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Motivation: A Data-Centric View of ML

 Application Perspective
– Machine learning / advanced analytics / deep analytics
Modern data-driven applications (e.g., BI, e-commerce, healthcare)

 Workload Perspective
– Repetitive ML workflows
– Often iterative ML algorithms
– Often I/O-bound operations 

(e.g., matrix-vector multiplications)

 Systems Perspective
– ML in data systems
– DB-inspired ML systems
– ML Lifecycle Systems
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Motivation: Systems Landscape
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Motivation: Tutorial Goals

 Overall Goal: Comprehensive review of systems and techniques that 
tackle data management challenges in the context of ML workloads

 #1 Categorize Existing Systems
– ML in data systems, DB-inspired ML systems, ML lifecycle systems

 #2 Survey State-of-the-Art Techniques 
– Query gen, UDFs, factorized learning, deep DBMS integration
– Optimization and runtime techniques, incl. resource elasticity
– Model selection and model management

 Intended Takeaways
– Awareness of existing systems and techniques 
– Survey of effective optimization and runtime techniques
– Overview of open research problems



What this Tutorial is NOT

 Introduction to Machine Learning

 Tutorial on General-Purpose Systems
– Dataflow systems
– Graph-focused systems

 Tutorial on Deep Learning
– Deep learning algorithms
– Deep learning systems (e.g., Torch, Theano, BigDL,

TensorFlow, MXNet, CNTK, Singa, Keras, Caffe, DL4J)

 Tutorial on ML for RDBMS Internals
– Cost models
– Workload prediction (e.g., in Peloton)

[SIGMOD’13]

[SIGMOD’16]

[SIGMOD 
Record’16]

[CIDR’17]



Tutorial Outline

ML in Data Systems

 2 Query Generators and UDFs 14min JY
 3 Factorized Learning and Deep RDBMS Integration 8min AK

DB-Inspired ML Systems

 4 Rewrites, Operator Selection, and Fusion 14min MB

 5 Compression, Scan Sharing, and Index Structures 10min MB
 6 Cloud Resource Elasticity 10min JY

ML Lifecycle Systems

 7 Feature Engineering, Model Selection/Management 16min AK

Open Problems and Q&A

[                                                                                                              ]
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Part 2: ML with SQL & UDF

Jun Yang
Duke University

Durham, NC, USA

SIGMOD 2017

“I suppose it is tempting, if the only tool you have is a 
hammer, to treat everything as if it were a nail.”

Abraham Maslow, 1966

https://pixabay.com/en/nails-hammer-woodwork-tool-37063/
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ML in Database – Why?

 Convenience
– “Elephants” (octopi?) have shown remarkable flexibility
– A single platform for not only data management, transformation, and 

querying, but also ML and application of insights

 Efficiency
– Move the analysis, not data
– Can co-optimize various steps involved in the “big data pipeline”

 Declarativeness
– Simplifies development
– Enables effective automatic optimization, which helps scalability/efficiency
– One area where the DB community has plenty to offer
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Roadmap

 First, examples of what SQL can do for ML, at various levels of 
abstraction:

– Matrix multiply
– Ordinary least squares
– Gradient descent
( See backup slides for
– 𝑘𝑘-means
– Markov-chain Monte-Carlo )

 Then, a brief discussion of approaches to using SQL for ML
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Matrix Multiply: Take 1

 Data: A(i,j,val), B(i,j,val)
– Basically a sparse representation

 SELECT A.i, B.j, SUM(A.val*B.val)
FROM A, B
WHERE A.j = B.i
GROUP BY A.i, B.j;

 Works pretty well for sparse matrices

 Not so good for dense matrices, but still beats “small-data” platforms 
when data doesn’t fit in memory

MAD Skills [VLDB'09]

𝔸𝔸

𝔹𝔹

𝔸𝔸.i

𝔹𝔹.j
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Matrix Multiply: Take 2

 Data: A(i,row), B(j,col)
– row and col are ARRAY types or user-defined vector types
– Basically a row-/column-major representation

 UDF (user-defined function): dotproduct(𝑣𝑣1,𝑣𝑣2) computes the dot 
product of two vectors

SELECT A.i, B.j, dotproduct(A.row, B.col)
FROM A, B;

 Works fine for dense matrices
 But still suboptimal in terms of

compute-to-I/O ratio

 Also note the change in representation (from input to output)

MAD Skills [VLDB'09]

𝕏𝕏

𝕐𝕐

ℤ𝑚𝑚
ℓ

ℓ

𝑛𝑛
𝕏𝕏

Computation: 𝑂𝑂 ℓ𝑚𝑚𝑚𝑚 , or volume
I/O: 𝑂𝑂 𝑚𝑚𝑚 + ℓ𝑛𝑛 + 𝑛𝑛𝑛𝑛 , or surface
☞ Want instead “blocky” units to 

maximize compute-to-I/O ratio
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Matrix Multiply: Take 3

 Data: A(i,j,V), B(i,j,V)
– V represents a submatrix; assume the dimensions are compatible
– Basically a blocked representation

 UDFs
– matmult(𝑉𝑉1,𝑉𝑉2) computes the product of two matrices
– matsum(𝑉𝑉) is a UDA (user-defined aggregate) that sums up input matrices

SELECT A.i, B.j, matsum(matmult(A.V, B,V))
FROM A, B
WHERE A.j = B.i
GROUP BY A.i, B.j;

 Choose a “big enough” V with good aspect ratio
– E.g., square V’s beat skinny V’s

 UDFs can use optimized libraries like BLAS

RIOT-DB [CIDR'09] SimSQL [ICDE'17]
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Ordinary Least Squares

 To fit data (𝑋𝑋,𝑦𝑦) to a linear model 
𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝜖𝜖:

𝛽𝛽⋆ = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑦𝑦

 Computation involves basic matrix operators 
expressible in SQL with help of UDFs

– Inverse is tougher, but assuming the input matrix is small:
– Code it as a UDF with memory-resident input
– Processing won’t benefit from DBMS though

MAD [VLDB'09, '12]

https://en.wikipedia.org/wiki/File:Linear_regression.svg

SimSQL [ICDE'17]
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Observation

 How far can UDF and UDA go? Surprisingly very!

 UDF (oftentimes coded in other languages, e.g., Python and R)
– Either on the tuple-level (invoked by SQL queries),
– Or like an application program (invoking SQL queries)

 UDA
– Init(state) initializes the state
– Accumulate(state, data) computes updated state with new data
– [optional] Merge(state, state) merges intermediate results computed 

over disjoint input subsets
– Finalize(state) computes the final result from the state
☞This pattern covers lots of iterative computation in ML, e.g.

