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ABSTRACT

Machine learning (ML) and data science workflows are inherently
exploratory. Data scientists pose hypotheses, integrate the neces-
sary data, and run ML pipelines of data cleaning, feature engineer-
ing, model selection and hyper-parameter tuning. The repetitive
nature of these workflows, and their hierarchical composition from
building blocks exhibits high computational redundancy. Existing
work addresses this redundancy with coarse-grained lineage trac-
ing and reuse for ML pipelines. This approach allows using existing
ML systems, but views entire algorithms as black boxes, and thus,
fails to eliminate fine-grained redundancy and to handle internal
non-determinism. In this paper, we introduce LIMA, a practical
framework for efficient, fine-grained lineage tracing and reuse in-
side ML systems. Lineage tracing of individual operations creates
new challenges and opportunities. We address the large size of
lineage traces with multi-level lineage tracing and reuse, as well
as lineage deduplication for loops and functions; exploit full and
partial reuse opportunities across the program hierarchy; and inte-
grate this framework with task parallelism and operator fusion. The
resulting framework performs fine-grained lineage tracing with
low overhead, provides versioning and reproducibility, and is able
to eliminate fine-grained redundancy. Our experiments on a variety
of ML pipelines show performance improvements up to 12.4x.
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1 INTRODUCTION

Machine Learning (ML) and data science have profound impact on
many applications in practice. In the past, ML systems primarily
focused on efficient model training and prediction. However, there
is a trend toward systems support for ML pipelines and the en-
tire data science lifecycle. Systems like KeystoneML [89], Amazon
SageMaker [62], Scikit-learn [79], SystemDS [15], and TensorFlow
TFX [11] provide abstractions for data integration, validation, and
augmentation, feature extraction and engineering, model selection
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Figure 1: Coarse- and Flne-gramed Lineage-based Reuse (for
ML pipelines, utilizing hierarchically composed building blocks).

and hyper-parameter tuning, model training and prediction, as well
as model debugging. Integrating these abstractions into ML systems
is compelling because state-of-the-art data integration and cleaning
largely rely on ML models [37]. However, complex ML pipelines
create challenges regarding reproducibility and computational re-
dundancy, which can be addressed with data provenance.

Data Provenance in ML Systems: Data provenance captures
the origin and creation of data for understanding why and how
query results were created [27, 42, 92]. Similarly, lineage—in
terms of logical data transformations—has also been used for low-
overhead fault tolerance in data-parallel frameworks like Apache
Spark [105]. Recently, these concepts were adopted in ML system
prototypes such as MISTIQUE [97], HELIX [103], Alpine Meadow
[86], and the Collaborative Optimizer (CO) [34] for debugging and
reusing intermediates. Existing approaches rely on coarse-grained
lineage tracing at the level of ML pipelines and their top-level steps
as shown in Figure 1-left. This black-box view of individual pre-
processing steps, feature engineering, hyper-parameter tuning, and
ML algorithms allows using existing—and rapidly evolving—ML
systems. Unfortunately though, this approach fails to detect inter-
nal non-determinism and fine-grained redundancy. Exposing the
internals of composite primitives at pipeline level is possible but
requires a reimplementation of such primitives.

Problem of Non-Determinism: Many ML primitives are non-
deterministic, so multiple runs with the same inputs do not yield
the same results. Examples are (1) ML algorithms with randomly ini-
tialized models, (2) random reshuffling of matrices for mini-batch
algorithms, cross validation, data partitioning, and splitting, (3)
drop-out layers for regularization in deep neural networks (DNNs),
and (4) basic randomized operations like rand or sample. Interest-
ingly, recent work has found significant impact of random seeds on
the model accuracy of cutting-edge DNNs [36]. When computing
lineage for high-level primitives, this internal non-determinism—
unless exposed via seed parameters—quickly becomes invisible.
Externally encoding this metadata is possible but again defeats
the purpose of being independent of underlying ML systems and
their implementation. Therefore, non-determinism limits the use
of coarse-grained lineage for versioning, reproducibility, and reuse.

Problem of Unnecessary Redundancy: The repetitive nature
of exploratory data science processes, and increasingly complex,
hierarchically composed ML pipelines and workflows, create high
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computational redundancy. While coarse-grained reuse can elimi-
nate redundancy of identical steps, it fails to eliminate fine-grained
redundancy. First, existing ML libraries and systems often com-
pose high-level primitives from smaller building blocks to ensure
reuse and consistency. For example, Scikit-learn [79] allows creating
custom pipelines (via make_pipeline()) from sequences of pre-
processing steps and ML algorithms, and then feed these pipelines
into high-level primitives like GridSearchCV. Since this composi-
tion is unaware of independent operations and substeps, (and hand-
optimized primitives for all combinations are infeasible), we end up
with unnecessary redundancy. Unfortunately, in general-purpose
programming languages, this redundancy is very difficult to cor-
rectly detect and eliminate. Second, entire ML algorithms might
be repeatedly used inside feature selection and cross validation
primitives, which show an orthogonal type of partial redundancy
due to incrementally added features (feature selection), removed
features (debugging), or overlapping fold compositions.

LIMA Framework Overview: Our LIMA framework over-
comes these problems by a novel concept of fine-grained lineage
tracing and reuse inside ML systems, as shown in Figure 1-right.
We maintain a lineage DAG (directed acyclic graph) for all life vari-
ables during runtime of an ML program. Nodes represent executed
operations—including parameters that make them deterministic
(e.g., system-generated random seeds)—and edges are data depen-
dencies. This DAG is recursively built, while executing conditional
control flow and operations. The lineage of a variable exactly iden-
tifies an intermediate result, and can then be accessed, stored, and
used to reproduce this intermediate. In order to eliminate unneces-
sary redundancy, we further leverage the lineage as keys in a reuse
cache for full and partial reuse, with compensations for partial reuse.
Figure 1 shows the resulting reuse opportunities at the granularity
of individual operations, control-flow blocks, and functions.

Contributions: Our main contribution is the LIMA framework
for efficient, fine-grained lineage tracing and reuse, implemented
in Apache SystemDS! [15] as a representative ML system. Key
ideas of this approach, beyond state-of-the-art, are (1) multi-level
lineage tracing and reuse, (2) full and partial reuse of intermediates,
and (3) a robust integration with ML system internals such as task
parallelism and operator fusion. Our technical contributions are:

o ML Systems Background: To aid understanding, we provide
the necessary background of ML system internals, and dis-
cuss different sources of redundancy in Section 2.

e Lineage Tracing: We then define the concept of Lineage DAGs,
and discuss multi-level lineage tracing in Section 3. This
discussion also includes the deduplication of lineage traces
for functions, loops, blocks, and fused operators.

o Lineage-based Reuse: Leveraging these lineage traces, we in-
troduce techniques for full and partial reuse of intermediates
in Section 4. This reuse infrastructure relies on compiler-
assisted, cost-based runtime caching, tailor-made eviction
policies, and thread-safe access in task-parallel programs.

o Experiments: Finally, we report on extensive experiments in
Section 5 that show low overhead lineage tracing, and signif-
icant performance improvements, compared to baselines like
TensorFlow [1] and HELIX [103], on various ML workloads.

I The source code is available at https://github.com/apache/systemds.
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2 BACKGROUND AND PRELIMINARIES

This section introduces our running example, necessary background
of ML system internals, as well as common types of redundancy.

2.1 Running Example

Example 1 shows a user-level example ML pipeline—written in
SystemDS’ DML scripting language with R-like syntax [15]—which
we use as a running example throughout this paper.

ExAMPLE 1 (GRIDSEARCH LM). We read a feature matrix X and
labelsy, and extract 10 random subsets of 15 features. For each feature
set, we tune the linear regression (Im) hyper-parameters regulariza-
tion, intercept, and tolerance via grid search and print the loss.

