
Large Scale Discriminative Metric Learning

Peter D. Kirchner∗, Matthias Boehm∗∗, Berthold Reinwald∗∗, Daby Sow∗, Michael Schmidt∗∗∗,
Deepak Turaga∗ and Alain Biem∗

∗∗∗Columbia University Medical Center, New York, New York
∗∗IBM Almaden Research Center, San Jose, California

∗IBM T.J. Watson Research Center, Yorktown Heights, New York
{pdk,mboehm,reinwald,sowdaby,turaga,biem}@us.ibm.com

mjs2134@cumc.columbia.edu

ABSTRACT

We consider the learning of a distance metric, using
the Localized Supervised Metric Learning (LSML) scheme,
that discriminates entities characterized by high dimensional
feature attributes, with respect to labels assigned to each
entity. LSML is a supervised learning scheme that learns
a Mahalanobis distance grouping together features with the
same label and repulsing features with different labels. In this
paper, we propose an efficient and scalable implementation
of LSML allowing us to scale significantly and process large
data sets, both in terms of dimensions and instances. This
implementation of LSML is programmed in SystemML with
an R-like syntax, and compiled, optimized, and executed
on Hadoop. We also propose experimental approaches for
the tuning of LSML parameters yielding significant analyti-
cal and empirical improvements in terms of discriminative
measures such as label prediction accuracy. We present
experimental results on both synthetic and real-world data
(feature vectors representing patients in an Intensive Care
Unit with labels corresponding to different conditions) as-
sessing respectively how well the algorithm scales and how
well it works on real world prediction problems.

I. INTRODUCTION

Distance metric learning corresponds to a class of prob-
lems that has received a lot of recent interest in data mining
literature [9]. There are different types of distance metrics
including well known fixed metrics – such as Euclidean
distance for numeric data – and learning based metrics
that require learning appropriate (linear, non-linear, global or
local) transformations of the data before fixed metric com-
putation, such that the resulting metric supports the needs
of a data mining task. Different types of metric learning
schemes have been designed for various data mining tasks,
that include supervised, unsupervised and semi-supervised
problems. Metric learning schemes are also closely related
to Kernel learning and dimensionality reduction problems [5]
that have been studied extensively in data mining.

Supervised metric learning approaches require the pres-
ence of an annotated/labeled set of data items that define
requirements on the metric to be learned. The resulting
metrics allow for better separation of the data into different
classes – as is the case for classification tasks. What this

means is that the metric (corresponding transformation) must
be chosen such that it takes small values for data items that
have the same class label, and large values for data items with
different class labels, allowing for a cleaner separation of
these data items. Such classification tasks are very common
in several applications ranging from object recognition in
images, image classification and retrieval, and text document
analysis. Recently, discriminative metric learning has also
been applied to medical informatics [8] for the computation
of patient similarity in support of diagnostic and predictive
analysis tasks.

In this paper, we consider one such discriminative met-
ric learning scheme, Localized Supervised Metric Learn-
ing [7], designed for high-dimensional data classification
tasks. Based upon labeled data items, LSML calculates a
projection of the data items onto a chosen reduced di-
mensionality d in order to optimize a “local” scatteredness
objective function. This objective function captures the ratio
between the average distance (after transformation) to kinner
nearest neighbors with the same class label, and the average
distance to the kouter nearest neighbors with different class
label – for each data item in the training set. Minimizing this
ratio then leads to naturally bringing closer neighbors with
the same class label, while moving farther apart neighbors
with different class labels, thereby supporting the task of dis-
criminating among the two classes. Learning this projection
requires an iterative gradient descent based optimization, that
is discussed in more detail in Section II.

