinalities |ds| at operator level. These statistics
are fed into operator-type-specific cost formulas of cardinality-dependent costs
C(oi) (tailor-made for known operators, linear for black-box interactions) and
execution times W (oi). The execution time of a rewritten subplan P ′ can then

5



be estimated by an aggregate (e.g., sum for operator sequences) over adjusted
operator costs with

Ŵ (o′i) = Ĉ(o′i)/C(oi) ·W (oi). (1)

This time-based cost model enables the comparison of all different types of
operators, allows to take parallelization into account, and it is self-adjusting to
changing workload characteristics.

Optimization Algorithm: Our optimization algorithm then uses this
cost model as a basis for cost-based optimization techniques. We use a
transformation-based approach in order to preserve semantic correctness of the
initially specified, imperative plan. In order to ensure low latency, our basic
optimization objective is to minimize the average plan execution time with

φ : min Ŵ (P ) (2)

but it can be combined with techniques for throughput optimization by taking
message waiting times into account. The algorithm essentially iterates over the
hierarchy of operator sequences and applies optimization techniques. Finally, it
recompiles and exchanges plans. Each optimization technique relies on specific
optimality conditions for certain rewriting pattern. We employ techniques from
traditional data management, techniques from programming language compil-
ers, and new tailor-made techniques for integration flows.

Adaptive Re-Optimization: Furthermore, we use periodic re-
optimization for adaptation to changing workloads [23]. The simple yet effective
basic idea is to periodically trigger re-optimization with an optimization inter-
val ∆t to adapt the deployed plan to the current runtime statistics. We use an
example to illustrate this re-optimization model.

adaptation 
delaysworkload 

shifts:
ws1 ws2

P P’ P’’
∆t

re-optimization stepsoptimization interval

Figure 2: Example Periodic Re-Optimization.

Example 2 (Periodic Re-Optimization). Figure 2 shows the plan execu-
tion times in a scenario with two workload shifts. Periodic re-optimization trig-
gers re-optimization with an optimization interval ∆t. After a workload shift
occurred (e.g., ws1), the next re-optimization will find the new optimal plan
(e.g., P ′) but there is an adaptation delay until plan rewriting takes place. If
no workload shift has occurred during ∆t, we do not find a new plan and thus
execute unnecessary re-optimization steps.

6



To
ta

l E
xe

cu
tio

n 
Ti

m
e 

[m
in

]

1 10 100 1000

0

200

400

600

800

# of Workload Shifts |ws|

Δt=5min

unoptimized
periodic opt
theoretical opt

(a) Workload Shifts

To
ta

l E
xe

cu
tio

n 
Ti

m
e 

[m
in

]

0.1 1.0 10.0

0

200

400

600

800

Optimization Interval Δt [min]

|ws|=1000
|ws|=100

|ws|=10

(b) Optimization Interval

Figure 3: Sensitivity of Periodic Re-Optimization.

To summarize, periodic re-optimization exhibits several drawbacks. First,
there are adaptation delays, where we miss optimization opportunities. Second,
we might execute many unnecessary full re-optimization steps. Third, we might
gather statistics that are not used by the optimizer. Fourth, the optimization
interval is a parameter that requires tuning. Since the severity of these draw-
backs depends on the workload, we systematically quantify the problems (1),
(2), and (4) by the following sensitivity analysis.

Example 3 (Sensitivity Analysis). Assume a scenario, where we serially
execute n = 100,000 instances of plan P . Let |ws| denote the number of workload
shifts that occur uniformly distributed every n/|ws| plan instances. Furthermore,
let W (P ) = 0.5 s be the unoptimized plan execution time, let W (P ′) = 0.1 s be
the optimized plan execution time, and let W (opt) = 2 s be the optimization time.
Figure 3 then shows the total runtime when using periodic re-optimization with
optimization interval ∆t. Figure 3(a) shows the influence of |ws| with fixed
∆t = 5 min. For increasing workload dynamics, periodic re-optimization de-
generates from near-optimal performance to the unoptimized case. Figure 3(b)
illustrates the impact of ∆t. For small ∆t there is high re-optimization over-
head and for large ∆t there are high adaptation delays. In case of almost static
workloads (|ws| = 10), the overall performance is indeed fairly in-sensitive to
∆t. However, as workload dynamics increase (|ws| = 100 and |ws| = 1,000) the
sensitivity increases and thus it becomes difficult to find a good ∆t. Finally, it is
noteworthy that the alternative approach of triggering re-optimization if statis-
tics have changed significantly has the same conceptual problem. Due statistic
fluctuations, a sensitivity parameter is required for deciding on change signifi-
cance. If it is chosen too high, there are high adaptation delays; if chosen too
low, there are many unnecessary re-optimization steps.

We conclude that periodic re-optimization is a simple indeed effective tech-
nique if workload changes are rare events or if the workload is exactly known.
On the downside, the overall performance can degenerate to the performance of
the unoptimized case.

7



3. Solution Overview

In this paper, we present the novel on-demand re-optimization model that
achieves both, robust and near-optimal adaptive re-optimization. Our core idea
is (1) to monitor optimality of the current plan via optimality conditions and
(2) to apply directed re-optimization if conditions are violated. The following
example illustrates these two basic concepts.

Example 4 (On-Demand Re-Optimization). Consider the subplan P =
(o2, o3) consisting of two Selection operators (see Figure 1). The search
space for this subplan is illustrated as a plan diagram2 in Figure 4(a). The
plan (o2, o3) is optimal as long as oc1 : sel(o2) ≤ sel(o3) (with sel(oi) =
|dsout(oi)|/|dsin(oi)|), i.e., the selectivity of o2 is lower or equal to the selec-
tivity of o3. Thus, the optimality condition oc1 models optimality of the current
plan (1a). Then, we maintain only necessary statistics that are involved in
this optimality condition, i.e., sel(o2) and sel(o3), and use them for continu-
ously monitoring of optimality (1b). If oc1 is violated, we use this condition
for directed re-optimization in order to determine P ′ = (o3, o2) as the new op-
timal plan (2). As shown for a larger subplan P = (o2, o3, o4) in Figure 4(b),
we maintain only optimality conditions of the current (optimal) plan, i.e., oc1
and oc2 instead of all possible plans. For the sake of a clear presentation, we
use this simple example throughout the whole paper but—as we will exemplify in
Subsection 5.2—the basic concepts apply to arbitrary operators and optimization
techniques.

1

10

(o2, o3)

sel(o2)

sel(o3)

(o3, o2)
1b

Opt Plan
P

2

sel(o2) ≤ 
sel(o3)

1a

P’

optimality 
condition oc1:

monitored 
statistics

directed 
re-opt

(a) Plan Diagram P (o2, o3)

1

10

sel(o2)

sel(o3)

oc1:
sel(o2) ≤ 
sel(o3)

(o2,o3,o4)

(o3,o2,o4)

Opt Plan
P

oc2:
sel(o3) ≤ sel(o4)

with
sel(o4)=0.6

(o3,o4,o2) (o4,o3,o2)

(o4,o2,o3)
oc3:

sel(o2) ≤ 
sel(o4)

(o2,o4,o3)

(b) Plan Diagram P (o2, o3, o4)

Figure 4: Plan Search Space Partitioning.

For enabling on-demand re-optimization, we introduce the PlanOptTree

data structure as a compact representation for arbitrary optimality conditions.
The PlanOptTree of a current plan indexes monitored and derived statistics
as well as current optimality conditions. We then use it for incremental online
statistics maintenance and checking of optimality conditions. This continuous

2Traditional two-dimensional plan diagrams [24] rely on a complete what-if search space
analysis, while we model break-even points of plans via multi-dimensional optimality condi-
tions.

8



monitoring of optimality allows us to immediately trigger re-optimization if nec-
essary, i.e., if violated conditions guarantee that we will find a plan with lower
costs. In addition, the violated conditions can also be exploited for directed
re-optimization.

Example 5 (PlanOptTree). The PlanOptTree of our running example (Fig-
ure 1) is shown in Figure 5. It includes two optimality conditions (oc1, oc2) for
expressing the ordering of the Selection operators o2, o3 and o4 according to
their selectivities (oc3 is omitted due to transitivity) and the condition oc4 ex-
pressing branch prediction of the Switch operator o5 regarding its cost-weighted
path frequencies.

o2 o3

|dsin1| |dsout1| |dsin1| |dsout1|

sel(o2) sel(o3)

≤

o4

|dsin1| |dsout1|

sel(o4)

≤

o6 o5 o7

W W W

P(exprA)
W(exprA)

P(exprB)
W(exprB)

≤(oc1) (oc2) (oc4)

Figure 5: PlanOptTree of the Running Example.

In the following, we explain the monitoring of optimality and directed re-
optimization using PlanOptTrees in detail.

4. Monitoring Optimality

In this section, we formally define the PlanOptTree and show how to create
a PlanOptTree during initial plan optimization. Furthermore, we explain how
to use it for statistic maintenance and discuss when to trigger re-optimization.

4.1. Plan Optimality Trees

A PlanOptTree, which general structure is shown in Figure 6, models plan
optimality and it is defined as follows:

Definition 2 (PlanOptTree). Let P denote the optimal plan with regard to
the current statistics, let m be the number of operators, and let s be the number
of statistics per operator. Then, the PlanOptTree is defined as a graph of five
strata representing all optimality conditions of P :

• RNode (stratum 1): A single Root Node refers to m′ (1 ≤ m′ ≤ m)
operator nodes (ONode).