1: X = read('data/X.csv'); # 1M x 100
2: y = read('data/y.csv'); # 1M x 1

3: for( i in 1:10) {
4
5

s = sample(15, ncol(X));

[loss, B] = gridSearch('lm', 'l12norm',
list(X[,sl,y), list('reg','icpt','tol"),...);

print("Feature set ["+toString(s)+"]: "+loss);

o

7: 3}

High-level primitives like gridSearch and 1m are themselves script-
based built-in functions and imported accordingly. Below functions
show their key characteristics in simplified form:

01: gridSearch = function(...) return(...) {
02: HP = ... # materialize hyper-parameter tuples
03: parfor( i in 1:nrow(HP) ) { # parallel for

04: largs = ... # setup list hyper-parameters
05: rB[i,] = t(eval(train, largs));

06: rL[i,] = eval(score, list(X,y,t(rB[i,1)));
o7: } }

08: 1m = function(...) return(...) {
09: if (ncol(X) <= 1024) # select closed-form

10: B = 1mDS(X, y, icpt, reg, verbose);

11: else # select iterative

12: B = 1ImCG(X, y, icpt, reg, tol, maxi, verbose);
13: }

14: 1mDS = function(...) return(...) {
15: if (icpt > 0) {

16: X = cbind(X, matrix(1,nrow(X),1));

17: if (icpt == 2)

18: X = scaleAndShift(X); # mu=0,sd=1

19: }o...

20: A = t(X) %*% X + diag(matrix(reg,ncol(X),1);

21: b = t(X) %*% y;

22: beta = solve(A, b);

23: }

24: 1mCG = function(...) return(...) {
25: if (icpt > 0) {

26: X = cbind(X, matrix(1,nrow(X),1));
27: if (icpt == 2)

28: X = scaleAndShift(X); # mu=0,sd=1
29: }o...

30: while (i<maxi & norm_r2>norm_r2_tgt) {
31: q = t(X) %*% (X %*% ssX_p);

32: p =-r + (norm_r2 / old_norm_r2) * p;
33: } 3}
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Figure 2: Operator Scheduling and Runtime Plans.

The gridSearch function enumerates and materializes all hyper-
parameter combinations HP of the passed parameters and value
ranges, and invokes training (1m) and scoring (12norm) functions
to find the best model and loss. The 1m function in turn dispatches—
based on the number of features—either to a closed-form method with
O(m - n? + n®) complexity (1mDS); or an iterative conjugate-gradient
method with O(m - n) per iteration (1mCG), which performs better for
many features as it requires < n iterations until convergence.

2.2 ML Systems Background

There is a variety of existing ML systems. Relevant for understand-
ing this paper, are especially the underlying techniques for program
and DAG compilation, and operator scheduling [17]. Here, we focus
primarily on lazy evaluation and program compilation.
Program/DAG Compilation: We distinguish three types of
compilation in contemporary ML systems: (1) interpretation or
eager execution, (2) lazy expression or DAG compilation, and (3)
program compilation. First, interpretation as used in R, PyTorch
[78], or Python libraries like NumPy [95] or Scikit-learn [79] execute
operations as-is and the host language (e.g., Python) handles the
scoping of variables. Second, systems like TensorFlow [1], OptiML
[90], and Mahout Samsara [85] performing lazy expression evalua-
tion that lazily collects a DAG of operations, which is optimized and
executed on demand. Some of these systems—like TensorFlow or
OptiML—additionally provide control flow primitives, integrated in
the data flow graph. Here, the host language still interprets the con-
trol flow, and thus, unrolls operations into a larger DAG. However,
recent work like AutoGraph [68] automatically compiles Tensor-
Flow control flow primitives. Only bound output variables leave the
scope of expression evaluation. Third, program compilation in sys-
tems like Julia [12], SystemML [14], SystemDS [15], and Cumulon
[48] compiles a script into a hierarchy of program blocks, where
every last-level block contains DAGs of operations. Accordingly,
control flow and variable scoping is handled by the ML system itself.
Despite the large optimization scope of lazy expression evaluation
and program compilation, unnecessary redundancy cannot be fully
eliminated via code motion and common subexpression elimination
(CSE) because the conditional control flow is often unknown.
Operator Scheduling: Given a DAG of operations of an expres-
sion or program block, operator scheduling then determines an
execution order of the individual operations, subject to the explicit
data dependencies (i.e., edges) of the data flow graph. The two
predominant approaches are sequential and parallel instruction
streams. First, a sequential instruction stream linearizes the DAG—
in depth- or breadth-first order—into a sequence of instructions
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that is executed one-at-a-time. For example, Figure 2 shows a plan
of runtime instructions in SystemDS for lines 21-23 of Example 1. A
symbol table holds references to live variables and their metadata.
Instructions are executed sequentially, read their inputs from a
variable map (a.k.a. symbol table), and put their outputs back. Such
a serial execution model—as used in PyTorch [78] and SystemML
[14, 16]—is simple and allows bounding the memory requirements.
Second, parallel instruction streams—as used in TensorFlow [1]—
leverage inter-operator parallelism: when all inputs of an operation
are available, this operation is enqueued for parallel execution. This
execution model offers a high degree of parallelism (for many small
operations) but makes memory requirements less predictable.

2.3 Sources of Redundancy

We can now return to our running example and discuss common
sources of fine-grained redundancy.

ExaMPLE 2 (GRIDSEARCH LM REDUNDANCY). The user script
from Example 1 with a 1M X 100 feature matrix X and three hyper-
parameters (reg, icpt, tol with 6, 3, and 5 values) exhibits multiple
sources of redundancy. First, since X has 100 features, all calls to 1m
are dispatched to 1mDS and thus, one of the hyper-parameters (tol) is
irrelevant and we train five times more models than necessary. Second,
evaluating different A parameters (reg) for 1mDS exhibits fine-grained
operational redundancy. The core operations X' X and X"y are inde-
pendent of reg and thus, should be executed only once for different A.
Third, both 1mDS and 1mCG have the same pre-processing block, and
for 2/3 of icpt values, we perform the same cbind operation, which
is expensive because it creates an intermediate larger than X. Fourth,
appending a column of ones does not require re-executing X' X and
XTy. Instead we can reuse these intermediates and augment them
with colSums(X), sum(y) and nrow(X). Similarly, the random feature
sets will exhibit overlapping features whose results can be reused.

Types of Redundancy: Existing work performs reuse for
coarse-grained sub-tasks in ML pipelines [34, 86, 89, 97, 103, 107].
Generalizing upon the previous example, we further extend this to
common types of fine-grained redundancy:

o Full Function or Block Redundancy: At all levels of the pro-
gram hierarchy, there is potential for full reuse of the outputs
of program blocks. This reuse is a form of function memo-
ization [29], which requires deterministic operations.

o Full Operation Redundancy: Last-level operations can be
reused for equivalent inputs, given that all non-determinism
(e.g., a system-generated seed) is exposed from these opera-
tions and cast to a basic input as well.

e Partial Operation Redundancy: Operation inputs with over-
lapping rows or columns further allow reuse by extraction
from—or augmentation of—previously computed results.

Together, these different types of redundancy motivate a design
with (1) fine-grained lineage tracing, (2) multi-level, lineage-based
reuse, and (3) exploitation of both full and partial reuse.
Applicability in ML Systems: Fine-grained lineage tracing
and reuse is applicable in ML systems with eager execution, lazy
evaluation, and program compilation. In contrast, multi-level trac-
ing, deduplication, and reuse require access to control structures
and thus, are limited to systems with program compilation scope.
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3 LINEAGE TRACING

As a foundation of lineage-based reuse, we first describe efficient
means to lineage tracing and key operations. Lineage graphs may
get very large though, especially for mini-batch training. For this
reason, we introduce the idea of lineage deduplication for loops
and functions. Finally, we discuss design decisions and limitations.

3.1 Basic Lineage Tracing

During runtime of a linear algebra program, LIMA maintains—in
a thread- and function-local manner—lineage DAGs for all live
variables of this execution context. Figure 3 shows the lifecycle of
such lineage information and key operations.

DEFINITION 1 (LINEAGE DAGS). A lineage DAG L is a directed,
acyclic graph, whose nodes (or lineage items) represent operations and
their outputs, and whose edges represent data dependencies. Lineage
items consist of an ID, an opcode, an ordered list of input lineage items,
an optional data string and hash, and a visited flag for memoization
of processed sub graphs. Leaf nodes are literals or matrix creation
operations (e.g., read or rand), and multiple inner nodes might refer
to the same inputs. Thus, the lineage DAG is a data flow graph, that
encodes the exact creation process of intermediate results, without the
computation that determined the control flow path.