LSML has been shown to be very effective in solving
various problems in different domains, however prior im-
plementations with tools such as Matlab and Python rely
upon the programmer using a lower level of abstraction to
express the parallelization strategy (if any), which tends to
constrain the scalability of the algorithm to specific sizes and
dimensionality of the training dataset. With several problems
now requiring the analysis of Big Data, these implemen-
tations are inadequate. In this paper, we first realize an
implementation of the LSML algorithm using SystemML [4]
that is designed specifically for Big Data problems, and
runs on Hadoop to scale computation. SystemML provides
a declarative language with an R-like syntax for algorithm
developers to write programs without hardcoding problem-
size or platform-specific details. SystemML compiles the

programs, costs alternative execution plans, and automat-
ically picks the most efficient execution plan given the
constraints of JVM memory, data characteristics, and other
infrastructure and configuration details.

Additionally, prior work on LSML has ignored the se-
lection of the algorithm parameters d, kinner and kouter,
requiring instead the user to choose reduced dimension and
neighborhood size arbitrarily, or painstakingly determine the
optimal parameterizations for their problem. In this paper, we
investigate the impact of these parameters on the resulting
discrimination ability, specifically in terms of classification
performance. By exploiting some of the inherent parallelism
in determining projections for many values of reduced di-
mension and neighborhood size, and by amortizing the cost
of the ordered-neighbor calculations across those values, we
can efficiently determine the optimum LSML parameteriza-
tion for a specific training dataset.

Finally, we use the resulting implementation to determine
patient similarity on a real-world dataset from a neurological
Intensive Care Unit (ICU), such that patients with differ-
ent complications are better discriminated by the resulting
metric, allowing for improved diagnoses and predictions of
patient complications.

This paper is organized as follows: In Section II we
describe the LSML formulation in more detail, highlighting
the essential computations, as well as algorithmic com-
plexity. In Section III we discuss SystemML, and present
some details of our implementation of the LSML algorithm.
We then present experimental evaluations of our work in
Section IV where we discuss the impact of the different
LSML parameters and classification performance on real-
world patient datasets. We conclude in Section V.

II. LOCALIZED SUPERVISED METRIC LEARNING

The notion of ”similarity” is intrinsically subjective. In
a healthcare setting, while looking for similarities across
patients, physicians often have an objective in mind. They
do not base their comparisons exclusively on quantitative
measurements such as lab results and physiological sensor
measurements. They naturally take into account many addi-
tional clinical factors characterizing their cohorts of patients,
such as demographics and disease history. To capture this
subjective clinical notion of similarity, we learn a simi-
larity distance metric using a Localized Supervised Metric
Learning (LSML) scheme as described in [8]. This learning
process is done in a supervised way, based on labels provided
by physicians. LSML automatically adjusts the importance
of each numeric feature to produce a similarity metric
attempting to cluster patients with similar labels together and
discriminate patients with different labels.

Once the metric is learned, it can be used in several
ways. All the features can be clustered, using any well
known clustering techniques such as the k-means clustering
algorithm with the learned metric in attempt to discover
structural properties in the data set. Classifiers can also
be built either by a direct application of instance-based
classification schemes like the K-Nearest Neighbor algorithm

or using standard statistical classification schemes after trans-
formation of the feature set into a new space according to
the projection matrix derived from the metric learned.

Formally, let feature vectors be represented by a N-
dimensional feature vector x. Such vectors may represent
patients in a healthcare setting. Let xi represent a feature
vector for an entity i. Our goal is to learn a generalized
Mahalanobis distance between feature vectors xi and x j
defined as:

dm(xi,x j) =
√

(xi− x j)>P(xi− x j) (1)

where P ∈ RN×N is called the precision matrix. Matrix
P is positive semi-definite and is used to incorporate the
correlations between different feature dimensions. The key
is to learn the optimal P such that the resulting distance
metric has the following properties:
• Within-class compactness: patients of the same label are

close together;
• Between-class scatteredness: patients of different labels

are far away from each other.
To formally measure these properties, we use two kinds of
neighborhoods as defined in [11]: The homogeneous neigh-
borhood of xi, denoted as N o

i , is the kinner-nearest patients
of xi with the same label. The heterogeneous neighborhood
of xi, denoted as N e

i , is the kouter-nearest patients of xi with
different labels. In the rest of this paper, we assume that
kinner = kouter = k, unless specified otherwise.

