
On Optimizing Machine Learning Workloads via Kernel Fusion

Arash Ashari ∗

Department of Computer
Science and Engineering,
The Ohio State University,

Columbus, OH, USA

ashari@cse.ohio-state.edu

Shirish Tatikonda
Matthias Boehm

Berthold Reinwald

IBM Research – Almaden,
San Jose, CA, USA

statiko,mboehm,
reinwald@us.ibm.com

Keith Campbell
John Keenleyside

Hardware Acceleration
Laboratory, IBM,

Markham, ON, Canada

keithc,keenley@ca.ibm.com

P. Sadayappan

Department of Computer
Science and Engineering,
The Ohio State University,

Columbus, OH, USA

saday@cse.ohio-state.edu

Abstract

Exploitation of parallel architectures has become critical to scal-
able machine learning (ML). Since a wide range of ML algorithms
employ linear algebraic operators, GPUs with BLAS libraries are a
natural choice for such an exploitation. Two approaches are com-
monly pursued: (i) developing specific GPU accelerated imple-
mentations of complete ML algorithms; and (ii) developing GPU
kernels for primitive linear algebraic operators like matrix-vector
multiplication, which are then used in developing ML algorithms.
This paper extends the latter approach by developing fused ker-
nels for a combination of primitive operators that are commonly
found in popular ML algorithms. We identify the generic pattern of
computation (α ∗ XT × (v ⊙ (X × y)) + β ∗ z) and its various
instantiations. We develop a fused kernel to optimize this computa-
tion on GPUs – with specialized techniques to handle both sparse
and dense matrices. This approach not only reduces the cost of data
loads due to improved temporal locality but also enables other op-
timizations like coarsening and hierarchical aggregation of partial
results. We also present an analytical model that considers input
data characteristics and available GPU resources to estimate near-
optimal settings for kernel launch parameters. The proposed ap-
proach provides speedups ranging from 2× to 67× for different
instances of the generic pattern compared to launching multiple
operator-level kernels using GPU accelerated libraries. We con-
clude by demonstrating the effectiveness of the approach in im-
proving end-to-end performance on an entire ML algorithm.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming; I.2.m [Artificial Intelligence]:
Miscellaneous—Machine Learning

Keywords Machine Learning, GPU, Fused Kernel, Sparse, Dense

∗ This work was done during an internship at IBM Research – Almaden.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PPoPP’15, February 7–11, 2015, San Francisco, CA, USA.
Copyright 2015 ACM 978-1-4503-3205-7/15/02...$15.00.
http://dx.doi.org/10.1145/2688500.2688521

1. Introduction

The recent surge in the amount of data collected for processing and
analysis has sparked a widespread use of machine learning (ML)
across a variety of application domains. ML is typically an iterative
process and involves complex mathematical and statistical compu-
tations. Due to the sheer volume of data as well as the complexity
of analysis, it is critical to exploit parallelism for enabling scalable
and efficient machine learning.

Current developments in the field of computer architecture have
shifted the industry focus from frequency scaling to the use of par-
allelism, leading to the advent of multi-core and many-core archi-
tectures. Massively parallel many-core GPUs are particularly inter-
esting for ML, since a majority of its computations involve linear
algebraic operations, which are highly optimized on GPUs. With
a memory bandwidth exceeding 250GB/s and thousands of cores,
GPUs are also attractive for memory-bound workloads like re-
peated matrix-vector multiplications. Furthermore, open standards
for parallel programming like OpenCL and NVIDIA’s CUDA have
made it easier to exploit GPUs in applications other than graphics
that are traditionally handled by CPUs [22].

There are two broad approaches for accelerating ML workloads
using GPUs. The first approach is to hand-craft implementations as
GPU kernels targeting specific algorithms, such as Support Vector
Machines [8], neural networks [10], and decision trees [33]. These
implementations are often packaged in the form of general-purpose
libraries [4, 6, 7, 11, 25, 26] for the ease of use and adoption.
However, such libraries of pre-canned implementations are not
optimal for varying data characteristics and parameter settings.
They are also not flexible for customizing existing algorithms and
for developing new algorithms.

In contrast, the second approach uses primitive GPU-accelerated
operators in composing complex ML algorithms. For example, a
GPU implementation for linear regression can easily be realized by
stitching together a sequence of GPU kernel invocations to dense
and sparse matrix libraries, such as NVIDIA’s cuBLAS[12] and
cuSPARSE[15] (see Listing 1). There also exist other libraries of
primitives such as cuDNN that are targeted at a particular class of
ML algorithms, such as deep neural networks. We extend this di-
rection of GPU exploitation by identifying and thereby developing
a fused kernel for a combination of primitive linear algebraic op-
erators. In particular, we identify the following generic pattern of
computation used in a variety of ML algorithms:

w = α ∗XT × (v ⊙ (X × y)) + β ∗ z (1)

where α and β are scalars, w, y, and z are vectors, and X is a
matrix that can be either sparse or dense. ⊙ denotes element-wise
multiplication, and × represents matrix multiplication.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PPoPP’15, February 7–11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3205-7/15/02...$15.00
http://dx.doi.org/10.1145/2688500.2688521

173

Table 1. Example instantiations of the generic pattern from Equa-
tion 1, and their presence in ML algorithms.

Pattern Instantiation LR GLM LogReg SVM HITS

α ∗ XT × y ✓ ✓ ✓ ✓ ✓

XT × (X × y) ✓ ✓ ✓ ✓

XT × (v ⊙ (X × y)) ✓ ✓

XT × (X × y) + β ∗ z ✓ ✓

XT × (v ⊙ (X × y)) + β ∗ z ✓

Table 2. Breakdown of single-threaded CPU compute time (as
percentages) for Linear Regression Conjugate Gradient.

Data set Pattern BLAS-Level 1 Total

KDD 2010 [19, 34] 82.9% 16.9% 99.8%
HIGGS [2] 99.4% 0.1% 99.5%

This particular pattern along with its various instantiations
(shown in Table 1) is commonly found in a wide class of ML
algorithms, such as linear regression (LR), generalized linear mod-
els [28] (GLM), binomial/multinomial logistic regression (LogReg,
via trust region method [24]), support vector machines (SVM,
training in the primal [9]), and Hubs and Authorities [23]. These
instantiations are also one of the major performance bottlenecks
(see Table 2). Approximately 82.9% (for KDD2010) or 99.4% (for
HIGGS) of single-threaded CPU compute time 1 is spent in op-
erations that are part of one or more of these patterns – thereby
making the generic pattern a promising and viable target for GPU
exploitation. The last column in the table highlights the total po-
tential benefits from GPU acceleration, both by leveraging custom
fused kernels as well as existing GPU accelerated libraries.

Challenges: Developing an efficient CUDA kernel for the iden-
tified pattern is challenging due to four reasons. First, for the gen-
eral pattern, the input matrix X needs to be accessed both in row-
major (for X× y) and column-major (for XT × (·)) order with the
same underlying representation – storing X in both formats is inef-
ficient. Second, inherent data-flow dependencies within the compu-
tation impede parallelism – for example, XT ×(·) can be evaluated
only after computing (v⊙(X×y)). Third, it is non-trivial to realize
an efficient result aggregation strategy that incurs minimal synchro-
nization overhead, especially in the presence of CUDA’s complex
threading model with threads, warps, and blocks. Fourth, ensuring
a balanced workload, maximizing thread occupancy, and realizing
coalesced memory accesses in case of sparse matrices with differ-
ent number of non-zeros across rows is difficult.

