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ABSTRACT

Large-scale data analytics using statistical machine learn-
ing (ML), popularly called advanced analytics, underpins
many modern data-driven applications. The data manage-
ment community has been working for over a decade on
tackling data management-related challenges that arise in
ML workloads, and has built several systems for advanced
analytics. This tutorial provides a comprehensive review of
such systems and analyzes key data management challenges
and techniques. We focus on three complementary lines of
work: (1) integrating ML algorithms and languages with ex-
isting data systems such as RDBMSs, (2) adapting data
management-inspired techniques such as query optimiza-
tion, partitioning, and compression to new systems that tar-
get ML workloads, and (3) combining data management and
ML ideas to build systems that improve ML lifecycle-related
tasks. Finally, we identify key open data management chal-
lenges for future research in this important area.

1. INTRODUCTION

Analysis of large datasets using statistical machine learn-
ing (ML) algorithms, popularly called advanced or deep
analytics, is central to modern data-driven applications in
business intelligence (BI), e-commerce, healthcare, science,
and other domains |24}, 47]. Dating back to the in-RDBMS
data mining boom of the late 1990s, the database indus-
try and academia have been working for over a decade on
data management-oriented challenges in ML. This has led to
a proliferation of systems and frameworks for scalable and
fast ML built by our community |2} |3} |38, |46, {70} [109], as
well as projects that apply database-inspired ideas to make
ML faster and more user-friendly (9, |17, |29} |36l (105} |107].
The diversity of this landscape of systems and projects could
be overwhelming for data management researchers, data sci-
entists, and system developers alike.

Goals: This tutorial aims to provide a timely and com-
prehensive review of systems and techniques that tackle data
management challenges in the context of ML workloads. Our
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focus is on analyzing the technical challenges and on explain-
ing the key ideas, architecture, strengths, and limitations of
major systems that address these challenges. This tutorial
aims to provide data management researchers and systems
developers with a survey of effective techniques and open
issues, and to help identify systems they could build upon
or compare with. It could also help data scientists under-
stand the assumptions, pros, and cons of different systems
and make more informed choices for their applications.

Tutorial Scope: Unlike previous tutorials on ML for “Big
Data” [26], we do not focus on a general introduction to ML,
usage of ML systems, or general dataflow or graph analyt-
ics systems, which have been covered before |10} [103]. In-
stead, our focus is on identifying general data management
challenges and techniques in ML across a broader swathe of
works. Given this focus, we also do not cover deep learning
algorithms [66] and systems |4} |14] [25] |52]. Deep learning is
popular specifically for image, speech, and text data, but is
too broad to cover along with other techniques [101], and
unlike many other ML workloads, deep learning is typically
very compute-intensive and often requires GPUs, FPGAs,
or even custom ASICs [4]. We also exclude works that ap-
ply ML for text analytics, domain-specific applications, or
for improving RDBMS internals such as speculative execu-
tion [79], learning cost models [89], predicting workload pat-
terns 80|, or resource allocation [6§].

Tutorial Outline: This 1.5-hour tutorial covers the fol-
lowing technical content:

e Workload Characterization: We motivate a data-
centric view of ML by providing some basic back-
ground on the common data characteristics, data man-
agement operations, data access patterns of popular
ML algorithms, and pre-processing techniques.

ML in Data Systems: We review systems and frame-
works that integrate ML algorithms, frameworks, and
languages with existing data systems (Section . We
will discuss techniques ranging from UDF-centric ap-
proaches to deeply integrated approaches.
DB-Inspired ML Systems: We review systems and
frameworks designed for ML workloads that apply and
adapt DB-inspired techniques (Section . Example
techniques include optimization with rewrites and op-
erator selection, incremental model maintenance, com-
pression, and access methods.

ML Lifecycle Systems: We review systems that
combine DB and ML ideas and target ML lifecycle
tasks that go beyond improving the performance of
individual algorithms (Section .
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e Open Problems: Finally, we identify and discuss sev-
eral open research problems as potential directions for
new research in this emerging area (Section .

Target Audience: This tutorial targets all researchers
and practitioners interested in data management challenges
and techniques in the context of building scalable and user-
friendly systems for ML. We assume that the audience is
generally familiar with ML applications and common techni-
cal terms. We do not require prior knowledge of specific ML,
algorithms, workload characteristics, or system internals.

