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ABSTRACT
Slice finding—a recent work on debugging machine learning (ML)

models—aims to find the top-K data slices (e.g., conjunctions of

predicates such as gender female and degree PhD), where a trained

model performs significantly worse than on the entire training/test

data. These slices may be used to acquire more data for the problem-

atic subset, add rules, or otherwise improve the model. In contrast to

decision trees, the general slice finding problem allows for overlap-

ping slices. The resulting search space is huge as it covers all subsets

of features and their distinct values. Hence, existing work primarily

relies on heuristics and focuses on small datasets that fit in memory

of a single node. In this paper, we address these scalability limita-

tions of slice finding in a holistic manner from both algorithmic

and system perspectives. We leverage monotonicity properties of

slice sizes, errors and resulting scores to facilitate effective pruning.

Additionally, we present an elegant linear-algebra-based enumera-

tion algorithm, which allows for fast enumeration and automatic

parallelization on top of existing ML systems. Experiments with

different real-world regression and classification datasets show

that effective pruning and efficient sparse linear algebra renders

exact enumeration feasible, even for datasets with many features,

correlations, and data sizes beyond single node memory.
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1 INTRODUCTION
Machine Learning (ML) and data-driven applications fundamen-

tally change many aspects of the IT landscape from user-facing

applications, over backend decision systems, to the optimization of

the software and hardware stack [21, 36, 56]. Crucial steps in the

process of developing and deploying ML pipelines for production

are the tasks of data validation (analyzing input data character-

istics) [56, 59] and model debugging (analyzing valid ML model

characteristics) [22, 56, 60]. Aspects to consider are data errors (e.g.,
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heterogeneity, human error, measurement error), lack of model gen-

eralization (e.g., overfitting, imbalance, out-of-domain prediction),

as well as systematic bias and missing fairness. A lack of model

validation and debugging might cause silent but severe problems

[56]. Examples are race-biased jail risk assessment [6], wolf detec-

tion based on snow cover [58], and horse detection based on image

watermarks [38]. Model debugging aims to identify such issues.

Model Debugging Techniques: Apart from basic data debug-

ging and validation [56, 59], model accuracy monitoring and com-

parison during serving [56, 60], and manual model error analysis

via confusion matrices (e.g., matrix visualization of correct ver-

sus predicated labels), there exist several advanced model debug-

ging techniques. Examples from the field of computer vision are

saliency maps [30, 63, 70], layer-wise relevance propagation [8, 38],

and occlusion-based explanations [75], which all aim to find input

image areas that significantly influence the prediction. The data

management community recently contributed efficient means of

incremental computation for occlusion-based explanations [47, 48]

by exploiting the inherent overlap in such computations. For struc-

tured data and prediction tasks—with continuous and categorical

features—the literature is, however, relatively sparse. Existing work

includes explanation tables [25] (with a primary focus on data sum-

marization), and slice finder [18, 19], which aims to find the top-K

data slices (e.g., conjunctions of predicates such as gender female

and degree PhD), where a trained model performs significantly

worse than on the entire dataset. Finding such problematic slices is

very useful for understanding a lack of training data or model bias,

but also as a path towards model improvements.

Limitations of Existing Work: Given an input matrix of n
binary features—e.g., obtained via binning, recoding or feature

hashing, and subsequent one-hot encoding—slice finding consid-

ers a search space of O(2n ) slices (all subsets of binary features,

except combinations within original features). Due to this exponen-

tial search space, explanation tables [25] rely on greedy heuristics

and sampling, while slice finder [18, 19] proposes clustering, deci-

sion trees (for non-overlapping slices), and lattice searching with a

heuristic, level-wise termination condition of K slices found. For

scalability, slice finder uses a queue-based, task-parallel approach

and sampling. None of the existing approaches provide exact slice

enumeration that guarantees finding the real top-K problematic

slices. This debugging uncertainty creates trust concerns and di-

rectly motivates our work. Additionally, there is a lack of effective

distributed parallelization for both, slices and data.

Contributions:Our primary contribution is SliceLine, an exact—
yet fast and practical—enumeration algorithm for finding the top-K

problematic data slices, where an ML model performs worse than

overall. We exploit—inspired by frequent itemset mining algorithms

[61]—monotonicity for effective pruning, and provide an elegant

sparse linear algebra implementation of slice enumeration that ML
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systems can compile into efficient local or distributed execution

plans. Our detailed technical contributions are:

• Problem Formulation: As a conceptual basis, we redefine the
slice finding problem formulation, and derive an intuitive

and flexible scoring function in Section 2.

• Properties and Pruning: We then establish upper and lower

bounds for slice sizes, errors, and scores; and introduce re-

lated pruning techniques in Section 3.

• Enumeration Algorithm: Putting it altogether, we present

a linear-algebra-based enumeration algorithm in Section 4.

This simple algorithm prunes, enumerates, and evaluates all

slice candidates per level with coarse-grained matrix multi-

plications, aggregations, and element-wise operations.

• Experiments: Finally, we present experimental results for a

variety of real datasets, regression and classification tasks,

as well as local and distributed execution in Section 5.

2 PROBLEM FORMULATION
Our slice finding problem formulation is inspired by the SliceFinder

[18] problem. However, to simplify the usage and interpretation,

we redefine the problem as a constrained, score-based top-K search.

In this section, we define the used notation and the optimization

problem, and discuss differences to related problem formulations.

2.1 Notation
Data, Model, and Errors: Assume an n ×m input feature matrix

X with integer features {F1, F2, . . . , Fm } and a continuous or cat-

egorical n × 1 label vector y. An input feature Fj has a domain dj
(distinct values) of {1, 2, . . . ,dj }, which might have been derived

by recoding or hashing categorical features (categories to integers),

or binning continuous features (floating point values to integers).