• ONode (stratum 2): An Operator Node specifies a unique plan operator
via a node identifier nid and it refers to s′ (1 ≤ s′ ≤ s) statistic nodes
(SNode).

9



RNode

o1 o2 o3 o7

ONode

nid=1 nid=2 nid=3 nid=7

stat1 stat3 stat1 stat3

cstat

stat1 stat1 stat2 stat5
SNode

cstat cstat

cstat

ocondocondocond OCNode

CSNode

stratum 2

stratum 3

stratum 4

stratum 5

MEMO

stratum 1

monitored 
statistics

Figure 6: General PlanOptTree Structure.

• SNode (stratum 3): A Statistic Node exhibits one of the s atomic statistic
types sj (e.g., input cardinality), where this type must be unique for the
parent operator oi. Each SNode maintains a sliding window of statistic
tuples monitored for (oi, sj), a single aggregate, as well as references to
child sets of complex statistic nodes (CSNode) and optimality condition
nodes (OCNode).

• CSNode (stratum 4): A Complex Statistic Node is a mathematical expres-
sion using all referenced parent SNodes or CSNodes as operands, where
a CSNode can refer to SNodes of different operators. Further, a CSNode
refers to child sets of CSNodes and OCNodes. Hence, arbitrary hierar-
chies of CSNodes are possible. CSNodes can also be constants or external
values.

• OCNode (stratum 5): An Optimality Condition Node is defined as a
boolean expression op1 θ op2, where θ denotes an arbitrary binary compar-
ison operator and the operands op1 and op2 refer to any CSNode or SNode,
respectively. The optimality condition is defined as violated if the expres-
sion evaluates to false. In addition, each OCNode refers to its source of
creation in terms of the originating optimization technique.

References to nodes of strata 1 and 2 are unidirectional, while nodes of strata
3-5 are bidirectional. Furthermore, a PlanOptTree includes a MEMO structure3

in order to optionally mark subgraphs that have already been evaluated because
nodes might be reachable over multiple paths.

The defined general PlanOptTree structure exhibits the following four fun-
damental properties:

3For clarity of presentation, we omit the usage and maintenance of this MEMO structure in
our algorithms. From a high-level perspective, it can be understood as a lookup table for
memoization in order to reuse results of subgraphs and to prevent redundant computations.

10



• Optimality: Since a PlanOptTree models plan optimality, we will only
find a plan with lower cost if at least one optimality condition is violated.
Thus, there is no need for re-optimization until we detect a violation.

• Transitivity: If statistics are included in multiple optimality conditions,
we can leverage transitively given optimality conditions. For this reason,
potentially only a subset of all relevant optimality conditions are required
to monitor the optimal plan.

• Minimality: A PlanOptTree includes only operators and statistics that
are included in optimality conditions. Thus, we achieve minimal statistics
monitoring and minimal condition evaluation (see transitivity) under the
requirement of still ensuring optimality.

• Directed Re-Optimization: In case of violated optimality conditions, the
knowledge of still valid conditions can be exploited for reducing the re-
optimization search space to a subset of the original search space.

These properties hold for a complete PlanOptTree that is defined to cover all
relevant optimality conditions of a plan. Otherwise, we would have redundancy
or missing conditions.

4.2. Creating PlanOptTrees

During initial deployment of a plan, the full cost-based optimization is exe-
cuted once and an initial PlanOptTree is created. Subsequently, we solely rely
on incremental and directed re-optimization by leveraging this PlanOptTree.
We now explain how to create the initial PlanOptTree.

Our transformation-based optimization algorithm (described in Subsec-
tion 2.2) recursively iterates over the hierarchy of operator sequences and
changes the current plan by applying optimization techniques. For on-demand
re-optimization, we extended the optimizer in a way that it does not only change
the current plan but additionally, each applied optimization technique also re-
turns a partial PlanOptTree representing optimality conditions for the consid-
ered subplan. The use of partial PlanOptTrees at the optimizer interface is rea-
sonable because directed re-optimization potentially considers only subplans and
thus can only return partial PlanOptTrees. Creating the initial PlanOptTree
then reduces to merging all partial PlanOptTrees to a minimal representation.
In the following, we describe an example and the general-case algorithm.

Example 6 (Merging Partial PlanOptTrees). Recall the running example
plan P and assume the two partial PlanOptTrees shown in Figures 7(a)
and 7(b). These PlanOptTrees have been created by applying selection re-
ordering on operators (o2, o3, o4). In detail, they consist of ONodes, SNodes,
a CSNode Selectivity, and an OCNode. Both partial PlanOptTrees include
operator o3 and its selectivity CSNode. Therefore, we add only o4 and its child
nodes from pot2 to pot1. When doing so, the dangling reference from the new
optimality condition to sel(o3) of pot2 is modified to refer to the existing sel(o3)
of pot1. The final merged PlanOptTree pot is shown in Figure 7(c).

11



o2 o3

|dsin1| |dsout1| |dsin1| |dsout1|

sel(o2) sel(o3)

≤

(a) Partial pot1

o3

|dsin1| |dsout1|

sel(o3)

o4

|dsin1| |dsout1|

sel(o4)

≤

(b) Partial pot2

o2 o3

|dsin1| |dsout1| |dsin1| |dsout1|

sel(o2) sel(o3)

≤

o4

|dsin1| |dsout1|

sel(o4)

≤

(c) Merged pot

Figure 7: Merging Partial PlanOptTrees.

Algorithm A-PC (PlanOptTree Creation): The A-PC (see Algorithm 1)
creates the initial PlanOptTree by recursively iterating over all operators
and merging respective partial PlanOptTrees. In case of complex operators,
we recursively invoke the A-PC, where all subcalls have access to the root
PlanOptTree. At each operator (atomic or complex), we apply all operator-
type-related optimization techniques, where each technique returns resulting
partial PlanOptTrees. Some optimization techniques directly optimize whole
sequences of operators during the first invocation on an operator of this se-
quence, where invocations for other operators of this sequences are then ignored.

Algorithm 1 PlanOptTree Creation (A-PC)

Require: operator op, global PlanOptTree root (initially NULL)
1: o ← op.getSequenceOfOperators()
2: for i← 1 to |o| do // for each operator oi
3: if type(oi) ∈ (Plan, Switch, Fork, Iteration) then // complex
4: A-PC(oi) // recursive invocation for complex operators
5: else // atomic operators
6: ppot← getPartialOptTree(oi)
7: if root = NULL then
8: root← ppot
9: else // merge partial PlanOptTrees

10: for all on ∈ ppot.onodes do // for each ONode on
11: if root.containsONode(on.nid) then
12: eon← root.getOperator(on.nid)
13: for all sn ∈ on.snodes do // for each SNode sn
14: if eon.containsSNode(sn.type) then
15: eson← eon.getSNode(sn.type)
16: modifyDanglingRefs(eon, eson, on, sn)
17: else
18: eon.snodes.add(sn)
19: else
20: root.onodes.add(on) // add operator subtree
21: return root

12



For example, the first invocation of selection reordering on operator o2 will re-
order the sequence (o2, o3, o4) and returns pot1 and pot2. If no PlanOptTree

exists so far, the first partial PlanOptTree is used as root; otherwise, we merge
the partial PlanOptTree with the existing root. When merging, we check the
existence of operators as well as statistic nodes, and we add new nodes if re-
quired. For complex statistic nodes, we modify dangling references in order
to recursively change the references of complex statistics and optimality condi-
tions to the existing PlanOptTree. Identical CSNodes are determined by ID or
equivalence of input nodes and CSNode class.

Optimizations: Context knowledge of operators can be exploited for op-
timization. For example, we reuse the output cardinality SNode of operator
oi as input cardinality SNode for operators with data dependencies to oi (par-
tially applied in our examples) because these statistics are per se equivalent.
In general, reusing statistics is beneficial for expensive statistic maintenance
approaches.

Complexity Analysis: Clearly, the space complexity of a PlanOptTree

and the time complexities of PlanOptTree algorithms depend on the complexity
of applied optimization techniques and their optimality conditions. Regarding
monitoring optimality, the PlanOptTree is indeed optimal due to its properties
of transitivity and minimality. However, for certain plan structures and prob-
lems, efficient bounds can be established. For example, Appendix A shows a
worst-case complexity of O(m2) for local reordering sequences of operators.

The PlanOptTree represents plan optimality via optimality conditions based
on current statistics. Hence, only the update of statistics can cause the need for
re-optimization.

4.3. Updating and Evaluating Statistics

In order to enable immediate re-optimization in case of violated optimality
conditions, we use the PlanOptTree also for incremental online statistic mainte-
nance and continuous monitoring of plan optimality via optimality conditions.

A PlanOptTree maintains statistics that are required for monitoring op-
timality conditions. Atomic statistics are as usual gathered at operator-level
during plan execution and immediately inserted into the PlanOptTree, where
unnecessary statistics are declined. Every SNode exhibits a state in terms of ag-
gregated atomic statistics (e.g., average input cardinality) because we optimize
the average case. Different aggregation methods or even time series models can
be used. By default, we employ the simple exponential smoothing :

EMAt = EMAt−1 + α (st (oi)− EMAt−1) with α ∈ [0, 1]. (3)

Included statistics st(oi) exhibit exponentially decaying weights due to the re-
cursive computation, where α is used to adjust the smoothing sensitivity. Here,
general-purpose optimization algorithms such as L-BFGS-B [25] can be used for
parameter estimation. This EMA is suitable for incremental statistics mainte-
nance with sliding window semantics because (1) it relies on positive incremental
maintenance for new values anyway, (2) it can adapt fast to workload changes,

13



and (3) it does not require negative maintenance for expired values due to de-
caying weights. After incremental statistics maintenance, we also update the
hierarchy of relevant complex statistic measures (CSNodes), and finally we eval-
uate relevant optimality conditions (OCNodes) as well as trigger re-optimization
on-demand, i.e., only if required because a plan with lower costs exists.

