
Data Management in Machine Learning:
Challenges, Techniques, and Systems

Arun Kumar
UC San Diego

La Jolla, CA, USA

Matthias Boehm
IBM Research – Almaden

San Jose, CA, USA

Jun Yang
Duke University

Durham, NC, USA

SIGMOD 2017

Who We Are

Arun Kumar
UC San Diego

La Jolla, CA, USA

Matthias Boehm
IBM Research – Almaden

San Jose, CA, USA

Jun Yang
Duke University

Durham, NC, USA

Bismarck Columbus

Orion Hamlet

Motivation: A Data-Centric View of ML

 Application Perspective
– Machine learning / advanced analytics / deep analytics
Modern data-driven applications (e.g., BI, e-commerce, healthcare)

 Workload Perspective
– Repetitive ML workflows
– Often iterative ML algorithms
– Often I/O-bound operations

(e.g., matrix-vector multiplications)

 Systems Perspective
– ML in data systems
– DB-inspired ML systems
– ML Lifecycle Systems

This
Tutorial

CACM’09

Operational Intensity
FLOPs/Byte

15-50x
Peak

Compute

Mem Bandwidth

Attainable
GFLOPs

Motivation: Systems Landscape

Mahout
Spark ML MADlib

Orion

Santoku

Bismarck

F

LibFM

TensorDB DeepDive

Spark R

ORE

ScalOps
SimSQL

Fa

SAP HANA

RIOT-DB
OptiML

SystemML

Cumulon

Mahout
Samsara

LINVIEW

Velox

Emma
Kasen

Tupleware
GraphLab

TensorFlow

SciDB

MlbaseTUPAQ

Cümülön(-D)

Brainwash

Zombie

KeystoneML

Hamlet

Longview

Sherlock ModelHub
ModelDB

AzureML

BigR

R
Matlab

Julia
Weka

SPSS
SAS

VW

Torch

TheanoCNTK
Singa DL4J

Caffe
Keras

Photon ML

Columbus

scikit-learn

MS (Rev) R

RIOT
DMac

HP
Distributed R

Hemingway

Glade

Flink ML

BigDL

MXNetBUDS

R4ML

Motivation: Tutorial Goals

 Overall Goal: Comprehensive review of systems and techniques that
tackle data management challenges in the context of ML workloads

 #1 Categorize Existing Systems
– ML in data systems, DB-inspired ML systems, ML lifecycle systems

 #2 Survey State-of-the-Art Techniques
– Query gen, UDFs, factorized learning, deep DBMS integration
– Optimization and runtime techniques, incl. resource elasticity
– Model selection and model management

 Intended Takeaways
– Awareness of existing systems and techniques
– Survey of effective optimization and runtime techniques
– Overview of open research problems

What this Tutorial is NOT

 Introduction to Machine Learning

 Tutorial on General-Purpose Systems
– Dataflow systems
– Graph-focused systems

 Tutorial on Deep Learning
– Deep learning algorithms
– Deep learning systems (e.g., Torch, Theano, BigDL,

TensorFlow, MXNet, CNTK, Singa, Keras, Caffe, DL4J)

 Tutorial on ML for RDBMS Internals
– Cost models
– Workload prediction (e.g., in Peloton)

[SIGMOD’13]

[SIGMOD’16]

[SIGMOD
Record’16]

[CIDR’17]

Tutorial Outline

ML in Data Systems

 2 Query Generators and UDFs 14min JY
 3 Factorized Learning and Deep RDBMS Integration 8min AK

DB-Inspired ML Systems

 4 Rewrites, Operator Selection, and Fusion 14min MB

 5 Compression, Scan Sharing, and Index Structures 10min MB
 6 Cloud Resource Elasticity 10min JY

ML Lifecycle Systems

 7 Feature Engineering, Model Selection/Management 16min AK

Open Problems and Q&A

[]

2-1

Part 2: ML with SQL & UDF

Jun Yang
Duke University

Durham, NC, USA

SIGMOD 2017

“I suppose it is tempting, if the only tool you have is a
hammer, to treat everything as if it were a nail.”

Abraham Maslow, 1966

https://pixabay.com/en/nails-hammer-woodwork-tool-37063/

2-2

ML in Database – Why?

 Convenience
– “Elephants” (octopi?) have shown remarkable flexibility
– A single platform for not only data management, transformation, and

querying, but also ML and application of insights

 Efficiency
– Move the analysis, not data
– Can co-optimize various steps involved in the “big data pipeline”

 Declarativeness
– Simplifies development
– Enables effective automatic optimization, which helps scalability/efficiency
– One area where the DB community has plenty to offer

2-3

Roadmap

 First, examples of what SQL can do for ML, at various levels of
abstraction:

– Matrix multiply
– Ordinary least squares
– Gradient descent
(See backup slides for
– 𝑘𝑘-means
– Markov-chain Monte-Carlo)

 Then, a brief discussion of approaches to using SQL for ML

2-4

Matrix Multiply: Take 1

 Data: A(i,j,val), B(i,j,val)
– Basically a sparse representation

 SELECT A.i, B.j, SUM(A.val*B.val)
FROM A, B
WHERE A.j = B.i
GROUP BY A.i, B.j;

 Works pretty well for sparse matrices

 Not so good for dense matrices, but still beats “small-data” platforms
when data doesn’t fit in memory

MAD Skills [VLDB'09]

𝔸𝔸

𝔹𝔹

𝔸𝔸.i

𝔹𝔹.j

2-5

Matrix Multiply: Take 2

 Data: A(i,row), B(j,col)
– row and col are ARRAY types or user-defined vector types
– Basically a row-/column-major representation

 UDF (user-defined function): dotproduct(𝑣𝑣1,𝑣𝑣2) computes the dot
product of two vectors

SELECT A.i, B.j, dotproduct(A.row, B.col)
FROM A, B;

 Works fine for dense matrices
 But still suboptimal in terms of

compute-to-I/O ratio

 Also note the change in representation (from input to output)

MAD Skills [VLDB'09]

𝕏𝕏

𝕐𝕐

ℤ𝑚𝑚
ℓ

ℓ

𝑛𝑛
𝕏𝕏

Computation: 𝑂𝑂 ℓ𝑚𝑚𝑚𝑚 , or volume
I/O: 𝑂𝑂 𝑚𝑚𝑚 + ℓ𝑛𝑛 + 𝑛𝑛𝑛𝑛 , or surface
☞ Want instead “blocky” units to

maximize compute-to-I/O ratio

2-6

Matrix Multiply: Take 3

 Data: A(i,j,V), B(i,j,V)
– V represents a submatrix; assume the dimensions are compatible
– Basically a blocked representation

 UDFs
– matmult(𝑉𝑉1,𝑉𝑉2) computes the product of two matrices
– matsum(𝑉𝑉) is a UDA (user-defined aggregate) that sums up input matrices

SELECT A.i, B.j, matsum(matmult(A.V, B,V))
FROM A, B
WHERE A.j = B.i
GROUP BY A.i, B.j;

 Choose a “big enough” V with good aspect ratio
– E.g., square V’s beat skinny V’s

 UDFs can use optimized libraries like BLAS

RIOT-DB [CIDR'09] SimSQL [ICDE'17]

2-7

Ordinary Least Squares

 To fit data (𝑋𝑋,𝑦𝑦) to a linear model
𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝜖𝜖:

𝛽𝛽⋆ = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑦𝑦

 Computation involves basic matrix operators
expressible in SQL with help of UDFs

– Inverse is tougher, but assuming the input matrix is small:
– Code it as a UDF with memory-resident input
– Processing won’t benefit from DBMS though

MAD [VLDB'09, '12]

https://en.wikipedia.org/wiki/File:Linear_regression.svg

SimSQL [ICDE'17]

2-8

Observation

 How far can UDF and UDA go? Surprisingly very!

 UDF (oftentimes coded in other languages, e.g., Python and R)
– Either on the tuple-level (invoked by SQL queries),
– Or like an application program (invoking SQL queries)

 UDA
– Init(state) initializes the state
– Accumulate(state, data) computes updated state with new data
– [optional] Merge(state, state) merges intermediate results computed

over disjoint input subsets
– Finalize(state) computes the final result from the state
☞This pattern covers lots of iterative computation in ML, e.g.