Contributions: We develop a fused kernel to deal with inherent
data-flow dependencies in the computation. The entire computation
is divided among sets of co-operating threads. Each set of threads
operates on an independent portion of the input, and is responsible
for generating the final partial result. This is done in a way such
that the result of one operator is immediately fed into the next op-
erator. Such a data parallel computation with a chain of operators
eliminates the need for synchronization among sets, and thereby al-
leviating the problems posed by data-flow dependencies. We make
the following contributions:

• We propose an optimized fused kernel that exploits temporal
locality to reduce the number of loads while scanning the input.

• We develop a hierarchical aggregation strategy spanning the
complete GPU memory hierarchy (registers, shared memory,
global memory) that performs as many local aggregations as
possible to reduce the synchronization overhead.

1 For linear regression on KDD 2010 data set [19, 34], as measured on a
commercial system SystemML [17], ignoring read-write time to disk and
other architectural overheads.

• We present a simple but effective analytical model to estimate
kernel launch parameters that maximizes thread occupancy,
minimizes atomic writes to global memory, and estimates near-
optimal settings with minimal overhead.

• In the case of dense matrices, we propose a code generation
technique that relies on unrolling to perform a majority of
computations on GPU registers.

• Finally, we perform a detailed pattern-level as well as end-to-
end experimental evaluation demonstrating the effectiveness of
the proposed approach.

2. Background and Related Work

Modern GPUs (such as NVIDIA GeForce GTX Titan) are equipped
with thousands of cores (2,688), high bandwidth memory fabric
(288GB/s), and complex memory hierarchy with global memory
(6GB), texture memory, shared memory, L1 cache, and registers.
GPU cores are organized into streaming multiprocessors or SMs
(14 SMs with 192 cores each). GPU threads are grouped into
thread blocks and each block executes on a single SM. Threads
within the block share fast on-chip shared memory (48KB/SM),
and can synchronize and share data with other threads in the same
block. Thread blocks are further divided into warps of size 32
threads each. Threads within a warp execute instructions in Single-
Instruction-Multiple-Data (SIMD) mode. Furthermore, a number
of registers (64K) are also available per block. All blocks running
on different SMs can access fast read-only texture memory (48KB)
and a relatively slow global memory (6GB). Coalesced memory
accesses among threads, number of accesses (read/write) to global
memory, thread divergence within a warp, and load balance among
the blocks are some of the factors that govern the overall perfor-
mance from GPU acceleration.

Emergence of programmer-friendly low-level APIs such as
Open Computing Language (OpenCL) [21] and NVIDIA’s Com-
pute Unified Device Architecture (CUDA) [13, 29] have made it
easier for programmers to develop applications that are tradition-
ally handled by CPUs, including ML. Exploitation of GPUs in ap-
plications is further made easy with the development of accelerated,
high performance libraries. For example, NVIDIA’s cuBLAS [12]
and cuSPARSE [15] provide optimized GPU implementations for
the complete standard BLAS library and basic linear algebra sub-
routines used for sparse matrices, respectively.

1 V = read($1); y = read($2);
2 eps = 0.001; tolerance = 0.000001;
3 r = -(t(V) %*% y); #cuBLAS/cuSPARSE: gemv/csrmv
4 p = -r;
5 nr2 = sum(r * r); #cuBLAS: nrm2
6 nr2_init = nr2; nr2_target = nr2 * tolerance ^ 2;
7 w = matrix(0, rows=ncol(V), cols =1);
8 max_iteration = 100; i = 0;
9 while(i < max_iteration & nr2 > nr2_target) {

10 q = ((t(V) %*% (V %*% p)) + eps * p);
11 # ... csrmv/gemv & axpy
12 alpha = nr2 / (t(p) %*% q); # ... dot
13 w = w + alpha * p; # ... axpy
14 old_nr2 = nr2;
15 r = r + alpha * q; # ... axpy
16 nr2 = sum(r * r); # ... nrm2
17 beta = nr2 / old_nr2;
18 p = -r + beta * p; # ... axpy & scal
19 i = i + 1;
20 }
21 write(w, "w");

Listing 1. Linear regression conjugate gradient algorithm.

Machine learning models are complex and expensive to build. Fur-
thermore, searching for the right model and its parameters is often
an iterative process. There have been several efforts in accelerating

174

ML workloads using GPUs. Specific hand-crafted implementations
are developed for a variety of ML algorithms, such as artificial neu-
ral networks [10], support vector machines [8], decision trees and
forests [33], deep belief networks [32], and k-Means [16]. These
implementations are often packaged into libraries – such as BID-
Mach [6, 7], GPUMLib [25, 26], Theano [4], and Torch7 [11] –
for easy adoption and usability. The recent BIDMach toolkit offers
optimized implementations targeting both CPUs (powered by Intel
MKL) and GPUs (custom kernels). It supports a number of super-
vised and unsupervised models, including regression, clustering,
classification, and matrix factorization. It is built on a sister library
called BIDMat [6, 7] that provides an efficient, interactive matrix
layer. However, such libraries of pre-canned implementations are
not flexible for customizing existing algorithms and for develop-
ing new algorithms. With that it imposes a huge development effort
and it gets worse with new GPU generations because all of those
implementations would need to be reconsidered.

In contrast, there exists another class of approaches that rely
on GPU-accelerated primitive ML operators, such as matrix multi-
plication. ML algorithms are then composed by stitching together
multiple primitive operators. For example, a GPU implementation
of linear regression (shown in Listing 1) can be developed by using
accelerated matrix-vector multiplication and vector-vector arith-
metic operations. Accelerated operators are made available through
a number of libraries, such as cuBLAS and cuSPARSE. Matrix
Algebra on GPUs and Multicore Architecture (MAGMA) [1, 27]
offers a library of CPU and GPU kernels for dense linear alge-
braic operations on heterogeneous GPU-based architectures. Sim-
ilarly, High Performance Linear Algebra in R (HiPLAR) [18] de-
livers high performance linear algebra routines for the R platform.
Recently, MATLAB enabled GPU computing through its parallel
computing toolbox that supports GPU-enabled functions (e.g., fft,
mtimes, and mldivide) and toolboxes (e.g., Image Processing Tool-
box). There also exist accelerated libraries targeting a specific class
of ML algorithms – for example, NVIDIA’s cuDNN [14] provides
a library of functions for building deep neural networks.

In this work, we extend the latter approach of GPU exploitation
for ML by developing optimized fused kernels for a combination
of primitive operators (see Equation 1), that is reusable for a wide
class of ML algorithms. We now describe our approach of develop-
ing a fused kernel for the identified pattern of computation.