Robustness Strategies: Triggering re-optimization näıvely for any vio-
lated optimality condition ensures immediate adaptation but might cause the
problem of frequently changing plans (instability). There are two potential rea-
sons. First, by assuming independence of monitored conditional selectivities,
data correlation can lead to cyclic re-optimizations. Second, if statistics are
close to a break-even point and fluctuate to some extend for different reasons,
we might also have frequent plan changes. We explicitly address these issues of
instability with the following strategies:

• Correlation Tables: Data correlations are addressed by computing condi-
tional selectivities via so-called correlation tables. The idea is to maintain
selectivities over multiple versions of a plan, where we store and main-
tain a row of unconditional and conditional selectivities for each pair of
operators with data dependencies in the current plan. Until we are able
to monitor and use the unconditional selectivity, we assume statistical in-
dependence only. However, using statistics from multiple plan versions
prevents us from making wrong decisions multiple times. Starvation due
to outdated statistics is avoided by a time-based decay. The integration
into the PlanOptTree is done via a CSNode ConditionalSelectivity

that maintains and reads the correlation table. This lightweight approach
is effective for groups of few correlated attributes.

• Lazy Condition Violation: In order to overcome the problem of statistic
fluctuations and serialized statistic updates, we trigger re-optimization
lazily, i.e., only if the condition is violated τ1 times (lazy count). As a
heuristic, we set this count to the number of SNodes of the PlanOptTree

because often already small lazy counts are sufficient. Furthermore, the
condition must be violated at least by a relative cost threshold τ2 and a
true condition evaluation resets the lazy count.

• Minimal Existence Time: As a fall-back mechanism for all problems of
instability, we introduce ∆t as minimal existence time of a plan. We
collect statistics but do not evaluate optimality during ∆t after the last
re-optimization. However, ∆t is only the minimal interval between re-
optimizations; afterwards, we continuously monitor optimality and adapt
the plan if necessary in order to prevent adaptation delays.

Putting it altogether, we now describe the overall statistic maintenance al-
gorithm and analyze existing parameters.

Algorithm A-IS (Insert Statistics): The A-IS (see Algorithm 2) is in-
voked as we measure statistics. It then realizes incremental online statistics
maintenance for each operator statistic and triggers re-optimization if required.

14



Algorithm 2 Insert Statistics (A-IS)

Require: operator id nid, statistic type, statistic value, lastopt
1: if (on← root.getOperator(nid)) = NULL or

(sn← on.getSNode(type)) = NULL then
2: return // statistic not required
3: sn.maintainAggregate(value)
4: ret← true
5: if (time−∆t) > lastopt then // min existence time
6: for all cn ∈ sn.csnodes do // for each CSNode cn
7: ret← ret and cs.computeStats()
8: for all oc ∈ sn.ocnodes do // for each OCNode oc
9: ret← ret and oc.isOptimal()

10: if ¬ret then
11: A-PTR() // actively triggering re-opt (start thread)

Starting from the root, we search the operator node by nid, then search the
statistic node of this operator by type and finally, if the node exists, main-
tain the aggregate. Furthermore, if the minimum existence time is exceeded,
we check optimality conditions. For this purpose, we recursively compute and
check relevant complex statistic measures and optimality conditions that are
reachable over child references. During checking optimality, we also update the
specific lazy counters. If there is at least one violated optimality condition that
reached the lazy count, we trigger re-optimization by starting an asynchronous
re-optimization thread.

Asynchronous Re-Optimization: In contrast to synchronous mid-query
optimization—where the remaining plan depends on the optimizer output—we
do not block plan execution and statistic maintenance. Furthermore, all addi-
tional triggers for re-optimization are simply rejected as long as the optimizer
thread is running. Finally, after successful optimization, we switch plans on
the next possible point—i.e. just before starting the next plan instance—and
enable re-optimization again.

Parameter Analysis: The parameters of on-demand re-optimization have
fairly static influence and thus do not require much tuning. First, if the minimal
existence time ∆t is smaller than the interval between workload shifts, there are
no changes. Otherwise, adaptation delays linearly increase. Second, adaptation
delays also linearly increase with increasing lazy count τ1. However, ∆t and
τ1 can be kept low by default as we will show in our evaluation. All other
parameters are the same for both on-demand and periodic re-optimization.

To summarize, the monitoring of plan optimality and re-optimization on-
demand minimizes adaptation delays and at the same time prevents unnecessary
re-optimization steps.

15



5. Directed Re-Optimization

Once re-optimization has been triggered by violated optimality condi-
tions during statistic maintenance, we exploit these conditions for directed re-
optimization of the current plan. We first determine the reduced re-optimization
search space. Then, we apply directed re-optimization instead of full re-
optimization. Finally, we incrementally update the existing PlanOptTree ac-
cording to the new conditions.

5.1. Re-Optimization Search Space

Since directed plan re-optimization aims at considering only a subset of the
complete search space as already shown in Figure 4, we first need to deter-
mine this reduced re-optimization search space. We exploit violated optimality
conditions for determining (1) the optimization techniques that produced these
conditions and (2) the minimal set of operators that need to be reconsidered by
those techniques. Generally speaking, the re-optimization search space consists
of the set of operators, affected by violated optimality conditions. In case of
multiple violated conditions, this is the union of affected operators. In order
to guarantee optimality, we also need to take the transitivity property of the
PlanOptTree into account.

In general, we follow a bottom-up approach to determine this re-optimization
search space. We start at each violated optimality condition and traverse all
optimality conditions that are reachable over transitivity connections. Such a
transitivity connection is defined as an atomic or complex statistic node con-
nected with two or more optimality conditions. Transitivity chains of arbitrary
length are possible, where the end is given by the lack of transitive connections
or by the first condition that is still optimal. Finally, termination is guaranteed
because the MEMO structure prevents cycles.

Example 7 (Re-Optimization Search Space). Assume the PlanOptTree

of Example 6. During initial optimization, selectivities of sel(o2) = 0.2,
sel(o3) = 0.3 and sel(o4) = 0.4 resulted in the optimality conditions shown
in Figure 8(a). Re-optimization was triggered because the selectivity of opera-
tor o2 changed to sel(o2) = 0.45 and thus violates sel(o2) ≤ sel(o3). Hence,
we would directly reorder operators o2 and o3 during re-optimization. Due to
the transitivity of optimality conditions, we need to check the selectivity of op-
erator o4 as well, because we do not know if the implicit optimality condition
of sel(o2) ≤ sel(o4) (given by sel(o2) ≤ sel(o3) and sel(o3) ≤ sel(o4)) still
holds. We traverse the PlanOptTree as shown in Figure 8(b) and see that this
transitive condition is violated as well, while the second optimality condition
sel(o3) ≤ sel(o4) is still valid.

Algorithm A-TR (Trigger Re-Optimization): The A-TR (see Algorithm 3)
adds all violated optimality conditions to the set C and then it recursively tra-
verses transitivity chains for each condition in C in order to collect transitively
violated conditions. There, we check transitivity filters (direction of operands

16



o2 o3

|dsin1| |dsout1| |dsin1| |dsout1|

sel(o2) sel(o3)

≤

o4

|dsin1| |dsout1|

sel(o4)

≤

0.2 0.3 0.4
0.45

oc

(a) Violated OCNode

≤ ≤oc,toc

o2 o3

|dsin1| |dsout1| |dsin1| |dsout1|

sel(o2) sel(o3)

o4

|dsin1| |dsout1|

sel(o4)

(b) Transitive OCNode

Figure 8: Re-Optimization Search Space.

Algorithm 3 Trigger Re-Optimization (A-TR)

Require: plan P , invalid optimality conditions C
1: C′ ← C
2: for all oc ∈ C do // for each OCNode
3: for all oc1 ∈ oc.op1.ocnodes do // for each OCNode of op1
4: if oc1.θ = oc.θ and oc1.op2 = oc.op1 then
5: if ¬oc1.isOptimal(oc1.op1.agg, oc.op2.agg) then
6: C′ ← C′ ∪ oc1
7: rCheckTransitivity(oc, oc1.op1, left)
8: for all oc2 ∈ oc.op2.ocnodes do // for each OCNode of op2
9: if oc2.θ = oc.θ and oc2.op1 = oc.op2 then

10: if ¬oc2.isOptimal(oc2.op2.agg, oc.op1.agg) then
11: C′ ← C′ ∪ oc2
12: rCheckTransitivity(oc, oc2.op2, right)
13: PPOT← optimizePlan(P, C′) // apply directed re-opt

14: A-UP(PPOT, C′) // update PlanOptTree

and comparison operator) and transitive optimality filters. Finally, we invoke
the optimizer with all violated conditions C′ as re-optimization search space.
After successful re-optimization, we update the PlanOptTree (A-PPR).

Optimality Analysis: Directed re-optimization with the reduced search
space and full re-optimization create equivalent plans. The intuition is as fol-
lows. Any rewriting possibility between operators is represented by an explicit
or a transitive optimality condition. Arbitrary complex optimality conditions
can be used to prevent the starvation in local minima. All operators included in
violated explicit or transitive conditions are used by directed re-optimization.
Hence, directed re-optimization guarantees optimality. For a detailed analysis,
we refer to Appendix B.