We define the local compactness C of point xi from these
two neighborhoods as:

Ci = ∑
x j∈N o

i

d2
m(xi,x j) (2)

Similarly, let Si denote the local scatteredness of point xi.
Si is defined as:

Si = ∑
xl∈N e

i

d2
m(xi,xl) (3)

The discriminability of the distance metric dm is defined
as

J =
∑i Ci

∑i Si
=

∑i ∑x j∈N o
i
(xi− x j)

>P(xi− x j)

∑i ∑xl∈N e
i
(xi− xl)>P(xi− xl)

(4)

We aim at finding a P that minimizes J . This is equivalent
to minimizing the local compactness and maximizing the
local scatteredness simultaneously. In contrast with linear
discriminant analysis [3], which seeks for a discriminant
subspace in a global sense, the localized supervised metric
aims to learn a distance metric with enhanced local discrim-
inability.

Since P is a low-rank positive semi-definite matrix, we
can decompose the precision matrix as P = W ·W T , where
W ∈ RN×d and d ≤ N. The distance metric can be rewrit-
ten as dm(xi,x j) = ‖W T xi−W T x j‖. Therefore, the distance
metric is equivalent to the Euclidean distance over the low-
dimensional projection W T k. Furthermore, as explained by
Wang, et al. [10] and Jai, et al. [6], the minimization of J

can be rewritten as a maximization problem where we are
seeking the optimal transformation W ∗ as follows:

W ∗ = arg max
WW T=I

Tr[W T SpW]

Tr[W T SlW]
(5)

Here Sp and Sl are respectively called the penalty matrix
and similarity matrix and can be derived respectively from
local scatteredness S and the local compactness C . This
reformulation of the problem allows us to map it into a well
studied trace ratio minimization problem where finding W ∗

can be done numerically using the Decomposed Newton’s
Method as shown in [6].

III. SYSTEM DESCRIPTION

Figure 1 shows a block diagram of our implementation
of the LSML algorithm in scripts written for SystemML.
The SystemML compiler parses our scripts and represents
the computation as Directed Acyclic Graphs (DAGs) of
operators. The compiler applies optimizations such as com-
mon subexpression elimination, operator reordering, operator
selection, and piggybacking to group multiple instructions
(runtime operators) into a small number of Map-Reduce
jobs. Instructions in SystemML range from sequential, in-
memory implementations running on a single machine to
distributed implementations running in Map-Reduce on large
clusters. The MR instructions operate on blocks of matrices,
where individual matrix blocks can be in dense or sparse
representations. At runtime, the SystemML control program
(CP) executes the single node instructions and also drives the
execution of the Map-Reduce jobs. The SystemML control
program maintains a multi-level buffer pool to reuse/evict
in-memory datasets and exchange datasets with operators
running in MapReduce.

The compiler selects operators based on a cost model
which uses data characteristics and worst-case memory esti-
mates that guarantee hard memory constraints to avoid out-
of-memory situations. For missing data characteristics, the
compiler sets re-optimization hooks that use current data
characteristics at runtime to regenerate execution plans. As
data sizes grow to the extent that they don’t fit in a single
node computation, the SystemML compiler selects operators
to run on the MapReduce side.

The LSML scripts exploit the SystemML ParFOR lan-
guage construct for task parallelism [1]. Assuming no loop-
carried dependencies, each iteration of a ParFOR may be
executed independently and in parallel. Conceptually, Sys-
temML groups iterations into tasks, the tasks are executed
by workers, and the worker results are merged into the
final results. SystemML supports various runtime strategies
for task partitioning methods (e.g., fixed-size, factoring),
parallel workers (e.g., local multi-core, remote MapReduce
tasks), result merge strategies, as well as optimizations for
data access-aware data partitioning and locality. Based on
data and system characteristics, the SystemML optimizer
then estimates costs of alternative execution strategies to

automatically create efficient parallel execution plans. Exam-
ple ParFOR rewrites are operator selection such as parallel
worker execution types and configuration changes such as
the degree of parallelism.