2. ML IN DATA SYSTEMS

We cover systems that integrate ML algorithms with
an RDBMS or more recent dataflow systems to bring ML
computations closer to where the data resides (e.g., in an
RDBMS, or on HDFS). Thus, they avoid or reduce the cost
of moving data to specialized ML toolkits. In the tutorial, we
will introduce these systems, explain the architecture of rep-
resentative examples, and highlight the data management
challenges that arise, along with how they are tackled.

2.1 UDF-Oriented ML

An early approach to scalable ML exploited the user-
defined function (UDF) and user-defined aggregate (UDA)
abstractions in data systems. Examples include ATLAS
[100], in-RDBMS ML libraries such as Oracle Data Min-
ing, GLADE, which introduced generalized linear aggregates
using UDAs [22], one-pass algorithms computing sufficient
statistics using UDFs [76], as well as Mahout on Hadoop [1]
and MLIib on Spark [70]. Some systems offer more templated
approaches to reduce software development effort. Exam-
ples include Bismarck (38|, which offers a unified architec-
ture based on stochastic gradient descent, and MADIib [24,
46], which provides abstractions for in-RDBMS ML with
type bridging from database types such as the SQL:99 array
type. Similarly, UDFs are also commonly used for parallel
prediction [81]. Overall, such systems make it easier to use
ML in conjunction with regular SQL for data processing.

2.2 Learning over Joins

Some recent efforts integrate ML with data systems more
deeply by optimizing ML over datasets that are logically
the output relational queries, especially, joins. This includes
Orion [63], which introduced the “factorized learning” tech-
nique to push generalized linear models through joins to
avoid redundancy in ML computations, Santoku [62], a li-
brary of factorized learning and scoring algorithms in R,
F [87], a new algorithm and tool for linear regression over
“factorized joins,” and Morpheus, which generalizes this idea
to any ML computations expressible in the formal language
of linear algebra [21]. Closely related are LibFM [84], which
lets users specify repeating patterns in the data (possibly
caused by joins), and TensorDB [58], which pushes tensor
decompositions through joins and unions.

2.3 SRL Systems

Some systems exploit RDBMSs to support complex multi-
relational ML models known as statistical relational learning
(SRL) models [42]. The primary example is DeepDive [31],
which supports Markov Logic Networks (MLN) and derived
SRL models on top of an RDBMS. DeepDive exploits the
advanced join processing capabilities of RDBMSs to scale
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MLN inference, making it possible to apply such models to
large-scale datasets [75]. Another example, ERACER [69)|,
implemented relational dependency network models on top
of an RDBMS for data cleaning tasks.

2.4 Query Generators

A further class of systems provide higher level abstractions
on top of a data system to simplify the development and cus-
tomization of new and existing ML algorithms. Under the
covers, these systems generate either SQL queries (poten-
tially augmented with procedural extensions and UDFs) on
top of an RDBMS, or jobs for data-parallel frameworks such
as Hadoop or Spark. The primary examples in this class are
the R-based analytics systems such as RIOT-DB [109], Ora-
cle R Enterprise 3], IBM BigR [104], and SparkR [99], which
provide R as a front-end, store matrices or data frames in the
underlying system, and convert operations over these ma-
trices into queries. Further examples include ScalOps [1§],
which generates Datalog programs and finally data-parallel
jobs, as well as SImSQL [19] |40, which targets Bayesian ML
model specifications that generate SQL queries.

2.5 Deep RDBMS Integration

A few projects extend core RDBMS technology to bet-
ter support ML workloads, in contrast to the previously
described classes of systems that leave the data system
unaltered. There are two main categories. First, there are
DBMS extensions with built-in support for specific model
classes. For example, the Fa [34] and F>DB [39] systems
allow declarative forecasting queries by automating model
creation, maintenance, and usage. Second, systems like SAP
HANA aim to integrate linear algebra for a wide range of
ML algorithms. Existing prototypes integrate sparse matri-
ces into SAP HANA'’s delta architecture [54] and extend the
database task scheduler to support multi-threaded OpenMP
applications such as linear algebra kernels [102].

3. DB-INSPIRED ML SYSTEMS

We cover a variety of systems and domain-specific lan-
guages (DSLs) that go beyond just reusing existing data sys-
tems for ML workloads. Many techniques used here are in-
spired by databases, programming languages, and high per-
formance computing. We will cover a variety of techniques,
ranging from optimization and processing, over storage and
access methods, to deployment in the cloud. The major dif-
ferences with traditional RDBMSs are the focus on linear
algebra and other ML operations, general DAG structures,
and specific sparse and dense data representations.