Furthermore, assume a classification or regression modelM trained

overX and y. ApplyingM onX yields row-aligned vectors of predic-

tions ŷ and errors e = err(y, ŷ) with e ≥ 0. Common user-defined

error functions err() are classification (in-)accuracy e = (y , ŷ),
squared loss e = (y− ŷ)2 for regression, and algorithm-specific loss

functions. The same definitions apply to train, validation, and test

splits of X and y (M always created on the train dataset), which

provides users with sufficient flexibility of model debugging.

Slices: A data slice S is defined as a conjunction (AND-

combination) of 1 tom equivalence predicates Fj = v with v ∈ dj
and at most one predicate per feature Fj . Thus, a slice is a subset of
rows of S ⊆ X and the slice size |S | is bounded by [0,n]. Further-
more, a slice definition can be represented as a fixed-size, one-hot

encoded vector s of size 1 × Σmj=1dj . Finally, for reasoning about

slice errors, we need some additional notation. First, we define es
as a row-aligned |S | × 1 vector, holding the errors esi of slice rows
Si . Second, let e = Σni=1ei/n be the average error, se = Σ

|S |
i=1esi be

the total slice error, sm = max
|S |
i=1 esi be the maximum slice tuple

error, and se = se/|S | be the average slice error.

2.2 Slice Finding Problem
With the introduced notation, we now define our score-based slice

finding problem. Similar to SliceFinder, we aim to find sufficiently

large slices (high impact on the overall model) with substantial

errors (high negative impact on sub-group/model), but encode these

two objectives in an intuitive, linearized scoring function.

Definition 1 (Scoring Function). Let α ∈ (0, 1] be a weight
parameter for the importance of the average slice error. Then, we
define the score sc of a slice S as

sc = α

(
se

e
− 1

)
− (1 − α)

(
n

|S |
− 1

)
= α

(
n

|S |
·
Σ
|S |
i=1esi
Σni=1ei

− 1

)
− (1 − α)

(
n

|S |
− 1

)
,

(1)

which is defined for non-empty slices S and otherwise assumed nega-
tive1. For finding problematic slices, we aim to maximize sc .

Scoring Function Interpretation: In principle, we linearize

the errors and sizes by including the ratio of average slice error to

average overall error, and subtracting the ratio of overall size to

slice size, while weighting these components by the user parameter

α . This scoring function has several compelling properties. First,

the components are balanced under α = 0.5. A slice with twice the

relative error but half the size of another slice, has exactly the same

score. This characteristic is crucial for an intuitive influence of the

α parameter. Second, independent of α , the score of the original X
is always sc = 0. Third, for α = 0 (all weight on size), the maximum

feasible score is 0, and no slice smaller than X can reach it. For this

reason, we defined α ∈ (0, 1]. Fourth and finally, all components of

Equation (1) are either constants, or slice errors and sizes, which

makes this function amenable to pruning.

Slice Finding Problem: The above scoring function allows

identifying interesting slices that show larger than average errors

with sc > 0. In order to ensure statistical significance, we addition-

ally establish—inspired by frequent itemset mining—a minimum

support threshold |S | ≥ σ [35] (by default σ = max(32,n/100)).
The score-based slice finding problem is then defined as follows:

Definition 2 (Score-based Slice Finding). Given the input
feature matrix X, and error vector e (derived from a model M, X and
label vector y), as well as an integer K , find the top-K slices TS—from
the lattice L of all slices—that satisfy the following condition:

TS = arg max

S⊂L
ΣKk=1sc(Sk )

s .t . ∀k ∈ [1,K] : |Sk | ≥ σ ∧ sc(Sk ) > 0,
(2)

returned sorted in descending order of sc(Sk ).

2.3 Related Problems
Our score-based slice finding is related to several other data mining

problems. In the following, we summarize these problems, and

describe how our problem formulation differs.

SliceFinder: The SliceFinder problem [18, 19] is naturally the

closest to our formulation. It also aims to find the top-K slices under

an ordering by “increasing number of literals, decreasing slice size,

and decreasing effect size" [18] subject to (1) a minimum effect size

threshold T , (2) statistical significance, and (3) a dominance con-

straint (no coarser slice satisfies 1 and 2). The effect size measures

the difference of distributions S and¬S , while hypothesis testing via
Welch’s t-test checks that errors for S are significantly larger than

1
E.g., replacing |S | with max( |S |, 1) yields sc = −2α − n + αn + 1 for empty slices.



for ¬S . While this work is very inspiring and provides statistically

robust outputs—including false discovery control [77]—the domi-

nance constraint might hide the most interesting slices with large

errors, and we believe a simpler, more intuitive, score-based for-

mulation is necessary in practice. The top-K setting, typically large

minimum support constraints, and manual inspection of results

(aided by statistical tests) also render false discoveries unlikely.

Data Coverage: Recent work on identifying patterns with insuf-
ficient data coverage in databases [7, 33, 42] is also closely related.

A pattern P is similar to our slice definition S , and its coverage

cov(P,D) on a—single- or multi-table—dataset D is equivalent to

the slice size |S |. The maximal uncovered patterns (MUP) identifi-

cation problem [7] then aims to find all uncovered patterns (i.e., P

with cov(P,D) < τ ) that are not dominated by other uncovered,

but coarser patterns. This problem follows a similar intuition of

statistical significance as our minimum support constraint, but aims

to find the maximum slices that do not satisfy this constraint. In

contrast, we consider both errors and sizes as part of our scoring

function and aim to find the top-K worst slices.

