
ExDRa: Exploratory Data Science on Federated Raw Data
Sebastian Baunsgaard

3
, Matthias Boehm

3
, Ankit Chaudhary

4
, Behrouz Derakhshan

2

Stefan Geißelsöder
1
, Philipp M. Grulich

4
, Michael Hildebrand

1
, Kevin Innerebner

3

Volker Markl
2,4
, Claus Neubauer

1
, Sarah Osterburg

1
, Olga Ovcharenko

3
, Sergey Redyuk

4

Tobias Rieger
3
, Alireza Rezaei Mahdiraji

2
, Sebastian Benjamin Wrede

3
, Steffen Zeuch

2

1
Siemens AG; Berlin/Erlangen, Germany

2
DFKI GmbH; Berlin, Germany

3
Graz University of Technology; Graz, Austria

4
Technische Universität Berlin; Berlin, Germany

ABSTRACT
Data science workflows are largely exploratory, dealing with under-

specified objectives, open-ended problems, and unknown business

value. Therefore, little investment is made in systematic acquisition,

integration, and pre-processing of data. This lack of infrastructure

results in redundant manual effort and computation. Furthermore,

central data consolidation is not always technically or economically

desirable or even feasible (e.g., due to privacy, and/or data owner-

ship). The ExDRa system aims to provide system infrastructure for

this exploratory data science process on federated and heteroge-

neous, raw data sources. Technical focus areas include (1) ad-hoc

and federated data integration on raw data, (2) data organization

and reuse of intermediates, and (3) optimization of the data science

lifecycle, under awareness of partially accessible data. In this pa-

per, we describe use cases, the overall system architecture, selected

features of SystemDS’ new federated backend (for federated linear

algebra programs, federated parameter servers, and federated data

preparation), as well as promising initial results. Beyond existing

work on federated learning, ExDRa focuses on enterprise federated

ML and related data pre-processing challenges. In this context, fed-

erated ML has the potential to create a more fine-grained spectrum

of data ownership and thus, even new markets.

ACM Reference Format:
Sebastian Baunsgaard

3
, Matthias Boehm

3
, Ankit Chaudhary

4
, Behrouz

Derakhshan
2
, Stefan Geißelsöder

1
, Philipp M. Grulich

4
, Michael

Hildebrand
1
, Kevin Innerebner

3
, Volker Markl

2,4
, Claus Neubauer

1
, Sarah

Osterburg
1
, Olga Ovcharenko

3
, Sergey Redyuk

4
, and Tobias Rieger

3
,

Alireza Rezaei Mahdiraji
2
, Sebastian Benjamin Wrede

3
, Steffen Zeuch

2
.

2021. ExDRa: Exploratory Data Science on Federated Raw Data. In

Proceedings of the 2021 International Conference on Management of Data
(SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3448016.3457549

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3457549

1 INTRODUCTION
Data Science Workflows: Typical data science projects deal with
open-ended questions, aiming to find patterns and predictive mod-

els that create business value [8]. Data scientists acquire samples

for the given problem, and then enrich, clean, and prepare these

data for model building and hypothesis testing [16]. This process is

largely exploratory, where analysis results guide the incremental

refinement of ML pipelines [23, 94]. Due to the unknown value

and exploratory character—in stark contrast to traditional data

warehousing [16]—little investment is made in systematic data

acquisition, integration, and pre-processing [76].

Query Processing on Raw Data: The inspiring work on query

processing on raw data [3, 35, 47] supports exploratory data analy-

sis by executing SQL queries directly on raw data files. Repeated

data access overhead is alleviated with dedicated caching strategies,

positional maps for partial parsing, partitioning, and code gener-

ation. However, executing entire ML pipelines on raw data—with

data cleaning and model training—remains an open problem.