5.2. Example Optimization Techniques

Based on the determined re-optimization search space, we apply directed
re-optimization. As this depends on the concrete optimization techniques, we
exemplify the monitoring of optimality and directed re-optimization for local

17



selection reordering, heuristic join reordering, and heuristic vectorization. On-
demand re-optimization is applicable for arbitrary operators and optimization
techniques because a PlanOptTree can represent arbitrary optimality condi-
tions. However, since the PlanOptTree complexity depends on the used opti-
mization techniques, it is especially practical for local and heuristic rewrites.

5.2.1. Selection Reordering

Our running example optimization technique selection reordering applies
local rewriting decisions via a variant of bubble sort with an average time com-
plexity ofO(m2). This exchange-based sort algorithm is well-suited for rewriting
imperative plans because it allows for on-the-fly correctness checks. The opti-
mality condition is sel(oi) ≤ sel(oj), where operator oi is a data-flow predecessor
of operator oj . As shown throughout the paper, on-demand re-optimization then
requires m− 1 optimality conditions for monitoring optimality of m Selection

(or selective) operators. In the best-case, the re-optimization search space com-
prises a single violated condition, where we directly reorder the two involved
operators with O(1). In the worst case, all optimality conditions are violated
such that we need to sort all m operators with O(m2).

5.2.2. Heuristic Join Reordering

Join ordering heuristics are typically used if the number of joins exceed
certain limits or if we assume independence of selectivities [26, 27]. In the
following, we first describe our used heuristic join reordering algorithm and
subsequently discuss our extensions for on-demand re-optimization.

Preliminaries: We consider (1) only left-deep join trees (no zig-zag trees,
no bushy trees), (2) without cross-products, and (3) only one join implemen-
tation, but we decide on join implementations afterwards. Using these as-
sumptions and our asymmetric cost functions, there exist at most—i.e., for
clique queries—n! alternative plans for joining n datasets [27]. Using our
cost model, the costs of, for example, a nested loop join are computed by
C(R on S) = |R| + |R||S| and the join output cardinality can be derived by
|R on S| = fR,S · |R||S| with a join filter selectivity of fR,S = |R on S|/(|R||S|).
Thus, the costs of a left-deep join tree (R on S) on T are C((R on S) on T ) =
|R|+ |R||S|+ fR,S · |R||S|+ fR,S · |R||S||T |.

Algorithm: Our basic algorithm is again an exchange-based join reorder-
ing heuristic and it relies on binary reordering decisions between subsequent
join operators (e.g., ((∗ on R) on S) on ∗ vs. ((∗ on S) on R) on ∗). The
underlying observation is—similar to Bellman’s Principle of Optimality used
for dynamic programming—that the costs of subplans before and after such
a local reordering are independent of that order. Hence, we just compare
C((∗ on R) on S) ≤ C((∗ on S) on R). The algorithm works as follows: first,
we select the input dataset with the smallest cardinality and reorder it with
the existing first join operand if possible. Second, we iterate over all joins and
reorder adjacent join pairs if possible and if beneficial. This algorithm basically
applies to clique and star queries only, while for arbitrary query types, groups

18



R S

T

V

W

oc1

oc2

oc3

oc4

(a) Opt. Conditions

* T

≤

R S

C(*ST)

≤
(oc1) (oc2)

min(|S|,...,|W|)
C(*TS)

* V * W

|* W||W||* V||V||* T||T||R S||S||R|

≤

C(*TV)

(oc3)

C(*VT)

≤

C(*VW)

(oc4)

C(*WV)

(b) Example PlanOptTree

Figure 9: Example Join Reordering.

of operators are reordered similar to the IKKBZ algorithm [27]. In general, this
heuristic algorithm exhibits an average time complexity of O(m2).

On-Demand Re-Optimization: For monitoring plan optimality of arbi-
trary left-deep join trees, we require m optimality conditions. Figure 9(a) shows
an example join reordering of R on S on T on V on W (m = 4 operators, clique
query) and its optimality conditions. First, one condition monitors the minimal
cardinality of the first dataset with oc1 : |R| ≤ min(|S|, |T |, |V |, |W |). Second,
there are m − 1 conditions monitoring the ordering of join operators. For ex-
ample, the optimality of executing ∗ on S before its successor ∗ on T is given if
the following condition holds:

oc2 :|R|+ |R||S|+ fR,S · |R||S|+ fR,S · |R||S||T |
≤ |R|+ |R||T |+ fR,T · |R||T |+ fR,T · |R||T ||S|,

(4)

where oc2 can be algebraically simplified. It is possible to monitor all cardinali-
ties |R|, . . . , |W | but only the conditional selectivities fR,S , . . . , f∗,W . Hence, we
either assume statistical independence of selectivities with fR,T = f(RonS),T or
we use our correlation table as described in Subsection 4.3. The PlanOptTree

of this example is shown in Figure 9(b). Finally, directed re-optimization sorts
only operators in violated conditions such that we have a re-optimization time
complexity of O(m2) for the worst case but O(1) for the best case.

5.2.3. Heuristic Vectorization

Plan vectorization is an integration-flow-specific optimization technique [28].
The core idea is to rewrite instance-based plans (operator-at-a-time) into vector-
ized plans with pipelined message execution (one thread per operator) in order
to exploit pipeline parallelism over multiple plan instances. This increases mes-
sage throughput and still ensures semantic correctness for control flows. We
introduced the cost-based vectorization that computes the optimal grouping of
operators to a minimal number of k execution buckets (threads). This ensures
the optimal degree of pipeline parallelism but achieves less message latency and
less resource contention (threads, cache). Cost-based vectorization is a gener-
alization of execution strategies because instance-based plans (k = 1) and fully
vectorized plans (k = m) are specific cases.

19



Algorithm: The objective is to minimize k under the constraint that bucket
execution times do not exceed the execution time of the most expensive operator
because it limits the pipeline throughput anyway (convoy effect [29]):

φ : min
1≤k≤m

| ∀i ∈ [1, k] :
∑
oj∈bi

W (oj) ≤W (omax). (5)

This problem exhibits an exponential complexity of O(2m). Hence, we apply
the following heuristic algorithm: First, we determine the maximum operator
execution time. Second, depending on the plan structure (flow/sequence), we
group operators, similar to bin packing heuristics, in a first-fit/next-fit man-
ner with a time complexity of O(m2)/O(m). In any case, the total algorithm
complexity is dominated by dependency graph creation with O(m3).

On-Demand Re-Optimization: Plan optimality for a sequence of oper-
ators is then monitored via k (1 ≤ k ≤ m) optimality conditions. First, one
condition ensures that each bucket bi fulfills the constraint that its total ex-
ecution time does not exceed the execution time of the most time-consuming
operator with oc1 : max(W (bi), . . . ,W (bk)) ≤ W (omax). Second, regarding the
next-fit approach of our heuristic algorithm, for each bucket except the first one
(k−1), one condition monitors if the first operator oj of this bucket bi still cannot
be assigned to the previous bucket bi−1 with oci : W (bi−1)+W (oi) ≥W (omax).
Directed re-optimization starts at the bucket determined by oci. Hence, we have
a re-optimization time complexity of O(1) for the best case and O(m) for the
worst-case, but dependency graph creation is not required.

Table 1: Analysis of Example Optimization Techniques.

Optimization Traditional |oc| Directed Reopt
Technique Algorithm Best Worst

Selection Reordering (5.2.1) O(m2) O(m) O(1) O(m2)
Join Reordering (5.2.2) O(m2) O(m) O(1) O(m2)

Vectorization (5.2.3) O(m3) O(m) O(1) O(m)

5.2.4. Discussion of Complexity Analysis

Table 1 summarizes the complexity analysis of the presented example tech-
niques. We compare the time complexity of the full algorithms, monitoring
optimality (|oc|) and directed re-optimization. Based on these observation we
can draw two important conclusions.

First, monitoring optimality is commonly more efficient than full re-
optimization. Keeping all possible plans is prohibitive as this would result in
many cases in factorial time and space complexity for creating all plans. In
contrast, our idea relies on monitoring optimality of the current (optimal) plan
only. Generally speaking, we benefit from monitoring optimality whenever the
complexity of deciding if a solution is optimal is lower than the complexity of
finding the optimal solution. This holds for many optimization problems.

20



Second, there are many cases, where we can benefit from directed re-
optimization. Commonly, the best-case re-optimization is constant because a
single violated condition can enable to directly infer the new optimal plan, while
the worst-case (e.g., all conditions violated) is equal to the traditional algorithm.
The benefit of directed re-optimization is due to (1) a reduced search space per
technique, and (2) potentially reconsidering only a subset of techniques. The
latter is especially important in scenarios, where we have a mixture of static
optimization decisions and high dynamics for other decisions. Furthermore, di-
rected re-optimization allows for step-wise re-optimization, which is beneficial
for incrementally learning conditional statistics and sometimes in highly dy-
namic scenarios, where we have many re-optimizations. We refer to Appendix
B for an analysis of convergence properties of step-wise re-optimization.

Finally, there is a trade-off between monitoring and re-optimization effi-
ciency. So far we realized on-demand re-optimization for example techniques,
including the here presented ones. The specific PlanOptTree design, especially
for complex optimization techniques, constitutes interesting future work.