– 𝑘𝑘-means (backup slides)
– Gradient descent (next)

GLADE [LADIS'11,SIGMOD'12], MADlib [VLDB'12]

2-9

Gradient Descent (GD)

 Given a model with parameters 𝑤𝑤, we want to learn from data 𝐷𝐷, i.e.,
minimize a loss function 𝐹𝐹 𝑤𝑤;𝐷𝐷

– E.g., sum of loss over all training data + a regularization term

 Start with some guess 𝑤𝑤0
 In each step 𝑡𝑡 + 1, update 𝑤𝑤

in the direction of the gradient of
the loss function at 𝑤𝑤𝑡𝑡, i.e., 𝐹𝐹′ 𝑤𝑤𝑡𝑡

 Rinse and repeat

 Under certain (commonly held) conditions,
GD converges to a local minimum

– If 𝐹𝐹 is convex, that’s its global minimum

https://zh.wikipedia.org/wiki/File:Coordinate_descent.svg

2-10

Stochastic GD (SGD)

 Suppose 𝐹𝐹 𝑤𝑤;𝐷𝐷 is linearly separable over 𝐷𝐷
– I.e., 𝐹𝐹 𝑤𝑤;𝐷𝐷 = ∑𝑖𝑖 𝑓𝑓𝑖𝑖 𝑤𝑤;𝑑𝑑𝑖𝑖 ,

where 𝑖𝑖 iterates over the data points 𝐷𝐷 = 𝑑𝑑𝑖𝑖 𝑖𝑖

 Instead of updating 𝑤𝑤 using the “full gradient” computed over 𝐷𝐷 in
each GD step, just choose a single point in 𝐷𝐷

– I.e., use 𝑓𝑓𝑖𝑖′ 𝑤𝑤 to approximate 𝐹𝐹′ 𝑤𝑤

 Remarkably, for convex 𝐹𝐹 𝑤𝑤 , SGD also converges to the global
minimum, even if we pick points from 𝐷𝐷 in a fixed, arbitrary order

– Albeit at a slower rate

2-11

GD/SGD in SQL

 GD (full gradient)
– Computation of full gradient over 𝐷𝐷 can be done by a query using UDA
– Several options for driving outer loop

– MADlib [VLDB'12] uses Python UDF
– ScalOps [DeBull'12] uses Datalog

– Underlying implementation is MapReduce instead of SQL

 SGD
– The entire procedure can be written as a query over 𝐷𝐷 using UDA—each
Accumulate() corresponds to one step

Bismarck [SIGMOD'12]

2-12

MCMC in SQL

 MCMC (Markov-Chain Monte-Carlo) is a key method in Bayesian ML

 Bayesian ML comes down to analyzing the “posterior” distribution
P(parameters, hidden variables | observations)

 Direct analysis is often hard, so we use Monte-Carlo simulation
– Repeatedly sample from the posterior, and analyze the samples

 But sampling directly from the posterior is often hard, so we use MCMC
– A sampler generates a Markov chain of samples, whose stationary

distribution is the target posterior

☞You can do Gibbs sampling (a form of MCMC) in SimSQL [SIGMOD'13]
– With user-define “value-generating” functions that draw samples
– See backup slides for details

2-13

Approaches to SQL+ML

Backend choices

 “On top of” (e.g., RIOT-DB [CIDR'09], MAD [VLDB'09,VLDB'12]) vs.
“inside” DBMS (e.g., SimSQL [ICDE'17])

 Not DBMS, but still inspired by or rooted in DBMS
– General-purpose “big-data” platform (e.g., SystemML [ICDE'11,VLDB'16],

Cumulon [SIGMOD'13])
– Specialized system from ground up (e.g., RIOT [ICDE'10], SciDB [CSE'13])

Interface choices
 SQL + libraries or extensions (e.g., MAD [VLDB'09,VLDB'12], SimSQL

[ICDE'17], Oracle Data Mining, …)

 ML-oriented languages on top of SQL (e.g., RIOT-DB [CIDR'09],
BUDS/SimSQL [SIGMOD'17], Oracle R Enterprise, …)

2-14

Interface: SQL + Libraries/Extensions

 Especially nice with integrated model management, e.g.,
Oracle Data Mining

– Can create, store, update, and apply models in SQL
-- Create model settings:
CREATE TABLE svm_settings(

setting_name VARCHAR2(30), setting_value VARCHAR2(30));
INSERT INTO svm_settings VALUES(

dbms_data_mining.algo_name,
dbms_data_mining.algo_support_vector_machines);

-- …
-- Build model:
DBMS_DATA_MINING.CREATE_MODEL(

model_name => 'svm_model',
mining_function => dbms_data_mining.classification,
data_table_name => 'mining_data_build_v',
case_id_column_name => 'cust_id',
target_column_name => 'affinity_card',
settings_table_name => 'svm_settings');

-- Apply model:
DBMS_DATA_MINING.APPLY(

model_name => 'svm_model',
data_table_name => 'mining_data_apply_v',
case_id_column_name => 'cust_id',
result_table_name => ’svm_apply_result');

2-15

 Let user write whatever they are comfortable with (R, Python, etc.)
– Provide a library of data manipulation and ML functions implemented by

the underlying system; can pre-compile user code
– SQL underneath: RIOT [CIDR'09,ICDE'10], BUDS/SimSQL [SIGMOD'17],

Oracle R Enterprise, etc.
– Other “big-data” platforms underneath: SystemML [ICDE'11,VLDB'16],

Spark R, Mahout Samsara, etc.

Interface: no SQL

Bayesian LASSO in BUDS
… in Mahout Samara

… in SystemML(Examples from BUDS/SimSQL [SIGMOD'17])

2-16

Summary

 You can get a lot of
mileage for machine learning
with SQL+UDF (octopus + hammer)

 Deep roots in
– DBMS extensibility research
– Array DBMS, e.g., SciDB [CSE'13]; see Rusu & Cheng [arXiv 2013] for survey

 Next: more opportunities for deeper ML+DB integration

http://www.bongpages.com/index.php?route=product/product&product_id=115

2-17

References for Part 2: ML with SQL & UDF
 Bismarck [SIGMOD'12] Feng et al. “Towards a Unified Architecture for in-RDBMS Analytics.” SIGMOD 2012

 BUDS/SimSQL [SIGMOD'17] Gao et al. “The BUDS Language for Distributed Bayesian Machine Learning.” SIGMOD 2017

 Cumulon [SIGMOD'13] Huang et al. “Cumulon: optimizing statistical data analysis in the cloud.” SIGMOD 2013

 GLADE [LADIS'11] Rusu & Dobra. “GLADE: A Scalable Framework for Efficient Analytics.” LADIS 2011

 GLADE [SIGMOD'12] Cheng et al. “GLADE: Big Data Analytics Made Easy.” SIGMOD 2012

 MAD Skills [VLDB'09] Cohen et al. “MAD skills: new analysis practices for big data.” PVLDB 2(2), 2009

 MADlib [VLDB'12] Hellerstein et al. “The MADlib Analytics Library or MAD Skills, the SQL.” PVLDB 5(12), 2012

 RIOT-DB [CIDR'09] Zhang et al. “RIOT: I/O-efficient numerical computing without SQL.” CIDR 2009

 RIOT [ICDE'10] Zhang et al. “I/O-efficient statistical computing with RIOT.” ICDE 2010

 Rusu & Cheng [arXiv 2013] Rusu & Cheng. “A Survey on Array Storage, Query Languages, and Systems.”
https://arxiv.org/abs/1302.0103

 ScalOps [DeBull'12] Borkar et al. “Declarative systems for large-scale machine learning.” IEEE Data Eng. Bulletin, 35(2), 2012

 SciDB [CSE'13] “SciDB: A Database Management System for Applications with Complex Analytics.” Comp. Sci. Eng. 15(3), 2013

 SimSQL [SIGMOD'13] Cai et al. “Simulation of Database-Valued Markov Chains Using SimSQL.” SIGMOD 2013

 SimSQL [ICDE'17] Luo et al. “Scalable Linear Algebra on a Relational Database System.” ICDE 2017

 SystemML [ICDE'11] Ghoting et al. “SystemML: Declarative machine learning on MapReduce.” ICDE 2011

 SystemML [VLDB'16] Boehm et al. “SystemML: Declarative machine learning on Spark.” PVLDB 9(13), 2016

2-18

Part 2 Backup/Extra Slides

2-19

𝑘𝑘-Means Clustering

 Given 𝑛𝑛 points, find 𝑘𝑘 centroids to
minimize sum of squared distances
between each point and its closest centroid

 EM-style iterative algorithm:
1. Pick initial 𝑘𝑘 candidate centroid locations
2. Assign each point to the closest candidate
3. Reposition each candidate as the centroid of its assigned points
4. Repeat 2-3 above until assignment changes no more (or very little)

https://commons.wikimedia.org/wiki/File:KMeans-Gaussian-data.svg

2-20

𝑘𝑘-Means as UDA

 State: 𝑘𝑘 candidates with locations + cluster info
⟨loc𝑖𝑖 , sum𝑖𝑖 , cnt𝑖𝑖⟩ 1≤𝑖𝑖≤𝑘𝑘

 Init: given centroid locations, with sum and count of 0

 Accumulate: given a data point 𝑝𝑝, find the candidate 𝑖𝑖 closest to 𝑝𝑝;
increment sum𝑖𝑖 by 𝑝𝑝’s coordinates and cnt𝑖𝑖 by one