Data Ownership and Privacy: Besides the exploratory char-

acter, a second major challenge is the limited access to data sources

relevant to the given business problems. First, privacy-preserving

data storage may not allow for central data consolidation. Similarly,

in geo-distributed applications, central data consolidation can be

economically or technically infeasible [89]. Second, data ownership

limitations restrict the scope of data enrichment and consolidation.

Example 1 (Data Ownership Dilemma). Consider a scenario of
a machine vendor, a middle person who uses provided machines to test
customer equipment, and customers. Any one of these stakeholders
has vested interest in owning the detailed test measurements. The
machine vendor wants to model and improve operations; the customer
does not want to reveal equipment characteristics; and the middle
person wants to offer data-driven products to various customers.

Therefore, data ownership and sharing agreements are usually ne-

gotiated in bilateral contracts among stakeholders. In the context

of exploratory data science, these access limitations are, however,

challenging because the return on investment (e.g., impact on pre-

dictions) of data purchases or subscriptions is unknown upfront.

Federated ML: Recent work on federated learning [9] partially

addresses this problem of inaccessible data. Federated ML learns a

global model without central data consolidation, for example, on

private data of mobile devices. Existing work adopts a traditional

parameter server architecture [20, 41, 53, 79]. The parameter server

https://doi.org/10.1145/3448016.3457549
https://doi.org/10.1145/3448016.3457549

initializes and broadcasts a model, every client device now acts

as a worker, computes gradients over mini-batches of their local

data (e.g., via a forward and backward pass through a neural net-

work), and pushes these gradients back to the server, where they

are aggregated into a model update. This process is repeated until

convergence, with client sampling and distributed aggregation for

robustness. However, this infrastructure is tailor-made—and primar-

ily applicable—for pre-processing via static embeddings, mini-batch

DNN algorithms, and mobile client devices. We see a much broader

opportunity for federated learning.

Enterprise FederatedML:The ExDRa system 1
addresses these

issues by introducing a system infrastructure for exploratory data

science on heterogeneous, structured, and only partially accessible

raw data. To this end, we combine federated ML for batch and mini-

batch training with query processing on raw data. Major challenges

include data cleaning and preparation on raw data, support for both

linear algebra programs and parameter servers, as well as automatic

plan optimization and federated data re-organization for eliminat-

ing unnecessary redundancy. Overall, we see many opportunities

for enterprise federated ML, where ML pipelines are executed on

federated, structured input data by exchanging aggregates that do

not reveal the underlying private federated data. This approach

creates a new spectrum of data ownership and data/model sharing

(without the danger of data redistribution or reselling), and thus,

has the potential to create new markets.

Contributions: In this paper, we describe the overall ExDRa

system architecture for federated ML in the enterprise, and share in-

sights and results from the first years of building this infrastructure.

Our detailed contributions are:

• Use Cases: We introduce exploratory and deployment use

cases in Section 2. Beside these example ML applications,

we also characterize types of federated data, privacy models,

and deployments for federated ML on raw data.

• System Architecture: In Section 3, we describe the overall sys-

tem architecture and its components for model and pipeline

management, federated ML and data preparation, as well as

streaming data acquisition. Section 5 then also describes the

envisioned deployment in production.

• Federated ML Runtime: Section 4 describes in detail the feder-

ated runtime backend of Apache SystemDS, federated data

organization, as well as federated linear algebra, federated

parameter servers, and federated data transformations.

• Preliminary Results: Our experiments in Section 6 show

promising results of federated ML algorithms and pipelines,

with low to moderate overhead compared to local training.

2 USE CASES
As a motivation for enterprise federated learning, we introduce two

production use cases from the process industry, and then charac-

terize federated data, privacy models, and deployment types.

2.1 Fertilizer Production
Context: The Food and Agriculture Organization of the United

Nations (FAO) estimated the worldwide phosphorus-based fertilizer

1
ExDRa Project: https://www.exdra.de/en/

nutrient consumption of 2020 as 45 million tons [27]. The manufac-

turing process of those fertilizers entails grinding phosphorus rock.