– 𝑘𝑘-means (backup slides)
– Gradient descent (next)

GLADE [LADIS'11,SIGMOD'12], MADlib [VLDB'12] 
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Gradient Descent (GD)

 Given a model with parameters 𝑤𝑤, we want to learn from data 𝐷𝐷, i.e., 
minimize a loss function 𝐹𝐹 𝑤𝑤;𝐷𝐷

– E.g., sum of loss over all training data + a regularization term

 Start with some guess 𝑤𝑤0
 In each step 𝑡𝑡 + 1, update 𝑤𝑤

in the direction of the gradient of 
the loss function at 𝑤𝑤𝑡𝑡, i.e., 𝐹𝐹′ 𝑤𝑤𝑡𝑡

 Rinse and repeat

 Under certain (commonly held) conditions, 
GD converges to a local minimum

– If 𝐹𝐹 is convex, that’s its global minimum

https://zh.wikipedia.org/wiki/File:Coordinate_descent.svg
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Stochastic GD (SGD)

 Suppose 𝐹𝐹 𝑤𝑤;𝐷𝐷 is linearly separable over 𝐷𝐷
– I.e., 𝐹𝐹 𝑤𝑤;𝐷𝐷 = ∑𝑖𝑖 𝑓𝑓𝑖𝑖 𝑤𝑤;𝑑𝑑𝑖𝑖 , 

where 𝑖𝑖 iterates over the data points 𝐷𝐷 = 𝑑𝑑𝑖𝑖 𝑖𝑖

 Instead of updating 𝑤𝑤 using the “full gradient” computed over 𝐷𝐷 in 
each GD step, just choose a single point in 𝐷𝐷

– I.e., use 𝑓𝑓𝑖𝑖′ 𝑤𝑤 to approximate 𝐹𝐹′ 𝑤𝑤

 Remarkably, for convex 𝐹𝐹 𝑤𝑤 , SGD also converges to the global 
minimum, even if we pick points from 𝐷𝐷 in a fixed, arbitrary order

– Albeit at a slower rate
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GD/SGD in SQL

 GD (full gradient)
– Computation of full gradient over 𝐷𝐷 can be done by a query using UDA
– Several options for driving outer loop

– MADlib [VLDB'12] uses Python UDF
– ScalOps [DeBull'12] uses Datalog

– Underlying implementation is MapReduce instead of SQL

 SGD
– The entire procedure can be written as a query over 𝐷𝐷 using UDA—each 
Accumulate() corresponds to one step

Bismarck [SIGMOD'12]
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MCMC in SQL

 MCMC (Markov-Chain Monte-Carlo) is a key method in Bayesian ML

 Bayesian ML comes down to analyzing the “posterior” distribution
P(parameters, hidden variables | observations)

 Direct analysis is often hard, so we use Monte-Carlo simulation
– Repeatedly sample from the posterior, and analyze the samples

 But sampling directly from the posterior is often hard, so we use MCMC
– A sampler generates a Markov chain of samples, whose stationary 

distribution is the target posterior

☞You can do Gibbs sampling (a form of MCMC) in SimSQL [SIGMOD'13]
– With user-define “value-generating” functions that draw samples
– See backup slides for details
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Approaches to SQL+ML

Backend choices

 “On top of” (e.g., RIOT-DB [CIDR'09], MAD [VLDB'09,VLDB'12]) vs. 
“inside” DBMS (e.g., SimSQL [ICDE'17])

 Not DBMS, but still inspired by or rooted in DBMS
– General-purpose “big-data” platform (e.g., SystemML [ICDE'11,VLDB'16], 

Cumulon [SIGMOD'13])
– Specialized system from ground up (e.g., RIOT [ICDE'10], SciDB [CSE'13])

Interface choices
 SQL + libraries or extensions (e.g., MAD [VLDB'09,VLDB'12], SimSQL

[ICDE'17], Oracle Data Mining, …)

 ML-oriented languages on top of SQL (e.g., RIOT-DB [CIDR'09], 
BUDS/SimSQL [SIGMOD'17], Oracle R Enterprise, …)
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Interface: SQL + Libraries/Extensions

 Especially nice with integrated model management, e.g., 
Oracle Data Mining

– Can create, store, update, and apply models in SQL
-- Create model settings:
CREATE TABLE svm_settings(

setting_name VARCHAR2(30), setting_value VARCHAR2(30));
INSERT INTO svm_settings VALUES(

dbms_data_mining.algo_name,
dbms_data_mining.algo_support_vector_machines);

-- …
-- Build model:
DBMS_DATA_MINING.CREATE_MODEL(

model_name => 'svm_model', 
mining_function => dbms_data_mining.classification,
data_table_name => 'mining_data_build_v',
case_id_column_name => 'cust_id',
target_column_name => 'affinity_card',
settings_table_name => 'svm_settings'); 

-- Apply model:
DBMS_DATA_MINING.APPLY(

model_name => 'svm_model',
data_table_name => 'mining_data_apply_v',
case_id_column_name => 'cust_id',
result_table_name => ’svm_apply_result');
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 Let user write whatever they are comfortable with (R, Python, etc.)
– Provide a library of data manipulation and ML functions implemented by 

the underlying system; can pre-compile user code
– SQL underneath: RIOT [CIDR'09,ICDE'10], BUDS/SimSQL [SIGMOD'17],

Oracle R Enterprise, etc.
– Other “big-data” platforms underneath: SystemML [ICDE'11,VLDB'16], 

Spark R, Mahout Samsara, etc.

Interface: no SQL

Bayesian LASSO in BUDS
… in Mahout Samara

… in SystemML(Examples from BUDS/SimSQL [SIGMOD'17])
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Summary

 You can get a lot of 
mileage for machine learning
with SQL+UDF (octopus + hammer)

 Deep roots in
– DBMS extensibility research
– Array DBMS, e.g., SciDB [CSE'13]; see Rusu & Cheng [arXiv 2013] for survey

 Next: more opportunities for deeper ML+DB integration

http://www.bongpages.com/index.php?route=product/product&product_id=115
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Part 2 Backup/Extra Slides
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𝑘𝑘-Means Clustering

 Given 𝑛𝑛 points, find 𝑘𝑘 centroids to 
minimize sum of squared distances 
between each point and its closest centroid

 EM-style iterative algorithm:
1. Pick initial 𝑘𝑘 candidate centroid locations
2. Assign each point to the closest candidate
3. Reposition each candidate as the centroid of its assigned points
4. Repeat 2-3 above until assignment changes no more (or very little)

https://commons.wikimedia.org/wiki/File:KMeans-Gaussian-data.svg
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𝑘𝑘-Means as UDA