3. Fused Kernels

The identified pattern from Equation 1, along with its variants are
commonly found in a variety of ML algorithms, and they also
account for a significant fraction of CPU compute time (see Ta-
ble 2). A direct approach for GPU exploitation is to launch sepa-
rate kernels for individual operations. For example, (XT × (X ×
y)) can be computed by invoking two BLAS Level 2 functions
– one for matrix-vector multiplication (X × y) and another for

transpose-matrix-vector multiplication (XT × (·)). Such an ap-
proach is inefficient, especially because matrix-vector multiplica-
tion is memory-bound. Consider NVIDIA GeForce GTX Titan with
1.2 TFLOPs peak double precision performance. The bandwidth
to global memory is 288 GB/sec (ECC off). Peak performance can
only be achieved when every data load is used in at least 34 floating
point operations. However in the case of matrix-vector multiplica-
tion, every element read from X is used exactly once, i.e., 1 com-
pute/load. Therefore, launching multiple kernels for such memory-
bound computations will result in low performance.

Moreover, the computation of (XT × (·)) is typically more ex-
pensive than X × y. For sparse matrices, this is due to uncoalesced
memory accesses caused by the mismatch in the access pattern
(column-major) and the underlying storage layout (row-major, for
CSR representation). In the case of dense matrices, blocks of X

can be read and kept in shared memory for future access. Although
the reads from global memory can be coalesced due to regular in-
dexing, the accesses to shared memory may cause memory bank
conflicts, resulting in poor performance.

These shortcomings of the naı̈ve approach motivate the need
for a fused kernel, wherein the data is propagated through a chain
of operators without explicitly storing the intermediate results in
global memory. Such an approach greatly alleviates the problem
of repeated data loads in memory-bound workloads by exploiting
temporal locality. Consider (XT × (X × y)), where X is sparse.
Each row r of X is still loaded twice, once to compute p[r]:

p[r] = v[r]× (X[r, :]× y[:]), (2)

and once again to compute the partial result of w:

w[:] = X[r, :]T × p[r] (3)

However, if we ensure that the second load of X[r, :] (to com-
pute w) is performed by the same threads that previously used the
row for computing p, due to temporal locality the second load will
likely to be a cache hit. This decreases the overhead due to loads
potentially by a factor of up to 2. Such a behavior can be guaran-
teed when the number of non-zeros per row is bounded by the cache
size. Finally, the partial values of w computed by multiple threads
spanning warps and blocks must be aggregated to obtain the final
result. To this end, we propose a hierarchical aggregation strategy
spanning registers, shared memory, and global memory.

In this work, we assume that the input matrix X fits in the
device memory. This allows amortization of the cost of data transfer
between the host and the device across multiple iterations of an ML
algorithm (see Listing 1, for example). In situations where such an
amortization is not feasible, the developed methods can easily be
adapted to a streaming design for “out-of-core” computation.

3.1 Fused Kernel for Sparse Matrices

In this subsection, we present our methods when the input matrix X
is sparse. We start by describing algorithms that tackle components
of Equation 1, and subsequently combine them to perform the
complete computation. For the sake of simplicity, assume that the
number of columns in X is small, so that the partial result of w
can be kept in shared memory. We later generalize the algorithm
by relaxing this assumption.

The basic component of Equation 1 is XT × p. Although cuS-
PARSE [15] offers an API for this specific operation, it is very slow
when compared to X × p. NVIDIA suggests an explicit transpo-
sition of the matrix (using csr2csc API), followed by a standard
sparse matrix-vector multiplication. However, this is inefficient due
to the high cost in transposing the matrix, and the need to main-
tain both X and XT on the device. Note that both X and XT

are required for the computation. Instead, we propose to compute
w = XT × p in two steps: 1) intra-block computation and aggre-
gation, and 2) inter-block aggregation.

Table 3. Notation
Symbol Description

m Number of rows in X
n Number of columns in X

VS Vector Size, Number of threads within a vector
NV Number of vectors within a block
BS Block Size, Number of threads within a block
C Degree of coarsening, Number of rows processed by vectors

TL Thread load

In the first step, we leverage the idea of CSR-vector [3], and
partition a block of threads into sets of cooperating threads called
vectors. The number of threads in a vector is denoted as vector size
V S. The number of vectors within a single block is denoted NV .
All threads in a vector work on the same row r simultaneously

175

Algorithm 1: (XT × p) Kernel for Sparse Matrices

input : CSR matrix X: (values, colidx, rowoff), m (# of rows),
n (# of columns), Vector: p, V S (# of threads per vector),
C (coarscening factor)

output: Vector: w

1 begin
2 tid← thread local ID;

3 (lid, vid)← (tid% V S, tid / V S); // lane and vector ID

4 NV ← blockSize / V S; // # of vectors per block

5 row ← blockID ×NV + vid;

6 SD[1 : n]← 0; // on shared memory

7 for c← 1 to C do
8 if (row < m) then
9 start← rowoff [row]; // current row offset

10 end← rowoff [row + 1]; // next row offset

11 for (i = start+ lid; i < end; i+ = V S) do
12 SD[columnidx[i]] + = values[i] × p[row];

13 row + = (gridSize/V S);

14 synchronize(); // wait till all vectors reach here

15 for (i = tid; i < n; i+ = blockSize) do
16 atomicAdd(w[i], SD[i]);

to compute partial results w[:] = w[:] + X[r, :]T × p[r]. Also,
a given vector of threads is responsible for processing a total of
C rows, which is referred to as the degree of coarsening. Let us
further denote the number of rows in X by m and the number of
columns by n – see Table 3 for complete notation.

In the case of a sparse matrix, different rows may have different
numbers of non-zeros – leading to highly irregular accesses and
write conflicts over w while computing the partial results. When
V S is smaller than the number of non-zeros in a row, a single
thread within a vector itself may produce results for multiple el-
ements in w. Also, each element in w may get updated simultane-
ously by threads from different vectors operating on different rows.
Handling such write conflicts requires a careful strategy for aggre-
gation. A simple choice is to let threads maintain a local version
of the entire vector w in the registers. This however is redundant
and inefficient use of registers. Observe that the partial results pro-
duced from an input row span different elements in w – i.e., there
is no need for intra-vector aggregation on w, and therefore w can
be shared among all threads within a vector. Partial results pro-
duced by multiple vectors across all blocks must be aggregated on
the global memory using atomic operations. Since such atomic ac-
cesses are slow, we perform an additional level of pre-aggregation
among vectors within a single block. To facilitate this, we keep w
in shared memory (that is on the SM), and perform inter-vector or
intra-block aggregations via atomic operations.

In the second step of computing XT × p, we perform the fi-
nal inter-block aggregation on the global memory. Since multiple
thread blocks may write to the same element of w, this access needs
to be atomic as well. To reduce synchronization overhead, we in-
crease the degree of coarsening C and the block size to their max-
imum possible values, while achieving the maximum possible oc-
cupancy. Further details on this are provided later in the context of
parameter tuning (see Section 3.3). The entire method to compute
XT ×p is summarized in Algorithm 1. Lines 7-13 perform the first
step and Lines 15-16 handle the second step. The synchronization
in Line 14 ensures that all vectors within a block are finished before
the results are used in the final aggregation. We show in Section 4
that this method of computing XT ×p performs significantly better
than the implementation in the cuSPARSE library.