To increase fertilizer output, companies want to detect erroneous

behavior as soon as possible. However, good maintenance processes

cause class imbalance in terms of rare negative samples (e.g., failures

or anomalies), which makes it challenging to train robust predictive

models. Leveraging the data from multiple, federated sites could

thus, enhance the data quality significantly.

Data: There are three crucial inputs to the mill at the grinding

facility: (1) the cleaned raw material (metal removed), (2) roll force

to crack the raw material into target granularity, and (3) hot gases

evaporating the moisture trapped in the material. To ensure high in-

put quality, the settings and behavior of each subunit—like storage,

rollers, ventilation, exhaust gas and roll lubrication systems—are

constantly monitored. In detail, we record physical and electri-

cal parameters from 68 sensors at 1-second granularity. Sensor

measurements include power, currents, temperatures, pressure dif-

ferences, tank levels, conveyance speeds, vibration frequencies, air

flows, humidity and weights of different parts of the production line.

Finally, these grinding mill data are used to create unsupervised

anomaly detection models (e.g., Gaussian mixture models).

2.2 Paper Production
Context: In paper production, quality is measured by quantities

such as z-strength and Scott Bond [49]. If these values are outside

the specification, the paper is assigned a lower quality class. Alter-

natively, the paper is shredded and reintroduced into the production

process. Both of these negative outcomes reduce the potential rev-

enue, where the second option further increases the consumption

of water, chemicals and electricity. The quality can only be mea-

sured at the end of the process, after winding up the paper. This

measurement is performed approximately every 45 minutes and

takes up to 20 minutes. As a result, there is a substantial delay

between the production start and quality measurement. Therefore,

predicting the z-strength for certain recipes and configurations

during production can shorten the reaction time in case of quality

problems, and thus, reduce the amount of paper with lower quality.

Data: The production process consists of four steps: initial pulp

mixing, grinding, chemical treatment, and rolling. Each step impacts

paper quality with a varying time delay from seconds (rolling) up

to one day (pulp mixing). Throughout the process, 97 signals are

recorded with different sampling rates. The data is extracted from a

dedicated distributed control system (DCS) and process databases.

In detail, measured variables include indicators for pulp quality,

granularity, powers, inflows and compositions of various chemicals,

recipe IDs, humidity, and machine characteristics such as speeds

and torques of various rolls. These data signals are preprocessed

and used for training neural network regression models that predict

paper quality and classify specification violations.

2.3 Enterprise Federated ML
There are many enterprise federated ML use cases similar to our

two examples from Sections 2.1 and 2.2. In this section, we aim to

generally characterize such use cases in terms of federated data

types, privacy models, pipeline characteristics, and collaboration

schemes. Similar to permissioned blockchains [6, 33, 62], in such

https://www.exdra.de/en/

enterprise federatedML use cases, we can presume legal agreements

and coordination among involved parties.

Federated Data: In a federated environment, the raw, detailed

data remains at the individual federated sites. Operations are pushed

down to these sites to allow for global data analysis and model

building. Conceptually, a virtual, federated frame, matrix or tensor

is composed of arbitrary non-overlapping, i.e., disjoint, regions

pointing to data at the federated sites. Two important special cases

are predominant in practice though:

• Row-Partitioned federated data—or horizontal federated

learning [9, 95]—refers to partitions of rows, where every

federated site holds a subset of observations. In time series

scenarios, an observation might be a subsequence of cer-

tain length. These row partitions share the same original

features, but might not contain all categories of a categorical

feature (and thus, one-hot encoded columns) or no values

for a site-specific feature. The labels for supervised learning

might exist at one or multiple sources, or at the coordinator.