5.3. Updating PlanOptTrees

Directed re-optimization considers only a subset of operators and thus, can
only return partial PlanOptTrees of rewritten subplans. We therefore incre-
mentally update the existing PlanOptTree with new partial PlanOptTrees after
successful re-optimization. The result is equivalent to creating the PlanOptTree
from scratch (A-PC).

Algorithm A-UP (Update PlanOptTree): The A-UP starts bottom-up
from all violated optimality conditions and removes those OCNodes except for
transitively violated conditions because the new partial PlanOptTree is aware
of them. Then, it recursively removes statistic nodes that do not refer to any
child nodes and were affected by re-optimization. This removes only nodes
included in violated optimality conditions. Finally, we apply the merge of A-
PC (Subsection 4.2) for new partial PlanOptTrees, copy statistics if necessary,
and switch plans as described in Subsection 4.3.

To summarize, directed re-optimization reduces the overhead per re-
optimization step, especially for techniques with large search space. Future
work might consider reusing plans and PlanOptTrees. Finally, we start over
with monitoring optimality during statistic maintenance (Subsection 4.3).

6. Experimental Evaluation

Our experiments study the behavior of on-demand re-optimization regarding
total execution times, optimization times, and workload adaptation properties.
We compare it with periodic re-optimization and unoptimized execution (i.e.,
the initial optimal plan). To summarize, the major results are:

• Execution time improvements increase with increasing workload dynamics
due to immediate adaptation.

21



• We gain optimization time improvements for static workloads due to no
unnecessary re-optimizations.

• Overheads for statistic maintenance, monitoring optimality, and
PlanOptTree algorithms are negligible.

• Directed re-optimization benefits increase with the plan size and the com-
plexity of optimization.

6.1. Experimental Setting

We ran our experiments on an IBM blade LS20 with two AMD Opteron 270
processors, each a 2 GHz Dual Core, and 9 GB RAM, where we used Linux
openSUSE 9.1 (32 bit) as the operating system. Our WFPE (workflow process
engine) is a prototype integration platform including our cost-based optimizer.
The WFPE is implemented using Java 1.6 as the programming language and
consists of approximately 37,000 lines of code. It includes several inbound and
outbound adapters for the interaction with external systems, where we currently
support files, databases, and Web services.

The test integration flows are four plans with different characteristics: Plan
P1 with m = 9 is our simple running example shown in Figure 1. Plan P2

with m = 19 is more complex, where we receive messages, load data from four
systems, apply schema transformations, join all datasets (clique query type) and
finally send the results to another system. The related optimality conditions are
shown in Figure 9. For both plans, the benchmark drivers invoke synchronous
inbound adapters and we use file outbound adapters as external systems in order
to reduce external influences. Furthermore, we use two additional plans P3 and
P4 (described in detail later on), where we vary the number of operators up
to 100 in order to investigate the influence of plan sizes. All experiments use
synthetic data because we want to generate workloads with different selectivities
and cardinalities. Any relative time improvements are specified as (1 − t2/t1),
where t1 represent the baseline, and thus are upper-bounded by 100%.

Our default parameters are as follows. Both optimization models use EMA

(α = 0.5) for statistics aggregation and a relative cost threshold of τ2 = 0.0. For
clarity of presentation, we disabled all optimization techniques except selection
and join reordering. The periodic re-optimization interval is ∆t = 5 min. On-
demand uses a minimal existence time of ∆t = 1 s, a lazy condition count of
τ1 = 10, and our MEMO structure.

6.2. End-to-End Overall Comparison

In a first series of experiments, we investigate the major characteristics of
on-demand and periodic re-optimization as well as unoptimized execution in
terms of their total execution times and optimization times.

Scenario Setup: We use the described plans P1 and P2 and execute dif-
ferent workload scenarios, each with n = 100,000 plan instances but different
dynamics in terms of the number of workload shifts |ws|): low (|ws| = 1), med
(|ws| = 10), and high (|ws| = 100). We use uniform data distributions for all

22



Low (1) Med (10) High (100)

unoptimized
periodic (Δt=5min)
on−demand

To
ta

l E
xe

cu
tio

n 
Ti

m
e 

[m
in

]

0

100

200

300

400

500

600

(a) Exec Plan P1

Low (1) Med (10) High (100)

To
ta

l E
xe

cu
tio

n 
Ti

m
e 

[m
in

]

0

100

200

300

400

500

600

(b) Exec Plan P2

Low (1) Med (10) High (100)

unoptimized
periodic (Δt=5min)
on−demand

To
ta

l O
pt

im
iz

at
io

n 
Ti

m
e 

[s
]

0

5

10

15

20

25

# of Re−Opts:

0

31

2 0

33

12
0

50

102

(c) Re-Opt Plan P1

Low (1) Med (10) High (100)

To
ta

l O
pt

im
iz

at
io

n 
Ti

m
e 

[s
]

0

5

10

15

20

25

0

40

3 0

44

15

0

101 105

(d) Re-Opt Plan P2

Figure 10: Overall Comparison Results with Changing Workload Dynamics.

scenarios. For plan P1, we use an input data size (per plan instance) of 400 KB
and selectivities of {1.0, 0.8, 0.1} for the three Selection operators. A single
experiment thus executed P1 on 38.1 GB of input data. For plan P2, we use an
input data size of 167 KB and cardinalities of {200 KB, 67 KB, 100 KB, 33 KB}
for the four loaded datasets in order to make plan execution times comparable to
P1. Workload shifts are realized by shifting the selectivities (P1) or cardinalities
(P2) round robin to the front (e.g., sel(o1) = sel(o2), etc), done every n/|ws|
plan instances. By shifting selectivities/cardinalities |ws| times, the workload
dynamics include both different impact and frequency of workload shifts. The
results are shown in Figure 10.

Execution Time: Figures 10(a) and 10(b) present the most important
results in the form of total execution times that already include all monitor-
ing and optimization overheads. The runtime for unoptimized execution is not
constant because the initially bad plan becomes optimal4 from time to time.
For static to medium dynamics, on-demand achieves only slight improvements
because there are only few workload shifts and thus total adaptation delays are
low. However, for dynamic workloads, periodic degenerates to unoptimized. In

4The runtime for unoptimized execution is decreasing with increasing workload dynamics
because the initially very bad plan is used less often for dynamic workloads. For example, the
initial plan of P1 is used for 50% of plan instances on low, 36% on med, and 34% on high.

23



contrast, on-demand shows almost constant execution time. The slight increase
for high dynamics is reasoned by the lazy count of τ1 = 10 per workload shift.
The relative benefits depend on the optimization techniques and workload char-
acteristics. For example, in our dynamic scenarios, we achieved improvements
of 40.0% for plan P1 and 60.4% for plan P2.

Optimization Time: In addition, Figures 10(c) and 10(d) show the re-
lated total optimization times and number of re-optimization steps. Unopti-
mized does not exhibit these overheads. Although periodic optimization uses a
fixed optimization interval ∆t, we observe increasing optimization times with
increasing workload dynamics because the resulting number of re-optimization
steps directly depends on the total execution time. For on-demand, the num-
ber of re-optimizations is almost equal to the number of workload shifts. The
additional steps are caused by initial optimization and smoothed statistics that
led to multiple re-optimizations for some workload shifts. In these scenarios, we
benefit only slightly from directed re-optimization due to a rather small search
space. However, we reduced the total optimization time for static workloads by
93.1% for plan P1 and by 90.4% for plan P2.

6.3. Workload Adaptation in Depth

In a second series of experiments, we now have a more detailed look at
workload adaptation in specific scenarios. The purpose is to quantify adaptation
properties rather than an overall performance comparison as discussed before.

6.3.1. Simple-Plan Scenario

Scenario Setup: Scenario A consists of n = 100,000 plan instances of
plan P1 and compares periodic and on-demand re-optimization. We varied the
selectivities of the three Selection operators as shown in Figure 11(a). The
input data was generated without correlations and we varied its cardinality with
{1, 3, 4, 5, 5, 2, 1, 3, 3, 3} (in 100 KB). There are four workload shifts (ws1, ws2,
ws3, and ws4), where crossing selectivities cause new optimal plans.

Runtime Results: Figure 11(c) shows the smoothened and sampled ex-
ecution times of periodic and on-demand. Beside the cardinality-dependent
execution times, we observe adaptation delays for periodic, where we miss opti-
mization opportunities (ws2 and ws3). The workload shifts ws1 and ws4 have
only minor influence due to unchanged minimum operator selectivity (o2). In
contrast, on-demand immediately adapts plans, which led to a cumulative ex-
ecution time improvement of 2.5%. Figure 11(e) shows the optimization time
(incl. recompilation, etc) per re-optimization step. We see that periodic triggers
optimization with fixed interval. It took 25 steps in this scenario. In contrast,
on-demand was only triggered if necessary (at workload shifts) such that we only
required four steps and achieved a cumulative optimization time improvement
of 84.3%. Single directed re-optimizations are not significantly faster than full
re-optimizations due to the small search space. The high execution and opti-
mization times at the beginning are caused by Java just-in-time compilation.