 State: 𝑘𝑘 candidates with locations + cluster info 
⟨loc𝑖𝑖 , sum𝑖𝑖 , cnt𝑖𝑖⟩ 1≤𝑖𝑖≤𝑘𝑘

 Init: given centroid locations, with sum and count of 0

 Accumulate: given a data point 𝑝𝑝, find the candidate 𝑖𝑖 closest to 𝑝𝑝; 
increment sum𝑖𝑖 by 𝑝𝑝’s coordinates and cnt𝑖𝑖 by one

 Merge: merge ⟨loc, sum, cnt⟩ records by loc; add sum and cnt
 Finalize: for each 𝑖𝑖, compute new loc𝑖𝑖 as sum𝑖𝑖/cnt𝑖𝑖
 One SQL query with this UDA gives 

one iteration of the EM algorithm
– For the next iteration, the UDA will be initialized 

with the 𝑘𝑘 locations computed from the previous
– Can use a UDF to drive overall iterations
– Termination condition can be evaluated in SQL too (see MADlib)

GLADE [LADIS'11,SIGMOD'12]
MADlib [VLDB'12]
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Markov-Chain Monte-Carlo (MCMC)

 Bayesian ML comes down to analyzing the “posterior” distribution
P(parameters, hidden variables | observations)

 Direct analysis is often hard, so we use Monte-Carlo simulation
– Repeatedly sample from the posterior, and analyze the samples

 But sampling directly from the posterior is often hard, so we use MCMC
– A sampler generates a Markov chain of samples, whose stationary 

distribution is the target posterior
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Example: Gibbs Sampling

 Suppose we have an 𝑛𝑛-variate distribution, but the conditional 
distributions are easier to sample from

 Begin with some initial sample 𝕫𝕫 0

 For the 𝑡𝑡 + 1 -th sample 𝕫𝕫 𝑡𝑡+1 , sample each component 𝑧𝑧𝑖𝑖
(𝑡𝑡+1)

conditioned on all other components sampled most recently, i.e., 
𝑝𝑝 𝑧𝑧𝑖𝑖

(𝑡𝑡+1) 𝑧𝑧1
𝑡𝑡+1 , … , 𝑧𝑧𝑖𝑖−1

𝑡𝑡+1 , 𝑧𝑧𝑖𝑖+1
𝑡𝑡 , 𝑧𝑧𝑛𝑛

𝑡𝑡

 Rinse and repeat

https://ga7g08.github.io/2015/02/09/Gibbs-sampler-with-a-bivariate-normal-distribution/
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MCMC in SimSQL

 Think of each sample as a table (tables)

 Write UDF to define “VG” (value-generating) functions that draw samples

 Write SQL with VG functions to define how to generate T[𝑡𝑡] (instance of 
table T in the 𝑡𝑡-th sample) from T[𝑡𝑡 − 1]

 Write SQL to simulate multiple MCMC chains, and to compute compute 
distributional properties for variables of interest from T[𝑡𝑡]’s across T’s, 
𝑡𝑡’s, and chains

☞An example of staying true to the declarative roots of databases
– But also need new techniques not in traditional DBMS, e.g.:

– Plans are huge—cut them into “frames”; observe execution stats of last 
frame and to optimize the next

– Use “tuple bundles” to instantiate/process multiple possible worlds 
simultaneously

SimSQL [SIGMOD'13]
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Overview: Learning Over Joins

Joins
Overheads: 
Extra storage 
Computational redundancy 
Join time  
Maintenance headaches

Learning Over Joins: “Push Down” ML through joins 
1) Over standard data systems: Orion, Santoku, Morpheus 
2) Over a “factorized database” system: FDB-F 
3) Special-purpose tools: libFM, TensorDB, Compressed ML

Related but orthogonal: Statistical relational learning (DeepDive, etc.)

ML toolkits assume 
single-table inputs

Many datasets  
are multi-table

ML after  
joining tablesProblem:



Learning Over Joins
Over standard data systems: Orion, Morpheus, Santoku

Example: GLMs with gradient descent (GD)

L(w) =
nX

i=1

f(w0
xi, yi) rL(w) =

nX

i=1

g(w0
xi, yi)xi

x = [xS xR]
w

0
x = w

0
SxS + w

0
RxR

T = S ./ R
Orion [SIGMOD’15]:  
Introduced the scalable “factorized learning” idea 
Easy UDA implementation on existing data systems (RDBMS/Hive/Spark)

Morpheus [VLDB’17]:  
Generalizes factorized learning to any ML algorithm in linear algebra 
“Push down” rewrites for matrix-vector mult., gramian, ginv, etc.

Santoku [VLDB’15]: Discrete features (Naive Bayes, trees, etc.)



Learning Over Joins
Over a “factorized database” system: FDB-F [SIGMOD’16] 
Generalized semiring-based aggregates over “factorized joins”



SRL; Deep RDBMS Integration
SRL combines statistical learning with logic-based rules/constraints

NIPS’12 tutorial by Lise Getoor 
Book with Ben Taskar

“Non-IID” ML models 
(MVDs, EMVDs, JDs)

Inference and learning often perform joins internally!

Scalable grounding using RDBMS: Tuffy [VLDB’10] 
Incremental maintenance: IncrementalDeepDive [VLDB’15]

SAP HANA SLACID: Linear algebra kernels in an RDBMS [SSDBM’14] 
New compressed  sparse row/col. representations 
Integrated API for basic access patterns and lin. alg. ops 

OpenMP-based shared memory parallelism in DBMS task scheduler

Increasing interest in deeper integration of ML into DBMS kernel!



References: Part 3
Columbus [SIGMOD’14]: Materialization Optimizations for Feature Selection Workloads 
DeepDive [DataEng’14]: Feature Engineering for Knowledge Base Construction 
FDB-F [SIGMOD’16]: Learning Linear Regression Models over Factorized Joins  
IncrementalDeepDive [VLDB’15]: Incremental Knowledge Base Construction Using DeepDive  
Morpheus [VLDB’17]: Towards Linear Algebra over Normalized Data  
Orion [SIGMOD’15]: Learning Generalized Linear Models Over Normalized Data 
Santoku [VLDB’15]: Demonstration of Santoku: Optimizing Machine Learning over Normalized Data 
SLACID [SSDBM’14]: SLACID - Sparse Linear Algebra in a Column-Oriented In-Memory Database System 
Tuffy [VLDB’10]: Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS 



Backup Slides



Statistical Relational Learning Systems
Captures logical dependencies between between entities/variables

PODS tutorial by Lise Getoor on Tue! 
(also NIPS’12; book with Taskar)

“Non-IID” ML models 
(MVDs, EMVDs, JDs)