• Column-Partitioned federated data—or vertical federated

learning [92, 95]—is a less common form that refers to par-

titions of columns, where every federated site holds a—

potentially overlapping—subset of features. Examples are

site-specific measurement processes (e.g., available sensors),

and detailed material information along the supply chain,

which can be spatial-temporally joined with the measure-

ments to construct an enriched federated feature matrix.

Federated Privacy Models: Federated learning fundamentally

aims to allow training and scoring of ML models without central

data consolidation. A key desirable property is that shared informa-

tion does not allow reconstructing the private raw data of federated

sites. In contrast to fully untrusted environments, for enterprise fed-

eratedML, there is spectrum ofmeans for preventing reconstruction

with different privacy guarantees and performance characteristics:

• Aggregates: Many ML models can be learned in a federated

environment by restricting the communication to aggregates

(e.g., gradients). If these aggregates include sufficiently many

observations and/or features, such aggregates share infor-

mation on distributions but do not reveal the raw data.

• Encrypted Communication: In addition to aggregation, the

communication channels might need—unless otherwise

covered—protection through traditional encryption methods

to ensure the aggregates are only shared with trusted parties.

• Privacy Enhancing Technologies: If even aggregates cannot

be shared, we need to resort to privacy enhancing technolo-

gies such as differential privacy [40] (added noise), fully

homomorphic encryption [2, 29, 30] (multiply and add on en-

crypted data), or secure multi-party computation [63] (joint

computation on partial intermediates).

From a practical standpoint of enterprise federated ML, there are

use cases for all these means of communication and suitable system

infrastructure should support them.

Exploratory and Deployed Pipelines: Enterprise federated

ML subsumes both the exploratory ML pipeline development, and

the deployment of resulting ML pipelines and models. For ex-

ploratory analysis, federated data is repeatably accessed with differ-

ent pipelines or iterative algorithms. However, federated learning

Siemens ML Workbench
(ML Pipeline Management)

Apache SystemDS
(Federated ML Runtime)

NebulaStream
(Streaming Data Acquisition)

Buffered
File Sink

Streaming
(mini-batch) Batch

ExpDB
(Model
Mgmt)

src src src src src src

Step 1 Step 2 Step 3

Figure 1: ExDRa System Architecture.

also applies to deployed ML pipelines that process streams of input

data. Examples are monitoring and alerting in our fertilizer and

paper production use cases. In general, there are different deploy-

ment types that differ in federated or central scoring, as well as

federated or central usage of scores. Depending on the type and

federated data, the necessary parts of a trained model are pushed

down to the federated sites. We further distinguish online and off-

line (semi-manual) data and model exchange, where we focus on

infrastructure for online federated learning.

3 SYSTEM ARCHITECTURE
For supporting these federated ML use cases, the ExDRa infras-

tructure comprises multiple complementary components. Figure 1

shows the system infrastructure. Users interact with a graphical

user interface (UI) of an ML workbench for managing data sources

and ML pipelines, and exploring results in an interactive man-

ner. Apache SystemDS [8] is extended for executing these ML

pipelines on federated raw data. Trained models and their prove-

nance are stored in an ExperimentDB for model management. Be-

sides batch model training on raw data, NebulaStream (NES) [98]

further enables streaming data acquisition from IoT devices for both

exploratory and deployed pipelines. In this section, we summarize

the individual components and their interplay.

3.1 Workbench and Pipeline Management
The UI is part of an ML workbench for project and pipeline man-

agement, developed by Siemens. Data scientists create and share

projects, which contain data sources, ML pipelines, and interactive

result plots. This pipeline management supports a variety of ML

systems (e.g., Scikit-learn [68], TensorFlow [1], Apache MXNet [15],

and pandas [91]), and the system is designed for good scalability

with increasing number of pipelines and users.