Statistic Maintenance Overhead: Table 2 shows the statistics main-
tenance and monitoring overhead of on-demand. For that we investigate the

24



O
pe

ra
to

r S
el

ec
tiv

ity

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

# of Executed Plan Instances [10,000]

| ws1 | ws2

| ws3

| ws4

σ o4
σ o3
σ o2

(a) Workload Scenario A

O
pe

ra
to

r S
el

ec
tiv

ity

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

# of Executed Plan Instances [10,000]

| ws1 | ws2 | ws3

σ o4
σ o3
σ o2

(b) Workload Scenario B

E
xe

cu
tio

n 
Ti

m
e 

[m
s]

0 2 4 6 8 10

0

50

100

150

200

# of Executed Plan Instances [10,000]

periodic (Δt=5min)
on−demand

| ws1 | ws2 | ws3

| ws4

(c) Execution Time A

E
xe

cu
tio

n 
Ti

m
e 

[m
s]

0 2 4 6 8 10

0

50

100

150

200

250

# of Executed Plan Instances [10,000]

on−demand
on−demand CA

| ws1 | ws2 | ws3

(d) Execution Time B

O
pt

im
iz

at
io

n 
Ti

m
e 

[m
s]

0 20 40 60 80 100 120

0

50

100

150

200

250

Elapsed Time t [min]

# Re−Opts:  periodic: 25
on−demand: 4

periodic (Δt=5min)
on−demand

(e) Re-Optimization Time A

O
pt

im
iz

at
io

n 
Ti

m
e 

[m
s]

0 50 100 150 200

0

200

400

600

800

1000

1200

Elapsed Time t [min]

# Re−Opts: 
on−demand: 8530
on−demand CA: 5

on−demand
on−demand CA

(f) Re-Optimization Time B

Figure 11: Simple-Plan Workload Adaptation Scenario (without/with correlation).

Table 2: Overhead Statistics/Condition Monitoring.

Traditional Minimal POT c1 POT c2 POT c3

159 ms 73 ms 172 ms 314 ms 470 ms

algorithm A-IS in detail. We use the operator statistic trace from Scenario
A that consists of 2,100,000 atomic statistics. Traditional is the baseline (as
used for periodic re-optimization), where all statistics of all operators are main-
tained. Minimal refers to a hypothetical scenario, where we know the required

25



statistics and maintain only these. The relative difference between both is the
benefit we gain by maintaining only relevant statistics. In contrast, POT moni-
toring includes the overhead of our PlanOptTree. Although the A-IS algorithm
declines unnecessary statistics, it is slower than Traditional because for each
statistic tuple, we compute the hierarchy of complex statistics and evaluate op-
timality conditions. We distinguish three configurations: c1 refers to statistic
maintenance without condition evaluation, while c2 and c3 (without/with the
MEMO structure) show the small absolute overhead of continuously monitoring
optimality. In this scenario, using the MEMO structure is slightly slower due to
simple optimality conditions. To summarize, the overhead for statistic main-
tenance and monitoring at operator granularity is negligible compared to the
overall execution time of Scenario A (see Figure 11(c)).

PlanOptTree Algorithm Overhead: We also investigated the other
PlanOptTree algorithms for (1) PlanOptTree creation (A-PC), (2) triggering
re-optimization (A-TR), and (3) PlanOptTree updating (A-UP). For this exper-
iment, we varied the number of Selection operators of plan P1 up to m = 35
operators, generated random statistics, and for A-TR/A-UP, we forced one vi-
olated condition. Even for m = 35, the mean execution time of 100 repetitions
was 0.57 ms (A-PC), 0.02 ms (A-TR), and 0.21 ms (A-UP), respectively. Hence,
these overheads are also negligible compared to the overall optimization time in
Scenario A (see Figure 11(e)).

All Optimization Techniques: On-demand, with selection reordering
enabled, reduced the total unoptimized execution time of Scenario A from
151.7 min to 123.9 min. With all of our cost-based optimization techniques en-
abled (e.g., batched execution, parallel flows, message pipelining), we reduced
this total execution time even to 69.2 min. Accordingly, the relative improve-
ments of on-demand to periodic re-optimization increased almost linearly.

6.3.2. Simple-Plan Scenario with Correlation

In the interest of a fair evaluation, we now investigate a possible limitation
of on-demand re-optimization: the problem of frequent plan changes caused by
correlation.

Scenario Setup: Scenario B executes again n = 100,000 instances of plan
P1. We use the input cardinalities of Scenario A but generated correlated data.
Figure 11(b) shows the conditional selectivities sel(o2), sel(o3|o2), sel(o4|o2 ∧
o3), while we set sel(o3|¬o2) = 1.0 and P (o4|¬o2 ∨ ¬o3) = 1.0. Hence, there
are strong correlations and the selectivities sel(o3) and sel(o4) depend on the
operator ordering5 (only ws2 and ws3 are real workload changes). We compare
on-demand and on-demand CA (with correlation table, see Subsection 4.3).

Runtime Results: Figures 11(d) and 11(f) show again the execution and
optimization times. Without the correlation table selection reordering changes

5For example, from ws3 to the end, we have conditional selectivities of sel(o2) = 0.7,
sel(o3|o2) = 0.2, sel(o4|o2 ∧ o3) = 0.4 but total selectivities of sel(o2) = 0.7, sel(o3) = 0.44,
sel(o4) = 0.92. This leads to different operator orderings.

26



O
pt

im
iz

at
io

n 
Ti

m
e 

[m
s]

20 40 60 80 100

0

200

400

600

800

1000

# of Operators |o|

2s 3s 6s 10s
full opt
sel opt
sel reopt10
sel reopt1

(a) Selection Reordering P3

O
pt

im
iz

at
io

n 
Ti

m
e 

[m
s]

20 40 60 80 100

0

200

400

600

800

1000

# of Operators |o|

2s 3s 6s 10s
full opt
join opt
join reopt10
join reopt1

(b) Join Reordering P4

Figure 12: Directed Re-Optimization Results.

the plan back and forth (up from ws1), even in case of a constant workload
because it wrongly assumes statistical independence. Due to immediate re-
optimization and the small minimal existence time of ∆t = 1 s, we executed
8,530 re-optimization steps. In addition, the permanent change between sub-
optimal and optimal plans led to a degradation of the execution time because
non-optimal plans were used (e.g., after ws2 and ws3). With the correlation
table, the number of re-optimization steps was reduced to 5. There, all three
workload shifts have been recognized, where both ws1 and ws2 required two
re-optimizations each. For ws1, this was due to reverting the wrong decision,
while for ws2, this was due to multiple crossing selectivities, which were learned
incrementally via step-wise directed re-optimization. As a result of the re-
duced number of re-optimization steps and preventing suboptimal plans, we
also achieved a 4.4% total execution time improvement.

6.4. Directed Re-Optimization in Depth

In our third series of experiments, we analyzed the benefit of directed re-
optimization. We generated plans with varying numbers of Selection (P3)
and Join (P4) operators |o| ∈ [10, 100] and measured full and directed re-
optimization time. In contrast to previous experiments, the optimizer was tested
standalone (without dependency graph maintenance, plan compilation, etc). We
fixed the input cardinalities and randomly generated operator selectivities. For
directed re-optimization, we randomly picked k1 = 1 and k2 = 10 operators and
generated new statistics for them to violate optimality conditions. All measure-
ments were repeated 100 times.

Figure 12 shows the results for the optimization techniques selection reorder-
ing (Figure 12(a), Subsection 5.2.1, Plan P3) and join reordering (Figure 12(b),
Subsection 5.2.2, Plan P4). With all optimization techniques enabled, we ob-
serve a full optimization time that empirically grows with O(n5) (the not shown
measurements are annotated at the top right). Here, the optimization time is
mainly dominated by the technique of parallel flow rewriting. With all other
optimization techniques disabled, the optimization time of both full selection re-
ordering (sel opt) and full join reordering (join opt) increase still quadratically.

27



For full re-optimization, these techniques required similar optimization times
due to dependency checking. In contrast, the directed re-optimization times for
one (reopt1 ) and ten (reopt10 ) changed operator selectivities (which led to mul-
tiple violated optimality conditions) increase almost linearly with the number
of plan operators and with the number of violated conditions. Thus, benefits
of directed re-optimization increase with increasing number of operators and
with increasing complexity of optimization techniques. Even for ten changed
operators, we gain significant benefits. Comparing selection reordering and join
reordering, the latter took understandably longer but both show the same typi-
cal behavior. To summarize, we benefit from the reduced re-optimization search
space per technique and from reconsidering only a subset of techniques.

7. Related Work

On-demand re-optimization belongs to the research field of adaptive query
processing (AQP) [17, 30] that addresses unknown/mis-predicted statistics or
changing workloads. AQP also inspired our work but the different runtime
model of integration flows requires a different optimization model. We aim
at optimizing many consecutive plan instances of a deployed integration flow,
which work on new input data. In the following, we show the relationship of
on-demand re-optimization to important areas and techniques of AQP.