Example: Markov Logic Network (MLN); used by DeepDive

MLN inference (MAP) computes “most probable 
world” by plugging values of variables to predict

Grounding + Search 

Involves joins!
Scalable grounding using RDBMS: Tuffy [VLDB’10] 
Scalable Gibbs sampling: Elementary [SIGMOD’13] 
Incremental maintenance: IncrementalDeepDive [VLDB’15]



Deep RDBMS Integration

Integrating linear algebra kernels into an RDBMS: SAP HANA 
SLACID [SSDBM’14]:  Mutable columnar layout for sparse matrices 

Compressed sparse row/col. representation + incr. delta 
Integrated API for basic access patterns and lin. alg. ops 

OpenMP-based shared memory parallelism in DBMS task scheduler 

Time series-specific systems: Fa, F2DB 
Fa [VLDB’07]: “Declarative forecasting” queries for time series  

Projection and shift-based time series feature transformations 
Feature ranking and subset selection heuristics 
Lin. reg., Bayesian networks, SVM, CART, Random Forest 
Both one-time and continuous forecasting
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Overview Optimizing Compilers 
for ML Algorithms

 Comparison Query Optimization
– Rule- and cost-based rewrites and operator ordering
– Physical operator selection and query compilation
– Linear algebra / other ML operators, DAGs, 

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)
– Examples: Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)
– Examples: RIOT [CIDR’09], 

Mahout Samsara [MLSystems’16]
– Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]

 #3 Program Compilation (entire program)
– Examples: SystemML [PVLDB’16], 

Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Compilers for 
Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001; 
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y); 
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt) 
10: {
11: q = (t(X) %*% X %*% p)+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1; 
19: }
20: write(w, $4, format="text");

Optimization Scope
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Logical Simplification Rewrites

 Traditional PL Rewrites (e.g., TensorFlow, OptiML, SystemML)
– CSE, constant folding, branch removal 

 Algebraic Simplification Rewrites (e.g., SystemML, FAQ [PODS’16])
– t(X) %*% y t(t(y) %*% X)
– trace(X %*% Y) sum(X * t(Y))
– sum(X + Y) sum(X) + sum(Y)
– sum(X^2) t(X) %*% X, iff ncol(X)=1

 Loop Vectorization (e.g., OptiML, SystemML)

 Incremental Computations
– Delta update rules (e.g., LINVIEW [SIGMOD’14], factorized [CoRR’17])
– Incremental iterations (e.g., Flink)
– Update-in-place (e.g., SystemML)

for(i in a:b)
X[i,1] = Y[i,2] + Z[i,1] X[a:b,1] = Y[a:b,2] + Z[a:b,1]

A = t(X) %*% X + t(∆X) %*% ∆X 
b = t(X) %*% y + t(∆X) %*% ∆y
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Logical Simplification Rewrites
Matrix Multiplication Chain Optimization
 Optimization Problem

– Matrix multiplication chain of n matrices M1, M2, …Mn (associative)
– Optimal parenthesization of the product M1M2 … Mn

 Search Space Characteristics
– Naïve exhaustive: Catalan numbers  Ω(4n / n3/2))
– DP applies: (1) optimal substructure, (2) overlapping subproblems
– Textbook DP algorithm [MIT Press’09]: Θ(n3) time, Θ(n2) space

– Examples: SystemML [Data Eng. Bull. ’14], RIOT (including I/O costs), 
SpMachO (including sparsity for intermediates) [EDBT’15],

– Best known algorithm: O(n log n)

Example
t(X) %*% X %*% v vs.t(X)

1Kx1M

X
1M 
x1K

v
1K 
x1

2,002  GFLOPs

t(X)
1Kx1M

X
1M 
x1K

v
1K 
x1

4 GFLOPs
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Matrix Multiplication Chain Optimization

M1 M2 M3 M4 M5
10x7 7x5 5x1 1x3 3x9

M1 M2 M3 M4 M5

Cost matrix 
m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

m[1,3] = min(
m[1,1] + m[2,3] + p1p2p4,
m[1,2] + m[3,3] + p1p3p4 )

= min(
0 + 35 + 10*7*1,
350 + 0 + 10*5*1 )

= min(
105,
400 )
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Matrix Multiplication Chain Optimization

Optimal split 
matrix s

1 2 3 4
2 41 3 3

3 3

3

M1 M2 M3 M4 M5
10x7 7x5 5x1 1x3 3x9

M1 M2 M3 M4 M5

Cost matrix 
m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

( M1 M2 M3 M4 M5 )
( ( M1 M2 M3 ) ( M4 M5 ) )

( ( M1 ( M2 M3 ) ) ( M4 M5 ) )

 ((M1 (M2 M3)) (M4 M5))

getOpt(s,1,5)
getOpt(s,1,3)
getOpt(s,4,5)

 Open questions: DAGs; other operations, 
joint opt w/ rewrites, CSE, fusion, and physical operators
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Physical Rewrites and Optimizations

 Distributed Caching
– Redundant compute vs. memory consumption and I/O
– #1 Cache intermediates w/ multiple refs (Emma)
– #2 Cache initial read and read-only loop vars (SystemML) 

 Partitioning
– Many frameworks exploit co-partitioning for efficient joins
– #1 Partitioning-exploiting operators (SystemML, Emma, Samsara)
– #2 Inject partitioning to avoid shuffle per iteration (SystemML)
– #3 Plan-specific data partitioning (SystemML, Dmac [SIGMOD’15], 

Kasen [PVLDB’16])

 Other Data Flow Optimizations (Emma)
– #1 Exists unnesting (e.g., filter w/ broadcast  join)
– #2 Fold-group fusion (e.g., groupByKey reduceByKey)

 Physical Operator Selection
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Physical Operator Selection

 Common Selection Criteria
– Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
– Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
– Data flow properties (e.g., co-partitioning, co-location, data locality)

 #0 Local Operators
– SystemML mm, tsmm, mmchain; Samsara/Mllib local linalg

 #1 Special Operators (often fused operators)
– Special patterns (SystemML tsmm, tsmm2, mapmmchain, pmm; Samsara AtA
– Sparsity exploiting (SystemML wdivmm, wsloss, wcemm; Cumulon maskMult)

 #2 Broadcast-Based Operators (aka broadcast join)
– SystemML mapmm, mapmmchain

 #3 Co-Partitioning-Based Operators (aka improved repartition join)
– SystemML zipmm; Emma, Samsara OpAtB

 #4 Shuffle-Based Operators (aka repartition join)
– SystemML cpmm, rmm; Samsara OpAB

Selection 
Preference
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Example Physical Operators

 Example Linear Regression Direct Solve
– Transpose-self for t(X)%*%X
– Broadcast-based for t(X) %*% y
– Logical and physical rewrites
– E.g., Samsara, SystemML