 Merge: merge ⟨loc, sum, cnt⟩ records by loc; add sum and cnt
 Finalize: for each 𝑖𝑖, compute new loc𝑖𝑖 as sum𝑖𝑖/cnt𝑖𝑖
 One SQL query with this UDA gives

one iteration of the EM algorithm
– For the next iteration, the UDA will be initialized

with the 𝑘𝑘 locations computed from the previous
– Can use a UDF to drive overall iterations
– Termination condition can be evaluated in SQL too (see MADlib)

GLADE [LADIS'11,SIGMOD'12]
MADlib [VLDB'12]

2-21

Markov-Chain Monte-Carlo (MCMC)

 Bayesian ML comes down to analyzing the “posterior” distribution
P(parameters, hidden variables | observations)

 Direct analysis is often hard, so we use Monte-Carlo simulation
– Repeatedly sample from the posterior, and analyze the samples

 But sampling directly from the posterior is often hard, so we use MCMC
– A sampler generates a Markov chain of samples, whose stationary

distribution is the target posterior

2-22

Example: Gibbs Sampling

 Suppose we have an 𝑛𝑛-variate distribution, but the conditional
distributions are easier to sample from

 Begin with some initial sample 𝕫𝕫 0

 For the 𝑡𝑡 + 1 -th sample 𝕫𝕫 𝑡𝑡+1 , sample each component 𝑧𝑧𝑖𝑖
(𝑡𝑡+1)

conditioned on all other components sampled most recently, i.e.,
𝑝𝑝 𝑧𝑧𝑖𝑖

(𝑡𝑡+1) 𝑧𝑧1
𝑡𝑡+1 , … , 𝑧𝑧𝑖𝑖−1

𝑡𝑡+1 , 𝑧𝑧𝑖𝑖+1
𝑡𝑡 , 𝑧𝑧𝑛𝑛

𝑡𝑡

 Rinse and repeat

https://ga7g08.github.io/2015/02/09/Gibbs-sampler-with-a-bivariate-normal-distribution/

2-23

MCMC in SimSQL

 Think of each sample as a table (tables)

 Write UDF to define “VG” (value-generating) functions that draw samples

 Write SQL with VG functions to define how to generate T[𝑡𝑡] (instance of
table T in the 𝑡𝑡-th sample) from T[𝑡𝑡 − 1]

 Write SQL to simulate multiple MCMC chains, and to compute compute
distributional properties for variables of interest from T[𝑡𝑡]’s across T’s,
𝑡𝑡’s, and chains

☞An example of staying true to the declarative roots of databases
– But also need new techniques not in traditional DBMS, e.g.:

– Plans are huge—cut them into “frames”; observe execution stats of last
frame and to optimize the next

– Use “tuple bundles” to instantiate/process multiple possible worlds
simultaneously

SimSQL [SIGMOD'13]

Part 3: Learning Over Joins, SRL,
and Deep RDBMS Integration

Arun Kumar
UC San Diego  

La Jolla, CA, USA

SIGMOD 2017

Overview: Learning Over Joins

Joins
Overheads:
Extra storage
Computational redundancy
Join time
Maintenance headaches

Learning Over Joins: “Push Down” ML through joins
1) Over standard data systems: Orion, Santoku, Morpheus
2) Over a “factorized database” system: FDB-F
3) Special-purpose tools: libFM, TensorDB, Compressed ML

Related but orthogonal: Statistical relational learning (DeepDive, etc.)

ML toolkits assume
single-table inputs

Many datasets
are multi-table

ML after
joining tablesProblem:

Learning Over Joins
Over standard data systems: Orion, Morpheus, Santoku

Example: GLMs with gradient descent (GD)

L(w) =
nX

i=1

f(w0
xi, yi) rL(w) =

nX

i=1

g(w0
xi, yi)xi

x = [xS xR]
w

0
x = w

0
SxS + w

0
RxR

T = S ./ R
Orion [SIGMOD’15]:
Introduced the scalable “factorized learning” idea
Easy UDA implementation on existing data systems (RDBMS/Hive/Spark)

Morpheus [VLDB’17]:
Generalizes factorized learning to any ML algorithm in linear algebra
“Push down” rewrites for matrix-vector mult., gramian, ginv, etc.

Santoku [VLDB’15]: Discrete features (Naive Bayes, trees, etc.)

Learning Over Joins
Over a “factorized database” system: FDB-F [SIGMOD’16]
Generalized semiring-based aggregates over “factorized joins”

SRL; Deep RDBMS Integration
SRL combines statistical learning with logic-based rules/constraints

NIPS’12 tutorial by Lise Getoor
Book with Ben Taskar

“Non-IID” ML models
(MVDs, EMVDs, JDs)

Inference and learning often perform joins internally!

Scalable grounding using RDBMS: Tuffy [VLDB’10]
Incremental maintenance: IncrementalDeepDive [VLDB’15]

SAP HANA SLACID: Linear algebra kernels in an RDBMS [SSDBM’14]
New compressed sparse row/col. representations
Integrated API for basic access patterns and lin. alg. ops

OpenMP-based shared memory parallelism in DBMS task scheduler

Increasing interest in deeper integration of ML into DBMS kernel!

References: Part 3
Columbus [SIGMOD’14]: Materialization Optimizations for Feature Selection Workloads
DeepDive [DataEng’14]: Feature Engineering for Knowledge Base Construction
FDB-F [SIGMOD’16]: Learning Linear Regression Models over Factorized Joins
IncrementalDeepDive [VLDB’15]: Incremental Knowledge Base Construction Using DeepDive
Morpheus [VLDB’17]: Towards Linear Algebra over Normalized Data
Orion [SIGMOD’15]: Learning Generalized Linear Models Over Normalized Data
Santoku [VLDB’15]: Demonstration of Santoku: Optimizing Machine Learning over Normalized Data
SLACID [SSDBM’14]: SLACID - Sparse Linear Algebra in a Column-Oriented In-Memory Database System
Tuffy [VLDB’10]: Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS

Backup Slides

Statistical Relational Learning Systems
Captures logical dependencies between between entities/variables

PODS tutorial by Lise Getoor on Tue!
(also NIPS’12; book with Taskar)

“Non-IID” ML models
(MVDs, EMVDs, JDs)

Example: Markov Logic Network (MLN); used by DeepDive

MLN inference (MAP) computes “most probable
world” by plugging values of variables to predict

Grounding + Search

Involves joins!
Scalable grounding using RDBMS: Tuffy [VLDB’10]
Scalable Gibbs sampling: Elementary [SIGMOD’13]
Incremental maintenance: IncrementalDeepDive [VLDB’15]

Deep RDBMS Integration

Integrating linear algebra kernels into an RDBMS: SAP HANA
SLACID [SSDBM’14]: Mutable columnar layout for sparse matrices

Compressed sparse row/col. representation + incr. delta
Integrated API for basic access patterns and lin. alg. ops

OpenMP-based shared memory parallelism in DBMS task scheduler

Time series-specific systems: Fa, F2DB
Fa [VLDB’07]: “Declarative forecasting” queries for time series

Projection and shift-based time series feature transformations
Feature ranking and subset selection heuristics
Lin. reg., Bayesian networks, SVM, CART, Random Forest
Both one-time and continuous forecasting

4-1

Part 4: Rewrites, Operator Selection,
and Operator Fusion

Matthias Boehm
IBM Research – Almaden

San Jose, CA, USA

SIGMOD 2017

4-2

Overview Optimizing Compilers
for ML Algorithms

 Comparison Query Optimization
– Rule- and cost-based rewrites and operator ordering
– Physical operator selection and query compilation
– Linear algebra / other ML operators, DAGs,

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)
– Examples: Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)
– Examples: RIOT [CIDR’09],

Mahout Samsara [MLSystems’16]
– Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]

 #3 Program Compilation (entire program)
– Examples: SystemML [PVLDB’16],

Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Compilers for
Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001;
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y);
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt)
10: {
11: q = (t(X) %*% X %*% p)+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1;
19: }
20: write(w, $4, format="text");

Optimization Scope

4-3

Logical Simplification Rewrites

 Traditional PL Rewrites (e.g., TensorFlow, OptiML, SystemML)
– CSE, constant folding, branch removal

 Algebraic Simplification Rewrites (e.g., SystemML, FAQ [PODS’16])
– t(X) %*% y t(t(y) %*% X)
– trace(X %*% Y) sum(X * t(Y))
– sum(X + Y) sum(X) + sum(Y)
– sum(X^2) t(X) %*% X, iff ncol(X)=1

 Loop Vectorization (e.g., OptiML, SystemML)

 Incremental Computations
– Delta update rules (e.g., LINVIEW [SIGMOD’14], factorized [CoRR’17])
– Incremental iterations (e.g., Flink)
– Update-in-place (e.g., SystemML)

for(i in a:b)
X[i,1] = Y[i,2] + Z[i,1] X[a:b,1] = Y[a:b,2] + Z[a:b,1]