Lineage Tracing: The immutable lineage DAG for live vari-
ables is then incrementally built by lineage tracing as we exe-
cute runtime instructions (Figure 3, trace). Every execution con-
text maintains a LineageMap that maps live variable names to lin-
eage items (Figure 3, red root nodes), and caches literal lineage
items. As a lean runtime integration, individual instructions—in a
class hierarchy of instructions for local and distributed operations—
implement a dedicated interface LineageTraceable for obtain-
ing lineage items. Before? executing an instruction (integrated in
preprocessInstruction), we obtain the lineage items for the in-
struction output(s) and update the lineage map. Special instructions
like mvvar and rmvar—for renaming and removing variables—only
modify the mapping of live variables to lineage items. For captur-
ing non-determinism, we also modified selected runtime instruc-
tions, like rand or sample, to create system-generated seeds on
preprocessInstruction for inclusion in the lineage items.

Comparisons: When working with multiple, potentially over-
lapping lineage DAGs, a key operation is the comparison of two lin-
eage DAGs for equivalence or containment (Figure 3, compare). For
this purpose, lineage items implement hashCode () and equals(),
whose semantics are recursively defined. First, the hash code of a
lineage item is computed as a hash over the hashes of the opcode,
data item, and all inputs. As lineage DAGs are immutable, we cache
the computed hash for every lineage item. Second, the equals check
returns true if the opcode, data item, and all inputs are equivalent.
In order to handle large DAGs, we use memoization to avoid redun-
dant processing of sub-DAGs reachable over multiple paths, and
non-recursive, queue-based function implementations.

Serialization and Deserialization: Users may obtain the lin-
eage in two forms. First, a new lineage (X) built-in function returns
the lineage DAG of variable X as a string. Second, for every write
to a file write(X,’f.bin’), we also write the lineage DAG to a

Lineage tracing before instruction execution facilities reuse as described in Section 4.

Arnab Phani et al.

Runtime &, Lineage serialize Lineage
Program ™ reconstruct  Graph £ ™ geserialize

compare Q%%

Figure 3: Lineage Tracing Lifecycle and Operations.

text file ’f.bin.lineage’. Both cases require the serialization of
the lineage DAGs (Figure 3, serialize). This serialization unrolls the
lineage DAG in a depth-first manner, creating a text line per lineage
item. Inputs are represented via IDs and memoization ensures that
every item is serialized once in the lineage log. To handle large
DAGs, we again use a non-recursive implementation with stack-
based data structures. The lineage log can be deserialized back into
a lineage DAG (Figure 3, deserialize) by processing the lineage log
line-by-line. For every line, we obtain input items from a lookup
table, create the lineage item, and store it in the lookup table.
Re-computation from Lineage: Additionally, we provide a
utility for generating a runtime program from a lineage DAG (Fig-
ure 3, reconstruct) that computes—given the same input—exactly
the same intermediate. In contrast to the original program, the
reconstructed program does not contain control flow but only the
operations for computing the output. The entire lifecycle from trac-
ing, over serialization and deserialization, to the re-computation
by lineage is very valuable as it simplifies testing, debugging, and
reproducibility as illustrated by the following example.

ExAMPLE 3 (DEBUGGING WITH LINEAGE). Let us share a debug-
ging story from practice, which motivated the lineage support in
SystemDS. Users deployed a sentence classification pipeline in pro-
duction, noticed differences in results compared to the development
setup, and reported this as a blocking issue. We reproduced the setup,
spent nights debugging it up to round-off errors of different degrees of
parallelism, and yet, still could not reproduce it. Finally, we found that
the modified deployment infrastructure passed arguments incorrectly,
making the pipeline use default parameters. With lineage support,
such multi-person debugging efforts become much simpler: lineage
logs can be exchanged, compared, and used to reproduce results.

3.2 Lineage Deduplication

A new challenge of fine-grained lineage tracing are potentially very
large lineage DAGs in use cases like mini-batch training. Consider
an average lineage item size of 64 B, and training 200 epochs on a
dataset of 10M rows, batch-size 32, and 1,000 instructions per itera-
tion. The resulting lineage DAG would grow to 4 TB. We address
this issue inside ML systems with a new concept of lineage dedu-
plication, reducing the size to 4 GB in this example. Additionally,
deduplication can remove the overhead of repetitive tracing.
Basic Idea: Large lineage DAGs originate from the repeated ex-
ecution of code paths in loops and functions, which create repeated
patterns in the lineage graph. The basic idea of lineage dedupli-
cation is to eliminate these repeated patterns in the lineage DAG
as a form of compression. Conceptually, we extract lineage sub-
DAGs called patches, store them once, and refer to these patches
via a single lineage item. Since reactive deduplication (after lin-
eage tracing)—similar to function outlining—is a hard problem and
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Script (PageRank) Lineage Deduplicated
for(i in 1:3) { Graph Lineage Graph
t1 = G %*% p; (1 .
t2 = e %*% u %*% p; Lineage Patches

p = .85%t1 + .15%t2;
}

Figure 4: Example Lineage Deduplication for PageRank.

brittle, we perform proactive deduplication on entering last-level
loops and functions. However, as the number of lineage patches
is exponential in the number of branches, we use a hybrid design
with proactive setup, and minimal runtime tracing.

Loop Deduplication Setup: On entering a last-level for,
parfor, or while loop, we analyze the distinct control paths to
aid deduplication. The distinct control paths are all possible execu-
tion paths (e.g., 2 paths for a sequence of three if-else-blocks),
each with its own lineage patch. During setup, we count these paths
in a single pass through the program, replicating the current set of
traced paths at every branch. In this process, we also assign branch
positions (IDs) and materialize these IDs in the if-else program
blocks. For nested branches, the IDs are assigned in a depth-first
order of the entire subprogram. Additionally, we obtain the inputs
and outputs of the loop body from live variable analysis, and pre-
pare an empty map of lineage patches but do not materialize these
patches to avoid unnecessary setup for paths that are never taken.

Loop Deduplication Tracing: During iteration runtime, we
trace temporary lineage DAGs. We first construct ordered place-
holder items for the loop inputs and indexes. Additionally, we ini-
tialize a bitvector b for tracing the taken path, where bit b; is set
to the evaluated condition of branch i. We then execute the loop
body, while performing basic lineage tracing and updating b. At
the end of an iteration, we maintain the map of lineage patches
and the global lineage DAG. The bitvector b represents the key of
the lineage patch, and we keep the collected lineage DAG as a new
patch if it does not yet exist. Finally, a single dedup lineage item—
pointing to the lineage patch—is added onto the global lineage DAG.
Once lineage patches are created for all distinct paths, we stop this
on-demand lineage tracing, and only trace the taken control paths.

ExaMPLE 4 (PAGERANK Loor DEDUPLICATION). Figure 4 illus-
trates this concept of loop deduplication for a classical PageRank
graph algorithm. On the left, we see the original script, where G is a
sparse graph representing the linked websites, and p is the iteratively
updated page rank of individual sites. When executing three iterations
without deduplication, we get the lineage graph in the center with
repeated substructures. In contrast, with loop deduplication, we have
extracted one lineage patch with four inputs and one output, and add
a single lineage item per iteration to the lineage graph.

Function Deduplication: Similar to loop deduplication, we ap-
ply the same concept for functions that do not contain loops or other
function calls. We again count the distinct control paths upfront,
use the bitvector approach to trace the taken path, and add a single
lineage item per function call to the lineage graph. Additional sup-
port for nested loops and function calls is interesting future work.
We focused on last-level loops and functions, which offers a good
tradeoff between simplicity and benefit of deduplication.
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Handling of Non-Determinism: Coming back to our example
of mini-batch training. Many DNN architectures contain dropout
layers for regularization, which is a non-deterministic operation
that generates new dropout masks in every iteration. Our approach
to handling such non-determinism in the context of deduplication
is to model the seeds as input placeholders of the lineage patch,
trace these seeds like the control path bitvector, and add them as
literal inputs to the single dedup item. Similarly, all functions are
tagged as deterministic or non-deterministic during compilation.

Operations on Deduplicated Graphs: All basic lineage oper-
ations apply to deduplicated lineage graphs too. However, naively
decompressing the lineage graph—by lookup of lineage patches and
expansion—would defeat the purpose of deduplication. We alleviate
this problem by two extensions. First, we serialize and deserialize
the dictionary of lineage patches to preserve the deduplication for
storage and transfer. We further extended the compare functionality
to match normal and deduplicated sub-DAGs, by enforcing equal
hashes for regular and dedup items, and resolving dedup items if
needed. Second, program reconstruction would also cause expan-
sion. Hence, on reconstruct, we compile the lineage patches into
functions, and sequences of equivalent dedup items into loops.