Frontend and Backend: The frontend is based on the web

framework Angular, and interfaces with a SpringBoot Java back-

end. Users compose ML pipelines of pre-defined data sources and

pipeline steps (e.g., for pre-processing and ML algorithms), through

the graphical UI. The backend stores configurations of data sources,

pipeline steps, and pipelines. Supported data sources—which can

be shared among pipelines—include text files like CSV, hierarchical

binary data like HDF5, relational databases, object stores like AWS

S3, and even message queues. Similarly, our ExperimentDB (for

model analysis) and NES file sinks are integrated as data sources

as well. The backend then triggers the execution of pipelines in

so-called AI containers, and returns the results to the frontend.

AI Containers: The ML pipelines are executed in Docker con-

tainers on AWS ECS or Kubernetes [11]. Each pipeline step is a

Python script, and a dedicated container-local Java application (in-

visible to a user) connects to the central data sources, orchestrates

the Python scripts according to the pipeline definition, and returns

the results. Similar to the other ML systems, SystemDS and Experi-

mentDB are used through their respective Python APIs.

3.2 Federated ML Runtime
In this infrastructure, SystemDS is used as federated runtime back-

end for ML algorithms and pipelines on raw data. For a seamless

integration with common data science workflows and the ML work-

bench (Section 3.1), SystemDS has been extended by a new Python

API with lazy evaluation. Users create matrices or frames from fed-

erated configurations, files, NumPy arrays, or pandas data frames.

The API further exposes operations and higher-level built-in func-

tions, whose calls are collected in a DAG of operations.

features = Federated(sds, [node1,node2], ([. . .],[. . .]))
model = features.l2svm(labels).compute()

On calling compute—similar to Dask [73]—on an intermediate, we

generate a DML script via depth-first DAG traversal for ordering

according to data dependencies, execute this script, and return

the result as a NumPy array or data frame. For federated learning,

SystemDS supports both federated linear algebra, and federated

parameter servers, which we discuss in detail in Section 4. Instead of

providing labor-intensive implementations of individual federated

ML algorithms, this design aims to provide the necessary primitives

such that a wide variety of built-in functions and ML algorithms

can be automatically compiled into federated runtime plans.

3.3 Model Management and Experiments
Our ExperimentDB provides means of model and experiment man-

agement for exploratory data science. To this end, ExperimentDB

comprises two major components: a model and metric store, and a

pipeline recommendation engine.

Model Store: We store trained models of pipeline versions (i.e.,

different artifacts), and their runs (i.e., with different parameters

and input data). The inputs are the pipelines of AI containers (Sec-

tion 3.1), their output models, related accuracy metrics, and other

metadata such as lineage and reusable intermediates. If a pipeline

is marked for tracking, the workbench backend uses an Experi-

mentDB API to make these inputs available. The Python scripts

are then parsed into an intermediate representation of a data flow

graph, and individual pipeline steps are categorized accordingly. We

use high-level operator types such as ensembles, estimators, imput-

ers, scalers, selectors, generators, samplers, and transformers. This

model store and collected metadata then allows for query-based

pipeline comparisons, explanations, and analysis.

PipelineRecommendation:Beyond basicmodelmanagement,

we further aim to provide (in the future) pipeline recommendations.

Given a high-level ML task, dataset and its data characteristics,

optional evaluation metric, and history of pipeline runs and their

accuracy, the goal is to recommend a ranked list of pipelines for

exploration. In contrast to AutoML, this process entails human-

machine interaction for pipeline synthesis and debugging, as well as

multi-model data analysis, which partially allow for self-supervision

and thus, avoids the need for predefined metrics or labels. Our

current prototype computes embeddings of pipeline metadata, and

trains an ML model to predict scores of pipeline candidates.

3.4 Streaming Data Acquisition
Highly-distributed, potentially moving and unreliable, streaming

data sources are a particularly challenging form of federated raw

data. Exploratory data science and ML model training are repeti-

tive and thus, require multiple passes over the data. We mitigate

this impedance mismatch by leveraging NebulaStream (NES) for

managing the low-level aspects of streaming data acquisition.