Plan-Based Adaptation in DBMS: Traditional inter-query optimization
aims at optimizing individual query instances. Adaption in this context mainly
reduces to the decision when and how to update statistic of the underlying
database [17] but optimization happens on granularity of single or multiple con-
current (for sharing opportunities) queries. In contrast, existing work on AQP
mainly use inter-operator or intra-operator re-optimization of single query in-
stances in order to account for mis-predicted cardinalities of intermediates. Re-
garding inter-operator, we distinguish reactive and proactive approaches [31].
Reactive, inter-operator re-optimization uses the traditional optimizer to cre-
ate a plan, intermediate results are materialized, and if estimation errors are
detected, the remaining plan is reactively re-optimized. Examples are ReOpt
[32] that invokes the optimizer if statistics differ significantly, and Progressive
Optimization [33] that uses validity ranges of statistics. In contrast, proactive,
inter-operator re-optimization proactively creates switchable plans before exe-
cution. Rio [31] computes bounding boxes (similar to validity ranges) around
all used estimates and then creates robust or switchable plans. During runtime
one of three paths can be chosen based on the real statistics (below, estimate,
above). Another proactive technique is Parametric Query Optimization (PQO).
Due to unknown query parameters during query compile time, PQO [34] and
Progressive PQO (PPQO) [35] optimize a query into possible candidate plans
and pick the most-suitable plan when parameters are bound. Intra-operator ap-
proaches triggered re-optimization even during operator runtime. For example,
corrective query processing [18] creates new plans for unprocessed data only
and the results are combined by stitch-up phases. On-demand differs in several
ways. First, our re-optimization scope is not a single query but the average

28



case of short-running plan instances of a deployed plan. Hence, fine-grained
adaptation (inter/intra-operator) based on intermediate results of a single plan
instance is not applicable. Second, we use optimality conditions instead of va-
lidity ranges (or bounding boxes). Those validity ranges are defined as absolute
cardinalities for subplans, which does not necessarily mean that the subplan
is suboptimal. In contrast, we trigger re-optimization only if necessary, i.e.,
if a new plan is certain to be found and our approach allows for directed re-
optimization. Furthermore, we do not enumerate alternative plans beforehand
but monitor optimality of the current (optimal) plan only.

Adaptation of Continuous-Query (CQ) in DSMS: CQ-based adapta-
tion differs in its re-optimization scope of a standing query. Existing work is
classified as routing- or rewriting-based adaptation. Routing-based approaches
do not rely on predefined plans but route tuples along different stateful opera-
tors. An example is Eddies [36, 37] with its eddy operator. Dynamic decisions
on routing paths via routing policies enable fine-grained adaptation [36, 38, 39]
but might incur significant overhead. This overhead can be reduced by routing
groups of tuples as done by the self-tuning query mesh [19]. For rewriting-based
adaptation, the optimizer requests relevant statistics and re-optimization is trig-
gered periodically or on significant changes [30]. Rewriting CQs requires state
migration (e.g., tuples in hash tables) [40] to prevent missing tuples, duplicates,
or changed tuple orders. Hence, reordering relies on extensive statistic profiling.
The Adaptive-Greedy algorithm [41] even uses a so-called matrix view for condi-
tional selectivity profiling and directed re-optimization for the specific technique
of reordering stream filters (selection reordering). On-demand differs again in
several ways. First, the re-optimization scope of CQs and integration flows are
similar but CQs are stateful that requires state migration on re-optimization.
Second, in contrast to passive structures such as matrix views [41], on-demand
enables monitoring optimality and directed re-optimization for arbitrary opti-
mization techniques and actively triggers re-optimization that overcomes the
need for determining when to re-optimize.

Adaptation of Integration Flows: Related work of optimizing integra-
tion flows use rule-based [11, 12, 13, 14], cost-based [10, 13, 15, 16], and adaptive
cost-based [4, 13] approaches. Rule- and cost-based techniques (optimize-once)
cannot adapt the plan to changing workloads. Adaptive cost-based approaches
either use an optimize-always model that triggers optimization for each plan in-
stance [13] or periodic re-optimization [4, 23] that triggers re-optimization with a
fixed time interval. On-demand achieves near-optimal re-optimization behavior
and thus overcomes the drawbacks of existing adaptive cost-based approaches.

8. Conclusions

To summarize, we introduced the concept of on-demand re-optimization
that exploits optimality conditions for re-optimization of integration flows. The
PlanOptTree —as a compact representation of optimality conditions—enables
us to monitor plan optimality during online statistic maintenance and to im-
mediately trigger directed re-optimization if the current plan is not optimal.

29



The experiments have shown that on-demand re-optimization achieves near-
optimal re-optimization behavior in terms of monitoring and re-optimization
overhead as well as adaptation delays. In conclusion, on-demand re-optimization
perfectly adapts to the dynamics of the current workload, i.e., there are no
re-optimizations for static but many immediate re-optimizations for dynamic
workloads. Hence, we benefit from minimized adaptation delays and reduced
re-optimization efforts. Finally, on-demand re-optimization is also applicable in
other areas. For example, it can be extended for re-occurring queries, contin-
uous queries or workflows of MapReduce jobs. In addition, future work might
investigate on-demand re-optimization for specific optimization techniques.

Acknowledgments

We would like to thank Benjamin Schlegel, Ulrike Fischer, Tim Kiefer,
Berthold Reinwald, and Maik Thiele for thoughtful comments on earlier ver-
sions of this paper.

References

[1] L. M. Haas, Beauty and the Beast: The Theory and Practice of Information
Integration, in: ICDT, 2007, pp. 28–43.

[2] P. A. Bernstein, L. M. Haas, Information Integration in the Enterprise,
CACM 51 (9) (2008) 72–79.

[3] A. Y. Halevy, N. Ashish, D. Bitton, M. J. Carey, D. Draper, J. Pollock,
A. Rosenthal, V. Sikka, Enterprise Information Integration: Successes,
Challenges and Controversies, in: SIGMOD, 2005, pp. 778–787.

[4] M. Boehm, Cost-Based Optimization of Integration Flows, Ph.D. the-
sis, TU Dresden, available at http://wwwdb.inf.tu-dresden.de/boehm/
diss_final.pdf (2011).

[5] M. Stonebraker, Too Much Middleware, SIGMOD Record 31 (1) (2002)
97–106.

[6] G. Hohpe, B. Woolf, Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions, Addison-Wesley, 2004.

[7] U. Dayal, M. Castellanos, A. Simitsis, K. Wilkinson, Data Integration
Flows for Business Intelligence, in: EDBT, 2009, pp. 1–11.

[8] W. O’Connell, Extreme Streaming: Business Optimization Driving Algo-
rithmic Challenges, in: SIGMOD, 2008, pp. 13–14.

[9] R. Winter, P. Kostamaa, Large Scale Data Warehousing: Trends and Ob-
servations, in: ICDE, 2010, p. 1.

30

http://wwwdb.inf.tu-dresden.de/boehm/diss_final.pdf
http://wwwdb.inf.tu-dresden.de/boehm/diss_final.pdf


[10] A. Simitsis, K. Wilkinson, M. Castellanos, U. Dayal, QoX-Driven ETL
Design: Reducing the Cost of ETL Consulting Engagements, in: SIGMOD,
2009, pp. 953–960.

[11] A. Behrend, T. Joerg, Optimized Incremental ETL Jobs for Maintaining
Data Warehouses, in: IDEAS, 2010, pp. 1–9.

[12] M. Bhide, M. Agarwal, A. Bar-Or, S. Padmanabhan, S. Mittapalli,
G. Venkatachaliah, XPEDIA: XML ProcEssing for Data IntegrAtion,
PVLDB 2 (2) (2009) 1330–1341.

[13] U. Srivastava, K. Munagala, J. Widom, R. Motwani, Query Optimization
over Web Services, in: VLDB, 2006, pp. 355–366.

[14] M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang, V. Markl, A. Maier,
T. Kraft, An Approach to Optimize Data Processing in Business Processes,
in: VLDB, 2007, pp. 615–626.

[15] A. Simitsis, P. Vassiliadis, T. K. Sellis, Optimizing ETL Processes in Data
Warehouses, in: ICDE, 2005, pp. 564–575.

[16] A. Simitsis, K. Wilkinson, U. Dayal, M. Castellanos, Optimizing ETL
Workflows for Fault-Tolerance, in: ICDE, 2010, pp. 385–396.

[17] A. Deshpande, Z. G. Ives, V. Raman, Adaptive Query Processing, FTDB
1 (1) (2007) 1–140.

[18] Z. G. Ives, A. Y. Halevy, D. S. Weld, Adapting to Source Properties in
Processing Data Integration Queries, in: SIGMOD, 2004, pp. 395–406.

[19] R. V. Nehme, E. A. Rundensteiner, E. Bertino, Self-Tuning Query Mesh
for Adaptive Multi-Route Query Processing, in: EDBT, 2009, pp. 803–814.

[20] P. Bod́ık, A. Fox, M. J. Franklin, M. I. Jordan, D. A. Patterson, Charac-
terizing, Modeling, and Generating Workload Spikes for Stateful Services,
in: SoCC, 2010, pp. 241–252.

[21] T. Rabl, A. Lang, T. Hackl, B. Sick, H. Kosch, Generating Shifting Work-
loads to Benchmark Adaptability in Relational Database Systems, in:
TPCTC, 2009, pp. 116–131.

[22] S. Kavalanekar, B. L. Worthington, Q. Zhang, V. Sharda, Characterization
of Storage Workload Traces from Production Windows Servers, in: IISWC,
2008, pp. 119–128.

[23] M. Boehm, D. Habich, W. Lehner, U. Wloka, Workload-Based Optimiza-
tion of Integration Processes, in: CIKM, 2008, pp. 1479–1480.

[24] N. Reddy, J. R. Haritsa, Analyzing Plan Diagrams of Database Query
Optimizers, in: VLDB, 2005, pp. 1228–1240.

31



[25] R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for
bound constrained optimization, SIAM J. Sci. Comput. 16 (5) (1995) 1190–
1208.

[26] N. Bruno, C. A. Galindo-Legaria, M. Joshi, Polynomial Heuristics for
Query Optimization, in: ICDE, 2010, pp. 589–600.

[27] G. Moerkotte, Building query compilers, 2009, available at http://pi3.

informatik.uni-mannheim.de/~moer/querycompiler.pdf.