3.3 Lineage Tracing for Advanced Features

Modern ML systems further provide advanced features such as
(1) operator fusion, and (2) task-parallel for loops, which are both
widely used and thus, important to integrate with lineage tracing.

Operator Fusion: Operator fusion via code generation is crucial
for performance because it can avoid materialized intermediates
[18, 30, 77], allow scan sharing and sparsity exploitation [18, 48],
and kernel specialization for accelerators [8, 26, 83]. However, fu-
sion loses the operator semantics and thus, does not allow lineage
tracing. This limitation is problematic because it cuts the lineage
trace into unusable pieces. Our approach is simple, yet effective. We
construct the lineage patches of fused operators (with ordered place-
holders) during compilation, and store them in a dictionary. During
runtime, we expand the lineage graph by these lineage patches.
Lineage now also enables new techniques such as de-optimizing
fused operators and reuse-aware fusion.

Task-parallel Loops: Numerical computing frameworks like
MATLAB [87], R [75], or Julia [12], and ML systems like Tensor-
Flow [1] or SystemML [14, 19] provide means of task-parallel loops
(e.g., for hyper-parameter tuning). Implementation details vary, but
often multi-threaded and/or distributed workers are used. For en-
suring isolation, we trace lineage in a worker-local manner, but
individual lineage graphs share their common input lineage. Dis-
tributed operations leverage the serialize and deserialize operations
to transfer lineage. The worker results are merged by taking their
lineage roots and constructing a linearized lineage graph.

3.4 Limitations

The LIMA lineage tracing makes several tradeoffs. In the following,
we discuss these design decisions and related limitations.

o Immutable Files/RDDs: We assume input files and RDDs are
read-only (i.e., deterministic reads), which is a reasonable
assumption and eliminates the need for data summarization.
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o No Capturing of Control Flow: The lineage DAG represents
the computation of an intermediate without the control path
decisions. We made this choice because the original script is
a more concise representation of the actual program.

o Result Differences: Despite handling non-determinism, recon-
structed programs might produce slightly different results.
Reasons include multi-threaded or distributed operations (ag-
gregation orders), different environments (memory budgets,
cluster size), and different artifacts (SW versions).

Our design focuses primarily on simplicity, efficiency, and robust-
ness, which are key for leveraging lineage in many use cases like ver-
sioning, debugging, auto differentiation, and lineage-based reuse.

4 LINEAGE-BASED REUSE

The lineage of an intermediate carries all information to identify
and recompute this intermediate. LIMA leverages this character-
istic in a lineage-based reuse cache for eliminating fine-grained
redundancy (see Section 2.3). Figure 5 gives an overview of our
reuse approach. In this section, we describe (1) the lineage cache
organization, and multi-level reuse of intermediates for functions,
blocks, and operations, (2) partial reuse of operations with compen-
sations, (3) cost-based eviction policies, (4) compiler-assisted reuse
(e.g., rewrites), and (5) remaining limitations and future work.

4.1 Multi-Level Full Reuse

As the foundation of lineage-based reuse, we establish a cache that
maps lineage traces to cached, in-memory data objects. Here, we
describe a holistic design for a robust system integration.
Lineage Cache: The basic architecture of the lineage cache—
as shown in Figure 5—comprises a hash map from lineage items
(i.e., lineage traces of values) to cached values. These values can
be matrices, frames, or scalars and are wrapped into lineage cache
entries that hold additional metadata such as the data type, cache
status, computation time, access timestamps, and eviction scores.
The cache size is a configurable fraction of the maximum heap size
(5% by default). Other configurations include the set of reusable in-
struction opcodes, the used eviction policy, and related parameters.
Full Reuse: During runtime, we then trace lineage before in-
struction execution, and use the obtained lineage item to probe the
lineage cache for existing outputs. Full reuse refers to an operation-
level reuse of a previously computed output in full, that is, without
any compensations. If this probe succeeds, we obtain the cached
value, put this value into the symbol table of live variables, and
skip the instruction. If the value does not yet exist in the cache,
we execute the instruction and additionally store its output(s) in
the lineage cache. The probing leverages the compare functionality
(via hashCode() and equals()) as described in Section 3.1. The
time complexity of naive hashCode and equals implementations
are linear in the size of the lineage trace. However, due to mate-
rialized hash codes, we get constant complexity for constructing
and hashing a new lineage item over existing lineage inputs, and
using the hash codes for pruning—in equals calls—works very
well in practice. The reuse logic is integrated in the main instruction
execution code path, which seamlessly applies to all instructions.

3Long lineage traces with repeated structure are prone to hash collisions due to integer
overflows. We handle such overflows with separate hash functions.
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Figure 5: Overview Lineage-based Reuse.

In addition, making the set of cacheable instructions and data types
configurable also avoids unnecessary cache pollution, and ensures
correctness (e.g., for update-in-place indexing).

Multi-level Reuse: Our basic full reuse eliminates fine-grained
redundancy at operation level in a robust manner. However, this ap-
proach is suboptimal for coarse-grained redundancy (e.g., reuse of
entire functions) because it still requires a pass over all instructions
and reuse of their cached outputs. Inspired by recent work on alter-
native probing strategies in CO [34] and pruning in HELIX [103],
we augment the basic reuse by a multi-level reuse approach to avoid
cache pollution and interpretation overhead. Our basic idea is to
leverage the hierarchical program structure of functions and control
flow blocks (see background in Section 2.2) as natural probing and
reuse points. As pre-processing step, we determine and materialize
if a given function or block is deterministic, i.e., does not include any
non-deterministic operations or function calls. A block is similar to
a function as it has specific inputs and outputs, which we obtain
from live variable analysis. During runtime, we then construct a
special lineage item that represents the function inputs, function
call, and bundles all function outputs. If a deterministic function is
called with the same inputs, we can thus, directly reuse its outputs;
otherwise we execute the function and also bind cached outputs to
the special lineage item. Multi-level reuse is orthogonal to lineage
deduplication, but internally leverages shared infrastructure.

ExamPLE 5 (PCA MuLTI-LEVEL REUSE). Figure 5 also illustrates
this concept of multi-level reuse, where we first probe the entire pca
(principal component analysis) function call. If we cannot reuse, we
probe individual blocks (e.g., the block around scaleAndShift), and
finally, individual operations (e.g., AT A as used in pca and 1mDS).

Task-parallel Loops: Similar to lineage tracing, supporting
task-parallelism requires further lineage cache extensions. First,
multi-threaded parfor workers concurrently probe and update
the shared lineage cache. This concurrency requires a thread-safe
lineage cache, which we ensure via latches and a careful implemen-
tation that keeps the critical sections small and prevents deadlocks.
Second, we use lineage cache “placeholders” (empty lineage cache
entries) to avoid redundant computation in parallel tasks. For ex-
ample, consider the following hyper-parameter tuning loop:

1: parfor(i in 1:nrow(lambda))
2: B[,i] = 1mDS(X=X, y=Y, reg=lambdali,1]);

For instance, k=32 iterations might run in parallel here, and during
the first wave of iterations X' X and X"y are not yet available for
reuse. This redundancy matters because we should rather spend
the parallelism in individual operations if needed. Hence, the first
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thread puts a placeholder in the cache. Other threads then find this
placeholder and block on obtaining its matrix, frame, or scalar until
the first thread adds the computed value back to the placeholder.

4.2 Partial Operation Reuse

Beyond multi-level full reuse, LIMA also eliminates partial operation
redundancy via partial reuse. Partial reuse refers to an operation-
level reuse of a previously computed output, augmented by a com-
pensation plan of reused or computed operations.

Partial Reuse: If full reuse is not possible, we quickly probe
different partial reuse opportunities, and only if none applies, fall-
back to normal instruction execution. This probing for partial reuse
evaluates an ordered list of rewrites of source-target patterns. If the
current lineage item (before execution) matches a source pattern,
and components of the target pattern are available in the lineage
cache, we construct a compensation plan to compute the result. Sim-
ilar to constant folding, we put reusable intermediates of the target
pattern into a temporary symbol table, construct an operation DAG
for the remaining operations, and then, compile and execute ac-
tual runtime instructions to obtain the results. The rewrites are
hand-written and can include cost-based constraints. Our existing
rewrites focus primarily on real use cases and patterns with rbind,
cbind, and indexing in combination with matrix multiplications,
column or row aggregates, and element-wise operations.