3.1 Rewrites and Operator Selection

Similar to traditional query optimization, many state-of-
the-art optimizing compilers for ML algorithms like RIOT
[109], OptiML [94], SystemML (16, [17], Cumulon [48], and
Mahout Samsara [86| rely on simplification rewrites |16} (94)
109] and operator selection [17] |48} [86]. Most of these sys-
tems use pattern-matching rewrites and a variety of phys-
ical operators, chosen with a cost model that incorporates
data and cluster characteristics. One important technique—
similar to join ordering—is matrix multiplication chain op-
timization, for which SpMacho incorporated sparsity esti-
mates into a common dynamic programming algorithm [55|
and FAQ described a generalization to so-called functional
aggregate queries [57]. Furthermore, SystemML SPOOF



made a case for automatic rewrite identification via sum-
product optimization on restricted relational algebra plans
[35]. Finally, note that initially unknown or changing char-
acteristics require runtime plan adaptation similar to adap-
tive query processing. SystemML, for instance, adapts plans
during runtime via dynamic recompilation [16].

3.2 Incremental Model Maintenance

Incremental maintenance of materialized views is a well
studied topic in the database literature. In the spirit of
MauveDB’s model-based views [32], we can regard an ML
model and its predictions as a materialized view of the input
data. Several learning tasks then allow efficient incremental
maintenance. For example, LINVIEW derives delta update
rules from linear algebra programs [73], and incremental
iterations aim to reduce the working set across iterations
of fixpoint computations |37]. Similarly, DeepDive performs
incremental grounding and inference for SRL models (8],
Hazy incrementally maintains classification views [59], and
Velox applies offline and online learning [27].

3.3 Operator Fusion and Code Generation

Modern in-memory database systems often apply query
compilation. Several ML systems also use fused operators
or automatic code generation to reduce the number of in-
termediates and input scans, or to exploit sparsity across
operations. SystemML [11} [17] and Cumulon [48| use hand-
coded fused operators, whereas [111] applies static analysis
and code generation techniques to optimize I/O for matrix
computation. OptiML [94] and Emma (7] apply automatic
fusion in the context of DSLs embedded in functional pro-
gramming languages. Tupleware [29] and Kasen [108] gen-
erate distributed programs for UDF-centric programs but
without exploiting sparsity across operations. SystemML
SPOOF [35] recently introduced a holistic framework for au-
tomatic rewrite identification and operator fusion, including
the generation of sparsity-exploiting operators.

3.4 Asynchronous Execution

A few recent systems go beyond the bulk synchronous pro-
cessing model to enable asynchronous execution of iterative
ML algorithms, especially those that use stochastic gradient
descent (SGD). Since SGD is often robust to the order of
updates, we can use asynchronous execution to avoid global
barriers. Example systems are GraphLab [67] and Tensor-
Flow [4]. In contrast, Hogwild! [74] uses lock-free updates of
a shared model for multi-threaded, single-node SGD. They
showed, for sparse model updates, that SGD still achieves
near-optimal convergence rates. Finally, Gonzalez et al. also
extended the Hogwild! idea to dataflow systems [43].

3.5 Compression and Scan Sharing

Many ML algorithms are iterative and perform repeated
matrix-vector multiplications. Since matrix-vector multipli-
cations are—similar to traditional table scans—even in-
memory I/O-bound, existing work tries to reduce the
data size via compression or reduce the number of scans.
First, SciDB uses general-purpose compression techniques
in the storage manager and decompresses arrays block-wise
for each operation [93]. In contrast, SystemML employs
lightweight database compression techniques and executes
linear algebra operations directly on the compressed matrix
representation [36]. Second, once again due to the promi-
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nence of I/O-bound operations, other scenarios such as cross
validation, ensemble learning, feature selection, and hyper-
parameter tuning also typically benefit from scan sharing.
For example, MLbase’s TUPAQ [91] and Columbus [105] use
batching to evaluate multiple model configurations in one
pass. Similarly, SystemML uses a technique called runtime
piggybacking to batch MR jobs submitted from concurrent
threads of a task-parallel parfor loop [15| for scan sharing.