Our implementation of LSML in SystemML consists of
two parts that communicate through the Hadoop Distributed
File System (HDFS): the neighborhood computation and the
LSML projection optimization as shown in Figure 1. This
partitioning is not required, but it does facilitate studying
scaling of the different parts of the calculation, independent
development and debugging of those parts, and reuse of inter-
mediate results when desired. The neighborhood computation
consists of two scripts sharing results on HDFS. The first
script implements a Euclidean distance computation between
each feature vector in the data set. This orderedDistances
script produces two matrices of size nt ×nt where nt is the
total number of training cases processed. The matrix ele-
ments record for within- and between-classes, respectively,
the ordering of nearest-neighbors. An element of the distance
matrix at position (i, j) records the rank of feature vector j in
the ordered list of nearest neighbors for feature vector i, i.e.
1 if the (i, j) are nearest-neighbors. This encoding allows the
second script, sMatrixCalculation, to calculate and store the
LSML algorithm’s penalty and similarity matrices, Sp and Sl
in parallel over a specified range of k.

The second part of the implementation of LSML consists
of a script computing optimum transformations W over a
range of reduced dimensionality values d, using the Sp
and Sl matrices from the neighborhood computation. This
script performs matrix eigenvalue decompositions and the
Decomposed Newton’s Method to converge to optimum
transformations.

The eigendecomposition is currently implemented as an
external user-defined function which wraps calls through java
to the java translation of LAPACK, jlapack, which is not
parallelized. DSYEV is currently what we use for eigen-
value decomposition. On the final Decomposed Newton’s
Method iteration, assuming convergence, the d eigenvectors
corresponding to the algebraically largest eigenvalues form
the optimum projection for the given d and k. The trace
ratio calculated for a given d and k could be used to speed
convergence at the next lower d, but this would limit the
available parallelism by introducing a dependency.

Figures 2 and 3 show snippets of LSML scripts demon-
strating the ease of programming Big Data analytics in
SystemML. Figure 2 shows how distances are currently
evaluated as part of the neighborhood computation while
Figure 3 shows the heart of the Decomposed Newtons
Method iteration including the invocation of an external
function for eigendecomposition. Figure 3 shows a fully
vectorized expression for gradient calculation (cf grad =) that
epitomizes the what not how declarative programming style
that does not constrain the SystemML optimizer in rewriting
and planning. Figure 2 includes a nested parfor construct
where we have reverted to a more imperative mode of
expression in explicitly specifying the triangular, row-column
computation of distances. However, the SystemML optimizer

Fig. 1. Overall system architecture.

...
calculate half of the symmetric
square-distance matrix
for all training cases
alldist = matrix(0, rows=n_t, cols=n_t);
parfor(r in 1:(n_t-1)){

Xr = X_train[r,];
myd = matrix (0, rows = 1, cols = n_t)
parfor(c in (r+1):n_t) {

myd[1,c] =
sum((Xr - X_train[c,])ˆ2);

}
alldist[r,] = myd;

}
alldist = alldist + t(alldist);
...

Fig. 2. Snippet of LSML script for the neighborhood computation.

can compile this task parallel formulation into distributed
in-memory operations exploiting the full degree of cluster
parallelism. Furthermore, even if X train and alldist are too
large to fit in memory of remote tasks, the optimizer will
automatically apply data and result partitioning according
to the row-wise access pattern. Thus, it still ensures good
scalability for large numbers of instances.

IV. EXPERIMENTAL EVALUATIONS

We have performed several experiments to measure the
compute scaling and analytical performance of the imple-

...
Decomposed Newton’s Method iteration.
S = Sp - (St * lambda);
S = 0.5 * (S + t(S));
[D,V] = eigen(S);
grad = t(diag(t(V)%*%St%*%V));
next_lambda=

getexpectation(lambda,D,grad,d);
...