Algorithm 2: Fused Kernel for Sparse Matrices

input : CSR matrix X: (values, colidx, rowoff), Vectors: y, v,
and z, Scalars: m, n, V S, C, α and β

output: Vector: w

1 begin
2 Initialization // lines 2-6 Algorithm 1

3 for (i = thread global id; i < n; i+ = gridsize) do
4 atomicAdd(w[i], β × z[i]);

5 for c← 1 to C do
6 if (row < m) then
7 start← rowoff [row]; // current row offset

8 end← rowoff [row + 1]; // next row offset

9 sum ← 0;

10 for (i = start+ lid; i < end; i+ = V S) do
11 sum+ = values[i] × y[colidx[i]];

12 sum = intra vector reduce(sum) ×v[row];
13 for (i = start+ lid; i < end; i+ = V S) do
14 SD[columnidx[i]] + = values[i] × sum;

15 row + = (gridSize/V S);

16 synchronize(); // wait till all vectors reach here

17 for (i = tid; i < n; i+ = blockSize) do
18 atomicAdd(w[i], α× SD[i]);

We next extend the method to a larger computation: w = XT ×
(X×y). Each row in X must now be accessed twice to perform two
matrix-vector multiplications. The main goal behind our technique
is to reuse the rows r while computing w[:] = X[r, :]T × p[r],
where p[r] = X[r, :] × y[:]. The data is first loaded during the
computation of p[r]. It can be seen from the computation that the
dot product X[r, :] × y[:] produces the final value of a single
scalar p[r]. Subsequently, elements of X[r, :] are scaled by p[r]
to calculate partial results w[:]. We compute XT × (X × y) also
in three steps: intra-vector computation and aggregation, inter-
vector aggregation, and inter-block aggregation. The last two steps
are similar to Algorithm 1. In the first step, we compute the dot-
product p[r] = X[r, :] × y[:] by leveraging the ideas of CSR-
vector and segmented reduction [3]. Note that this step introduces
an additional level of aggregation, i.e., at the register-level. Threads
within a vector compute the partial results of p[r] in registers, which
are subsequently aggregated using the shuffle instruction available
on NVIDIA Kepler architectures. Such a hierarchical strategy of
aggregation spans registers (intra-vector), shared memory (inter-
vector), and global memory (inter-block).

We further extend this method by performing the element-wise
vector-vector multiplication, as in w = XT × (v ⊙ (X × y)). As
soon as the value of p[r] is computed by a vector of threads, one of
those threads performs the element-wise multiplication v[r] ∗ p[r].
Finally, with respect to the complete pattern, the computation β ∗ z
can be considered as an initialization step that is performed in the
beginning, by all threads.

The complete fused kernel is shown in Algorithm 2. The for
loop in Lines 3-4 takes care of β ∗ z and the loop in Lines 5-15
performs the rest of the computation. For each row, threads com-
pute partial results of p[r] in Lines 10-12, performs register-level
intra-vector aggregation and computes p[r] ∗ v[r] in Line 12. Sub-
sequently, the partial result of w is computed on the shared memory
in Lines 13-14 (center portion of Figure 1). The synchronization in
Line 16 marks the completion of inter-vector aggregation – shown
as gray bars in Figure 1. Aggregation on the global memory to yield
the final result is done in Lines 17-18.

A key aspect here concerns the atomic adds in Line 4 during
the scalar computation with β. While it can be easily parallelized

176

Figure 1. Different steps of fused kernel for sparse matrix; V S: vector size, NV : number of vectors in block, C: coarsening factor.

across thread blocks without atomic operations, it requires inter-
block barrier synchronization to ensure that the subsequent compu-
tation starts only after β ∗ z is fully computed. Otherwise, it may
lead to race conditions. CUDA, however, does not provide support
for such inter-block barriers – to allow for flexibility in schedul-
ing thread blocks. The only two alternatives here are either to use
atomic adds as shown in Line 4 or to launch two kernels, one for
computing β ∗ z and the other for rest of the computation.

Algorithm 2 is limited by the amount of available shared mem-
ory per SM on the GPU. Since the inter-vector aggregation is done
using the shared memory, the number of columns n in X must be
small so that w fits in the shared memory. The exact limit on n can
be computed from two parameters V S and NV (see Section 3.3
for details). For a device with 48KB shared memory per SM , the
limit on n is close to 6K. Such matrices with limited number of
columns are indeed common in many enterprise workloads [35].

It is easy to extend this method to handle matrices with large
number of columns as well – for example, the KDD2010 [34]
data set that we consider in our evaluation has 30M columns. To-
wards this end, we simply move the inter-vector aggregation from
shared memory to global memory. The for loop in Lines 13-14 will
now operate on global memory using atomic operations. Note that
the inter-block aggregation in Lines 17-18 is no longer required.
This modified strategy increases the synchronization overhead, es-
pecially when n is relatively small, due to large number of concur-
rent writes. However, as the shared memory limit gets mitigated, we
can have as many active threads as the maximum number of con-
current threads on each SM. For example 64 active warps (2,048
threads) per SM with compute capability ≥ 3.5. By dynamically
switching between warps when threads are stalled due memory ac-
cess, such an access latency can be hidden. Furthermore, when n is
very large, the data is likely to be sparse (e.g., social network data)
and the likelihood of concurrent accesses to a single element of w
is very small, thereby reducing the overhead due to atomic writes.

3.2 Fused Kernel for Dense Matrices

Our method for handling dense matrices is similar to Algorithm 2,
in its spirit. Unlike the case of sparse matrices, we can leverage
indexing since data accesses on dense data are very regular. We
can use the local memory available on SMs (i.e., registers) to
get higher access speeds than shared memory. However, the bank
conflict rate increases by the order of number of warps in a block –
since the number of shared memory banks on each SM is limited
(32 in new NVIDIA Kepler GPUs). Intra-vector coarsening is more
explicit and constant among rows, while it is implicit and row-
dependent in the case of sparse data. Furthermore, each vector of
threads processes C rows – a second level of coarsening.

Our method for the case of dense matrices is shown in Algo-
rithm 3. Each row is processed by V S threads, where each thread
processes TL (known as thread load) elements of the row. Vari-
ables ly , lX , and lw in the algorithm refer to registers local to
threads. In the first step, the elements of y are read by each vec-

Algorithm 3: Fused Kernel for Dense Matrices

input : Matrix: X , Vectors: y, v, and z, Scalars: m, n, V S, C, α,
β, and TL (load per thread)

output: Vector: w

1 begin
2 Initialization // lines 2-5 Algorithm 1

3 lw[1 : TL]← 0;

4 for i← 1 to TL do
5 ly [i] = y[lid+ i× V S];

6 for (i = thread global id; i < n; i+ = gridsize) do
7 atomicAdd(w[i], β × z[i]);

8 for c← 1 to C do
9 if (row < m) then

10 sum ← 0;

11 for i← 1 to TL do
12 lX [i]← X[row, i× V S];
13 sum+ = lX [i] × ly [i];

14 if (V S ≤ 32) then
15 sum = intra vector reduce(sum) ×v[row];

16 else
17 sum = intra warp reduce(sum);

18 // wait till all warps reach here

19 synchronize();
20 sum = inter warp reduce(sum) ×v[row];
21 // wait till inter-warp reduction finishes

22 synchronize();

23 for i← 1 to TL do
24 lw[i] + = lX [i]× sum;

25 row + = (gridSize/V S);

26 for i← 1 to TL do
27 atomicAdd(w[lid+ i× V S], α× lw[i]);

tor once, and kept in registers ly (Lines 4-5). Also, w is initial-
ized with β ∗ z in Lines 6-7. Then for each row r, threads within
the vector perform the following – read TL elements of X; mul-
tiply by the corresponding element of y; and compute the partial
result of X[r, :]× y[:] (Lines 11-13). These partial results are then
aggregated in Lines 14-22. If V S ≤ 32, reduction is performed
in a single step by all threads of the vector (Lines 14-15). Other-
wise, it consists of two steps – an intra-warp reduction using reg-
isters via the shuffle instruction (similar to intra-vector reduction)
in Line 19 followed by inter-warp reduction in Line 20. Appropri-
ate synchronizations are performed to avoid any race conditions.
The cell-wise multiplication between p[r] and v[r], is again done
by a single thread (Lines 15 and 20). Each thread then scales the
elements of X[r, :] by v[r]× (X[r, :]×y[:]) (Lines 23-24), and ag-
gregates them into a local register lw – a partial result of w. Once all

177

assigned rows are processed, threads within each vector propagate
their partial results in lw to global memory (Lines 26-27).