A = t(X) %*% X + t(∆X) %*% ∆X
b = t(X) %*% y + t(∆X) %*% ∆y

4-4

Logical Simplification Rewrites
Matrix Multiplication Chain Optimization
 Optimization Problem

– Matrix multiplication chain of n matrices M1, M2, …Mn (associative)
– Optimal parenthesization of the product M1M2 … Mn

 Search Space Characteristics
– Naïve exhaustive: Catalan numbers  Ω(4n / n3/2))
– DP applies: (1) optimal substructure, (2) overlapping subproblems
– Textbook DP algorithm [MIT Press’09]: Θ(n3) time, Θ(n2) space

– Examples: SystemML [Data Eng. Bull. ’14], RIOT (including I/O costs),
SpMachO (including sparsity for intermediates) [EDBT’15],

– Best known algorithm: O(n log n)

Example
t(X) %*% X %*% v vs.t(X)

1Kx1M

X
1M
x1K

v
1K
x1

2,002 GFLOPs

t(X)
1Kx1M

X
1M
x1K

v
1K
x1

4 GFLOPs

4-5

Matrix Multiplication Chain Optimization

M1 M2 M3 M4 M5
10x7 7x5 5x1 1x3 3x9

M1 M2 M3 M4 M5

Cost matrix
m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

m[1,3] = min(
m[1,1] + m[2,3] + p1p2p4,
m[1,2] + m[3,3] + p1p3p4)

= min(
0 + 35 + 10*7*1,
350 + 0 + 10*5*1)

= min(
105,
400)

4-6

Matrix Multiplication Chain Optimization

Optimal split
matrix s

1 2 3 4
2 41 3 3

3 3

3

M1 M2 M3 M4 M5
10x7 7x5 5x1 1x3 3x9

M1 M2 M3 M4 M5

Cost matrix
m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

(M1 M2 M3 M4 M5)
((M1 M2 M3) (M4 M5))

((M1 (M2 M3)) (M4 M5))

 ((M1 (M2 M3)) (M4 M5))

getOpt(s,1,5)
getOpt(s,1,3)
getOpt(s,4,5)

 Open questions: DAGs; other operations,
joint opt w/ rewrites, CSE, fusion, and physical operators

4-7

Physical Rewrites and Optimizations

 Distributed Caching
– Redundant compute vs. memory consumption and I/O
– #1 Cache intermediates w/ multiple refs (Emma)
– #2 Cache initial read and read-only loop vars (SystemML)

 Partitioning
– Many frameworks exploit co-partitioning for efficient joins
– #1 Partitioning-exploiting operators (SystemML, Emma, Samsara)
– #2 Inject partitioning to avoid shuffle per iteration (SystemML)
– #3 Plan-specific data partitioning (SystemML, Dmac [SIGMOD’15],

Kasen [PVLDB’16])

 Other Data Flow Optimizations (Emma)
– #1 Exists unnesting (e.g., filter w/ broadcast  join)
– #2 Fold-group fusion (e.g., groupByKey reduceByKey)

 Physical Operator Selection

4-8

Physical Operator Selection

 Common Selection Criteria
– Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
– Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
– Data flow properties (e.g., co-partitioning, co-location, data locality)

 #0 Local Operators
– SystemML mm, tsmm, mmchain; Samsara/Mllib local linalg

 #1 Special Operators (often fused operators)
– Special patterns (SystemML tsmm, tsmm2, mapmmchain, pmm; Samsara AtA
– Sparsity exploiting (SystemML wdivmm, wsloss, wcemm; Cumulon maskMult)

 #2 Broadcast-Based Operators (aka broadcast join)
– SystemML mapmm, mapmmchain

 #3 Co-Partitioning-Based Operators (aka improved repartition join)
– SystemML zipmm; Emma, Samsara OpAtB

 #4 Shuffle-Based Operators (aka repartition join)
– SystemML cpmm, rmm; Samsara OpAB

Selection
Preference

4-9

Example Physical Operators

 Example Linear Regression Direct Solve
– Transpose-self for t(X)%*%X
– Broadcast-based for t(X) %*% y
– Logical and physical rewrites
– E.g., Samsara, SystemML

A = t(X) %*% X
b = t(X) %*% y
w = solve(A, b)

X1,1

X2,1

Xm,1

y1

y2

ym

Input Matrices

X

persist(MEM_DISK)

map(tsmm)

fold(sum)

tsmm

map(mapmm)

fold(sum)

broadcast()

t(y)

t(b)

mapmm

4-10

Fused Operators

 Motivation
– Problem: Memory-bandwidth-bound operations (I/O)
– Goal: Reduce number of scans and intermediates

 Matrix-Vector Chains: t(X) %*% (X%*%v)
– Fused single-pass operator: mmchain [PPoPP’15]
– Row-aligned creation/consumption

 Ternary Aggregates: sum(X*Y*Z)
– Fused aggregation operator
– Avoid materialized intermediates

 Other ML-Specific Operators
– Sample proportion: X * (1-X)
– Sigmoid: 1 / (1 + exp(-X))
– Axpy: X + s*Y, X - s*Y

X Y

Z*

sum

*

X

v

X

1st

pass 2nd

pass

q┬

4-11

Sparsity-Exploiting Fused Operators

 Goal: Avoid dense intermediates and unnecessary computation

 #1 Fused Physical Operators
– E.g., SystemML [PVLDB’16]

wsloss, wcemm, wdivmm
– Selective computation

over non-zeros of
“sparse driver”

 #2 Masked Physical Operators
– E.g., Cumulon MaskMult [SIGMOD’13]
– Create mask of “sparse driver”
– Pass mask to single masked

matrix multiply operator

U V┬W –sum X

^2

*

sum(W * (X – U %*% t(V))^2)

O / (C %*% E %*% t(B))

/

O E t(B)

mm

mm

C

M
 Open questions: NaN handling,
automatic operator fusion (codegen)

4-12

Automatic Operator Fusion

 Motivation
– Large development effort for hand-coded fused operators
– UDF-centric systems w/o pre-defined operators

 General Approach: Fuse by Access Pattern
– #1 Loop fusion (OptiML, Tupleware, Weld,

TensorFlow XLA [github’17])
– #2 Templates (Kasen, SPOOF [CIDR’17])
– Scope: expression or program compilation

 Additional Techniques
– Tupleware: Micro optimizations (tile-at-a-time, predicates, result allocation)
– Weld: Cross-library optimizations (via common IR of basic operations)
– SystemML-SPOOF: sparsity-exploiting fused operators

 Open question: Optimization of fusion plans for DAGs
(redundant compute vs materialization, access patterns)

R = (A + s*B) * C
for(i in 1:n)

tmp[i] = s*B[i]
for(i in 1:n)

tmp[i] = A[i]+tmp[i]
for(i in 1:n)

tmp[i] = tmp[i]*C[i]

for(i in 1:n)
tmp[i] = (A[i]+s*B[i]) * C[i]

4-13

Runtime Adaptation (see AQP)

 Problem of Unknown/Changing Size Information
– Dimensions/sparsity required for cost comparisons/valid plans
– Unknowns  conservative fallback plans

 Challenges
– Conditional control flow, function call graphs, UDFs
– Data-dependent ops (e.g., sampling, group by classes, output sparsity)
– Computed size expressions, changing dimensions/sparsity

 Approaches
– #1 Lazy expression optimization (RIOT, OptiML, Emma, Weld, Samsara)

– Optimize on triggering actions (unconditional scope)
– #2 Dynamic inter-DAG recompilation (SystemML)

– Split/mark DAGs, recompile DAGs/functions w/ exact stats

 Open questions:
– Estimating the size and sparsity of intermediates
– Adaptive query processing and storage

4-14

References for Part 4
 T. C. Hu and M. T. Shing: Computation of Matrix Chain Products. Part II. SIAM J. Comput. 13(2): 228-251, 1984.

 T. H. Cormen, et al. Introduction to Algorithms, Third Edition, The MIT Press, pages 370-377, 2009.

 Y. Zhang et al. RIOT: I/O-Ecient Numerical Computing without SQL. In CIDR, 2009.

 A. K. Sujeeth et al. OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning. In ICML, 2011.

 S. Ewen et al. Spinning Fast Iterative Data Flows. PVLDB, 5(11), 2012.

 B. Huang et al. Cumulon: Optimizing Statistical Data Analysis in the Cloud. In SIGMOD, 2013.

 M. Nikolic et al. LINVIEW: Incremental View Maintenance for Complex Analytical Queries. In SIGMOD, 2014.

 M. Boehm et al. SystemML's Optimizer: Plan Generation for Large-Scale Machine Learning Programs. IEEE Data Eng. Bull., 37(3), 2014.

 D. Kernert et al. SpMacho - Optimizing Sparse Linear Algebra Expressions with Probabilistic Density Estimation. In EDBT, 2015.