A = t(X) %*% X
b = t(X) %*% y
w = solve(A, b)

X1,1

X2,1

Xm,1

y1

y2

ym

Input Matrices

X

persist(MEM_DISK)

map(tsmm)

fold(sum)

tsmm

map(mapmm)

fold(sum)

broadcast()

t(y)

t(b)

mapmm
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Fused Operators

 Motivation
– Problem: Memory-bandwidth-bound operations (I/O)
– Goal: Reduce number of scans and intermediates

 Matrix-Vector Chains:  t(X) %*% (X%*%v)
– Fused single-pass operator: mmchain [PPoPP’15]
– Row-aligned creation/consumption

 Ternary Aggregates:  sum(X*Y*Z)
– Fused aggregation operator 
– Avoid materialized intermediates

 Other ML-Specific Operators
– Sample proportion:  X * (1-X)
– Sigmoid:  1 / (1 + exp(-X))
– Axpy:  X + s*Y,  X - s*Y

X Y

Z*

sum

*

X

v

X

1st

pass 2nd

pass

q┬
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Sparsity-Exploiting Fused Operators

 Goal: Avoid dense intermediates and unnecessary computation

 #1 Fused Physical Operators 
– E.g., SystemML [PVLDB’16]

wsloss, wcemm, wdivmm
– Selective computation 

over non-zeros of 
“sparse driver”

 #2 Masked Physical Operators
– E.g., Cumulon MaskMult [SIGMOD’13]
– Create mask of “sparse driver”
– Pass mask to single masked

matrix multiply operator

U V┬W –sum X

^2

*

sum(W * (X – U %*% t(V))^2)

O / (C %*% E %*% t(B))

/

O E t(B)

mm

mm

C

M
 Open questions: NaN handling, 
automatic operator fusion (codegen) 
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Automatic Operator Fusion

 Motivation
– Large development effort for hand-coded fused operators
– UDF-centric systems w/o pre-defined operators

 General Approach: Fuse by Access Pattern
– #1 Loop fusion (OptiML, Tupleware, Weld,

TensorFlow XLA [github’17])
– #2 Templates (Kasen, SPOOF [CIDR’17])
– Scope: expression or program compilation

 Additional Techniques
– Tupleware: Micro optimizations (tile-at-a-time, predicates, result allocation)
– Weld: Cross-library optimizations (via common IR of basic operations)
– SystemML-SPOOF: sparsity-exploiting fused operators

 Open question: Optimization of fusion plans for DAGs 
(redundant compute vs materialization, access patterns)

R = (A + s*B) * C
for( i in 1:n )

tmp[i] = s*B[i]
for( i in 1:n )

tmp[i] = A[i]+tmp[i]
for( i in 1:n)

tmp[i] = tmp[i]*C[i]

for( i in 1:n )
tmp[i] = (A[i]+s*B[i]) * C[i]
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Runtime Adaptation (see AQP)

 Problem of Unknown/Changing Size Information
– Dimensions/sparsity required for cost comparisons/valid plans
– Unknowns  conservative fallback plans

 Challenges
– Conditional control flow, function call graphs, UDFs
– Data-dependent ops (e.g., sampling, group by classes, output sparsity)
– Computed size expressions, changing dimensions/sparsity

 Approaches
– #1 Lazy expression optimization (RIOT, OptiML, Emma, Weld, Samsara)

– Optimize on triggering actions (unconditional scope)
– #2 Dynamic inter-DAG recompilation (SystemML)

– Split/mark DAGs, recompile DAGs/functions w/ exact stats

 Open questions: 
– Estimating the size and sparsity of intermediates
– Adaptive query processing and storage
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Motivation: Workload Characteristics

 Memory-Bandwidth-Bound Operations
– Iterative ML algorithms w/ read-only data access
– #1: I/O-bound matrix vector products
 Crucial to fit matrix into memory 
(single node, distributed, GPU)
 Avoid unnecessary scans

– #2: Matrix and vector intermediates
 Reduce number of reads and writes

 Common Data Characteristics
– Tall & skinny matrices

(#row >> #columns)
– Non-uniform sparsity
– Low column cardinality
– Column correlations

while(!converged) {
… q = X %*% v …    

}

X

Covertype Mnist8mImageNet
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SystemML
Mv

SystemML
MtMv

SystemML
MM (n=768)

36x

 IO-bound matrix-vector mult

Motivation: Workload Characteristics

Peak 
Compute

Mem Bandwidth

 Single Node: 2x6 E5-2440 @2.4GHz–2.9GHz, DDR3 RAM @1.3GHz (ECC)
– Peak memory bandwidth: 2 x 32GB/s (local), 2 x 12.8GB/s (remote QPI)
– Peak compute bandwidth: 2 x 115.2GFlops/s

 Roofline 
Analysis
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Background: Block Partitioning and Layouts

 Blocked Matrix Representations
– Blocks, a.k.a. “tiles”, “chunks”, or “pages”
– #1 Logical (fixed-size) blocking ( var. physical size)
– #2 Physical blocking ( fixed physical size)
– Blocks encoded independently (dense/sparse)
– Local matrices  single block

 Common Block Representations
– Dense (linearized arrays)
– CSR (compressed sparse rows) 
– CSC (compressed sparse columns)
– MCSR (modified CSR)
– COO (Coordinate matrix)
– …

Logical blocking 
3,400x2,700 matrix 

(w/ Bc=1,000)

.7 .1

.2 .4
.3

Example 
3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0
Dense (row-major)

.7

.1

.2

.4

.3

0
2
0
1
1

0
2
4
5

CSR
.7
.1
.2
.4
.3

0
2
0
1
1

COO
0
0
1
1
2

.7 .1
2

MCSR
0

.2 .4
10

.3
1
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Overview Techniques for Data-Intensive 
Machine Learning 

 #1 (Distributed) Caching
– Keep read only feature matrix in (distributed) memory

 #2 Compression
– Fit larger datasets into available memory

 #3 Scan Sharing (and operator fusion)
– Reduce the number of scans as well as read/writes

 #4 Index Structures
– Out-of-core data, I/O-aware ops, updates

 #5 NUMA-Aware Partitioning and Replication
– Matrix partitioning / replication  data locality

 #6 Buffer Pool Management
– Graceful eviction of intermediates, out-of-core ops

Node1 Node2

Socket1 Socket2
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Compression Techniques

 #1 Block-Level General-Purpose Compression
– Heavyweight or lightweight compression schemes
– Decompress matrices block-wise for each operation
– E.g.: Spark RDD compression (Snappy/LZ4), 

SciDB SM [SSDBM’11], TileDB SM [PVLDB’16]

 #2 Block-Level Matrix Compression
– Compress matrix block with common encoding scheme
– Perform LA ops over compressed representation
– E.g.: CSR-VI (dict) [CF’08], cPLS (grammar) [KDD’16], 

TOC (LZW w/ trie) [CoRR’17] 

 #3 Column-Group-Level Matrix Compression
– Compress column groups w/ heterogenous schemes 
– Perform LA ops over compressed representation
– E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB’16]

Storage 
Manager

Mdecompress 
& deserialize

comp. 
M

Dict.