[28] M. Boehm, D. Habich, S. Preissler, W. Lehner, U. Wloka, Cost-Based Vec-
torization of Instance-Based Integration Processes, Information Systems
36 (1) (2011) 3 – 29.

[29] M. W. Blasgen, J. Gray, M. F. Mitoma, T. G. Price, The Convoy Phe-
nomenon, SIGOPS Operating Systems Review 13 (2) (1979) 20–25.

[30] S. Babu, P. Bizarro, Adaptive Query Processing in the Looking Glass, in:
CIDR, 2005, pp. 238–249.

[31] S. Babu, P. Bizarro, D. J. DeWitt, Proactive Re-optimization, in: SIG-
MOD, 2005, pp. 107–118.

[32] N. Kabra, D. J. DeWitt, Efficient Mid-Query Re-Optimization of Sub-
Optimal Query Execution Plans, in: SIGMOD, 1998, pp. 106–117.

[33] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, H. Pirahesh, Robust
Query Processing through Progressive Optimization, in: SIGMOD, 2004,
pp. 659–670.

[34] Y. E. Ioannidis, R. T. Ng, K. Shim, T. K. Sellis, Parametric Query Opti-
mization, in: VLDB, 1992, pp. 103–114.

[35] P. Bizarro, N. Bruno, D. J. DeWitt, Progressive Parametric Query Opti-
mization, TKDE 21 (4) (2009) 582–594.

[36] R. Avnur, J. M. Hellerstein, Eddies: Continuously Adaptive Query Pro-
cessing, in: SIGMOD, 2000, pp. 261–272.

[37] S. Madden, M. A. Shah, J. M. Hellerstein, V. Raman, Continuously Adap-
tive Continuous Queries over Streams, in: SIGMOD, 2002, pp. 49–60.

[38] P. Bizarro, S. Babu, D. J. DeWitt, J. Widom, Content-Based Routing:
Different Plans for Different Data, in: VLDB, 2005, pp. 757–768.

[39] F. Tian, D. J. DeWitt, Tuple Routing Strategies for Distributed Eddies,
in: VLDB, 2003, pp. 333–344.

[40] Y. Zhu, E. A. Rundensteiner, G. T. Heineman, Dynamic Plan Migration for
Continuous Queries Over Data Streams, in: SIGMOD, 2004, pp. 431–442.

[41] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, J. Widom, Adaptive
Ordering of Pipelined Stream Filters, in: SIGMOD, 2004, pp. 407–418.

32

http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf


Appendix A. Analysis of PlanOptTree Complexity

For certain plan structures and problems, worst-case complexity bounds can
be guaranteed. Here, we focus on local operator reordering for a sequence of
operators. For m operators, there are m! alternative plans.

Proposition 1 (Local Operator Reordering PlanOptTree Complexity).
Monitoring local optimality of a sequence of m operators has a worst-case
PlanOptTree space complexity of O(m2) nodes and accordingly, the algorithms
A-IS, A-TR, and A-UP have a worst-case time complexity of O(m2).

Proof. Assume a plan P of a sequence of m operators o. A minimal
PlanOptTree has at most m ONodes, m·s SNodes, 2·|oc| CSNodes (two complex
statistics nodes for each binary optimality condition), and |oc| OCNodes. Each
operator can be included at most in one local optimality condition per depen-
dency (in case of a data dependency this subsumes any temporal dependency).
Then, an arbitrary operator oi with 1 ≤ i ≤ m can—in the worst case—be the
target of i− 1 dependencies δ−i , and it can be the source of m− i dependencies
δ+i . Based on the equivalence of δ− = δ+ and thus, |δ−| = |δ+|, the maximum
number of optimality conditions is inherently given by

|oc| =
m∑
i=1

(i− 1) =
m(m− 1)

2
. (A.1)

The total number of nodes is therefore m+ s ·m+ 3 ·m(m− 1)/2. Since s is a
constant, we haveO(m2) nodes in the worst case. Processed nodes are memoized
such that the algorithms A-IS, A-TR, and A-UP access at most O(m2) nodes
per invocation. Hence, Proposition 1 holds. �

Appendix B. Analysis of Directed Re-Optimization

In the general case, but depending on the PlanOptTree design per optimiza-
tion technique, we can give correctness guarantees for directed re-optimization.
Here, we focus on (1) equivalence to full re-optimization and (2) convergence of
step-wise re-optimization, for reordering sequences of operators.

Appendix B.1. Directed Re-Optimization

Proposition 2 (Directed Operator Reordering Equivalence). Directed
re-optimization (re-ordering) of all operators o′ ∈ P included in violated
optimality conditions C′ of a PlanOptTree (for a sequence of m operators o),
is equivalent to the full re-optimization of all operators o ∈ P .

Proof. Assume all dependencies between operators o of plan P to be a directed
graph G = (V,E) of vertexes (operators) and edges (dependencies). Then, the
re-optimization of P is a graph homomorphism f : G → H. In order to prove
Proposition 2, we show that

∀oi /∈ o′ :
(
vpre(oi) ∈ G ≡ vpre(oi) ∈ H

)
∧
(
vsuc(oi) ∈ G ≡ vsuc(oi) ∈ H

)
, (B.1)

33



where vpre(oi) denotes the set of predecessors of operator oi and vsuc(oi) denotes
the set of successors of oi. (1) If there exists a homomorphism f : G→ H such
that

vj ≺ oi ∈ G ∧ oi ≺ vj ∈ H, (B.2)

then, the order vj ≺ oi is represented by an optimality condition oc with
oi, vj ∈ oc or by a transitive optimality condition toc with oi, vj ∈ toc. The
same is true for successors of oi. (2) The PlanOptTree allows for arbitrary
optimality conditions between operators and input statistics. Hence, during
re-optimization, f : G → H, the globally optimal solution will be found. (3)
Further, all operators o′ included in violated optimality conditions ∀oi ∈ oc′

with oc′ ∈ C′ or transitive optimality conditions ∀oi ∈ toc′ with toc′ ∈ C′ are
used by f : G→ H. As a result,

@
(
oi /∈ o′ ∧

((
vpre(oi) ∈ G 6= vpre(oi) ∈ H

)
∨
(
vsuc(oi) ∈ G 6= vsuc(oi) ∈ H

)))
,

(B.3)
such that both directed re-optimization and full re-optimization results in the
same plan. Hence, Proposition 2 holds. �

Appendix B.2. Step-Wise Directed Re-Optimization
Proposition 3 (Step-Wise Directed Re-Optimization Convergence).
For optimization problems min Ŵ (P ) with a single minimum, step-wise directed
re-optimization converges to the same plan P ′ as directed re-optimization if the
workload ω is static in the time interval [T1, T2] with @wsi ∈ [T1, T2].

Proof. Assume a finite plan search space S and exact runtime statistics. (1)
For an optimization problem with a single minimum, we have

P ′ = arg min
∀P∈S

Ŵ (P ) = opt
∀P∈S

(P ), (B.4)

independent of the optimization start point plan P because for problems with
a single minimum, there is by definition only one local optimum and hence
it is also the global optimum. (2) Given a static workload ω in the time
interval [T1, T2] with @wsi ∈ [T1, T2] directly implies that the optimal plan
P ′ = arg min∀P∈S Ŵ (P ) is constant in [T1, T2]. (3) By definition of the
PlanOptTree, any partial re-optimization step addresses at least one optimality
condition oci and all of its transitive optimality conditions toc(oci). Each partial
re-optimization P ′oci = optoci(P ) reduces the plan costs with Ŵ (P ′oci) < Ŵ (P ).
Thus, no cycles are possible. Re-optimization steps are triggered as long as
at least one optimality condition oci is violated. Without loss of generality,
assume T1 = 0 and T1 =∞. Then, we can conclude that step-wise directed re-
optimization in the finite search space S converges to P ′ = arg min∀P∈S Ŵ (P ).
Hence, Proposition 3 holds. �

Given our monotonic operator cost function (see Subsection 2.2), any plan
optimization problem min Ŵ (P ) can be transformed into an optimization prob-
lem with a single minimum by adding new optimality conditions, i.e., by concep-
tually transforming it into a higher-dimensional space. However, this property
clearly depends on the specific PlanOptTree design.

34


	1 Introduction
	2 Background and Preliminaries
	2.1 Integration Flows
	2.2 Optimization of Integration Flows

	3 Solution Overview
	4 Monitoring Optimality
	4.1 Plan Optimality Trees
	4.2 Creating PlanOptTrees
	4.3 Updating and Evaluating Statistics

	5 Directed Re-Optimization
	5.1 Re-Optimization Search Space
	5.2 Example Optimization Techniques
	5.2.1 Selection Reordering
	5.2.2 Heuristic Join Reordering
	5.2.3 Heuristic Vectorization
	5.2.4 Discussion of Complexity Analysis

	5.3 Updating PlanOptTrees

	6 Experimental Evaluation
	6.1 Experimental Setting
	6.2 End-to-End Overall Comparison
	6.3 Workload Adaptation in Depth
	6.3.1 Simple-Plan Scenario
	6.3.2 Simple-Plan Scenario with Correlation

	6.4 Directed Re-Optimization in Depth

	7 Related Work
	8 Conclusions
	Appendix  A Analysis of PlanOptTree Complexity
	Appendix  B Analysis of Directed Re-Optimization
	Appendix  B.1 Directed Re-Optimization
	Appendix  B.2 Step-Wise Directed Re-Optimization

	Appendix  C Comments on Paper Revision