Example Rewrites: Our set of partial rewrites comprises 14
meta rewrites with internal variants. Below equation shows selected
examples, where X Y is a matrix multiply, © and + are element-wise
multiply and addition, and dsyrk(X) is a shorthand for X" X.

rbind(X, AX)Y — rbind(X Y, AXY)
X cbind(Y, AY) — cbind(XY, X AY)
X cbind(Y, 1) — cbind(XY, rowSums(X))
X[ 1:k]) > XY)[,1:k]
dsyrk(rbind(X, AX)) — dsyrk(X) + dsyrk(AX)
dsyrk(cbind(X, AX)) — rbind(cbind(dsyrk(X), X" AX),
cbind(AX" X, dsyrk(AX)))
cbind(X, AX) © cbind(Y, AY) — cbind(X © Y, AX © AY)
colAgg(cbind(X, AX)) — cbind(colAgg(X), colAgg(AX))
Similar rewrites have been used for incremental linear algebra pro-
grams [72], linear algebra simplification rewrites [16, 39, 40, 54, 100],
and hand-optimized cross validation primitives [58]. In contrast,
we apply them during lineage-based reuse or recompilation. Ap-
plication examples are 1m and scaleAndShift with and without

intercept, cross validation, as well as stepLm [15, 99], a feature
selection algorithm that repeatedly appends additional features.

4.3 Cache Eviction

Lineage cache eviction ensures that the size of cached objects does
not exceed the configured budget. Important aspects are the cache
management, and dedicated cost-based eviction policies.

Cache Management: Given an absolute memory budget B (by
default, 5% of heap size), intermediates of size smaller than B are
subject to caching. On adding such an object o to the cache, we
get its in-memory size s(o0) and trigger eviction if the cache size
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Table 1: Eviction Policies and Scoring Functions.

Eviction Policy
LRU argmingey Ta (0)/6
DAG-Height argmin,eq 1/h(0)

Cost & Size argmin, e (rp + rm) - c(0)/s(o)

Eviction Scoring Function

S + s(o) exceeds B. Objects under eviction management (excluding
empty placeholders), are then added to a priority queue Q that
orders objects for eviction according to eviction-policy-specific
scoring functions. An active eviction then pulls and evicts items
in order until the budget constraint S < B is met. The eviction
of an object is either by deletion or by spilling to disk, where we
only spill objects whose re-computation time exceed the estimated
I/0 time. We perform additional bookkeeping to allow identifying
such spilled cache entries. With multi-level reuse, multiple cache
entries might refer to the same object but exhibit different costs (e.g.,
function versus operation). In such scenarios, we defer the spilling
of an entry group until all group entries are pulled for eviction.
Statistics and Costs: As a basis for our eviction policies and
user-facing statistics, we collect various statistics. On entering the
cache, we obtain (1) the measured function or operation execution
time c¢(0) of cached objects, and (2) the height h(0) of related lineage
traces (distance from leaves). During cache usage, we further gather
(3) the last access timestamp T, (0), and (4) the number of references
(#hits ry,, #misses rp,). Additionally, we estimate (5) the spill (write)
and restore (read) times of cached objects. We obtain the sizes
in memory s;,(0) and on disk s;(0) from the data characteristics,
and scale sgz(0) with expected read/write bandwidths for dense
and sparse matrices, or frames. For adaptation to the underlying
hardware, we adjust these expected bandwidths (starting heuristics)
as an exponential moving average with the measured I/O times.
Eviction Policies: The chosen eviction policy determines the
order of eviction. Table 1 shows the supported policies and their
scoring functions to get the next item for eviction. First, LRU orders
by a normalized last access timestamp T,(0)/6. Second, DAG-Height
assumes that deep lineage traces have less reuse potential, and
orders accordingly by 1/h(0). Third, similar to CO’s [34] artifacts-
materialization logic, Cost&Size aims to preserve objects with high
computation costs ¢(0) to size s(o) ratio, scaled by (ry, + r,) (#ac-
cesses) to account for global reuse potential, and evicts the object
with minimal (ry, + rp) - c(0)/s(0). While LRU performs good in
pipelines with temporal reuse locality, DAG-Height handles mini-
batch scenarios better, where batches are sliced from the input
dataset and reused across epochs. However, both LRU and DAG-
Height make strong assumptions. In contrast, Cost&Size, together
with disk spilling, performs well in a wide variety of scenarios as it
tunes for global reuse utility (saved computation by size). Hence,
Cost&Size is our default. We abandoned an Hybrid (weighted) strat-
egy in favor of this parameter-free policy. Adaptive policies like
ARC [66] that balance recency and utility is interesting future work.

4.4 Compiler Assistance

Lineage-based reuse at runtime level is valuable because many
reuse opportunities are unknown during compilation due to con-
ditional control flow. However, a pure runtime approach is not
enough because some patterns are detected too late (after part of



SIGMOD °21, June 18-27, 2021, Virtual Event , China

these patterns are already evaluated). We address this dilemma by
augmenting our runtime lineage cache with compiler assistance.

Unmarking Intermediates: In order to avoid cache pollution—
and thus, unnecessary probing, and evictions—we added a program-
level rewrite that unmarks intermediates for reuse. Unmarking
disables probing and caching of a specific operation instance—even
if its opcode is in the set of qualifying operations—if it is unlikely
to be reused over the program lifetime. This rewrite has access to
the entire control program and operation DAGs of a script, but
performs unmarking conservatively because the lineage cache is
used across script invocations through SystemDS’ programmatic
APIs. Examples are the computation of fully updated, local variables
that depend recursively on previous loop iterations.

Reuse-aware Rewrites: We further added several reuse-aware
DAG rewrites, which—if lineage-based reuse is enabled—prefer
patterns that create additional reuse opportunities without hurting
the runtime of normal plan execution (by cost estimates). There
are several examples. First, for k-fold cross validation over 1m, we
construct the feature matrix from a list of folds X = rbind(Ifolds)
and compute X" X and X"y. Applying, after function inlining, the
partial rewrite dsyrk(rbind(X, AX)) — dsyrk(X) + dsyrk(AX)
for k — 1 folds during compilation allows us to avoid the repeated
rbind operations, and compute and reuse the matrix multiplications
just once per fold. Second, consider different feature projections via
R = A(evect[, 1 : K]) in PCA from Figure 5. If an outer loop calls
PCA for different K, a dedicated rewrite speculatively computes
A evect for more efficient partial reuse.

Reuse-aware Recompilation: SystemDS compiler marks a
DAG for recompilation if sizes (dimensions, sparsity) of interme-
diates are unknown, and later adaptively recompiles plans during
runtime at natural block boundaries. We extended this recompila-
tion with further reuse-aware rewrites as it provides a great balance
between reduced uncertainty of conditional control flow, and large-
enough optimization scope. For example, in stepLm such rewrites
allow partial reuse for dsyrk(cbind(X, AX)), but also avoid the ex-
pensive materialization of cbind(X, AX)). Internally, the rewrites
from Section 4.2 are shared by both, partial reuse and recompilation.

4.5 Limitations

Similar to Section 3.4, we summarize limitations, which we see as
out-of-scope of the initial LIMA framework and thus, future work.

o Unified Memory Management: SystemDS has multiple mem-
ory managers such as the buffer pool for live variables, op-
eration memory, and now the lineage cache. The static par-
titioning can cause unnecessary evictions, which makes a
unified memory manager (as in Spark [76]) desirable.

o Multi-level Partial Reuse: Conceptually, we could also apply
the idea of partial reuse—by composition—to blocks and func-
tions. However, this would introduce significant complexity.

e No Multi-location Caching: Although we trace lineage for
both local and distributed operations, the lineage cache cur-
rently only applies to local, in-memory objects.

o Materialization of Lineage Cache: Our reuse cache is designed
for process-wide sharing, which also applies to collaborative
notebook environments. Reusing across processes would re-
quire extensions for speculative materialization and cleanup.
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5 EXPERIMENTS

Our experiments study the behavior of LIMA under various work-
loads regarding runtime overhead and reuse opportunities. We
first conduct micro benchmarks to understand the performance of
lineage tracing and cache probing, partial and multi-level reuse,
and eviction policies. Subsequently, we explore the benefits of fine-
grained, lineage-based reuse for end-to-end ML pipelines, on syn-
thetic and real datasets, and in comparison with other ML systems.
Overall, we observe low runtime overhead, and substantial reuse.