Fig. 3. Snippet of LSML script for the projection optimization.

mentation presented in Section III. We focused exclusively
on the performance of the LSML implementation on Hadoop.
For these tests, we used a 5 node cluster running IBM
Hadoop Cluster 1.3. Each node is an IBM model HS22 7870-
AC1 with 64GB memory, dual quad-core 3.6 GHz Intel P4
x5687 Xeon processors with hyperthreading enabled. This
appears as a total of 16 cores to the node’s operating system,
and Hadoop is configured accordingly at 16 cores/node.
Each node has two 500GB SAS hard drives in a raid
0 configuration for both local and HDFS storage. Inter-
node communication is provided by both gigabit ethernet
and 10Gb/sec Infiniband interconnects. Java and map-reduce
were configured for 2 GB JVM memory. SystemML was
configured with JVM reuse enabled, a default number of
reducers of 10, and a memory budget ratio of 0.7.

Fig. 4. LSML Euclidean distance neighbor-ordering time versus the number
of instances for selected numbers of features.

A. Scaling Experimental Results

As presented in Section III, our implementation of LSML
has two main components: the neighborhood computation
and the projection optimization. To assess the scaling per-
formance of these components, we synthetically generated
feature sets by augmenting an existing real patient data set
provided by the Columbia Medical Center with randomly
generated features.

Figure 4 shows the time, including file i/o, to order inner
and outer neighbors by Euclidean distance as a function
of the number of training instances nt . This figure shows
five series corresponding to different numbers of features
per instance (n f). In all five series, we observed that the
calculation time increases superlinearly with the number of
instances, reflecting the (O(n2

t)) cost of computing pairwise
distances (linearly dependent upon n f), and the cost of
sorting which is independent of n f . Therefore there is only
weak dependence upon n f observed for this portion of the
neighborhood calculation.

Figure 5 shows the time required, including file i/o, to
calculate the S matrices as a function of the total number
of training instances nt for neighborhood sizes k from 1 to
64. This figure depicts five series corresponding to differ-
ent feature dimensions. In all five series, computing the S
matrices increases superlinearly with the number of training
instances, and also increases with the number of features (the
dimensionality of the S matrices is n f x n f). There is also
some apparent variability in the time taken for the calculation
to complete, leading to the intersection of two of the series.

Figure 6 shows the projection optimization time as a
function of n f , the dimension of our feature vectors. As
expected, this relationship converges to a cubic dependency
due to the gradient calculation in the Newton’s method
iteration. The projection computation has no dependency
on the number of training instances (cases), but because
this additional timing data was collected versus nt , it is
shown here to illustrate the extent to which the runtimes
are reproducible for a given n f .

Fig. 5. Time to calculate the penalty and similarity matrices Sp and Sl as a
function of the number of instances in the training set, for several different
feature dimensions and all neighborhood sizes from 1 to 64.

Fig. 6. Projection optimization time versus feature dimension over neigh-
borhood sizes from 1 to 64 and reduced simension from 2 to 32. Execution
time converges to a n3

f dependency reflecting the O(n3) dependence of the
gradient calculation in Newton’s Method. No dependence on number of
training cases nt is expected for this portion of the LSML computation.

B. Analytical Experimental Results

A series of experiments has been performed to assess
the analytical performance of the algorithm in its ability to
discriminate feature vectors. The methodology used for these
experiments is shown on Figure 7. For these experiments, we
used a real-world data set consisting of physiological time-
series data from 295 patients from the Columbia Medical
Center Neuro ICU. Cases had a binary label whose value
indicated whether or not the patient had developed secondary
complications. Patients were temporally aligned by time
of injury (or admission). We produced a feature set for
LSML training from the features available 24 hours prior
to development of the complication. Based upon the label,
LSML will compute projections that should help analytics
predict which future patients will develop complications in
the next 24 hours.