Frequent Itemset Mining: Frequent itemset mining, and asso-

ciation rule mining, have been studied extensively in the literature

[4]. Given a database of transactions D = {T1,T2, . . . ,Tn }, each
comprising a set of items, the goal is to find the itemsets that sat-

isfy a minimum support threshold σ (i.e., count of transactions

they appear in) [61]. Major algorithm classes include Apriori [5],

Eclat [74], and FP-Growth [28], which all exploit the monotonicity

of itemset frequencies—an itemset can only be frequent if all its

subsets are frequent—for effective pruning. Specialized algorithms

with additional pruning exist for finding maximal frequent itemsets

[15], and discovering functional dependencies [54]. These ideas also

inspired our pruning techniques for fast slice finding. In contrast

to frequent itemset mining though, we focus on both slice errors

and sizes, joint effects on the scoring function, and we aim to find

the top-K worst slices, allowing for additional pruning.

3 PROPERTIES AND PRUNING
As a basis for slice enumeration, in this section, we first discuss

basic properties and upper bounds of slice errors and sizes, and

then derive an upper bound for the overall scoring function. Finally,

we present several effective pruning techniques.

3.1 Basic Properties and Bounds
Figure 1 shows a simplified example lattice of slices forXwithm = 4

unary features. We use this example to describe the slice finding

search space, introduce terminology, and analyze monotonicity

properties of relevant data characteristics.

Search Space of Slices: For the special case of our example,

the lattice contains O(2m ) nodes, organized inm + 1 levels. The

top level (level 0) represents no predicates and thus, the original

dataset X of size n and total error e = Σni=1ei . A node in level i is a
conjunction of i predicates, has i parents, andm − i children. For
example, cd has two parents c and d , and two children acd , and
bcd . For the general case, ofm integer features (l one-hot encoded

features, with l ≥ m), the lattice has fewer than 2
l
nodes because

conjunctions of the same original feature are invalid. In this case,

we get O(2l − Σmj=12
dj + l +m) nodes (full lattice except invalid).

a b c d

∅ X (|S|=n, se=e)

ab bc bd cd

abc abd acd bcd

abcd

ac ad

Level 1:
(1 in, 3 out)

Level 2:
(2 in, 2 out)

Level 3:
(3 in, 1 out)

Level m:
|S| ≤ min(|S| parents)
se ≤ min(se parents)

Figure 1: Example Lattice and Slice Properties.

Monotonicity: Similar to the monotonicity of itemset frequen-

cies, we observe that both slice sizes and slice errors are monotoni-

cally decreasing along a directed path in the lattice. Due to the focus

on conjunctions, a slice is defined as the intersection (i.e., subset)

of its parents. Three properties follow from this observation:

• Slice Size: The size of a slice |S | is upper bounded by ⌈|S |⌉,
the minimum size of all its parent slices (count of tuples).

• Absolute Slice Error: The total slice error se (sum of tuple

errors) is upper bounded by ⌈se⌉, the minimal absolute error

se of all its parent slices, and the minimal maximum tuple

error sm of all its parent slices times ⌈|S |⌉.
• Relative Slice Error: The relative error se = se/|S | is non-
monotonic because |S | appears in the denominator.

Note that the number of parents |P | increases as we descend the

lattice, which makes the minimum bounds increasingly effective.

Scoring Function Upper Bound: Despite the non-monotonic

relative slice error, we aim to upper bound the slice score sc because
it would be very helpful for pruning. Revisiting Equation (1) shows

the challenge: |S | appears in the denominators of positive and nega-

tive terms, which does not allow deriving an upper bound for sc by
plugging in upper bounds for |S | and se . However, relevant scores
are guaranteed to have a slice size |S | ∈ [σ , ⌈|S |⌉]. We leverage this

property, and derive the upper bound score ⌈sc⌉ by solving for the

|S | that maximizes the score in this interval:

⌈sc⌉ = max

|S | ∈[σ , ⌈ |S | ⌉]
α

(
n

|S |
·
⌈se⌉

Σni=1ei
− 1

)
− (1 − α)

(
n

|S |
− 1

)
with ⌈se⌉ = min(min

p∈P
sep , |S | · min

p∈P
smp )

and ⌈|S |⌉ = min

p∈P
|Sp |.

(3)

Depending on the parameters, this function is either monotonically

increasing or decreasing with increasing |S | ∈ [σ , ⌈|S |⌉]. This fact
allows for a very simple solution: we compute ⌈sc⌉ as the maximum

scores of the interesting points σ , max(se/sm,σ ), and ⌈|S |⌉.

3.2 Pruning Techniques
Regarding the score-based slice finding problem, we can now lever-

age the upper bounds for simple, yet very effective pruning.

Size Pruning: Every slice must satisfy |S| ≥ σ . Hence, we can
prune a lattice node without data access—and due to monotonically

decreasing slice sizes all reachable children—if ⌈|S|⌉ < σ .
Score Pruning: Similarly, with the upper bound score ⌈sc⌉, we

get two additional pruning opportunities. First, as every slice must

satisfy sc(S) > 0, we can prune a node and all reachable children

if ⌈sc(S)⌉ ≤ 0. Children can be pruned because the upper bound

represent the highest possible score of any subset (i.e., any reachable



child). Second, when maintaining the set of top-K slices S, we can

leverage sc of Sk as a monotonically increasing lower bound sck
for pruning any slice (and its children) where ⌈sc(S)⌉ ≤ sck .

Handling of Pruned Slices: All three pruning techniques elim-

inate nodes and all their children without data access. However, it

is important to keep track of pruned nodes when computing upper

bounds for following levels. Looking back to the lattice search space

in Figure 1 reveals that we can simply discard these pruned nodes,

and assume |S| = 0 and ⌈sc⌉ = 0 if |P | < i , i.e., the number of

enumerated parents |P | of a slice at level i is less than i .
Summary Pruning Impact: Together, these pruning tech-

niques are very effective. Slice sizes and errors are monotonically

decreasing, the lower bound score sck is monotonically increasing,

and the number of parent nodes (and thus, the scope of minimum

conditions) is monotonically increasing as well.