 A. Ashari et al.: On optimizing machine learning workloads via kernel fusion. In PPoPP, 2015.

 A. Alexandrov et al. Implicit Parallelism through Deep Language Embedding. In SIGMOD, 2015.

 Lele Yu et al. Exploiting Matrix Dependency for Efficient Distributed Matrix Computation. In SIGMOD, 2015.

 M. Abo Khamis et al.: FAQ: Questions Asked Frequently. In PODS, 2016.

 A. Crotty et al. An Architecture for Compiling UDF-centric Workflows. PVLDB, 8(12), 2015.

 M. Boehm et al. SystemML: Declarative Machine Learning on Spark. PVLDB, 9(13), 2016.

 M. Zhang et al. Measuring and Optimizing Distributed Array Programs. PVLDB, 9(12), 2016.

 S. Schelter et al. Samsara: Declarative Machine Learning on Distributed Dataflow Systems. NIPS Workshop MLSystems, 2016.

 T. Elgamal et al. SPOOF: Sum-Product Optimization and Operator Fusion for Large-Scale Machine Learning. In CIDR, 2017.

 S. Palkar et al. Weld: A Common Runtime for High Performance Data Analysis. In CIDR 2017.

 TensorFlow XLA, https://www.tensorflow.org/performance/xla/, 2017.

 M. Nikolic and D. Olteanu: Incremental Maintenance of Regression Models over Joins, CoRR, 2017.

 L. Chen et al. Towards Linear Algebra over Normalized Data. PVLDB, to appear, 2017.

https://www.tensorflow.org/performance/xla/

5-1

Part 5: Compression, Scan Sharing, and
Index Structures

Matthias Boehm
IBM Research – Almaden

San Jose, CA, USA

SIGMOD 2017

5-2

Motivation: Workload Characteristics

 Memory-Bandwidth-Bound Operations
– Iterative ML algorithms w/ read-only data access
– #1: I/O-bound matrix vector products
 Crucial to fit matrix into memory
(single node, distributed, GPU)
 Avoid unnecessary scans

– #2: Matrix and vector intermediates
 Reduce number of reads and writes

 Common Data Characteristics
– Tall & skinny matrices

(#row >> #columns)
– Non-uniform sparsity
– Low column cardinality
– Column correlations

while(!converged) {
… q = X %*% v …

}

X

Covertype Mnist8mImageNet

5-3

SystemML
Mv

SystemML
MtMv

SystemML
MM (n=768)

36x

 IO-bound matrix-vector mult

Motivation: Workload Characteristics

Peak
Compute

Mem Bandwidth

 Single Node: 2x6 E5-2440 @2.4GHz–2.9GHz, DDR3 RAM @1.3GHz (ECC)
– Peak memory bandwidth: 2 x 32GB/s (local), 2 x 12.8GB/s (remote QPI)
– Peak compute bandwidth: 2 x 115.2GFlops/s

 Roofline
Analysis

5-4

Background: Block Partitioning and Layouts

 Blocked Matrix Representations
– Blocks, a.k.a. “tiles”, “chunks”, or “pages”
– #1 Logical (fixed-size) blocking ( var. physical size)
– #2 Physical blocking ( fixed physical size)
– Blocks encoded independently (dense/sparse)
– Local matrices  single block

 Common Block Representations
– Dense (linearized arrays)
– CSR (compressed sparse rows)
– CSC (compressed sparse columns)
– MCSR (modified CSR)
– COO (Coordinate matrix)
– …

Logical blocking
3,400x2,700 matrix

(w/ Bc=1,000)

.7 .1

.2 .4
.3

Example
3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0
Dense (row-major)

.7

.1

.2

.4

.3

0
2
0
1
1

0
2
4
5

CSR
.7
.1
.2
.4
.3

0
2
0
1
1

COO
0
0
1
1
2

.7 .1
2

MCSR
0

.2 .4
10

.3
1

5-5

Overview Techniques for Data-Intensive
Machine Learning

 #1 (Distributed) Caching
– Keep read only feature matrix in (distributed) memory

 #2 Compression
– Fit larger datasets into available memory

 #3 Scan Sharing (and operator fusion)
– Reduce the number of scans as well as read/writes

 #4 Index Structures
– Out-of-core data, I/O-aware ops, updates

 #5 NUMA-Aware Partitioning and Replication
– Matrix partitioning / replication  data locality

 #6 Buffer Pool Management
– Graceful eviction of intermediates, out-of-core ops

Node1 Node2

Socket1 Socket2

5-6

Compression Techniques

 #1 Block-Level General-Purpose Compression
– Heavyweight or lightweight compression schemes
– Decompress matrices block-wise for each operation
– E.g.: Spark RDD compression (Snappy/LZ4),

SciDB SM [SSDBM’11], TileDB SM [PVLDB’16]

 #2 Block-Level Matrix Compression
– Compress matrix block with common encoding scheme
– Perform LA ops over compressed representation
– E.g.: CSR-VI (dict) [CF’08], cPLS (grammar) [KDD’16],

TOC (LZW w/ trie) [CoRR’17]

 #3 Column-Group-Level Matrix Compression
– Compress column groups w/ heterogenous schemes
– Perform LA ops over compressed representation
– E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB’16]

Storage
Manager

Mdecompress
& deserialize

comp.
M

Dict.

D2D1

comp.
M

5-7

Scan Sharing Techniques

 #1 Batching
– One-pass evaluation of multiple configurations
– Use cases: EL, CV, feature selection,

hyper parameter tuning
– E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14]

 #2 Fused Operator DAGs
– Avoid unnecessary scans, (e.g., part 4 mmchain)
– Avoid unnecessary writes / reads
– Multi-aggregates, redundancy
– E.g.: SystemML codegen

 #3 Runtime Piggybacking
– Merge concurrent data-parallel jobs
– “Wait-Merge-Submit-Return”-loop
– E.g.: SystemML parfor [PVLDB’14]

X
m

n

k

O(m*n)
read

O(m*n*k)
compute

m >> n >> k

parfor(i in 1:numModels)
while(!converged)

q = X %*% v; ...

X Y

b(*)u(^2) u(^2)

sumsum sum
Multi-Aggregate

a = sum(X^2)
b = sum(X*Y)
c = sum(Y^2)

5-8

Index Structures and NUMA Awareness

 Goals: Out-of-core operations and data placement

 Index Structures
– Tree structures of blocks w/ user-defined/fixed linearization functions
– LAB-Tree (Linearized Array B-tree, RIOT) [PVLDB’11]

– Leaf-splitting strategies, and update batching via flushing policies
– TileDB Storage Manager [PVLDB’16]

– Two-level blocking and update batching via fragments
– AT MATRIX (Adaptive Tile Matrix, SAP HANA) [ICDE’16]

– Two-level blocking and NUMA-aware range partitioning

 NUMA-Aware Model/Data Replication
– DimmWitted: HW vs statistical efficiency [PVLDB’14]
– Model: PerCore, PerNode, PerMachine
– Data: partitioning (sharding), full replication

 Open questions:
Heterogenous hardware,
cache coherence, etc

5-9

References for Part 5
 K. Kourtis et al. Optimizing Sparse Matrix-Vector Multiplication Using Index and Value Compression. In CF, 2008.

 S. Williams et al.: Roofline: An Insightful Visual Performance Model for Multicore Architectures. Comm. ACM 52(4) 2009.

 Y. Zhang et al. RIOT: I/O-Ecient Numerical Computing without SQL. In CIDR, 2009.

 M. Stonebraker et al. The Architecture of SciDB. In SSDBM, 2011.

 Y. Zhang et al. Storing Matrices on Disk: Theory and Practice Revisited. PVLDB, 4(11), 2011.

 T. Kraska et al. MLbase: A Distributed Machine-learning System. In CIDR, 2013.

 C. Zhang and C. Re. Towards High-throughput Gibbs Sampling at Scale: A Study Across Storage Managers. In SIGMOD, 2013.

 C. Zhang et al. Materialization Optimizations for Feature Selection Workloads. In SIGMOD, 2014.

 M. Boehm et al. Hybrid Parallelization Strategies for Large-Scale Machine Learning in SystemML. PVLDB, 7(7), 2014.

 C. Zhang and C. Re. DimmWitted: A Study of Main-Memory Statistical Analytics. PVLDB, 7(12), 2014.

 E. R. Sparks et al. Automating Model Search for Large Scale Machine Learning. In SoCC, 2015.

 D. Kernert et al. Topology-Aware Optimization of Big Sparse Matrices and Matrix Multiplications on Main-Memory Systems.
In ICDE, 2016.

 A. Elgohary et al. Compressed Linear Algebra for Large-Scale Machine Learning. PVLDB, 9(12), 2016.

 M. Boehm et al. SystemML: Declarative Machine Learning on Spark. PVLDB, 9(13), 2016.

 Stavros Papadopoulos et al. The TileDB Array Data Storage Manager. PVLDB 10(4), 2016.