5.1 Experimental Setting

Setup: We ran all experiments on a Hadoop cluster with each node
having a single AMD EPYC 7302 CPUs @ 3.0-3.3 GHz (16 physi-
cal/32 virtual cores), and 128 GB DDR4 RAM (peak performance is
768 GFLOP/s, 183.2 GB/s). The software stack comprises Ubuntu
20.04.1, Apache Hadoop 2.7, and Apache Spark 2.4. LIMA uses
OpenJDK 1.8.0 with 110 GB max and initial JVM heap sizes.
Baselines: For the sake of a holistic evaluation, we compare
LIMA with multiple baselines, including different SystemDS con-
figurations, and other state-of-the-art approaches and systems:

o SystemDS: Our main baseline is Base that refers to the default
configuration of Apache SystemDS [15], but without any
lineage tracing or lineage-based reuse. For lineage tracing
and reuse in LIMA, we then use different configurations
LIMA-x, introduced along the related experiments.

o Coarse-grained: Coarse-grained reuse in HELIX [103] and
CO [34] uses dedicated DAG optimizers for reusing persis-
tently materialized intermediates, and pruning unnecessary
operations. For a fair comparison on equal footing (same
runtime, best-case reuse), we hand-optimized the top-level
ML pipelines at script level with reuse from memory.

o ML Systems: We compare with Scikit-learn [79] (SKlearn)
and TensorFlow 2.3 [1] (TF), which are strong baselines
regarding runtime and graph optimizations [59]. We use
TF function annotations with AutoGraph [68] to compile
composite ML pipelines into a single computation graph,
which allows eliminating fine-grained redundancy as well.

Cache Configurations and Statistics: We expose and use var-
ious configurations, including different reuse types (full, partial,
hybrid; and multi-level reuse), eviction policies (LRU, DAG-Height,
Cost&Size), cache sizes, enabling disk spilling and compiler-assisted
reuse. Additionally, LIMA collects various runtime statistics (e.g.,
cache misses, rewrite/spill times), which we report accordingly.

5.2 Micro Benchmarks

Before describing the end-to-end results, we conduct an ablation
study of various LIMA aspects. These micro benchmarks focus
on lineage tracing, cache probing, deduplication, partial rewrites,
eviction policies, and multi-level reuse. We use simplified scripts,
which are inspired by real workloads, but simple to understand.
Lineage Tracing: For understanding the overhead of lineage
tracing, reuse probing, and deduplication, we explore a mini-batch
scenario. We execute one epoch on a 2M X 784 matrix with different
batch sizes b. Thus, we have 2M/b iterations, and every iteration
contains 40 binary operations (ten times X = (X + X) *i — X)/(i +
1)). Figure 6 shows the results. First, in Figure 6(a), we see that
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Figure 6: Lineage Tracing Overhead (for one epoch).

lineage tracing (LT), and lineage tracing, reuse probing (LTP) incurs
substantial overhead for very small batch sizes (b = 2and b = 8), but
starting with b = 32 the overheads become moderate. In contrast,
for lineage tracing with deduplication (LTD), the overheads become
moderate even at b = 2 and negligible starting at b = 8. Base
shows the best performance for b = 128 because per-operation
overheads are amortized and until b = 64 intermediates still fit
into L2 cache (b € [128, 2,048] fit in L3 cache, while for b = 8,192
there is an additional slowdown). Second, in Figure 6(b), we see
similar characteristics for the space overhead of lineage tracing.
Here, we use a reduced input matrix of 20K X 784 (as execution
is substantially slower with forced garbage collection) and track?
the maximum memory consumption after every instruction. For a
batch size b = 2, we have 10K iterations and the lineage DAG of LT
contains roughly 400K lineage items. The resulting space overhead
compared to Base is about 24 MB (on average, 63 B per lineage
item). Deduplication again significantly reduces the overhead to
10K dedup items (630 KB) in this scenario. The lineage cache adds
a constant 5% space overhead relative to the heap size.

Partial Reuse: Furthermore, we evaluate partial reuse with a
scenario inspired by stepLm [99]. We create a 100K X 500 matrix X,
another 100K x 1K matrix Y, and compute X' X once. In a for loop,
we then execute 1,000 iterations of Z'Z with Z = cbind(X,Y;)
and store a summary, which is the core of stepLm’s inner loop.
Figure 7(a) shows the results of Base, LIMA, and LIMA with compiler
assistance (LIMA-CA) for a varying number of rows. LIMA yields
a 4.2x runtime improvement over Base by applying the partial
rewrite dsyrk(cbind(X, AX)), which turns a compute-intensive
dsyrk into reuse and an inexpensive matrix-vector multiplication
for compensation. However, despite this partial rewrite, we still
perform cbind(X, AX), which is expensive due to allocation and
copy. LIMA-CA applies this rewrite during recompilation and thus,
can eliminate the cbind for an improvement of 41x over Base.

Multi-level Reuse: Multi-level reuse eliminates redundancies
at different hierarchy levels (e.g., functions, blocks, or operations)
of a program, which helps reduce interpretation overhead and
cache pollution. We conduct a micro benchmark of repetitive hyper-
parameter optimization for iterative multi-class logistic regression
with a 50K X 1K input matrix and 6 classes. We first call MLogReg
with 40 different values of the regularization parameter A. Then, we
repeat the entire process 20 times. Figure 7(b) shows the runtime of
Base, LIMA with full operation reuse (LIMA-FR), and LIMA with
multi-level full reuse (LIMA-MLR). Both LIMA-FR and LIMA-MLR
show good improvements, of 5.2x and 24.6x, respectively. MLR is

“4In order to overcome measurement imprecision, we request JVM garbage collection
(GC) until a dummy WeakReference has been collected for every measurement.
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Figure 8: Cache Eviction Policies.

4.6x faster than FR because it avoids function interpretation over-
head, whereas FR needs to retain all intermediates of the iterative
computation cached, and use them one-by-one. Thus, MLR is less
affected by evictions because Cost&Size is tuned to preserve group
cache entries due to their higher computation time.

Eviction Policies: For evaluating eviction, we use ML pipelines
with different reuse opportunities. The first pipeline has phases P1,
P2, P3, where P1 is a loop of an expensive XY and round(X) with
no reuse (which fills the cache), P2 is a nested loop with inexpensive
additions X + i and reuse per outer iteration, and P3 is the same as
P1—but with fewer iterations. Figure 8(a) shows a breakdown of
execution time for Base, LRU, Cost&Size (C&S) and a hypothetical
policy with unlimited cache. LRU fully reuses the intermediates of
P2 by evicting P1 results, which leads to no reuse in P3. In contrast,
C&S first evicts the X +i results, but due to cache misses, their score
increase and they get reused. In P3, C&S reuses all matrix multiplies
from P1. Second, Figure 8(b) compares the runtime of the mini-batch
and StepLM pipelines. DAG-Height performs good on the mini-
batch pipeline because it can reuse preprocessed batches, whereas
with LRU, these batches are pushed out of cache during an epoch.
On StepLM, we see a flipped characteristic, where incrementally
added features lead to reuse potential on the end of large lineage
DAGs and thus, LRU performs better. Due to accounting for cost,
size, and cache references, C&S performs very good in both cases.
Due to this robust behavior, C&S is our default policy.

5.3 ML Pipelines Performance

We now describe the performance impact of lineage-based reuse on
end-to-end ML pipelines. For a balanced view of reuse opportunities,
we evaluate a variety of pipelines with different characteristics.
Pipeline Summary: Table 2 summarizes the used ML pipelines
and their parameters. These include grid search hyper-parameter
optimization of (1) L2SVM (HL2SVM) and (2) linear regression
(HLM); (3) cross-validated linear regression (HCV); (4) a weighted
ensemble (ENS) of multi-class SVM (MSVM) and multi-class logistic
regression (MLRG); and (5) a pipeline for dimensionality reduction
using PCA as well as LM model training and evaluation (PCALM).
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Table 2: Overview of ML Pipeline Use Cases.