4 ENUMERATION ALGORITHM
A major design goal of SliceLine was to provide fast and scalable

model debugging close to where the models are trained. In this

section, we describe a vectorized linear algebra implementation of

slice finding, which can be implemented on a variety of ML systems.

Enumerating and pruning is done via sparse linear algebra. We first

outline the overall algorithm, and then describe initialization, pair

enumeration, slice evaluation, and top-K maintenance.

4.1 Overall Algorithm
The basic structure of the overall enumeration algorithm, as shown

in Algorithm 1, is very simple. Here, we first describe the inputs,

outputs, data preparation, general structure, and its termination.

Inputs and Outputs: The n × m input feature matrix X0 is

expected in an integer-encoded form (1-based, continuous integer

range), representing categories and bins. Additional inputs are the

error vector e, and the parameters K (top-K threshold), σ (min

support threshold), α (error/size weight), and ⌈L⌉ (maximum lattice

level). Our SliceLine algorithm then computes the top-K slices, and

returns TS, as a K ×m integer-encoded matrix with one row per

slice where zeros represent free features, and TR as the aligned,

corresponding slice statistics (scores, errors, sizes).

Data Preparation: In a first step, we prepare the data by com-

puting feature offsets and one-hot encoding the entire dataset in

lines 1-5. We compute the domain (i.e., number of distinct items)

per features as colMaxs(X0), which exploits the continuous integer

codes. We then compute the start and end offset of each feature in

one-hot encoded representation via a simple cumsum(fdom), i.e.,
as a cumulative or prefix sum of the feature domains. Finally, we

perform one-hot encoding of the shifted integer codes X0+ fb. This
element-wise matrix-vector addition creates global integer codes

for one-hot encoding via the following vectorized expression

rix = matrix(seq(1,m) %*% matrix(1,1,n), m*n, 1)
cix = matrix(X0 + fb, m*n, 1);
X = table(rix, cix); # contingency table

The vectors rix and cix act as row and column indexes, and table(rix,
cix) counts each unique pair by adding 1 to the respective row-

column output positions. Here, all pairs are unique, yielding the—

likely sparse—one-hot-encoded 0/1 matrix X in Line 5.

Algorithm 1 SliceLine Enumeration Algorithm

Input: FeaturematrixX0, errors e,K = 4,σ = 32,α = 0.5, ⌈L⌉ = ∞
Output: Top-K slices TS, Top-K scores, errors, sizes TR
1: // a) data preparation (one-hot encoding X)
2: fdom← colMaxs(X0) // 1 ×m matrix
3: fb← cumsum(fdom) − fdom,

4: fe← cumsum(fdom)
5: X← onehot(X0 + fb) // n × l matrix
6: // b) initialization (statistics, basic slices, initial top-K)
7: e ← sum(e)/n
8: [S,R, cI] ← createAndScoreBasicSlices(X, e, e,σ ,α)
9: [TS,TR] ← maintainTopK(S,R, 0, 0,K,σ )
10: // c) level-wise lattice enumeration
11: L← 1, ⌈L⌉ ← min(m, ⌈L⌉) // current/max lattice levels
12: X← X[, cI] // select features satisfying ss0 ≥ σ ∧ se0 > 0

13: while nrow(S) > 0 ∧ L < ⌈L⌉ do
14: L← L + 1
15: S← getPairCandidates(S,R,TS,TR,K, L, e,σ ,α, fb, fe)
16: R← matrix(0, nrow(S), 4), S2← S[, cI]
17: for i in nrow(S) do // parallel for
18: Ri ← evalSlices(X, e, e, S2⊤i , L,α)
19: [TS,TR] = maintainTopK(S,R,TS,TR,K,σ )
20: return decodeTopK(TS, fb, fe),TR

Key Primitives: In a second step in Lines 6-8, we compute basic

statistics, and evaluate the basic, 1-predicate slices (Section 4.2).

After maintaining the top-K slices, we enter the while loop for

level-wise lattice enumeration. Each iteration, then generates paired

candidates from previous-level valid slices and pruning (Section 4.3),

evaluates the scores, errors, and sizes of non-pruned slice candidates

(Section 4.4), and maintains the top-K slices (Section 4.5).

Termination: The overall algorithm terminates if there are no

more slice candidates (nrow(S) = 0), or we reach the last lattice

level, which is equal to the number of original featuresm, or ⌈L⌉.

4.2 Initialization
As a starting point for initialization, we compute several inter-

esting statistics, as well as create and score all basic slices. First,

we materialize the average error on X with e = Σni=1e/n because

it is repeatedly used for slice scoring (Equation (1)). Second, in

createAndScoreBasicSlices, we compute all basic slice sizes and

errors in a vectorized form via:

ss0 = colSums(X)⊤ (slice sizes)

se0 = (e⊤ ⊙ X)⊤ (slice errors).

(4)

This fast and convenient form is enabled by the one-hot-encoding of

X, where column sums represent the counts per feature value, and

the vector-matrix multiplication (e⊤ ⊙ X)⊤ joins and scales rows

with its errors, and computes sums per feature value.We then obtain

an indicator of valid slices with cI = ss0 ≥ σ ∧ se0 > 0 for selecting

one-hot-encoded slice representations S, and corresponding slice

sizes ss and errors se, sm (e.g., via se = removeEmpty(cI · se0)).
Finally, we can compute Equation (1) in a vectorized manner

sc = α((se/ss)/e − 1) − (1 − α)(n/ss − 1) (5)

and return the slices S and statistics R = cbind(sc, se, sm, ss).



4.3 Pair Enumeration
A central component of SliceLine is the enumeration of slice candi-

dates for evaluation. This enumeration applies the pruning tech-

niques from Section 3.2, and discards invalid or pruned candidates.