Note that elements of X , y and the partial results of w are
kept in registers – lX , ly and lw, respectively. Accesses to these
registers are done via indexing. However, if the index value is
unknown at compile time, CUDA forces these accesses to use
global memory instead of registers, thereby significantly degrading
the performance. To deal with this problem, we resort to an idea of
code generation. Since the matrix dimensions and input parameters
are known at the time of invoking a ML algorithm, we use a code
generator to produce the kernel that uses explicit registers and
performs loop-unrolling for Lines 4-5, 11-13, 23-24, and 26-27
in Algorithm 3. Listing 2 shows an example of generated kernel
mtmvm, for producing α ∗XT × (v⊙ (X × y)) when the inputs
are: a dense matrix X of size m × 32; V S = 16; and TL = 2.
Line 17 in Listing 2 corresponds to Lines 4-5 in Algorithm 3, in
which the for loop has been unrolled. Instead of register indexing,
registers are accessed directly via explicit names, such as ly1 and
ly2. Note that the loop unrolling factor is equal to the thread load
TL. This parameter can be chosen depending upon the number of
available registers (see Section 3.3).

In Algorithm 3, we assume that the number of columns n is a
multiple of the vector size V S. We make this assumption to avoid
thread divergence inside a vector (and a warp, accordingly). When
n%V S 6= 0, we pad both matrix X and vector y with zero rows.
In the worst case, we pad by only V S− 1 rows – hence, the cost of
padding is negligible. This is done prior to launching the kernel.

1 __global__ void mtmvm_32_16_2(const double *X,
const double *y, const double *v, const a,
double *w) {

2 __shared__ volatile double sdata [16];
3 unsigned int tid = threadIdx.x;
4 unsigned int lid = tid & (15);
5 unsigned int vid = tid / 16;
6 unsigned int rowStart = blockIdx.x * NV + vid;
7 unsigned int rowEnd = rowStart + (gridDim.x * NV)

* rowPerVector;
8 double sum , l_y1 , l_y2 , l_X1 , l_X2 , l_w1 , l_w2;
9 if (tid < 16)

10 sdata[tid] = 0;
11 if (rowStart < rowDim) {
12 if (rowEnd > rowDim)
13 rowEnd = rowDim;
14 rowStart = rowStart * colDim + lid;
15 rowEnd = rowEnd * colDim + lid;
16 l_w1 = l_w2 = 0.0f;
17 l_y1 = y[lid]; l_y2 = y[lid + 16];
18 for (; rowStart < rowEnd; rowStart += (gridDim.x

* NV) * colDim) {
19 l_X1 = X[rowStart]; sum = l_X1 * l_y1;
20 l_X2 = X[rowStart + 16]; sum += l_X2 * l_y2;
21 sum = interVectorReduce(sum);
22 if (lid == 0)
23 sdata[vid] = sum * v[rowStart/colDim];
24 sum = sdata[vid];
25 l_w1 += l_X1 * sum; l_w2 += l_X2 * sum;
26 }
27 r = r + lid;
28 atomicAdd(r, a * l_w1);
29 atomicAdd(r + 16, a * l_w2);
30 }
31 }

Listing 2. Generated kernel for a dense matrix of size m × 32,
V S = 16, and TL = 2.

The number of registers available on the GPU governs the
maximum number of columns that can be handled by Algorithm 3.
For a NVIDIA Kepler device with 64K registers per SM , the limit
on n is close to 6K. In order to process matrices with large n, one
has to move all aggregations from registers to global memory. Since
the X is dense, the number of concurrent writes to global memory
is likely to be very high, thereby leading to serialization of writes.

In such a scenario, we propose not to use the fused kernel, and
instead, simply launch two separate cuBLAS Level 2 kernels. We
note however that, in practice, it is not very common to encounter
such dense data sets with large number of columns [35].

3.3 Parameter Tuning

Input parameters of proposed kernels have to be tuned appropri-
ately, in order to realize best performance. We now present analyt-
ical models to determine best configurations for these parameters,
by considering both input matrix characteristics, and available re-
source limits on the underlying GPU.

Parameters for a Sparse Kernel: Here, the main parameters
are: vector size V S; block size BS; and coarsening factor C. Other
parameters such as NV , number of vectors in a thread block, or
grid size, can be determined accordingly.

V S determines number of cooperating threads that work on the
same row(s) together. As we leverage the idea of segmented reduc-
tion and CSR-Vector in our kernel, we follow a known strategy to
determine V S [3]. Let µ denote the average number of non-zero
elements per row in a sparse matrix with a total number NNZ of
non-zeros elements, i.e., µ = NNZ/m. Then, V S is chosen from
the set {20, ..., 25} as follows:

V S =







32 if µ > 32

2i if 2i+1 ≥ µ > 2i, i ∈ [1, 4]

1 otherwise.

(4)

As the computation is memory-bound, we then determine BS
in such a way that it maximizes the occupancy on the GPU. For this
purpose, we consider the following limits of the device:

• Available register and shared memory per SM

• Maximum number of threads per block, and per SM

• Maximum number of active blocks

• Register and shared memory allocation granularity

• Maximum number of registers per thread

• Register and shared memory allocation units

For GPUs with compute capability ≥ 3.5, these limits are – (64K
32bit-registers and 48KB), (1,024 and 2,048), (8 blocks), (256
registers and 4 warps – per thread block), (256), and (256 and
256Bytes), respectively.

Our kernel requires 43 registers per thread (found via NVIDIA
Visual Profiler [31]), and (BS/V S + n)× sizeof(precision)
shared memory. For different values of BS from {1× 32, ..., 32×
32}, we calculate the number of concurrent warps, considering the
number of registers and shared memory required. Exact value of
BS is chosen to maximize the number of concurrent blocks, NW .
This is similar to NVIDIA occupancy calculator [30].