D2D1

comp.
M
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Scan Sharing Techniques

 #1 Batching
– One-pass evaluation of multiple configurations
– Use cases: EL, CV, feature selection,

hyper parameter tuning
– E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14]

 #2 Fused Operator DAGs
– Avoid unnecessary scans, (e.g., part 4 mmchain)
– Avoid unnecessary writes / reads 
– Multi-aggregates, redundancy
– E.g.: SystemML codegen

 #3 Runtime Piggybacking
– Merge concurrent data-parallel jobs
– “Wait-Merge-Submit-Return”-loop
– E.g.: SystemML parfor [PVLDB’14] 

X
m

n

k

O(m*n) 
read

O(m*n*k) 
compute

m >> n >> k

parfor( i in 1:numModels )
while( !converged )

q = X %*% v; ...

X Y

b(*)u(^2) u(^2)

sumsum sum
Multi-Aggregate

a = sum(X^2)
b = sum(X*Y)
c = sum(Y^2)
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Index Structures and NUMA Awareness

 Goals: Out-of-core operations and data placement

 Index Structures
– Tree structures of blocks w/ user-defined/fixed linearization functions
– LAB-Tree (Linearized Array B-tree, RIOT) [PVLDB’11]

– Leaf-splitting strategies, and update batching via flushing policies
– TileDB Storage Manager [PVLDB’16]

– Two-level blocking and update batching via fragments
– AT MATRIX (Adaptive Tile Matrix, SAP HANA) [ICDE’16]

– Two-level blocking and NUMA-aware range partitioning

 NUMA-Aware Model/Data Replication
– DimmWitted: HW vs statistical efficiency [PVLDB’14]
– Model: PerCore, PerNode, PerMachine
– Data: partitioning (sharding), full replication

 Open questions: 
Heterogenous hardware, 
cache coherence, etc
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Backup: Compressed Linear Algebra (CLA)

 Overview compression framework
– Column-wise matrix compression (values + offset lists / references)
– Column co-coding (column groups encoded as single unit)
– Heterogeneous column encoding formats (OLE, RLE, DDC, UC)

 Experiments
– LinregCG, 10 iterations, SystemML 0.14
– 1+6 node cluster, Spark 2.1

Dataset Gzip Snappy CLA
Higgs 1.93 1.38 2.17

Census 17.11 6.04 35.69
Covtype 10.40 6.13 18.19

ImageNet 5.54 3.35 7.34
Mnist8m 4.12 2.60 7.32
Airline78 7.07 4.28 7.44

Compression Ratios

89

3409

5663

135
765

2730

93
463

998

0

1000

2000

3000

4000

5000

6000

Mnist40m Mnist240m Mnist480m

Uncompressed

Snappy (RDD Compression)

CLA

End-to-End Performance [sec]

90GB 540GB 1.1TB

216GB 
agg mem

Automatic 
Planning

[PVLDB 2016]
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Backup: Index Structures

 Overview Common Indexing Techniques
– Physical blocking w/ leaf splitting strategies
– Dense and sparse leaf blocks w/ contiguous ranges of cells
– Batching of updates (deferred insertion)

 LAB-Tree (Linearized Array B-tree, RIOT) [PVLDB 2011]
– Operations: get, scan (iterator w/ given order), left/right indexing (on disk)
– B-tree w/ physical blocking (sparse/dense), leaves have assigned ranges
– Array linearization via UDFs (e.g., row/column major, Z-order, etc)
– Leaf splitting strategies: split-in-middle, split-aligned, split-off-dense, split-

defer-next, split-balanced-ratio
– Flushing policies for update batching: flush-all, least-recently-used, 

smallest-page, largest-page, largest-page-probabilistically, largest-group
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Backup: Index Structures, cont.

 AT MATRIX (Adaptive Tile Matrix, SAP HANA) [ICDE 2016]
– Operations: matrix multiplication ATMult (in-memory)
– Two-level blocking: Adaptive variable-sized tiles (dense or sparse w/ CSR), 

composed of atomic squared blocks
– Two-dimensional quad-tree, w/ Z-order as linearization function
– Horizontal partitioning across NUMA nodes

 TileDB Storage Manager [PVLDB 2016]
– Operations: init, write, read, consolidate, finalize (on disk)
– Two-level blocking: space tiles (fixed size), data tiles (variable size for sparse) 
– Two-level linearization: cell order and tile order (row/column major)
– Fragments for update batching

(“a timestamped snapshot of a batch of array updates”)
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Backup: NUMA-Aware Partitioning and 
Replication

 AT MATRIX (Adaptive Tile Matrix)
– Recursive NUMA-aware partitioning 

into dense/sparse tiles
– Inter-tile (worker teams) and intra-tile 

(threads in team) parallelization
– Job scheduling framework from SAP HANA 

(horizontal range partitioning, socket-local 
queues with task-stealing)

 NUMA-Aware Model and Data Replication
– DimmWitted: HW vs statistical efficiency
– Model Replication

– PerCore, PerMachine
– PerNode (hybrid)

– Data Replication
– Partitioning (sharding)
– Full replication

Machine
Node 1
C1 C2

RAM

Node 2
C3 C4

RAM

 Open questions: Heterogenous 
hardware, cache coherence, etc.
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Backup: Buffer Pool Management 

 #1 Intermediates of LA Programs 
– Hybrid runtime plans of in-memory and distributed operations
– Graceful eviction of intermediates at granularity of variables
– Example: SystemML

– Soft references for in-memory matrices and broadcasts
– LRU, FIFO buffer replacement strategies

 #2 Operation/Algorithm-Specific Buffer Management
– Operations/algorithms over out-of-core matrices and factor graphs
– Page-level storage layout and buffer replacement policies
– Example #2a: RIOT 

– Chains of matrix multiplications 
– Operation-aware I/O schedules

– Example #2b: Elementary
– LR, CRF, LDA over out-of-core factor graphs
– Materialization strategies and MRU/LFU buffer replacement
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Part 6: Resource Elasticity

Jun Yang
Duke University

Durham, NC, USA

SIGMOD 2017

“Intelligence is the ability to adapt to change.”
Stephen Hawking (?)

http://picshype.com/rubber-band-ball/amazon.com-:-acco-rubber-band/37225
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Rise of Cloud

 Cluster computing for big data is easier than ever
– Clouds allow you to get a cluster on demand, and pay as you go
– There is a growing ecosystem of platforms and tools for data analysis

Challenges

 Maddening array of “knobs”
– Hardware provisioning, software configuration, program tuning

 “Elastic” environment
– Multi-tenant clusters, fluctuating markets, failures
– Particularly hard for large-scale, long-running ML workloads
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Roadmap

 Provisioning (& scheduling): what do I need (& when)?
 Recovery: what do I do when what I need fails?