Pair Construction: Slice candidates for level L are generated

as pairs of evaluated slices S from level L − 1. This basic idea is

inspired by frequent itemset mining, specifically the join of Li−1
itemsets to generate Li itemsets in Apriori [5]. For example, abc
can be generated from ab and ac (common a), ab and bc (common

b), or ac and bc (common c). However, constructing pairs in linear

algebra is challenging. Our implementation has four steps. First, we

prune invalid input slices by the minimum support and non-zero

error constraints S = removeEmpty(S · (R:,4 ≥ σ ∧ R:,2 > 0)). This

pruning reduces the input size n of the O(n2) pair generation, and
it does not jeopardize overall pruning because we handle missing

parents. Second, we join compatible slices via a self-join on S:

I = upper.tri((S ⊙ S⊤) = (L − 2), values=TRUE). (6)

We compare the matrix multiplication output with (L− 2) to ensure
compatibility (e.g., L − 2 = 1 matches for level L = 3, which checks

that ab and ac have 1-item overlap for generating abc), and extract

the upper triangular matrix because S ⊙ S⊤ is symmetric
2
. Third,

we create the combined slices by converting I to row-column index

pairs, and creating extraction matrices P1 and P2 as follows:

rix = matrix(I * seq(1,nr), nr*nc, 1);
rix = removeEmpty(target=rix, margin="rows");
P1 = table(seq(1,nrow(rix)), rix, nrow(rix), nrow(S));

The combined slices are then merged via P = ((P1 ⊙ S) + (P2 ⊙
S)) , 0. Similarly, we extract combined sizes ss, total errors se, and
maximum errors sm as the minimum of parent slices with

ss = min(P1 ⊙ R:,4, P2 ⊙ R:,4). (7)

Fourth, we discard invalid slices with multiple assignments per

feature. With the feature offsets fb and fe, we scan over P, check
I = I ∧ (rowSums(P

:,beg:end) ≤ 1) for each original feature, and

retain only rows in P where no feature assignment is violated.

Candidate Deduplication: At this point, we have valid slices

for level L, but there are duplicates. For example, we get three

abc slices from joining ab-ac , ab-bc , and ac-bc . The multiple par-

ents enable effective pruning but create exponentially increas-

ing redundancy. We address this challenge by deduplication via

slice IDs. Interpreting the one-hot vectors as binary integers, how-

ever, already overflows for a moderate number of columns. In-

stead, we use the domain of features dom = fe − fb + 1 and

compute the IDs like an ND-array index. We scan over P, and
compute the sum of feature contributions by ID = ID + scale ·

rowIndexMax(P
:,beg:end) · rowMaxs(P

:,beg:end), where scale is the

feature entry from cumprod(dom). Duplicate slices now map to the

same ID and can be eliminated. Since the domain can still be very

large, we transform the IDs via frame recoding to consecutive inte-

gers. For pruning and deduplication, we materialize this mapping

asM = table(ID, seq(1, nrow(P))) and deduplicate via P = M ⊙ P.
Candidate Pruning: Before final deduplication, we further ap-

ply all pruning techniques from Section 3.2 with respect to all

parents of a slice. As a basis for pruning, we first compute the upper

2
This symmetry is also exploited by the related BLAS library calls (e.g., cblas_dsyrk).
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Figure 2: Example Vectorized Slice Evaluation (The matrix X
has two red/black features, with 2/3 distinct values. The matrix

multiplication ((X ⊙ S⊤) evaluates predicates by multiplying the

one-hot vectors and counting matching predicates. By checking for

((X ⊙ S⊤) = L), we get rows that match all L slice predicates).

bound slice sizes ss, upper bound errors se and sm (minimum of

all parents), and the number of parents np as follows:

⌈ss⌉ = 1/rowMaxs(M · (1/ss⊤))

np = rowSums((M ⊙ (P1 + P2)) , 0)
(8)

We minimize by maximizing the reciprocal (and replace∞ with 0)

for accounting only existing parents, while avoiding large dense

intermediates. With these inputs, Equation (3) computes the upper

bound scores ⌈sc⌉, and all pruning becomes a simple filter onM:

M = M · (⌈ss⌉ ≥ σ ∧ ⌈sc⌉ > sck ∧ ⌈sc⌉ ≥ 0 ∧ np = L). (9)

Finally, we discard empty rows in M to get M′, deduplicate
slices with S = M′ ⊙ P (at implementation level with S =
P[, rowIndexMax(M′)]), and return S as new slice candidates.

4.4 Slice Evaluation
All slice candidates are then evaluated, which requires scanning X
for qualifying rows, and computing slice sizes, errors, and scores.

Vectorized Evaluation:A key observation is that we can evalu-

ate all slices S on X (both one-hot encoded, see Figure 2) in a single

matrix multiplication and additional element-wise operations:

I = ((X ⊙ S⊤) = L)

ss = colSums(I)⊤ se = (e⊤ ⊙ I)⊤ sm = colMaxs(I · e)⊤
(10)

Here, we compute ss, se and sm similar to Equation (4) but on I
instead of X. The scores sc are again computed with Equation (5).

Figure 2 gives the intuition by example. The n × #slices output is
itself a 0/1 matrix and can be treated like the encoded matrix X.

Data- or Task-Parallelism: This vectorized slice evaluation

is executed either with local or distributed, data-parallel matrix

multiplications [12], and thus, scales to larger data sizes, many

slices, or both. For the common case of moderate numbers of slices

per level, this boils down to efficient broadcast-based, distributed

matrix multiplications, where we broadcast S to all nodes and scan

X in a data-local manner. However, in ML systems with limited

sparse-sparse operation support and limited sparsity-exploitation

across operations, the two intermediates (X ⊙ S⊤), and (I) might

create problems. An alternative task-parallel [13, 50] formulation—

which only creates vector intermediates—is shown in Algorithm 1

Lines 16-18. Here, evalSlices is called for a slice of S at a time.