Use Case A icpt tol K/Wt TP
HL2SVM #=70 {0,1} 10712 N/A
HLM [107°,10°] {0,1,2} [107'2,107%] N/A v
HCV [107°,10°] {o0,1,2} [107'2,1078] N/A V4
ENS #=3 {1,2} 10712 [1IK5K] (V)
PCALM N/A N/A N/A K > 10%

Some of these pipelines leverage task-parallelism (TP in Table 2) as
described in Section 3.3. For evaluating different data characteris-
tics, we first use synthetic but later also real datasets. Theses ML
pipelines are written as user-level scripts orchestrating SystemDS’
built-in functions for pre-processing and ML algorithms.
Hyper-parameter Tuning (HL2SVM, HLM): Figures 9(a) and
9(b) show the runtime for HL2SVM and HLM. First, HL2SVM uses
a 100K x 1K input matrix X, calls L2SVM for 70 different A values,
each with and without intercept (i.e., bias), and uses the L2 norm
to find the best parameters. We use an Ly-regularized linear SVM.
Even though both outer and inner loop have no reuse opportunities,
we see a nearly 2x improvement due to the reusable cbind(X, 1) for
intercept, initial loss, and gradient computations. Second, for HLM,
we use the script from Example 1, and execute it for input matrices
of varying number of rows [100K, 1M] and 100 columns. We see
improvements of 2.6x and 12.4x (with and without task parallelism)
for reasons explained in Example 1. With task parallelism, the reuse
benefits are smaller because the parfor optimizer [19] reduces the
parallelism of loop body operations, including X' X. With reuse,
however, only a single thread executes X' X and X"y, whereas all
other threads wait for the results. Together, the HL2SVM and HLM
use cases show the spectrum of common reuse opportunities.
Cross Validation (HCV): HCV is similar to HLM but instead
of LM, we use a cross-validated LM (with 16-fold, leave-one-out
cross validation). We again compare Base and LIMA with and with-
out task parallelism. Figure 9(c) shows the results, where we see
improvements of 4x and 5.1x, respectively. Compared to HLM, we
can no longer reuse X' X and X"y for different lambda parameters
directly, but rely on partial rewrites to compute these operations
once per fold and then assemble leave-one-out fold compositions.
This characteristic, in turn, better utilizes task parallelism.
Ensemble Learning (ENS): The weighted ensemble learning
pipeline has two phases. We train three multi-class SVM (MSVM)
models—which internally leverage task parallelism—and three
MLRG models as a weighted ensemble. Similar to L2SVM, MSVM
and MLRG are also iterative with limited scope for reuse. The en-
semble weights are then optimized via random search. Figure 9(d)
shows the results for a 50K X 1K training dataset, 10K X 1K test
dataset, 20 classes, and a varying number of [1K, 5K] weight con-
figurations. We see again a solid 4.2x end-to-end improvement,
which is due to reused X B (of size nrow(X) X #classes) matrix
multiplication in the computation of weighted class probabilities.
Dimensionality Reduction (PCALM): Inspired by work on
dimensionality reduction for downstream tasks [91], we use a PCA
pipeline, PCALM—which enumerates different K, calls PCA to
project K columns, LM and a predict function, and computes the
adjusted-R?. We vary K from 10% of all columns. Figure 9(e) shows
that LIMA achieves up to a 5x improvement. Different calls to PCA
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Figure 9: Performance of End-to-end ML Pipelines.

reuse the AT A computation, the subsequent Eigen decomposition,
and an overlapping matrix multiplication A evects[, 1: K] (of size
nrow(A) X K). Overlapping PCA outputs (projected features) fur-
ther allow partial reuse in the following LM call, specifically X X
and XTy. This PCA pipeline is another good example of significant
fine-gained redundancy, even in modestly complex ML pipelines.

5.4 Real Datasets

Dataset Description: Lineage tracing and reuse are largely in-
variant to data skew. Besides synthetic data though, we also use
real datasets from the UCI repository [38] to confirm the relative
speedups. The real datasets are summarized in Table 3. APS is
collected from various components of Scania Trucks for classify-
ing failures of an Air Pressure System (APS). We pre-process this
dataset by imputing missing values with mean and oversampling
the minority class. The KDD 98 dataset is a regression problem
for the return from donation campaigns. For pre-processing, we
recoded categorical, binned continuous (10 equi-width bins), and
one-hot encoded both binned and recoded features. Column 4 and
5 of Table 3 show the data dimensions after pre-processing.
Reuse Results: Figure 9(f) compares the speedups obtained
from synthetic and real datasets with and without pre-processing
(Real & RealNP). The baseline synthetic datasets are generated to

Table 3: Dataset Characteristics.

Dataset nrow(Xp) ncol(Xp) nrow(X) ncol(X) ML Alg.
APS 60,000 170 70,000 170 2-Class
KDD 98 95,412 469 95,412 7,909 Reg.
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match the data characteristics of the real datasets. Scenarios (a),
(b), (c) and (e) show similar speedups for L2SVM, HLM, HCV, and
PCALM with real data using the KDD 98 dataset. For L2SVM (a),
we converted the target column to 2-class label, and for PCALM
(e), we skipped one-hot encoding to reduce the influence of Eigen
decomposition. Scenario (d) shows a similar result for ENS on the
APS dataset. These experiments validate that lineage-based reuse
is largely independent of data skew of real datasets.

5.5 ML Systems Comparison

So far, we compared SystemDS and LIMA in an equivalent compiler
and runtime infrastructure. Additionally, we also compare with
(1) coarse-grained reuse, (2) global graph construction and CSE in
TensorFlow (TF) [1, 68], and (3) Scikit-learn (SKlearn) [79] as a state-
of-the-art ML library. We use three new pipelines for comparison.

Autoencoder: For comparing TF on mini-batch, NN algorithms,
we use an Autoencoder with two hidden layers of sizes 500 and 2
(four weight matrices), and varying batch size. For avoiding trans-
forming the entire input, we build a feature-wise pre-processing
map including normalization, binning, recoding, and one-hot en-
coding, and then apply this map (as a Keras pre-processing layer)
batch-wise in each iteration. SystemDS is ran with code generation
(i.e., operator fusion in Section 3.3) for both Base and LIMA. Fig-
ure 10(a) shows the results on the KDD 98 dataset for a batch size
256 and 10 epochs. Even though Autoencoder has no reuse oppor-
tunities, LIMA shows a 15% improvement over Base by reusing the
batch-wise pre-processing. TF—a specialized system for mini-batch
training—performs slightly better than LIMA in graph mode (TF-G),
whereas eager mode (TF) and XLA code generation for CPU (TF-
XLA) are substantially slower. In additional experiments, we found
higher SystemDS overhead for small batch sizes, but converging
performance with batch sizes beyond 2,048.

PCA and Cross Validation (PCACV): As a pipeline for evalu-
ating reuse, we apply PCA and cross validation in two phases. The
first phase varies K for PCA, and the second varies the regularization
parameter A for LM with cross validation (32 folds, leave-one-out),
and evaluates the adjusted-R?. PCACV is then compared with TF
and coarse-grained reuse. For a fair and interpretable comparison,
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we disable both task parallelism in SystemDS and inter-operator
parallelism in TF. Figure 10(a)-right shows the results for PCACV
on the KDD 98 dataset. The coarse-grained reuse shows improve-
ments over Base (by reusing the PCA result), but is limited to
top-level redundancies. In contrast, both LIMA and TF-G eliminate
fine-grained redundancies (via CSE in TF-G) but LIMA yields a 25%
runtime improvement over TF-G due to partial reuse across folds.
Figure 10(c) varies the number of rows € [50K, 400K], where we see
an improvement up to 2x by LIMA over TF. For larger datasets, TF
ran out-of-memory, likely because the global graph misses eviction
mechanisms for reused intermediates.

PCA and Naive Bayes (PCANB): In addition, we use a PCA
and Naive Bayes (NB) pipeline, again with two phases: varying
K for PCA, and hyper-parameter tuning for NB. Due to minor
algorithmic differences, we tune Laplace smoothing in LIMA, but
feature variance (var_smoothing) in SKlearn. Figure 10(b) shows the
results for PCANB on the KDD 98 and APS datasets. LIMA performs
8x and 2.8x better than SKlearn for the KDD 98 and APS datasets,
respectively. LIMA reuses again full and partial PCA intermediates,
as well as partial intermediates of the main aggregate operation in
different calls to NB. Figure 10(d) shows the runtime with varying
rows € [50K, 400K], 1K columns and 20 classes. LIMA is up to 10x
faster than SKlearn. Due to differences in implementation of PCA
(SVD vs. Eigen), SKlearn is faster for smaller data sizes, whereas
Base shows better scalability with increasing data size.