3.6 Index Structures and Partitioning

Inspired by traditional access methods in database sys-
tems, some ML systems employ dedicated index structures,
operation- and topology-aware partitioning and replication,
as well as buffer management. First, the LAB-tree (Lin-
earized Array B-tree) |110] indexes out-of-core matrices in a
sparsity-aware manner. Similarly, the AT MATRIX (Adap-
tive Tile Matrix) [56] also uses sparse and dense leaf blocks
but is designed for in-memory, NUMA-aware parallelization.
The TileDB storage manager uses fragments to handle dense
and sparse arrays with random writes |78]. Furthermore,
there are domain-specific data structures such as a skip list
for I/O-efficient processing of forecasting queries [41]. Sec-
ond, various systems apply partitioning and replication in
an operation- or topology-aware manner. For example, the
AT MATRIX [56] uses horizontal range partitioning and
socket-local task queues with task-stealing across queues.
DimmWitted [107] explores the tradeoff of statistical and
hardware efficiency in NUMA architectures via different ac-
cess methods and replication strategies. ArrayStore [90] in-
vestigates effective partitioning schemes for typical array
operations and accessing adjacent tiles. Complementary to
these strategies, SystemML injects hash partitioning direc-
tives for out-of-core matrices that are used read-only in loops
to avoid shuffling per iteration |17]. Third, there is also work
on buffer management. Elementary [106] explores material-
ization and buffer management for out-of-core factor graphs,
whereas SystemML employs a buffer pool [17] to evict inter-
mediate results of linear algebra programs, if required.

3.7 Cloud ML Resource Elasticity

In public or private clouds, BI and ML workloads share
similar challenges of cost-effective resource allocation and
robustness against preemption. Cumulon [48] simplifies the
deployment in cloud environments by optimizing physical
plans for monetary costs under time constraints. This in-
cludes allocation decisions such as the cluster size, node
types, and configurations. In contrast, SystemML’s resource
optimizer |50] optimizes for performance without unneces-
sary over-provisioning via an online what-if analysis, in a
plan-aware manner. Similar to SystemML’s resource adapta-
tion, Dolphin [23| performs runtime configuration optimiza-
tion but for parameter servers. Ciimiilén [49]—an extension
of Cumulon that makes use of cheap, but unreliable “spot
instances”—considers the risk of preemption to optimize bid-
ding strategies. Narayanamurthy et al. handle preemption
in an algorithm-specific manner by approximating the loss
function for missing partitions |72|. Similarly, Schelter et al.
introduced an optimistic recovery mechanism for fixpoint
computations based on compensation functions [85].

4. ML LIFECYCLE SYSTEMS

We cover systems that target—beyond training individ-
ual models—other important tasks in the ML lifecycle, in-



cluding tasks that occur before training or as “outer loops”
surrounding training and prediction. We discuss tasks such
as feature engineering, model selection, and model manage-
ment. Many of these systems apply DB-centric ideas such as
declarativity, interactivity, and optimization, often combin-
ing such ideas with techniques from the ML literature.

4.1 Feature Engineering

Feature engineering is the process of constructing features,
which includes tasks such as feature extraction from raw
data and feature selection [44]. It is often considered to be
the most time-consuming part of an applied ML project |33].
While the ML community has studied algorithmic feature
selection, auxiliary pains in feature engineering have largely
been ignored. Our community is building systems to support
such tasks by taking a dataflow-oriented view. Brainwash [9)
and DeepDive (83| abstracted such tasks using workflows
of UDFs and proposed DB-style ideas to optimize them.
Columbus proposed a DSL for exploratory feature selection
and applied both DB-style and ML-style optimizations such
as batching, QR decomposition, and warm starting to re-
duce runtimes under accuracy constraints. Zombie (8] opti-
mized feature extraction and refinement tasks by combining
indexing and partitioning ideas with a multi-armed bandit
technique to read only parts of the data. KeystoneML [92]
provides libraries for certain forms of featurization and op-
timizes pipelines of such ML operators over Spark. Comple-
mentary to these ideas, Hamlet |65] applied statistical learn-
ing theory to exploit certain database dependencies to drop
features before ML without affecting accuracy significantly.

4.2 Model Selection and Management

Model selection is the overarching process of obtaining
satisfactory ML models; it subsumes feature engineering and
includes algorithm selection (AS) and hyper-parameter tun-
ing (HT) [45]. It is typically an iterative human-in-the-loop
process but most existing ML systems provide little support
for optimizing this process end-to-end. Longview [6] pro-
posed integrating “model management” functionality into a
DBMS to automate certain aspects of model selection, along
with managing learned ML models. AutoWeka [96] and ML-
base [60] automate AS and HT, with MLbase’s TUPAQ
applying multi-armed bandit-style techniques [91]. Heming-
way [77] automates AS and cluster size tuning jointly for dis-
tributed optimization algorithms, while [82] applied online
aggregation-style techniques for HT in optimization algo-
rithms. More generally, [64] outlined a vision of “model selec-
tion management systems” that build upon existing systems
and combine ideas from the DB and ML to enable a wider
spectrum of automation. Example systems include Sher-
lock [97], which proposed abstractions for iterative model
building, ModelHub |71], which proposed a language and
storage manager for managing deep neural networks that
arise in computer vision, and ModelDB [98], which instru-
ments ML libraries to capture and manage models.