Naturally, hybrid strategies with blocks of slices for scan sharing—

similar to model batching [65, 76]—or row partitions of X—similar

to mini-batch or federated processing [14, 26, 34]—are possible.



Table 1: Dataset Characteristics (n rows, m columns before

binning/one-hot encoding, l columns after one-hot encoding).

Dataset n (nrow(X0)) m (ncol(X0)) l (ncol(X)) ML Alg.

Adult 32,561 14 162 2-Class

Covtype 581,012 54 188 7-Class

KDD98 95,412 469 8,378 Reg.

USCensus 2,458,285 68 378 4-Class

USCensus10x 24,582,850 68 378 4-Class

CriteoD21 192,215,183 39 75,573,541 2-Class

Salaries 397 5 27 Reg.

4.5 Top-K Maintenance
We maintain the top-K slices TS and their scores TR once for each

lattice level. Given the new slices S and their resulting scores R, we
create an indicator for qualifying slices with I = R:,1 > 0∧R:,4 ≥ σ
(min sores and min support), and select S = removeEmpty(I · S)
and similarly R. Furthermore, we concatenate the old top-K—or

zero row matrices for initial top-K selection—and new slices (e.g.,

S = rbind(TS, S)), and extract the new top-K as follows:

IX = order(R, by=1, decreasing=TRUE, index.return=TRUE);
IX = IX[1:min(K,nrow(IX)),];
P = table(seq(1,nrow(IX)), IX, nrow(IX), nrow(S));

Here, IX holds the original row indexes of the sorted, concatenated

scores. We take the first K rows, and construct a selection matrix P
to extract the top-K slices and scores via TS = P⊙ S and TR = P⊙R.

5 EXPERIMENTS
Our experiments study the pruning effectiveness, top-K characteris-

tics, end-to-end runtime efficiency, and scalability of SliceLine. We

find that the combination of effective pruning and vectorized eval-

uation yields very good performance on a variety of real datasets.

5.1 Experimental Setting
HW Environment: Most of our experiments are conducted on a

scale-up node with two Intel Xeon Gold 6238 CPUs@2.2-2.5 GHz

(56 physical/112 virtual cores), 768GB DDR4 RAM at 2.933GHz bal-

anced across 6 memory channels per socket, 2×480GB SATA SDDs

(system/home), and 12 × 2 TB SATA SDDs (data). For scalability

experiments, we use an additional scale-out cluster of 1+12 nodes,
each having a single AMD EPYC 7302 CPU at 3.0−3.3GHz (16 phys-

ical/32 virtual cores), 128GB DDR4 RAM at 2.933GHz balanced

across 8 memory channels, 2 × 480GB SATA SDDs (system/home),

12 × 2 TB SATA HDDs (data), and 2 × 10Gb Ethernet. Furthermore,

we use Ubuntu 20.04.1, OpenJDK Java 1.8.0_265 with -Xmx600g
-Xms600g, Apache Hadoop 2.7.7, and Apache Spark 2.4.7.

Implementation:We implemented SliceLine on different ML

systems—specifically R 4.0.4 with the doMC package [52], and

Apache SystemDS [11] 2.0.0 (as of 03/2021)
3
—to show SliceLine’s

general applicability. On both systems, these linear algebra pro-

grams require only 200-300 lines of code. We primarily employ

SystemDS for its good sparse linear algebra support [67], and hy-

brid runtime plans of local and distributed operations [12].

Datasets andMLAlgorithms: Efficient slice finding heavily re-

lies on effective pruning, and thus, data characteristics. Accordingly,

we evaluate SliceLine on real datasets from the UCI repository [23]

3
https://github.com/apache/systemds/blob/master/scripts/builtin/slicefinder.dml
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Figure 4: Dataset Slice Enumeration (# slices at level).

and Criteo [37]. Table 1 summaries the datasets, their dimensions,

and number of features after one-hot encoding. Salaries [55] is a

very small dataset, used for an ablation study of pruning and dedu-

plication. The rightmost column also indicates the regression or

classification tasks, where we use linear regression (lm), and multi-

nomial logistic regression (mlogit). We pre-process these datasets

by recoding categorical features, binning continuous features (ex-

cept labels) into 10 equi-width bins, and dropping ID columns. For

USCensus—which does not have labels—we derive artificial labels

by K-Means clustering. These integer-encoded feature matrices X0

and error vectors e (squared loss for regression, inaccuracy for clas-

sification) are then materialized, and we measure the end-to-end

runtime of slice finding, including I/O and one-hot encoding.

5.2 Pruning Effectiveness
As a basis for understanding the end-to-end runtime experiments,

we first evaluate the pruning effectiveness and resulting enumera-

tion characteristics with defaults α = 0.95 and σ = ⌈n/100⌉.
Pruning Techniques:We conduct an ablation study with the

very small Salaries dataset, with 2x replicated rows and columns

to create additional correlation. Figure 3(a) shows the number of

enumerated slices per level (m = 10, and thus, L ≤ 10) with (1) all

pruning techniques, (2) no parent handling, (3) no parent handling,

no score pruning, (4) no parent handling, no score and size pruning,

and (5) no pruning and no deduplication. We observe that even on

this tiny dataset, pruning and deduplication are crucial to avoid

enumerating the exponential candidate space. Furthermore, all
pruning techniques (by min support, top-K scores, and missing

parents) contribute to reducing the number of enumerated slices.

Figure 3(b) shows that this pruning effectiveness often directly

translates to runtime improvements as well. Configurations without

deduplication or pruning ran out-of-memory after 4 levels.