 T. Elgamal et al. SPOOF: Sum-Product Optimization and Operator Fusion for Large-Scale Machine Learning. CIDR, 2017.

 F. Li et al. When Lempel-Ziv-Welch Meets Machine Learning: A Case Study of Accelerating Machine Learning using Coding.
CoRR, 2017.

5-10

Backup: Compressed Linear Algebra (CLA)

 Overview compression framework
– Column-wise matrix compression (values + offset lists / references)
– Column co-coding (column groups encoded as single unit)
– Heterogeneous column encoding formats (OLE, RLE, DDC, UC)

 Experiments
– LinregCG, 10 iterations, SystemML 0.14
– 1+6 node cluster, Spark 2.1

Dataset Gzip Snappy CLA
Higgs 1.93 1.38 2.17

Census 17.11 6.04 35.69
Covtype 10.40 6.13 18.19

ImageNet 5.54 3.35 7.34
Mnist8m 4.12 2.60 7.32
Airline78 7.07 4.28 7.44

Compression Ratios

89

3409

5663

135
765

2730

93
463

998

0

1000

2000

3000

4000

5000

6000

Mnist40m Mnist240m Mnist480m

Uncompressed

Snappy (RDD Compression)

CLA

End-to-End Performance [sec]

90GB 540GB 1.1TB

216GB
agg mem

Automatic
Planning

[PVLDB 2016]

5-11

Backup: Index Structures

 Overview Common Indexing Techniques
– Physical blocking w/ leaf splitting strategies
– Dense and sparse leaf blocks w/ contiguous ranges of cells
– Batching of updates (deferred insertion)

 LAB-Tree (Linearized Array B-tree, RIOT) [PVLDB 2011]
– Operations: get, scan (iterator w/ given order), left/right indexing (on disk)
– B-tree w/ physical blocking (sparse/dense), leaves have assigned ranges
– Array linearization via UDFs (e.g., row/column major, Z-order, etc)
– Leaf splitting strategies: split-in-middle, split-aligned, split-off-dense, split-

defer-next, split-balanced-ratio
– Flushing policies for update batching: flush-all, least-recently-used,

smallest-page, largest-page, largest-page-probabilistically, largest-group

5-12

Backup: Index Structures, cont.

 AT MATRIX (Adaptive Tile Matrix, SAP HANA) [ICDE 2016]
– Operations: matrix multiplication ATMult (in-memory)
– Two-level blocking: Adaptive variable-sized tiles (dense or sparse w/ CSR),

composed of atomic squared blocks
– Two-dimensional quad-tree, w/ Z-order as linearization function
– Horizontal partitioning across NUMA nodes

 TileDB Storage Manager [PVLDB 2016]
– Operations: init, write, read, consolidate, finalize (on disk)
– Two-level blocking: space tiles (fixed size), data tiles (variable size for sparse)
– Two-level linearization: cell order and tile order (row/column major)
– Fragments for update batching

(“a timestamped snapshot of a batch of array updates”)

5-13

Backup: NUMA-Aware Partitioning and
Replication

 AT MATRIX (Adaptive Tile Matrix)
– Recursive NUMA-aware partitioning

into dense/sparse tiles
– Inter-tile (worker teams) and intra-tile

(threads in team) parallelization
– Job scheduling framework from SAP HANA

(horizontal range partitioning, socket-local
queues with task-stealing)

 NUMA-Aware Model and Data Replication
– DimmWitted: HW vs statistical efficiency
– Model Replication

– PerCore, PerMachine
– PerNode (hybrid)

– Data Replication
– Partitioning (sharding)
– Full replication

Machine
Node 1
C1 C2

RAM

Node 2
C3 C4

RAM

 Open questions: Heterogenous
hardware, cache coherence, etc.

5-14

Backup: Buffer Pool Management

 #1 Intermediates of LA Programs
– Hybrid runtime plans of in-memory and distributed operations
– Graceful eviction of intermediates at granularity of variables
– Example: SystemML

– Soft references for in-memory matrices and broadcasts
– LRU, FIFO buffer replacement strategies

 #2 Operation/Algorithm-Specific Buffer Management
– Operations/algorithms over out-of-core matrices and factor graphs
– Page-level storage layout and buffer replacement policies
– Example #2a: RIOT

– Chains of matrix multiplications
– Operation-aware I/O schedules

– Example #2b: Elementary
– LR, CRF, LDA over out-of-core factor graphs
– Materialization strategies and MRU/LFU buffer replacement

6-1

Part 6: Resource Elasticity

Jun Yang
Duke University

Durham, NC, USA

SIGMOD 2017

“Intelligence is the ability to adapt to change.”
Stephen Hawking (?)

http://picshype.com/rubber-band-ball/amazon.com-:-acco-rubber-band/37225

6-2

Rise of Cloud

 Cluster computing for big data is easier than ever
– Clouds allow you to get a cluster on demand, and pay as you go
– There is a growing ecosystem of platforms and tools for data analysis

Challenges

 Maddening array of “knobs”
– Hardware provisioning, software configuration, program tuning

 “Elastic” environment
– Multi-tenant clusters, fluctuating markets, failures
– Particularly hard for large-scale, long-running ML workloads

6-3

Roadmap

 Provisioning (& scheduling): what do I need (& when)?
 Recovery: what do I do when what I need fails?

 Working with markets

☞These problems are not limited to DB & ML workloads, but we shall
see how DB & ML add twists

6-4

Provisioning: Example Decisions

 Given an ML program, what types of machines to acquire,
and how many

– A bigger cluster may get results faster, but cost more
– No perfect speedup, so big clusters may not give good cost/time trade-off

 Given a cluster, how to configure the execution of an ML program
– What’s the appropriate degree of parallelism

for an execution step?
– Overhead of parallelism isn’t always justified

– How much memory do we allocate to
master and work processes?

– Optimal allocation depends on computation and data access patterns

☞Decisions interact with optimizations discussed earlier
– Cluster configuration affects degree of parallelism and memory allocation, as

well as optimal execution strategies

Cumulon [SIGMOD'13+follow-up]

SystemML [SIGMOD'15]

ScalOps [DeBull'12]
SystemML [DEBull'14,PVLDB'16]

6-5

Provisioning/Scheduling: Techniques

Depend on the level of abstraction:
 Program is a black box

– First observe, and then decide; can leverage past execution profiles

 Program is broken down into a workflow with clear input/output for each
unit, e.g., MapReduce, Spark

– More effective profiling and optimization on a per-unit basis

 Program is specified declaratively, DB-style
– Reusable and composable cost models
– Bigger search space through rewrites
– Cost-based what-if analysis

 Program follows a specific template
– Even more opportunities arise; e.g., scheduling parameter

updates/synchronization in parameter servers [VLDB'10,OSDI'14] + resource
provisiong in Dolphin [MLSys'16] + adapting learning rate by update staleness in
DynSGD [SIGMOD'17]

☞Adaptation is always key, regardless of abstraction level

Cumulon [SIGMOD'13+follow-up]
SystemML [ICDE'11+follow-up]

6-6

Recovery: General Techniques

Depend on the level of abstraction:

 Program is a black box
– Checkpointing VM state in reliable/redundant storage

 Program is a workflow with clear input/output for each unit
– Write input/output to reliable storage + rerun failed units, e.g.,

Hadoop/MapReduce
– Intermediate results can be in memory and lost + recover using lineage

Spark RDD [NSDI'12]

 Program is specified declaratively, DB-style
– Finer-grained lineage-based recovery using knowledge of operators +

intelligent selective checkpointing Cümülön [PVLDB'15]

6-7

Recovery: Algorithm-Specific

 Many ML algorithms can tolerate missing input or errors by design
– Instead of recovering to a state where as if failures never occurred, convert

failures into “soft” ones that algorithms can handle themselves

 Example: distributed batch gradient descent

– In an iteration, if a task fails to calculate the contribution from one partition
of data, simply use an approximation (from the previous iteration)

– Algorithm still converges

☞Generalized to user-defined, algorithm-specific “compensations”

Narayanamurthy+ (REEF) [BigLearn'13]

Schelter+ [CIKM'13]

6-8

Fixed, on-demand price

2016

Working with Markets

 “On-demand” (regular) instances: fixed price, guaranteed
 “Spot” instances: availability/price vary over time; e.g; on Amazon:

– You set a bid price, and get instances if bid price ≥ market price
– You pay market price (@hour start), by hours
– You lose the instances if market price rises above your bid, but your last

hour will be free

 Price can depend on machine
type, region, and time

☞How do we leverage markets effectively?
– Pop quiz: would you ever bid higher than the fixed price?