To set the coarsening factor C, we aim to reduce the number of
atomic write accesses to global memory. We set C so that all warps
have maximal balanced workload, i.e.,

C =

⌈

M

NSM × NW
V S

⌉

(5)

where NSM is the number of available SMs on the GPU.
Parameters for a Dense Kernel: In the case of a dense kernel,

C is set similarly. However, we first determine TL and BS – V S
can be set accordingly. Here, we heavily use registers and to min-
imize the waste of register allocation we set BS to a size that is
a multiple of the register allocation granularity; {1 × 128, ..., 8 ×
128}. Furthermore, to minimize the overhead of inter-vector syn-
chronization, we set BS to the minimum possible value; i.e. BS =
128. For setting TL, we profiled the dense kernel with different val-
ues of TL, and recorded the number of registers required in each

178

case. Our kernel requires 23 registers with TL = 1 and can han-
dle up to TL = 40 (requiring 255 registers). Since register spilling
severely degrades the performance with TL > 40, we only con-
sider TL ∈ {1, ..., 40}. Having this information and GPU resource
limits, we can calculate the number of concurrent warps NW . Fur-
thermore, we also perform a refinement to exclude number of warp
loads that are wasted by each vector. For example, with BS = 128,
TL = 2 and n = 200, we have 1 wasted warp

⌊

2×128−200

32

⌋

. While

with TL = 7, there is no wasted warp per vector;
⌊

7×32−200

32

⌋

. Af-
ter setting TL based on the maximum number of concurrent warps,
excluding wasted warps per vector, V S is set as:

V S =







BS if n
TL

> 32

2i if 2i ≥ n
TL

> 2i−1, i ∈ [1, 5]

1 otherwise.

(6)

There is one exception: when the number of columns is less than
the warp size, n ≤ 32, we set BS = 1024 and TL = 1. In such
a case, since we are not limited by the synchronization overhead,
we can use the maximum possible thread block size. Furthermore,
each thread only loads a single element of a row from the matrix,
and hence, the use of a large number of threads helps in hiding the
latency during data loads.

4. Experimental Results

We now empirically evaluate the performance of proposed meth-
ods using a combination of synthetic and real-world data sets.
For this purpose, we use NVIDIA GeForce GTX Titan with 6GB
global memory, compute capability 3.5, and CUDA driver ver-
sion 6.0. This device is attached via PCIe-Gen3 (32GB/s) to a
host with Intel core-i7 3.4 GHz CPU, 16GB memory, and 4 cores
(8 hyper-threads). We compare the performance of our methods
against a baseline approach of using GPU accelerated NVIDIA li-
braries cuBLAS and cuSPARSE to compute various instances of
the generic pattern in Equation 1. We also consider other libraries
like BIDMat [6] in our evaluation. Note that we do not evaluate the
case of simple matrix-vector multiplication (both when X is sparse
and dense). This is because cuBLAS and cuSPARSE libraries for
this case already deliver optimized performance. Similarly, we do
not consider XT × y, when X is dense.

4.1 Performance on Sparse Matrices

We begin by comparing the performance of our method for sparse
matrices from subsection 3.1 against cuSPARSE and BIDMat [6].
BIDMat is an interactive matrix library that integrates CPU and
GPU acceleration. BIDMat uses Intel MKL [20] for CPU accelera-
tion and implements specialized kernels for GPU acceleration. We
consider a randomly generated synthetic data set with number of
rows in X is set to 500k and we vary the number of columns from
200 to 4,096. The sparsity is set to 0.01.

For the simple pattern XT ×y, the observed speedups from our
method are shown in Figure 2-top. On average, our proposed kernel
is roughly 35× faster than cuSPARSE, with highest speedups up to
67x in the lower end of the spectrum. The performance differences
are primarily due to a difference in the number of global load trans-
actions, as shown in Figure 2-bottom – note that y-axis is shown in
log scale. Our method consistently performs less number of loads
when compared to cuSPARSE across the board – on average, cuS-
PARSE performs 3.5× more loads. This may be due to explicit
construction of XT and the use of semaphores (cuSPARSE is not
open source). The performance of BIDMat is similar to cuSPARSE.
Furthermore, the performance of our method is driven by the fact
that data accesses are always performed in a coalesced manner, and
the input vector y is always bound to texture memory, thereby im-
proving accesses over y. By measuring the time to explicitly con-

struct XT and then to compute XT × y, we determine the number
of iterations in ML algorithms required to amortize the transpose
time into matrix-vector product computation – shown in the second
X axis in Figure 2. High number of iterations in the figure indicate
that explicitly constructing the transpose is an inefficient approach
when dealing with sparse matrices.

For the pattern XT × (X × y), observed speedups for the
synthetic data are shown in Figure 3. The benefits from our fused
kernel are evident from the figure, and it outperforms the alternative
methods for all matrix sizes. The average speedup is observed
to be 9.28×, 14.66×, and 20.33×, against BIDMat-CPU (MKL
with 8 hyper threads), BIDMat-GPU, and cuSPARSE, respectively.
These speedups are primarily due to – improved data accesses via
temporal locality; avoidance of materializing intermediate results
through fused kernels; and finally, hierarchical aggregation strategy
spanning registers, shared memory, and global memory.

Finally, Figure 4 shows the achieved speedups of the proposed
kernel in computing the complete pattern α∗XT ×(v⊙(X×y))+
β ∗ z. Since the whole computation is bottlenecked by XT × (X×
y), we expect the performance differences to be similar or slightly
better than those in Figure 3. On average, we observe speedup
to be up to 13.41×, 19.62×, and 26.21× against BIDMat-CPU
(MKL with 8 hyper threads), BIDMat-GPU, cuBLAS/cuSPARSE,
respectively. Note that, cuBLAS is used here to perform (Level 1)
vector-vector computations.

Table 4. Execution time (in milliseconds) of the proposed kernel
against cuBLAS/cuSPARSE on KDD 2010 data set.

Pattern Proposed cuBLAS/cuSPARSE

XT
× y 50.5 5552.1

XT
× (X × y) 78.3 5683.1

α ∗ XT
× (v ⊙ (X × y)) + β ∗ z 85.2 5704.1

As noted in Section 3, when the number of columns in the
input matrix is very large, we move all intra-block aggregations
from shared memory to global memory. To measure the impact
of such a choice, we consider an ultra-sparse real-world data set
KDD2010 [19, 34] with 15,009,374 rows, 29,890,095 columns, and
423,865,484 non-zeros. Table 4 shows the execution time of our
proposed approach against a method using cuSPARSE/cuBLAS
libraries – the numbers shown are in milliseconds. Our method
can efficiently handle data sets with large n as well – with more
than two orders of magnitude improvement in case of XT × y,
and a 66-fold speedup when computing the full pattern. When
n is very large, the data set is likely to be sparse, leading to a
reduced number of concurrent access to a single element of w on
global memory. Therefore, the impact of concurrent atomic writes
to global memory is also likely to be low.

4.2 Performance on Dense Matrices

We conducted a similar experiment to evaluate our dense fused ker-
nel. Figure 5 shows that our method outperforms all the competing
methods on dense matrices. On average, the observed speedups are
15.33×, 2.18×, and 4.27× over BIDMat-CPU (MKL with 8 hyper
threads), BIDMat-GPU, and cuBLAS. In general, we expect that
our fused kernel for dense matrices does not reach the same level
of improvement as we observed on sparse matrices. This is consis-
tent with the performance differences observed between X×y and
XT × y on dense and sparse matrices using cuBLAS/cuSPARSE,
indicating that most of the gain we achieve comes from loading
X only once. Moreover, as the figures shows, MKL (CPU) works
better on sparse matrices compared to BIDMach-GPU and cuS-
PARSE, while it performs worse on dense matrices since regular
accesses brings more improvements on the GPU side. In Figure 5,
we use matrices with number of columns up to 2K. For m > 2K,

179

Figure 2. For XT × y when X has 500k rows and sparsity 0.01: (Top) achieved speedups against cuSPARSE; (Bottom) number of load
transactions (log10 scale); and Iter # of iterations required for transpose time to be amortized into product computation.