Different Datasets: Our evaluation uses datasets with different

data and enumeration characteristics. Figure 4 shows the evaluated

slices with all pruning techniques enabled. For the Adult dataset

(Figure 4(a))—with amix of large and small slices, whichwas already

used in SliceFinder [18, 19]—we see good pruning effectiveness, a

https://github.com/apache/systemds/blob/master/scripts/builtin/slicefinder.dml
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Figure 5: Scores with Varying Scoring Parameters.

moderate number of slices per level, and early termination after

level 12 of 14. In contrast, for the other datasets in Figure 4(b), we

see more extreme behavior. KDD98 has thousands of qualifying

basic slices, while USCensus and Covtype are known to exhibit

correlations [24, 39]. There are several correlated column groups,

where even conjunctions of many features yield large slices. This

characteristic makes these datasets challenging for exact enumera-

tion. Accordingly, we had to limit ⌈L⌉ to 3 or 4 levels, respectively.

However, on all datasets, the number of candidate slices closely

matches the number of valid slices still exceeding σ . As we descend
the lattice, the differences are also decreasing. These observations

indicate that our pruning techniques are indeed very effective.

5.3 Scoring Parameters
The scoring function has several parameters and constraints. Here,

we study their impact on the resulting top-K slice scores and sizes.

Weight Parameter α : First, we fix σ = n/100, and vary the

weight α in {0.36, 0.68, 0.84, 0.92, 0.96, 0.98, 0.99}. Figures 5(a) and

5(b) show the scores and sizes of the top-1 slice with ⌈L⌉ = 3.

With increasing α , we see increasing scores and decreasing sizes

because the error term in Equation (1) gets more weight. The score

change varies across datasets though. As expected, the slice sizes

are decreasing because the sizes have less impact. Additionally,

we observed that the score difference between levels increases

with increasing α because smaller slices are found in deeper levels.

Similarly, the score differences between the Top-1 and Top-K (i.e.,

score ranges) decrease with increasing α because there are more

small slices with similar errors. With increasing α , the runtime is

constant for Covtype, increasing for KDD98 (1.3x), and decreasing

for Adult (1.5x) and USCensus (3x) due to better pruning.

Varying the σ Constraint: In contrast, the minimum support

constraint σ has less impact. We ran an experiment varying the

σ ∈ [10−4n, 10−1n]with α = 0.95, K = 10 and ⌈L⌉ = 3. As expected,

for high σ the scores reduce as some slices do not satisfy |S | ≥ σ
anymore. However, even with very small σ , the scores remained

similar to the above. The reason is the size term in Equation (1),

which also counteracts too small slices. In contrast to varying α ,
σ has significant impact on the runtime though. As we reduce the

minimum support constraint σ , we see increasing runtime of more

than an order of magnitude for some of the datasets.

5.4 End-to-end Runtime
Local Runtime: Figure 6(a) shows the total runtime for all datasets

with defaults σ = n/100, α = 0.95, and again ⌈L⌉ = 3. We observe

very good performance even for datasets with many rows (USCen-

sus), many features (KDD98), and strong correlations (USCensus,
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Covtype). Figure 6(a) further analyzes the hybrid slice evaluation

(Section 4.4). The configurable block size b generalizes both task-

parallel (b = 1) and data-parallel (b = nrow(S)) execution. Increas-
ing block sizes allow for scan sharing, yielding a 2.8x improvement

on USCensus. However, once the block size—and thus, size of inter-

mediates (nrow(X)×b)—gets too large, blocking causes overhead for
allocation and eviction, rendering it slower than pure task-parallel

execution. This effect is more pronounced on USCensus because it

has more rows (and thus, larger intermediates), and more slices are

evaluated (so blocking has a larger impact on end-to-end runtime).

Our default is b = 16, which offers a good balance.

ML Systems Comparison: For our new problem formulation,

there is unfortunately no baseline for direct comparison. However,

we can share two relevant data points. First, we also implemented

SliceLine in R, which takes 200.4s on the Adult dataset with default

SliceLine and doMC parameters, and ⌈L⌉ = 3. In contrast, our pri-

mary implementation in SystemDS DML takes 5.6s with the same

configuration, likely due to more efficient sparse linear algebra op-

erations. Second, the SliceFinder paper also used the Adult dataset

and reported >100s [19] for a hand-crafted single-worker lattice

search with level-wise termination. In all our experiments—even

with ⌈L⌉ = ∞ and different σ , α—SliceLine never exceeded 68s .
Scalability with # Rows: For evaluating the scalability of Slice-

Line, we replicated the USCensus dataset up to 10 times row-wise.

This setup preserves the slice enumeration characteristics due to

the relative min-support constraint σ = n/100 and relative slice

errors. SliceLine evaluates 12,021 slices in level 2, and 27,288 slices

in level 3 (⌈L⌉ = 3). Figure 7(a) shows the scalability (on the scale-up

node with 112 vcores) with increasing data size, where ideal scaling
refers to the USCensus runtime multiplied by the replication factor.

With constant block size b = 4, we see a moderate deterioration due

to larger intermediates and increasing memory pressure (garbage

collection). Figure 7(b) compares different parallelization strategies

(on the scale-out cluster with 12 × 32 = 384 vcores) using HDFS

and Spark [73]. Comparing MT-Ops (multi-threaded operations)

and MT-PFor (multi-threaded operations and parallel for-loops), we



Table 2: Criteo Slice Enumeration Statistics.

Lattice Level: 1 (Init) 2 3 4 5 6

Candidates: 75,573,541 1,209 1,644 4,305 8,801 13,248

Valid Slices: 209 668 1,622 4,305 8,801 13,248

Elapsed Time: 933s 1,219s 1,314s 1,496s 1,906s 2,527s

observe a 2x improvement with MT-PFor because it avoids barriers

per operation and thus, reaches higher utilization. With distributed

slice evaluation (Dist-PFor), we get an additional 1.9x improvement

because all 12 nodes are utilized, but there is overhead for Spark

context creation, data and slice broadcasting, result aggregation,

and a non-negligible serial fraction outside slice evaluation.