– Yes! Less chance of losing them, yet still lower cost on average

6-9

Working with Markets: Techniques

 Diversify your portfolio: consider instances with different types, across regions
– If one market is too expensive, turn to others, e.g., Dyna [TCC'16]
– A heterogeneous cluster may be best for mixed workloads, e.g., Zhang+ [PER'15]

 Minimizing expected cost is often not enough; need to control risk
– Model the market to quantify uncertainty, e.g., Cümülön(-D) [PVLDB'15,'17]

 Zafer+ [Cloud'12] squeezes entire execution on spots in an hour; retries with a
higher bid price if you lose them

– Losing spots within an hour incurs no cost with Amazon

 Dyna [TCC'16] tries faster spots before falling back to on-demand
– But only if doing so improves the execution time distribution

 Cümülön [PVLDB'15] picks the optimal mix of spot/on-demand instances
– To minimize expected cost while meeting deadline/budget with high probability
– Recovers and re-optimizes if spots are lost

 Cümülön-D [PVLDB'17] adapts proactively dynamically and proactively
– Bids/terminates as needed, based on execution progress and market condition
– Solves the optimization problem as a Markov Decision Process (MDP) and pre-compiles a

“cookbook” to apply at run time

6-10

Summary

 Large-scale ML is increasingly being done in a cloud

 Challenges of elasticity are not unique to DB & ML

 Lots of uncertainty, but adaption & stochastic modeling
come to rescue

 Different levels of abstraction
lead to different opportunities—
declarative (DB-style) ML enables
smarter, more effective solutions

https://www.quora.com/What-is-the-difference-between-abstract-art-and-modern-art

6-11

References for Part 6: Resource Elasticity
 Cumulon [SIGMOD'13] Huang et al. “Cumulon: optimizing statistical data analysis in the cloud.” SIGMOD 2013

 Cümülön [PVLDB'15] Huang et al. “Cümülön: matrix-based data analytics in the cloud with spot instances.” PVLDB 2015

 Cümülön-D [PVLDB'17] Huang & Yang. “Cümülön-D: data analytics in a dynamic spot market.” PVLDB 2017

 Dolphin [MLSys'16] Zhou et al. “Dolphin: Runtime Optimization for Distributed Machine Learning.” ML Systems Workshop, 2016

 Dyna [TCC'16] Zhou et al. “Monetary cost optimizations for hosting workflow-as-a-service in IaaS clouds.” TCC 4(1), 2016

 DynSGD [SIGMOD'17] Jiang et al. “Heterogeneity-aware Distributed Parameter Servers.” SIGMOD 2017

 Narayanamurthy+ (REEF) [BigLearn'13] Narayanamurthy et al. “Towards Resource-Elastic Machine Learning.” BigLearn 2013

 Parameter Server [VLDB'10] Smola & Narayanamurthy. “An architecture for parallel topic models.” VLDB 2010

 Parameter Server [ODSI'14] Li et al. “Scaling Distributed Machine Learning with the Parameter Server.” OSDI 2014

 Schelter+ [CIKM'13] Schelter et al. “All Roads Lead to Rome: Optimistic Recovery for Distributed Iterative Data Processing.” CIKM
2013

 ScalOps [DeBull'12] Borkar et al. “Declarative systems for large-scale machine learning.” IEEE Data Eng. Bulletin, 35(2), 2012

 Spark RDD [NSDI'12] Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing .”
NSDI 2017

 SystemML [ICDE'11] Ghoting et al. “SystemML: Declarative machine learning on MapReduce.” ICDE 2011

 SystemML [SIGMOD'15] Huang et al. “Resource elasticity for large-scale machine learning.” SIGMOD 2015

 SystemML [VLDB'16] Boehm et al. “SystemML: Declarative machine learning on Spark.” PVLDB 9(13), 2016

 Zafer+ [Cloud'12] Zafer et al. “Optimal bids for spot VMs in a cloud for deadline constrained jobs.” Cloud Computing, 2012

 Zhang+ [PER'15] Zhang et al. “Exploiting Cloud Heterogeneity to Optimize Performance and Cost of MapReduce Processing.”
Performance Evaluation Review, 42(4), 2015

Part 7: ML Lifecycle Systems

Arun Kumar
UC San Diego  

La Jolla, CA, USA

SIGMOD 2017

Overview: ML Lifecycle Issues

Data sourcing
Feature engineering
and model selection

Model serving
Tighter loop between
inference and learning

Model management

Data Scientist/
ML Engineer

Feature Engineering

The process of obtaining a formal representation of the data-
generating process as structured signals (features) for an ML model

Q: What sort of operations constitute feature engineering?

Q: What is feature engineering (FE)?

Structured data: Whitening, feature selection/ranking, joins, PCA, etc.
Text: Bag-of-words, Parsing-based, Domain-specific, Word2Vec, etc.

Deep CNNs and RNNs for images, audio, video, time series, etc.

Depends on the data type!

High-quality features are the “secret sauce” of applied ML
FE operations are basically data transformations!

Often “brushed under the carpet” by ML community

Q: Why is it important from a data management perspective?

Feature Engineering Systems
Feature selection:
Obtain a subset of features to improve accuracy and/or interpretability

Columbus [SIGMOD’14]:
Often not a single algorithm but a human-in-the-loop dialogue process
Data scientist explores multiple subsets based on domain insights

CustID Churn? Age Income Gender City …

… … … … … … …

Understanding
customer churn

Evaluate error with all features in chosen set
Drop demographic features and re-evaluate
Add Gender back in and so on …

A few such common steps encoded as “declarative” ops in DSL
Impl. on top of R/Python; optimizing code-gen middleware
Batching/materialization; QR decomposition; coresets; warm start

Feature Engineering Systems

More open questions remain in systematizing feature engineering

Treating FE as a dataflow-oriented process; DB-style optimizations:
Brainwash [CIDR’13] / DeepDive [DataEng’14]
Workflows of UDFs; feature recommendations

KeystoneML [ICDE’17]
Alternative phy. impl. of solvers; cost-based op. selection

Reducing amount of work for feature coding/evaluation:
Zombie [ICDE’16]
Index structure to sub select relevant data; bandit techniques

Applying learning theory to skip features and help with sourcing tables:
Hamlet [SIGMOD’16]

Overview: ML Lifecycle Issues

Data sourcing
Feature engineering
and model selection

Model serving
Tighter loop between
inference and learning

Model management

Data Scientist/
ML Engineer

Model Selection

The process of obtaining a prediction function to capture a data-
generating process using data generated by that process

Q: What is model selection (MS)?

FE, AS, and PT often access the dataset (or subsets) repeatedly
A lot of opportunities to improve efficiency with DB-style opt.
FE, AS, and PT are inter-dependent and together constitute MS

Q: Why is it important from a data management perspective?

Model Selection Triple (MST)
(FE, AS, PT)

MSMS [SIGMODRec’15] FE: Feature Engineering
AS: Algorithm Selection
PT: (Hyper-)Parameter Tuning

14

Model Selection Triple (MST): (FE, AS, PT)

Data scientists typically think at a higher level of abstraction
Automation essentially groups MSTs en masse

MS abstractions can help capture intermediate points

Model Selection Process
MSMS [SIGMODRec’15]

Decide and code an MST manually

Manage results manually

Next iteration 3 Consumption

2
Execution

Evaluate model
 using system

Steering
1

…

Code
Generation

{FE1, FE2} x AS1 x
{PT1, PT2}

“Declarative” interfaces

Evaluate models
 using system

Manage results

Next iteration

1

2
Optimization

3 Provenance management

Group a set of “logically related” MSTs

Model Selection Process
Model Selection Triple (MST): (FE, AS, PT)MSMS [SIGMODRec’15]

Many old and recent MS abstractions can be “retro-fitted”
Several new MS abstractions can be introduced to co-exist

Autotuned
functions Columbus MLBase

The Higher Layers: Declarative Interfaces (some in hindsight!)

The Lower Layers: Optimized Implementations

{ {FE} x {AS} x {PT} }

New Abstractions

FE x AS x {PT} {FE} x AS x PT FE x {AS1 x {PT},
AS2 x {PT}} {FE} x {AS x PT}, …

E.g., glmnet() in R E.g., StepAdd() E.g., doClassify() …

In-memory In-RDBMS Others

The Narrow Waist:
A set of logically related

Model Selection Triples (MST)

Model Selection Management Systems (MSMS)
MSMS [SIGMODRec’15]

Model Selection Systems

Many open questions remain on optimizing/improving model selection
Interactions of PT with AS and FE
Exploiting redundancy across and within MSTs; cost models
Incorporating constraint/approximations and visualizations, etc.

Automation of AS and PT search with pre-defined search space:
MLbase [CIDR’13] / TuPAQ [SoCC’15]
Declarative ML tasks (e.g., “DoClassify”); fixed set of algorithms
Data batching; bandit techniques for explore-exploit search

Hemingway [MLSys’16]
Joint AS and cluster sizing for optimization algorithms
Observe-and-adapt approach for convergence properties

DB-style optimizations for PT and general meta-learning:
SystemML [ICDE’15]; GLADE [DanaC’12]

Overview: ML Lifecycle Issues

Data sourcing
Feature engineering
and model selection

Model serving
Tighter loop between
inference and learning

Model management

Data Scientist/
ML Engineer

Model Management Systems

Treating trained models as data themselves (store, query, debug, etc.)