Figure 3. For XT × (X × y) when X has 500k rows and sparsity 0.01: Speedup achieved by the proposed kernel against cuSPARSE,
BIDMat-GPU, and BIDMat-CPU (MKL-8Threads).

Figure 4. For α ∗XT × (v⊙ (X × y))+ β ∗ z when X has 500k rows and sparsity 0.01: Speedup achieved by the proposed kernel against
cuBLAS/cuSPARSE, BIDMat-GPU, and BIDMat-CPU (MKL-8Threads).

Figure 5. For XT × (X × y) when X is dense with 500k rows: Speedup achieved by the proposed kernel against cuBLAS, BIDMat-GPU,
and BIDMat-CPU (MKL-8Threads).

the matrix does not fit in device memory anymore. We later discuss
ideas for out of core computation. As stated earlier, we perform
code generation in the case of dense matrices. In the generated ker-
nel, we unroll computational loops, load X and y to registers once,

and use them as often as required. Listing 2 shows an example gen-
erated kernel. We observed that the time spent in code generation is
negligible when compared to the actual computation time. We also
note that the performance of proposed kernel on the full pattern is

180

similar to that shown in Figure 5, since the majority of time while
computing the full pattern is spent in XT × (X × y).

4.3 Parameter Tuning

We now evaluate the effectiveness of our analytical model that es-
timates the kernel launch parameter settings. The goal our model
is to maximize occupancy while moving the overhead of atomic
accesses from global memory to shared memory and to registers,
as much as possible. The model incurs minimal performance over-
head, since the parameter exploration is done in a limited search
space. V S is chosen based on Equations 4 and 6, while the block
size is selected from the set {25, ..., 210}. The number of rows han-
dled by a set of cooperating threads (vector) is set to possible num-
bers around what our model selects; grid size is also chosen ac-
cordingly. The entire search space, on average, consists of about
1,200 different settings – see Figure 6. Note that y axis is shown as
1/T ime, so that the peaks with small time are clearly visible. For
a sparse matrix of size 500k× 1k, the figure shows that the perfor-
mance difference in computing XT × (X × y) using the optimal
setting and the configuration chosen by our model is less than 2%.
This difference is also less than 0.1% of the performance difference
between the best and the worst settings. Furthermore, the configu-
ration chosen by the model is one of the best 1% settings in terms
of execution time.

This sparse kernel requires 43 registers per thread, selects
V S = 8, BS = 640, and uses (BS/V S+n)×sizeof(precision)
= 8,832B shared memory per thread block. It then sets number
of blocks to 28, where each vector takes care of 223 rows of the
matrix. For a dense kernel, the thread load TL can range from 1
(requiring 24 registers) to 40 (requiring 255 registers). Using TL
larger than 40 results in register spilling and in poor performance.
We set V S so that each thread handles a maximum of 40 elements
in a row. Corresponding 40-way unrolling in the computational
loop of the kernel is handled by the code generator.

Figure 6. Inverse of time (1/ms) in computing XT ×(X×y) using
the proposed kernel with different plans on a 500k × 1k sparse
matrix with sparsity 0.01, and V S = 8. RpV: number of rows is
processed by each vector.

4.4 End-to-end Analysis

Finally, we evaluate the end-to-end performance achieved by
the proposed method in executing an entire machine learning
algorithm. We consider linear regression, shown in Listing 1.
We conduct this experiment with two real-world data sets –
KDD2010 [19, 34] (sparse) as well as HIGGS [2] (dense). HIGGS
data set is a dense matrix with 11, 000, 000 rows, 28 columns, and
283, 685, 620 non-zeros. We implemented the GPU accelerated
linear regression algorithm by stitching together a list of CUDA
kernel invocations. Here, we implement two versions – one with
purely cuBLAS/cuSPARSE kernels (denoted cu − end2end), and
the other with invocations to our fused kernel (ours − end2end).

Since data transfer between the host and the device is limited by
PCIe bus, it can be a potential bottleneck for large data sets. There-
fore, we also take into account the time spent in data transfer
to measure the ultimate benefits from our proposed method. Ta-
ble 5 shows the speedups achieved by ours − end2end against
cu − end2end. The time to transfer KDD data set from host to
device is observed to be 939 milliseconds. This time is amortized
over ML iterations – Table 5 also shows the number of iterations
executed on both data sets. Overall, we achieve up to 9× end-to-
end speedup when compared to the baseline strategy. This result
demonstrates that the proposed method not only improves the per-
formance of individual patterns of computation but also provides
significant speedup for the entire algorithm.

Table 5. Speedup achieved by proposed (and cuBLAS/cuS-
PARSE) kernels against pure cuBLAS/cuSPARSE kernels in run-
ning Linear Regression Conjugate Gradient algorithm.

Data set HIGGS KDD 2010

Total Speedup 4.8× 9×
Number of ML iterations 32 100

Table 6. Speedup of GPU-enabled SystemML against its CPU ver-
sion in running Linear Regression Conjugate Gradient algorithm.

Data set HIGGS KDD 2010

Total Speedup 1.2× 1.9×
Fused Kernel Speedup 11.2× 4.1×

Number of ML Iterations 32 100

We are now in the process of integrating the fused kernel into a
commercial system for large-scale ML, namely SystemML [5, 17].
Such an integration requires three main components – (i) a cost
model that helps in scheduling operations between the host and the
device; (ii) a GPU memory manager that monitors the data transfer
activities; and finally (iii) backend GPU kernels and APIs. Contri-
butions from this paper are part of the final component of GPU ker-
nels. We have developed preliminary versions of the first and sec-
ond components. For example, the memory manager component is
designed to perform the following tasks – a) allocate memory if it is
not already allocated on the device; b) if there is not enough mem-
ory available on the device, perform necessary evictions to make
room for incoming data; c) deallocate unnecessary variables/data
and mark them for later reuse; d) maintain consistency between the
copies of data maintained on CPU and GPU through appropriate
synchronizations; and e) perform necessary data transformations
to account for the differences in the data structures used on CPU
and GPU. For example, SystemML represents a sparse matrix as
an array of sparse rows on CPU, whereas the same matrix is rep-
resented in CSR format on the device. Furthermore, SystemML is
implemented in Java. Therefore, one has to first transfer data from
JVM heap space into native space via JNI, before it can be copied
to the device. Such data transformations and JNI data transfers can
potentially impact the performance. The cost model and the mem-
ory manager must be designed in such a way that the impact is
minimized as much as possible. With the current preliminary ver-
sions of cost model and memory manager, the observed end-to-end
speedups from Java including all the above mentioned overheads
are shown in Table 6. It is important to note that the overall speedup
from the fused kernel alone is more than 10× in the case of HIGGS
data set and 4× in the case of KDD2010 data set. Reduced end-to-
end speedups when compared to the ones in Table 5 point to the
inefficiencies in our current memory manager and data transforma-
tions – this marks our ongoing and future research direction.