 Working with markets

☞These problems are not limited to DB & ML workloads, but we shall 
see how DB & ML add twists
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Provisioning: Example Decisions

 Given an ML program, what types of machines to acquire, 
and how many

– A bigger cluster may get results faster, but cost more
– No perfect speedup, so big clusters may not give good cost/time trade-off

 Given a cluster, how to configure the execution of an ML program
– What’s the appropriate degree of parallelism 

for an execution step?
– Overhead of parallelism isn’t always justified

– How much memory do we allocate to 
master and work processes?

– Optimal allocation depends on computation and data access patterns

☞Decisions interact with optimizations discussed earlier
– Cluster configuration affects degree of parallelism and memory allocation, as 

well as optimal execution strategies

Cumulon [SIGMOD'13+follow-up]

SystemML [SIGMOD'15]

ScalOps [DeBull'12]
SystemML [DEBull'14,PVLDB'16]
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Provisioning/Scheduling: Techniques

Depend on the level of abstraction:
 Program is a black box

– First observe, and then decide; can leverage past execution profiles

 Program is broken down into a workflow with clear input/output for each 
unit, e.g., MapReduce, Spark

– More effective profiling and optimization on a per-unit basis

 Program is specified declaratively, DB-style
– Reusable and composable cost models
– Bigger search space through rewrites
– Cost-based what-if analysis

 Program follows a specific template
– Even more opportunities arise; e.g., scheduling parameter 

updates/synchronization in parameter servers [VLDB'10,OSDI'14] + resource 
provisiong in Dolphin [MLSys'16] + adapting learning rate by update staleness in 
DynSGD [SIGMOD'17]

☞Adaptation is always key, regardless of abstraction level

Cumulon [SIGMOD'13+follow-up]
SystemML [ICDE'11+follow-up]
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Recovery: General Techniques

Depend on the level of abstraction:

 Program is a black box
– Checkpointing VM state in reliable/redundant storage

 Program is a workflow with clear input/output for each unit
– Write input/output to reliable storage + rerun failed units, e.g., 

Hadoop/MapReduce
– Intermediate results can be in memory and lost + recover using lineage 

Spark RDD [NSDI'12]

 Program is specified declaratively, DB-style
– Finer-grained lineage-based recovery using knowledge of operators + 

intelligent selective checkpointing Cümülön [PVLDB'15]
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Recovery: Algorithm-Specific

 Many ML algorithms can tolerate missing input or errors by design
– Instead of recovering to a state where as if failures never occurred, convert 

failures into “soft” ones that algorithms can handle themselves

 Example: distributed batch gradient descent

– In an iteration, if a task fails to calculate the contribution from one partition 
of data, simply use an approximation (from the previous iteration)

– Algorithm still converges

☞Generalized to user-defined, algorithm-specific “compensations”

Narayanamurthy+ (REEF) [BigLearn'13] 

Schelter+ [CIKM'13]
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Fixed, on-demand price

2016

Working with Markets

 “On-demand” (regular) instances: fixed price, guaranteed
 “Spot” instances: availability/price vary over time; e.g; on Amazon:

– You set a bid price, and get instances if bid price ≥ market price
– You pay market price (@hour start), by hours
– You lose the instances if market price rises above your bid, but your last 

hour will be free

 Price can depend on machine 
type, region, and time

☞How do we leverage markets effectively?
– Pop quiz: would you ever bid higher than the fixed price?

– Yes! Less chance of losing them, yet still lower cost on average
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Working with Markets: Techniques

 Diversify your portfolio: consider instances with different types, across regions
– If one market is too expensive, turn to others, e.g., Dyna [TCC'16]
– A heterogeneous cluster may be best for mixed workloads, e.g., Zhang+ [PER'15]

 Minimizing expected cost is often not enough; need to control risk
– Model the market to quantify uncertainty, e.g., Cümülön(-D) [PVLDB'15,'17]

 Zafer+ [Cloud'12] squeezes entire execution on spots in an hour; retries with a 
higher bid price if you lose them

– Losing spots within an hour incurs no cost with Amazon

 Dyna [TCC'16] tries faster spots before falling back to on-demand
– But only if doing so improves the execution time distribution

 Cümülön [PVLDB'15] picks the optimal mix of spot/on-demand instances
– To minimize expected cost while meeting deadline/budget with high probability
– Recovers and re-optimizes if spots are lost

 Cümülön-D [PVLDB'17] adapts proactively dynamically and proactively
– Bids/terminates as needed, based on execution progress and market condition
– Solves the optimization problem as a Markov Decision Process (MDP) and pre-compiles a 

“cookbook” to apply at run time
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Summary

 Large-scale ML is increasingly being done in a cloud

 Challenges of elasticity are not unique to DB & ML

 Lots of uncertainty, but adaption & stochastic modeling 
come to rescue

 Different levels of abstraction 
lead to different opportunities—
declarative (DB-style) ML enables 
smarter, more effective solutions

https://www.quora.com/What-is-the-difference-between-abstract-art-and-modern-art
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Feature Engineering

The process of obtaining a formal representation of the data-
generating process as structured signals (features) for an ML model

Q: What sort of operations constitute feature engineering?

Q: What is feature engineering (FE)?

Structured data: Whitening, feature selection/ranking, joins, PCA, etc. 
Text: Bag-of-words, Parsing-based, Domain-specific, Word2Vec, etc. 

Deep CNNs and RNNs for images, audio, video, time series, etc.

Depends on the data type!

High-quality features are the “secret sauce” of applied ML 
FE operations are basically data transformations! 

Often “brushed under the carpet” by ML community

Q: Why is it important from a data management perspective?