Q: What is model management?

Integrating ML models with SQL querying: LongView [CIDR’11]

Iterative ML debugging: MindTagger [VLDB’15], PALM [HILDA’17]

Specialized storage engines and custom optimizations:
ModelHub [ICDE’17]
Versioned storage/retrieval of CNNs (sets of float matrices)
Optimizations for reducing storage footprint

Many open questions on managing large space of MSTs, especially for
large models (DNNs/trees); ML provenance and debugging

Other ML Lifecycle Issues
Model Serving: High-throughput/low-latency inference/re-learning
MacroBase [SIGMOD’17]
Clipper [NSDI’17] / Velox [CIDR’15]
Integrating data-driven applications with reinforcement learning

Data Sourcing: Modeling labeling process; ML+cleaning; ML+pricing
Snorkel [NIPS’16]
ActiveClean [VLDB’16]
Model-Based Pricing [DEEM’17]

Interactive Model Building: Human-in-the-loop interfaces
Ava [CIDR’17]
Vizdom [VLDB’15]

References: Part 7
ActiveClean [VLDB’16]: ActiveClean: Interactive Data Cleaning For Statistical Modeling
Ava [CIDR’17]: Ava: From Data to Insights Through Conversation
Brainwash [CIDR’13]: Brainwash: A Data System for Feature Engineering
Clipper [NSDI’17]: Clipper: A Low-Latency Online Prediction Serving System
Hamlet [SIGMOD’16]: To Join or Not to Join? Thinking Twice about Joins before Feature Selection
Hemingway [MLSys’16]: Hemingway: Modeling Distributed Optimization Algorithms
KeystoneML [ICDE’17]: KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics
Longview [CIDR’11]: The Case for Predictive Database Systems: Opportunities and Challenges
MacroBase [SIGMOD’17]: MacroBase: Prioritizing Attention in Fast Data
MindTagger [VLDB’15]: MindTagger: A Demonstration of Data Labeling in Knowledge Base Construction
MLbase [CIDR’13]: MLbase: A Distributed Machine-learning System
Model-Based Pricing [DEEM’17]: Model-based Pricing: Do Not Pay for More than What You Learn!
ModelDB [HILDA’16]: MODELDB: A System for Machine Learning Model Management
ModelHub [ICDE’17]: ModelHub: Towards Unified Data and Lifecycle Management for Deep Learning
MSMS [SIGMODRec’15]: Model Selection Management Systems: The Next Frontier of Advanced Analytics
PALM [HILDA’17]: PALM: Machine Learning Explanations For Iterative Debugging
Snorkel [NIPS’16]: Data Programming: Creating Large Training Sets, Quickly
SystemML [ICDE’15]: Efficient Sample Generation for Scalable Meta Learning
TuPAQ [SoCC’15]: Automating Model Search for Large Scale Machine Learning
Velox [CIDR’15]: The Missing Piece in Complex Analytics: Low Latency, Scalable Model Management and

 Serving with Velox
Vizdom [VLDB’15]: Vizdom: Interactive Analytics through Pen and Touch
Zombie [ICDE’16]: Input Selection for Fast Feature Engineering

Part 8: Open Problems and
Conclusions

Arun Kumar
UC San Diego

San Diego, CA, USA

Matthias Boehm
IBM Research – Almaden

San Jose, CA, USA

Jun Yang
Duke University

Durham, NC, USA

SIGMOD 2017

Open Problems: Optimizer and Runtime

 #1 Size and Sparsity Estimation
– Fundamental building block for cost comparisons / valid plan generation
– Issues: function calls, UDFs, data-dependent operators, changing sizes

 #2 Convergence Estimation
– Number of iterations until convergence unknown
– Required for cost comparisons and progress estimation

 #3 Adaptive Query Processing and Storage
– Unknown or changing workloads  adaptive query processing
– Currently limited to inter-DAG recompilation and expression optimization

 #4 Automatic Rewrites and Operator Fusion
– Huge potential for simplification rewrites and operator fusion
– Challenging in presence of new access methods, compression, etc.

 #5 Special Value Handling
– Special values such as NaN, INF, -0 ignored by most systems  incorrect results
– Support these special values w/o sacrificing performance

Open Problems: End-to-End Lifecycle

 #6 Integrating Relational and Linear Algebra
– Seamless optimizer / runtime integration in holistic framework
– Including data transformations, training and prediction

 #7 Seamless Feature Engineering and Model Selection
– (Semi-)automating feature engineering and model selection
– Including abstractions, meta-algorithms, and system architectures

 #8 ML System Benchmarks
– Existing benchmarks limited to ML tasks in terms of reference

implementations of large-scale ML libraries or SQL-centric workloads
– Broader range of benchmarks at various abstraction levels

Conclusions

 Summary
– Compelling arguments for integrating ML  DB and DB ML
– ML in data systems, DB-inspired ML systems, ML lifecycle systems

 #1 Existing Work to Build Upon
– Awareness of existing systems and techniques
– Survey of effective optimization and runtime techniques

 #2 Where the Data Management Community Can Help
– Integrating ML into existing data systems
– Optimizer and runtime techniques for large-scale ML systems
– Tools and systems to simplify/improve the end-to-end ML lifecycle
Many open technical problems

	1_Introduction.pdf
	Data Management in Machine Learning: Challenges, Techniques, and Systems�
	Who We Are
	Motivation: A Data-Centric View of ML
	Motivation: Systems Landscape
	Motivation: Tutorial Goals
	What this Tutorial is NOT
	Tutorial Outline

	1_Introduction.pdf
	Data Management in Machine Learning: Challenges, Techniques, and Systems�
	Who We Are
	Motivation: A Data-Centric View of ML
	Motivation: Systems Landscape
	Motivation: Tutorial Goals
	What this Tutorial is NOT
	Tutorial Outline

	2_SQL.pdf
	Part 2: ML with SQL & UDF
	ML in Database – Why?
	Roadmap
	Matrix Multiply: Take 1
	Matrix Multiply: Take 2
	Matrix Multiply: Take 3
	Ordinary Least Squares
	Observation
	Gradient Descent (GD)
	Stochastic GD (SGD)
	GD/SGD in SQL
	MCMC in SQL
	Approaches to SQL+ML
	Interface: SQL + Libraries/Extensions
	Interface: no SQL
	Summary
	References for Part 2: ML with SQL & UDF
	Part 2 Backup/Extra Slides
	𝑘-Means Clustering
	𝑘-Means as UDA
	Markov-Chain Monte-Carlo (MCMC)
	Example: Gibbs Sampling
	MCMC in SimSQL

	4_Rewrites_and_Operators.pdf
	Part 4: Rewrites, Operator Selection, �and Operator Fusion�
	Overview Optimizing Compilers �for ML Algorithms
	Logical Simplification Rewrites
	Logical Simplification Rewrites�Matrix Multiplication Chain Optimization
	Matrix Multiplication Chain Optimization�
	Matrix Multiplication Chain Optimization�
	Physical Rewrites and Optimizations
	Physical Operator Selection
	Example Physical Operators
	Fused Operators
	Sparsity-Exploiting Fused Operators
	Automatic Operator Fusion
	Runtime Adaptation (see AQP)
	References for Part 4�

	5_Access_Methods.pdf
	Part 5: Compression, Scan Sharing, and Index Structures�
	Motivation: Workload Characteristics
	Motivation: Workload Characteristics
	Background: Block Partitioning and Layouts
	Overview Techniques for Data-Intensive Machine Learning
	Compression Techniques
	Scan Sharing Techniques
	Index Structures and NUMA Awareness
	References for Part 5
	Backup: Compressed Linear Algebra (CLA)
	Backup: Index Structures
	Backup: Index Structures, cont.
	Backup: NUMA-Aware Partitioning and Replication
	Backup: Buffer Pool Management

	6_Elastic.pdf
	Part 6: Resource Elasticity
	Rise of Cloud
	Roadmap
	Provisioning: Example Decisions
	Provisioning/Scheduling: Techniques
	Recovery: General Techniques
	Recovery: Algorithm-Specific
	Working with Markets
	Working with Markets: Techniques
	Summary
	References for Part 6: Resource Elasticity

	8_Summary.pdf
	Part 8: Open Problems and �Conclusions�
	Open Problems: Optimizer and Runtime
	Open Problems: End-to-End Lifecycle
	Conclusions

	8_Summary.pdf
	Part 8: Open Problems and �Conclusions�
	Open Problems: Optimizer and Runtime
	Open Problems: End-to-End Lifecycle
	Conclusions