Complementary to the above systems, cloud ML services,
such as AzureML [2], aim at simple construction, scaling,
and management of end-to-end ML workflows. A few recent
systems target data cleaning and interactive specification as
well. ActiveClean [61] integrates iterative data cleaning with
SGD-based learning of convex ML models and proposes new
sampling mechanisms to preserve convergence guarantees.
Ava [53] provides a chat-bot front-end to make it easier to
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build models by maintaining a repository of “storyboards”
for typical templates, while Vizdom [30] enables users to
visually specify ML tasks on a touchscreen with incremental
refinement of partial results. Finally, some systems aim to
improve the usability and performance of serving trained
ML models and predictions. Examples include Velox [27] and
its successor Clipper [2§], which enables model deployment
across multiple frameworks, as well as MacroBase [12], which
combines stream mining with streaming data explanation.

S. OPEN PROBLEMS

There are still various open research problems that need
the attention of our community. We outline several problems
although by no means is this an exhaustive list.

Size and Sparsity Estimation: Many optimization
techniques require prior knowledge of the size and sparsity of
matrices for cost comparisons and valid plan generation. But
it is often non-trivial to infer such information for interme-
diates in complex linear algebra programs with conditional
control flow, complex function call patterns, UDFs, and
data-dependent operations. Hence, principled techniques for
estimating the size and sparsity would be beneficial.

Convergence Estimation: Iterative ML algorithms of-
ten use convergence-based termination conditions. This
leads to an unpredictable number of iterations, which makes
it challenging to estimate the runtime, say, for resource allo-
cation, or for decisions on expensive data re-organizations.
Techniques to predict the number of iterations for conver-
gence of ML algorithms would not only enable such opti-
mizations but also enable progress estimators.

Adaptive Query Processing and Storage: Unknown
or changing workloads are typically handled with adaptive
query processing and storage techniques. But such concerns
have received little attention in the context of large-scale
ML. The state of the art is limited to inter-DAG dynamic
recompilation [16] and lazy expression optimization [86].

Automatic Rewrites and Operator Fusion: Exist-
ing systems mostly apply coarse-grained pattern transfor-
mations, which limits rewrite and fusion potential. Rewrite
frameworks would further benefit from a better exploitation
of data flow (e.g., partitioning) and structural properties
(e.g., diagonal matrices). Also, the increasing use of com-
pression and new access methods make operator fusion far
more challenging than on regular dense matrices.

Special Value Handling: Most systems ignore the ef-
fects of special values such as NaN or INF, which render,
for example, sparse linear algebra invalid because 0- NaN =
NaN. The challenge is to support these special values during
optimization and runtime without sacrificing performance.

Integrating Relational and Linear Algebra: A grand
challenge is a seamless integration of relational and linear
algebra so that users can specify, optimize, and execute ML
tasks in a holistic framework, including data transformations
for feature engineering such as joins and aggregates, and
training and prediction of different ML models, including
tasks such as cross-validation and feature selection.

Seamless Feature Engineering and Model Selec-
tion: To simplify end-to-end ML applications, there is a
push towards (semi-)automating feature engineering and
model selection [64]. Open questions include abstractions,
meta-algorithms, and system architectures for different
classes of ML models, including deep learning, which com-
bines feature engineering and learning. An architecture that



leverages the progress on individual ML systems could be a
feasible and impactful option. Other open questions involve
applying and adapting theoretical results from learning the-
ory, optimization, and human-computer interaction.

ML System Benchmarks: Existing benchmarks for
large-scale analytics such as HiBench [51], BigBench [13],
and SparkBench [5| contain a few ML tasks but only re-
fer to reference implementations of large-scale ML libraries,
which makes it hard to compare existing ML systems.
There are also existing SQL-centric benchmarks for array
databases |95] and Bayesian ML [20], but a broader range of
benchmarks would be invaluable for the community at large.
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