Scalability with # Columns: Additionally, we use 1 of 24 days
from Criteo [37]—which we call CriteoD21—for studying SliceLine

on a large dataset of 192M rows and 76M columns, with distributed

data-parallel operations in our scale-out cluster of 1+12 nodes. After

one-hot encoding the dataset becomes ultra-sparse (density 4.9e-7),

which is challenging for distributed operations on block-partitioned

(1K × 1K) matrices. Table 2 shows the enumeration statistics in-

cluding elapsed time up to lattice level 6. Due to many categories

per original feature, only 209 of 75,573,541 features satisfy the

minimum support constraint. Pruning then keeps the number of

pair-candidates moderately small and close to the true number of

valid slices. Similar to USCensus and Covtype, we observe again

correlations which hinders early termination. Due to SystemDS’ hy-

brid runtime plans of local and distributed operations, and dynamic

recompilation of appropriate physical operators across iterations,

we see good scalability and a reasonable total elapsed time <45min.

6 ADDITIONAL RELATEDWORK
Besides model debugging (Section 1) and data mining problems

(Section 2.3), SliceLine is also related to tree models, maximum inner

product search, data slicing in ML systems, and feature selection.

Decision Trees: Our initial hand-coded implementations of

SliceLine were inspired by work on distributed training of decision

trees. PLANET [53] trains a decision tree via MapReduce using a

breadth-first, queue-based node expansion approach. Large nodes

are added to an MR queue (for shared scans), while small nodes are

added to an in-memory queue (for processing entire subtrees). Later,

Yggdrasil [1] introduced a vertical data partitioning by features. In

contrast to greedy decision tree training, slice finding considers

overlapping slices and enumerates the entire lattice. Our vectorized

slice evaluation is similar to the breadth-first enumeration and

shared scans in PLANET [53]. However, SliceLine relies on linear

algebra and distributedmatrixmultiplications [12, 29, 71] for scaling

to large data, many slices, or both. Recent work on recursive model

training in SimSQL [31, 32], and the compilation of tree models into

tensor operations in Hummingbird [49, 51], follow similar goals of

scaling to large data or models, and vectorized operations.

Maximum Inner Product Search: Naïve user recommenda-

tions with low-rank matrix factorization models require scoring

all items, and selecting the top-K. This maximum inner product

search (MIPS) problem has been addressed via dedicated index

structures—such as LEMP [66] and FLEXIPRO [40]—to provide rec-

ommendations in sub-linear time. SliceLine could similarly benefit

from specialization (e.g., (S ⊙ S⊤) = (L − 2), or (X ⊙ S⊤) = L).

However, we aim for a simple design, mostly regular data access,

and good parallelization via linear algebra. Interesting, OPTIMUS

[2] made a similar observation that plain matrix multiplication can

outperform existing MIPS index structures, and thus, used a hybrid

approach. Similar, SWOLE [20] uses predicate pull-ups to yield

better data access patterns in compiled queries.

Slicing in ML Systems: In recent years, several systems added

support for data slicing and model analysis. The original SliceFinder

work [18, 19] was developed in the context of Google TensorFlow

TFX [10] and apparently a form of it was added to TFX Model

Analysis, executed on top of Apache Beam [22]. Other systems

with shared goals like Amazon SageMaker [41] have similar com-

ponents for data and model validation. These systems often pair

data slicing with interactive visualizations, where users can explore

slices manually. Finally, slice finding also relates to systems for data

augmentation and weak supervision such as Snorkel [9, 57]. Recent

work added so-called slicing functions to identify critical subsets

of data for label generation or slice-aware predictions [16].

Feature Selection and Explainability: Finding problematic

slices as conjunctions of features is also related to feature engi-

neering. First, sparse n-gram token featurization [27] also derives

counts from lattice parent nodes for pruning rare n-grams. Fea-

ture selection methods like forward selection [69] and Lasso [68]

share the goal of selecting feature subsets with high influence. How-

ever, these techniques focus on overall model performance. Second,

techniques for discovering features and feature interactions ana-

lyze joint feature effects (e.g., SAFE [62], BP-FIS [17]), or weighted

embeddings of feature combinations (e.g., AutoCTR [64], AutoFIS

[43]). In contrast to our exact enumeration, these techniques focus

on pair interactions or rely on greedy enumeration. Third, model

explainability derives explanations from features to model predic-

tions [46]. Common techniques include interpretable models like

decision trees, causal learning and interpretability [45], and generic

techniques like SHAP (shapely additive explanations) [44]. For effi-

ciency, these techniques often make additional assumptions.

7 CONCLUSIONS
We introduced SliceLine, a model debugging technique for finding

data slices, where a trained ML model performs worse than overall.

Inspired by ideas from slice finding and frequent itemset mining,

SliceLine leverages monotonicity properties and upper bounds for

effective pruning. Working with slice finding for almost two years,

we draw three conclusions. First, slice finding is a valuable debug-

ging technique for both model understanding and data sourcing.

Second, the combination of effective pruning techniques, and a vec-

torized linear algebra implementation makes slice finding practical

in both local or distributed environments, despite its exponential

search space. Third, SliceLine is a proof-of-concept for building

even complex, enumeration-based data mining algorithms on top

of ML systems. This is a profound outcome because it enables a

seamless integration in data science workflows without boundary

crossing, and makes such tasks amenable to parallelization and

HW acceleration. Interesting future work includes priority-based

enumeration (e.g., based on errors or classes) [33], slice finding for

bias and fairness (instead of accuracy) [3, 72], and adopting the

SliceLine enumeration ideas to other data mining problems.
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