Conclusion: Overall, SystemDS with LIMA shows competitive
performance, leveraging rewrite and reuse opportunities not yet
exploited in other systems like TensorFlow and Scikit-learn.

6 RELATED WORK

Our fine-grained, multi-level operation lineage tracing and reuse is
related to traditional data provenance, model management, reuse
of query intermediates and intermediates in ML pipelines, as well
as the incremental maintenance of intermediates in ML systems.
Data Provenance: Data provenance for tracking the origin and
creation of data has been extensively studied in the data manage-
ment literature [27, 42, 92]. Common types of data provenance
are (1) why-provenance [21, 31] (via input tuple “witnesses”), (2)
how-provenance [44, 45] (via provenance polynomials), and (3)
why-not-provenance (why eliminated) [23]. From an execution
perspective, we distinguish eager and lazy provenance, which ob-
tain lineage during execution or on demand [27, 80]. Furthermore,
there is also work on fine-grained, tuple-oriented data provenance
in data flow programs such as MapReduce [33], Spark [105], or
PigLatin [74]. Examples are RAMP [50], HadoopProv [4], and Newt
[63] for MapReduce, Lipstick [5] for PigLatin, and Titian [51] for
Spark. Similar to LIMA, the Lipstick system [5] uses a lineage graph
for fine-grained provenance in a hierarchy of Pig Latin modules,
but unlike LIMA, Lipstick operates at tuple granularity and does
not deduplicate repeated structures. Provenance management in
scientific workflows introduced additional ideas on user-centric
provenance information [6, 32, 64], and caching [10, 22]. Recent
work focuses on fine-grained provenance for linear algebra via
provenance polynomials on matrix partitions [104], efficient prove-
nance tracking via RID-based indexes and query-aware optimiza-
tions [80], provenance for ETL workflows and entity resolution
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via how-provenance [110], provenance for data citation [102] and
natural language claims [109], and provenance for blockchains via
Merkle DAGs [82]. In contrast to tuple-oriented provenance, we
perform logical lineage tracing of linear algebra operations, operate
at multiple levels of conditional control flow, and primarily focus
on efficient lineage tracing for both reproducibility and reuse.

Dataset and Model Management: Recent work on catalogs
for dataset and model management includes Google Goods [46],
SAP Data Hub [47], and DataHub [13], but also data market plat-
forms [41], which all store provenance information to track the
origins and preparation of datasets. In the context of open sci-
ence, similar data catalogs are established under the FAIR data
principles [101], where principle R1.2 requires that “(meta)data are
associated with detailed provenance”. Related projects like Apache
Atlas [9]—as used in Microsoft’s Enterprise ML vision [2]—offers
APIs for storing provenance form different systems. DataHub [13]
and DEX [24] further provided git-like dataset versioning with
delta encoding; MISTIQUE [97] extended this line of work by lossy
deduplication, compression, and adaptive materialization. Further
related work includes ML model versioning, experiment tracking,
and model management. For example, van der Weide et al. manually
version ML pipeline functions, manage their pipeline dependencies,
and reuse intermediates [96]. TensorFlow [1] allows programmatic
tracking of variables (e.g., loss) for experiment visualization in
TensorBoard, while MLflow [25, 106] provides APIs for tracking
model parameters and resulting accuracy. Similarly, the ML library
Tribuo [93] attaches provenance information to models and datasets
for reproducibility. More specialized model management—like Mod-
elHub [67] and ModelDB [98]—further provides model versioning
and means of querying these model versions. In contrast to such
coarse-grained versioning, we provide means of fine-grained lin-
eage tracing of linear algebra programs inside ML systems.

Reuse of Query Intermediates: There is also a long history on
reusing work in database systems. The spectrum ranges from buffer
pool page caching, over scan sharing [7, 94], request batching [60],
and adaptive indexing/cracking [49], to multi-query optimization
[81] and materialized views [3, 55]. Our work has been inspired by
the seminal work on recycling intermediates in MonetDB [52, 53]
and transient materialized views [111]. Both of these approaches
leverage intermediates that are anyway materialized in memory
(or materialized via spool operators) for future reuse. Accordingly,
several aspects like runtime integration and cache eviction policies
of our approach share similarities. However, in contrast to existing
work, we provide means of efficient lineage tracing and reuse for
linear algebra programs, which entails dedicated loop deduplication
strategies, multi-level lineage in conditional control flow, as well as
linear-algebra-specific rewrites for full and partial reuse.

Reuse of ML Pipeline Intermediates: Exploratory data sci-
ence workflows also have large reuse opportunities. Already
notebooks—which preserve the state of cells—and extensions for
dataset discovering [108] can be viewed as a form of manual reuse.
Recent work leverages lineage tracing for notebook state-safety
inspection [20, 65]. For example, NBSAFETY [65] provides a custom
Jupyter kernel that highlights unsafe cell executions (via static anal-
ysis and runtime lineage tracing), but does not trace fine-grained
lineage of library function calls. Early work on automated reuse
was then introduced for optimizing ML pipelines in Columbus
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[107] and KeystoneML [89], which both reason about materializa-
tion and reuse for exact and approximate reuse, within and across
pipelines. ML serving systems also apply means of reuse. Examples
are function result caching in Clipper [29] (e.g., caching frequently
translated words), CSE across prediction programs in PRETZEL
[61], and short-circuiting via reference labels in NoScope [56]. More
recent work include Alpine Meadow [86], HELIX [103], and VAMSA
[71], which include operations for data preparation, ML training,
and model evaluation. Similar to our compiler-assisted reuse and
cache eviction policies, HELIX uses a cost model of load, material-
ization and computation costs, as well as a plan selection heuristic.
Most of these systems rely on existing ML systems like Scikit-learn
[79] and reason about the pipeline DAG, which is a coarse-grained,
top-level view of ML pipelines. In contrast, we exploit fine-grained
full and partial reuse at multiple control flow granularities.

Incremental Maintenance of ML Models: Partial reuse of in-
termediates is closely related to the incremental maintenance of
ML models and intermediates. Model serving systems like Velox
[28] and classification Views in Hazy [57] apply online learning
for model adaptation. In addition, there is also work on exact in-
cremental maintenance—in linear algebra programs and related
abstractions—such as LINVIEW [72], F-IVM [73], and MauveDB
[35]. An often exploited opportunity is maintaining A = XX and
b=X"y,viaA’ = A+ AXTAX and b’ = b+ AXT Ay. Recent work
also leveraged this property for decremental updates [84] (e.g., to
remove tuples for GDPR regulations). Further work includes incre-
mental grounding and inference in DeepDive [88], and incremental
computation of occlusion-based explanations for CNNs [69, 70].
In contrast to the incremental maintenance of intermediates, our
partial reuse is more general because it allows rewrites to augment
intermediates by complex compensation plans.

7 CONCLUSIONS

To summarize, we introduced LIMA, a framework for fine-grained
lineage tracing and reuse in ML systems. Multi-level lineage trac-
ing for functions, blocks, and operations—with deduplication for
loops and functions—reduces the overhead of lineage tracing and
reuse, and seamlessly supports fused operators. Compiler-assisted,
full and partial reuse during runtime allows removing coarse- and
fine-grained redundancy at the different levels of hierarchically
composed ML pipelines. Even for modestly-sized ML pipelines, our
experiments have shown robust improvements across a variety
of workloads. In conclusion, as the complexity of ML pipelines
increases both horizontally (additional sub tasks), and vertically
(additional hierarchy levels), increasing redundancy is inevitable
and difficult to address by library developers or users. Conditional
control flow further renders global operator graphs and common
subexpression elimination during compilation ineffective. In con-
trast, a compiler-assisted runtime-based lineage cache proved effec-
tive to overcome these challenges. Despite a dependency on system
internals, the same concepts are broadly applicable in many modern
ML systems. Interesting future work includes (1) the combination
with persistent materialization [97, 103], especially in multi-tenant
and federated environments, (2) multi-location caching for local,
distributed, and multi-device settings, as well as (3) extended lineage
support for model debugging and fairness constraints [43].
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