181

5. Conclusion and Future Work

GPUs provide massive parallelism for compute intensive work-
loads. This paper describes the exploitation of GPUs to accelerate a
wide range of ML algorithms, such as regression and SVMs. By an-
alyzing the characteristics of various ML algorithms, we observed
that they share the common compute pattern α ∗XT × (v⊙ (X ×
y))+β∗z that manifests itself in various instantiations. Computing
the pattern using primitive kernels in existing GPU libraries domi-
nates the compute time of these algorithms. We developed generic,
fused GPU kernels that are optimized for different data characteris-
tics. The fused kernels minimize data transfer, optimize coarsening,
and minimize synchronization during aggregation of partial results.
These fused kernels provides speedups ranging from 2× to 67× for
different instances of the generic pattern compared to running exist-
ing kernels. Furthermore, we describe an experimental result for an
end-to-end GPU accelerated ML system that transparently selects
our fused GPU kernel.

In the context of larger computations, although parts of the com-
putation could be done on GPUs, it may not always be beneficial
given the overhead of data transfer, and GPU memory limitations.
Future work includes the development of a cost model that based on
a complete system profile decides on hybrid executions involving
CPUs and GPUs. A comprehensive system also needs to factor in
data format conversions and GPU memory management including
data replacement strategies in the face of iterative computations.

Acknowledgments

We would like to thank Alexandre Evfimievski for his initial ideas
on identifying common computational patterns across different ma-
chine learning algorithms.

References

[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov. Numerical Linear Algebra
on Emerging Architectures: The PLASMA and MAGMA Projects.
Journal of Physics: Conference Series, 180(1):012037, 2009.

[2] P. Baldi, P. Sadowski, and D. Whiteson. Searching for Exotic Particles
in High-Energy Physics with Deep Learning. Nature communications,
5, 2014.

[3] N. Bell and M. Garland. Implementing Sparse Matrix-Vector Mul-
tiplication on Throughput-Oriented Processors. In Proceedings of

the Conference on High Performance Computing Networking, Storage

and Analysis, page 18. ACM, 2009.

[4] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a CPU
and GPU Math Expression Compiler. In Proceedings of the Python

for scientific computing conference (SciPy), volume 4, page 3, 2010.

[5] M. Boehm, S. Tatikonda, B. Reinwald, P. Sen, Y. Tian, D. Burdick,
and S. Vaithyanathan. Hybrid Parallelization Strategies for Large-
Scale Machine Learning in SystemML. Proceedings of the VLDB

Endowment, 7(7):553–564, 2014.

[6] J. Canny and H. Zhao. Big Data Analytics with Small Footprint:
Squaring the Cloud. In Proceedings of the 19th international confer-

ence on Knowledge discovery and data mining, pages 95–103, 2013.

[7] J. Canny and H. Zhao. BIDMach: Large-Scale Learning with Zero
Memory Allocation. In BigLearning, NIPS Workshop, 2013.

[8] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast Support Vector Ma-
chine Training and Classification on Graphics Processors. In Proceed-

ings of the 25th international conference on Machine learning, pages
104–111. ACM, 2008.

[9] O. Chapelle. Training a Support Vector Machine in the Primal. Neural

Computation, 19(5):1155–1178, 2007.

[10] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew.
Deep Learning with COTS HPC Systems. In Proceedings of the 30th
International Conference on Machine Learning, pages 1337–1345,
2013.

[11] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A Matlab-like
Environment for Machine Learning. In BigLearning, NIPS Workshop,
2011.

[12] cuBLAS. The NVIDIA CUDA Basic Linear Algebra Subroutines
Library. URL https://developer.nvidia.com/cublas.

[13] CUDA. A Parallel Computing Platform and Programming Model
Invented by NVIDIA. URL http://www.nvidia.com/object/
cuda_home_new.html.

[14] cuDNN. The NVIDIA CUDA Library of Primitives for Deep Neural
Networks. URL https://developer.nvidia.com/cuDNN.

[15] cuSPARSE. The NVIDIA CUDA Sparse Matrix Library. URL
https://developer.nvidia.com/cusparse.

[16] R. Farivar, D. Rebolledo, E. Chan, and R. H. Campbell. A Parallel
Implementation of K-Means Clustering on GPUs. In PDPTA, pages
340–345, 2008.

[17] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sind-
hwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan. SystemML:
Declarative Machine Learning on MapReduce. In IEEE 27th Interna-

tional Conference on Data Engineering, pages 231–242. IEEE, 2011.

[18] HiPLAR. High Performance Linear Algebra in R. URL http:
//hiplar.org.

[19] C.-H. Ho and C.-J. Lin. Large-Scale Linear Support Vector Regres-
sion. The Journal of Machine Learning Research, 13(1):3323–3348,
2012.

[20] Intel. Math Kernel Library. URL https://software.intel.com/
en-us/intel-mkl.

[21] Khronos OpenCL Working Group. The OpenCL Specification, version

1.0.29, December 2008.

[22] D. B. Kirk and W. H. Wen-mei. Programming Massively Parallel

Processors: a Hands-on Approach. Newnes, 2012.

[23] J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment.
Journal of the ACM (JACM), 46(5):604–632, 1999.

[24] C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust Region Newton Method
for Logistic Regression. Journal of Machine Learning Research, 9:
627–650, 2008.

[25] N. Lopes and B. Ribeiro. GPUMLib: An Efficient Open-Source
GPU Machine Learning Library. International Journal of Computer

Information Systems and Industrial Management Applications, 3:355–
362, 2011.

[26] N. Lopes, B. Ribeiro, and R. Quintas. GPUMLib: a New Library
to Combine Machine Learning Algorithms with Graphics Processing
Units. In Hybrid Intelligent Systems (HIS), 2010 10th International

Conference on, pages 229–232. IEEE, 2010.

[27] MAGMA. Matrix Algebra on GPU and Multicore Architectures. URL
http://icl.cs.utk.edu/magma.

[28] P. McCullagh. Generalized Linear Models. European Journal of

Operational Research, 16(3):285–292, 1984.

[29] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel
Programming with CUDA. Queue, 6(2):40–53, 2008.

[30] NVIDIA. CUDA GPU Occupancy Calculator. URL
http://developer.download.nvidia.com/compute/
cuda/CUDA_Occupancy_calculator.xls.

[31] NVVP. NVIDIA Visual Profiler. URL https://developer.
nvidia.com/nvidia-visual-profiler.

[32] R. Raina, A. Madhavan, and A. Y. Ng. Large-Scale Deep Unsuper-
vised Learning Using Graphics Processors. In International Confer-

ence on Machine Learning, volume 9, pages 873–880, 2009.

[33] T. Sharp. Implementing Decision Trees and Forests on a GPU. In
Computer Vision–ECCV 2008, pages 595–608. Springer, 2008.

[34] J. Stamper, A. Niculescu-Mizil, S. Ritter, G. Gordon, and
K. Koedinger. Algebra I 2008-2009. Challenge Data Set from KDD
Cup 2010 Educational Data Mining Challenge, 2013. URL http:
//pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.

[35] C. Zhang, A. Kumar, and C. Ré. Materialization Optimizations for
Feature Selection Workloads. In SIGMOD, 2014.

182