Feature Engineering Systems
Feature selection:  
Obtain a subset of features to improve accuracy and/or interpretability 

Columbus [SIGMOD’14]:  
Often not a single algorithm but a human-in-the-loop dialogue process 
Data scientist explores multiple subsets based on domain insights

CustID Churn? Age Income Gender City …

… … … … … … …

Understanding  
customer churn

Evaluate error with all features in chosen set 
Drop demographic features and re-evaluate 
Add Gender back in and so on …

A few such common steps encoded as “declarative” ops in DSL 
Impl. on top of R/Python; optimizing code-gen middleware 
Batching/materialization; QR decomposition; coresets; warm start



Feature Engineering Systems

More open questions remain in systematizing feature engineering

Treating FE as a dataflow-oriented process; DB-style optimizations: 
Brainwash [CIDR’13] / DeepDive [DataEng’14] 
Workflows of UDFs; feature recommendations 

KeystoneML [ICDE’17] 
Alternative phy. impl. of solvers; cost-based op. selection 

Reducing amount of work for feature coding/evaluation: 
Zombie [ICDE’16] 
Index structure to sub select relevant data; bandit techniques 

Applying learning theory to skip features and help with sourcing tables: 
Hamlet [SIGMOD’16]
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Model Selection

The process of obtaining a prediction function to capture a data-
generating process using data generated by that process

Q: What is model selection (MS)?

FE, AS, and PT often access the dataset (or subsets) repeatedly 
A lot of opportunities to improve efficiency with DB-style opt. 
FE, AS, and PT are inter-dependent and together constitute MS

Q: Why is it important from a data management perspective?

Model Selection Triple (MST)  
(FE, AS, PT)

MSMS [SIGMODRec’15] FE: Feature Engineering 
AS: Algorithm Selection 
PT: (Hyper-)Parameter Tuning



14

Model Selection Triple (MST): (FE, AS, PT)

Data scientists typically think at a higher level of abstraction 
Automation essentially groups MSTs en masse 

MS abstractions can help capture intermediate points

Model Selection Process
MSMS [SIGMODRec’15]

Decide  and code an MST manually

Manage results manually

Next   iteration 3 Consumption

2
Execution

Evaluate model 
 using system

Steering
1



…

Code  
Generation

{FE1, FE2} x AS1 x 
{PT1, PT2}

“Declarative” interfaces

Evaluate models 
 using system

Manage results

Next  iteration

1

2
Optimization

3 Provenance management

Group a set of “logically related” MSTs

Model Selection Process
Model Selection Triple (MST): (FE, AS, PT)MSMS [SIGMODRec’15]

Many old and recent MS abstractions can be “retro-fitted” 
Several new MS abstractions can be introduced to co-exist



Autotuned  
functions Columbus MLBase

The Higher Layers: Declarative Interfaces (some in hindsight!)

The Lower Layers: Optimized Implementations

{ {FE} x {AS} x {PT} }

New Abstractions

FE x AS x {PT} {FE} x AS x PT FE x {AS1 x {PT},  
AS2 x {PT}} {FE} x {AS x PT}, …

E.g., glmnet() in R E.g., StepAdd() E.g., doClassify() …

In-memory In-RDBMS Others

The Narrow Waist: 
A set of logically related 

Model Selection Triples (MST)

Model Selection Management Systems (MSMS)
MSMS [SIGMODRec’15]



Model Selection Systems

Many open questions remain on optimizing/improving model selection 
Interactions of PT with AS and FE 
Exploiting redundancy across and within MSTs; cost models 
Incorporating constraint/approximations and visualizations, etc.

Automation of AS and PT search with pre-defined search space: 
MLbase [CIDR’13] / TuPAQ [SoCC’15] 
Declarative ML tasks (e.g., “DoClassify”); fixed set of algorithms 
Data batching; bandit techniques for explore-exploit search 

Hemingway [MLSys’16] 
Joint AS and cluster sizing for optimization algorithms 
Observe-and-adapt approach for convergence properties 

DB-style optimizations for PT and general meta-learning: 
SystemML [ICDE’15]; GLADE [DanaC’12]
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Model Management Systems

Treating trained models as data themselves (store, query, debug, etc.)

Q: What is model management?

Integrating ML models with SQL querying: LongView [CIDR’11] 

Iterative ML debugging: MindTagger [VLDB’15], PALM [HILDA’17] 

Specialized storage engines and custom optimizations: 
ModelHub [ICDE’17] 
Versioned storage/retrieval of CNNs (sets of float matrices) 
Optimizations for reducing storage footprint

Many open questions on managing large space of MSTs, especially for 
large models (DNNs/trees); ML provenance and debugging



Other ML Lifecycle Issues
Model Serving: High-throughput/low-latency inference/re-learning 
MacroBase [SIGMOD’17] 
Clipper [NSDI’17] / Velox [CIDR’15] 
Integrating data-driven applications with reinforcement learning 

Data Sourcing: Modeling labeling process; ML+cleaning; ML+pricing 
Snorkel [NIPS’16] 
ActiveClean [VLDB’16] 
Model-Based Pricing [DEEM’17] 

Interactive Model Building: Human-in-the-loop interfaces 
Ava [CIDR’17] 
Vizdom [VLDB’15]
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Open Problems: Optimizer and Runtime

 #1 Size and Sparsity Estimation
– Fundamental building block for cost comparisons / valid plan generation
– Issues: function calls, UDFs, data-dependent operators, changing sizes

 #2 Convergence Estimation
– Number of iterations until convergence unknown
– Required for cost comparisons and progress estimation

 #3 Adaptive Query Processing and Storage
– Unknown or changing workloads  adaptive query processing
– Currently limited to inter-DAG recompilation and expression optimization

 #4 Automatic Rewrites and Operator Fusion
– Huge potential for simplification rewrites and operator fusion
– Challenging in presence of new access methods, compression, etc.

 #5 Special Value Handling
– Special values such as NaN, INF, -0 ignored by most systems  incorrect results
– Support these special values w/o sacrificing performance



Open Problems: End-to-End Lifecycle

 #6 Integrating Relational and Linear Algebra
– Seamless optimizer / runtime integration in holistic framework
– Including data transformations, training and prediction

 #7 Seamless Feature Engineering and Model Selection
– (Semi-)automating feature engineering and model selection
– Including abstractions, meta-algorithms, and system architectures

 #8 ML System Benchmarks
– Existing benchmarks limited to ML tasks in terms of reference 

implementations of large-scale ML libraries or SQL-centric workloads
– Broader range of benchmarks at various abstraction levels



Conclusions

 Summary
– Compelling arguments for integrating ML  DB and DB ML
– ML in data systems, DB-inspired ML systems, ML lifecycle systems

 #1 Existing Work to Build Upon
– Awareness of existing systems and techniques 
– Survey of effective optimization and runtime techniques

 #2 Where the Data Management Community Can Help
– Integrating ML into existing data systems
– Optimizer and runtime techniques for large-scale ML systems
– Tools and systems to simplify/improve the end-to-end ML lifecycle 
Many open technical problems
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