We selected 72 features which were available for all

Fig. 7. Approach used to classify for secondary complications

patients. Most of these features were Heart Rate Variability
(HRV) [2] statistics extracted from continuous electrocar-
diogram waveforms sampled at 240 Hz. These waveforms
were condensed to HRV statistics via analytics deployed on
our stream computing platform (IBM InfoSphere Streams
version 3.0). For LSML, all features were further post-
processed and Z-normalized to produce feature vectors on a
per patient basis. Only physiological data recorded 24 hours
before the complication diagnosis were used in the feature
generation. The output of these steps is a labeled feature set
that we partition into 10 stratified folds for cross validation.
In cross-validation, we hold out one fold for testing and use
the remaining 9 folds for training. We then repeat for each
testing fold, so that training and testing occur with all the
data, but no training case is used for testing in any given run.
The folding is maintained throughout the subsequent analytic
evaluation.

We evaluated projection matrices W by applying the pro-
jection to the corresponding folds and then applying several
standard machine learning algorithms to the transformed
training and testing datasets. For this study we used a selec-
tion of Weka version 3.6.10 classifiers (some invoked with a
selection of parameterizations), but could have additionally
or alternatively used a somewhat different set of classifiers in
SystemML. Following standard cross validation techniques
we repeated these experiments for all 10 folds and measured
the performance of the classification.

The computational efficiency of our implementation of
the LSML algorithm on Hadoop allowed us to run this
experiment for many combinations of d and k, where d is
the reduced dimension after LSML projection and k is the
neighborhood size. For these tests, d took all values between
2 and 45. kinner and kouter were set to be equal at k which
took all values from 1 to 104. For the 10 folds, the De-
composed Newton’s Method converged within 20 iterations
38,088 times (out of 41,184), producing dimension-reducing
transformations. The total computation (Ordered Distances,
S Matrix Computation, and Projection Optimization, plus
writing the transformed training and testing datasets to disk
for subsequent classification experiments) took just over 61
minutes (3673 seconds) on the 5 node, 80 core cluster. The
amortization of computation (e.g. neighborhood calculation)
and available parallelism with multiple values of d and
k is clearly beneficial, as the per− trans f orm cost is 96
milliseconds in average.

We subsequently systematically evaluated the performance
of several different classifiers for these tests. To each of
the 38,088 transformed and folded training sets produced,
9 different classifier/parameter combinations were applied
producing 342,792 models. Each model was applied to the
single corresponding transformed testing fold. If results were
available for all folds, the test results were then combined
across folds, producing classification prediction results cov-
ering all instances. Each set was unique in its combination

10 20 30 40 50 60 70 80 90 100

10

15

20

25

30

35

40

45

Neighborhood Size

R
ed

u
ce

d
 D

im
en

si
o
n

0.64

0.66

0.68

0.7

0.72

0.74

Fig. 8. Complication Classification Area Under the Curve for different values for d (reduced dimension) and k (neighborhood size).

of d, k, classifier and classifier parameter set; 29,412 full
sets of prediction results were produced in this experiment.
The results were processed to calculate the receiver oper-
ator curve and the corresponding Area Under the Receiver
Operating Characteristic Curve (AUC). Figure 8 shows the
best AUC obtained for a given pair (d,k) (this figure does
not reveal the classifier and parameterization that produced
this performance). This surface allowed us to exhaustively
identify the best values for d and k for this data set. Table
I lists each classifier evaluated in column 1, and gives its
performance on the untransformed dataset in column 2. The
third column selects the best classification results for this
specific algorithm, and the fourth and fifth columns present
the (d,k) value at which this result was achieved. We note
significant improvement in AUC with application of LSML
to the feature set before classification. For some classifiers,
the improvement is profound.

V. CONCLUDING REMARKS

In conclusion, we have developed and evaluated a scalable,
distributed system for Localized Supervised Metric Learning
that includes automatic optimization for problem size and
available computational resources. The system is capable
of efficient, exhaustive parallel exploration of the range of
input parameterizations of the LSML algorithm for which the

Algorithm AUCnoLSML AUCLSML doptimal koptimal
Naive Bayes -D 0.542 0.750 16 92
Logistic Regression 0.696 0.729 16 104
Naive Bayes Kernel 0.691 0.721 20 24
Random Forest 0.625 0.711 20 96
Decision Tree 0.606 0.705 16 104

TABLE I
CLASSIFICATION PERFORMANCE ON NEURO-ICU DATA SET BEFORE

AND AFTER LSML TRANSFORMATION.

problem- and data-dependent optimum values are not known
a priori. We show scalability of the system across a range
of problem sizes, varying the number of cases and number
of features. We apply LSML to learn patient similarity, and
improve classifier performance, in order to predict medical
diagnosis of complications in Neurological Intensive Care
Unit patients from data available 24 hours prior to diagnosis,
a window of clinical significance where prediction has the
potential to improve treatment outcomes. Full exploration of
neighborhood size and reduced dimension permits optimum
selection of these LSML input parameters. Currently this
selection is based upon impact of these parameters on
classifier performance. SystemML, with an R-like syntax,

makes the system more accessible to, and adaptable by, data
analysts, while the declarative programming style allows the
underlying SystemML to optimize the generated code for
scalability, given the variability in the explored datasets.

There are several directions for future work. These include
evaluating the LSML implementation in SystemML on large-
scale problems in other domains to evaluate the scalability,
and accuracy-performance tradeoffs more comprehensively.
Given the non-trivial dependence of the algorithm on param-
eters d and k, there is an opportunity to develop efficient
search strategies to identify appropriate settings of these
parameters for new problems. While the current work uses
the same value k for kinner and kouter, separate parameteri-
zation could be explored. We also anticipate extensions of
the algorithm for cases with multiple classes in the data
(as opposed to binary problems), as well as scenarios with
multiple types of labels associated with each data item. A
patient may have co-morbidities, where such multi-attribute
labels need to be considered appropriately to determine
similarity. Extensions to fully integrate LSML into streaming
scenarios, where data items, features describing data items,
or labels about these items arrive incrementally over time,
are important in real-world settings.

REFERENCES

[1] M. Boehm, S. Tatikonda, B. Reinwald, P. Sen, Y. Tian, D. R. Burdick,
and S. Vaithyanathan. Hybrid parallelization strategies for large-
scale machine learning in SystemML. In Proceedings of the VLDB
Endowment (PVLDB), 7(7), 2014.

[2] G. Clifford. Signal Processing Methods For Heart Rate Variabil-
ity,DPhil. Thesis. Oxford University, 2002.

[3] K. Fukunaga. Introduction to Statistical Pattern Recognition. Aca-
demic Press, San Diego, California, 1990.

[4] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sind-
hwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan. Systemml:
Declarative machine learning on mapreduce. In Proceedings of the
2011 IEEE 27th International Conference on Data Engineering, ICDE
’11, pages 231–242, Washington, DC, USA, 2011. IEEE Computer
Society.

[5] J. Han. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2005.

[6] Y. Jia, F. Nie, and C. Zhang. Trace ratio problem revisited. IEEE
Transactions on Neural Networks, 2009.

[7] J. Sun, D. Sow, J. Hu, and S. Ebadollahi. Localized supervised
metric learning on temporal physiological data. In Proceedings of
the 2010 20th International Conference on Pattern Recognition, ICPR
’10, pages 4149–4152, Washington, DC, USA, 2010. IEEE Computer
Society.

[8] J. Sun, D. Sow, J. Hu, and S. Ebadollahi. A system for mining temporal
physiological data streams for advanced prognostic decision support.
In Proceedings of the 2010 IEEE International Conference on Data
Mining, ICDM ’10, pages 1061–1066, Washington, DC, USA, 2010.
IEEE Computer Society.

[9] F. Wang and J. Sun. Distance metric learning in data mining part 1
and 2. In SIAM SDM Tutorial, 2012.

[10] F. Wang, J. Sun, T. Li, and N. Anerousis. Two heads better than one:
Metric+active learning and its applications for it service classification.
In ICDM, 2009.

[11] F. Wang and C. Zhang. Feature extraction by maximizing the
neighborhood margin. In CVPR, 2007.