NES Overview: A central coordinator deploys continuous

queries in a decentralized topology of heterogeneous nodes and

devices. Inputs are sensor or consolidated logical streams. Opera-

tors of physical execution plans are then assigned and re-optimized

[32] according to existing queries, available resources, utilization,

and topology changes (e.g., moving robots/equipment). The node

runtime receives and sends input and output streams, processes

multi-threaded tasks, checks privacy constraints, triggers actuators,

and provides inbound adapters like OPC (open platform communi-

cations) for integrating existing measurement systems.

ExDRa Integration:Within the ExDRa system infrastructure,

separate NES instances—each with a coordinator and decentralized

topology—get deployed at the individual federated sites, which

protects private data by avoiding consolidation in central cloud

environments. For exploratory use cases, NES appends the collected

streams to file sinks with retention periods (e.g., last two days).

ML pipelines then read this federated data from the file sink, and

use an in-memory snapshot for iterative training. The file sinks

and NES queries are deployed as federated data sources in the ML

workbench (Section 3.1). For deployment use cases, NES can also

directly feed into the interactive visualization, and trigger mini-

batchmodel updates for online learning. In the future, NES also aims

to push down sink predicates, and other operations of deployed ML

pipelines, into the continuous queries.

4 FEDERATED RUNTIME
Apache SystemDS [8] supports multiple runtime backends for local,

in-memory operations (CPU/GPU), and distributed operations on

Apache Spark [97]. The new federated backend
2
follows a similar

design of specific federated data objects, and runtime instructions.

Here, we describe the overall design, federated linear algebra op-

erations, federated parameter servers, federated data preparation,

and our vision for federated ML pipelines on raw data.

4.1 Federated Data and Backend Design
SystemDS compiles user scripts of ML algorithms or pipelines into

hybrid runtime programs of local and distributed operations. A

main control program (CP)—potentially in the Spark driver—then

executes the control flow and operations as instructions. Live vari-

ables are accessible via a symbol table. Figure 2 shows this setup

and the integration of the federated backend.

2
The entire federated runtime backend is available open source as part of Apache

SystemDS: https://github.com/apache/systemds.

https://github.com/apache/systemds

Federated
Coordinator

SystemDS
Control Program

 while
 r =X*w

 w =rt*X

Spark Driver

X
Y
w SystemDS

Worker 3 CP

SystemDS
Worker 1 CP

SystemDS

Worker 2 CP

Federated
Workers

3
7

Federated
Requests

3
7

3
7

Read on
Demand

Matrix, FP64
100K x 70

Federated
Data

[1:40K,],3,
node1:5000

[40K:80K,],3,
node2:5000

[80K:100K,],3,
node3:5005

Figure 2: Federated Runtime Backend.

Federated Data: Any non-scalar data objects such as tensors,

matrices, and frames can be federated. The main control program

acts as the coordinator and holds only metadata—in the form of a

federation map—of such federated data. This map stores the data

type, value type, dimensions, sparsity, as well as non-overlapping

data ranges, and their locations (host, port, data identifier). For ex-

ample, in Figure 2, we have a federated 100K×70matrixX, with row
partitions [1 : 40K], [40K : 80K], and [80K : 100K] on node1, node2,

and node3, respectively. If a local operation at the coordinator

tries to pin X into memory, the federated data is transparently

transferred—unless it violates coarse-grained or fine-grained pri-

vacy constraints—and consolidated in a local matrix.

Federated Workers: Similar to the coordinator, the federated

workers are also control programs, but started as worker processes

that act like servers at the federated sites. A worker listens on an

input queue for incoming RPC requests (called federated requests),

executes these requests, maintains a local symbol table, checks

privacy constraints (e.g., for data exchange), and finally returns an—

optionally SSL-encrypted—RPC response. This design of worker

CP programs provides very good flexibility and reuses the I/O

subsystem, buffer pool mechanisms, as well as local and distributed

operations. For example, it even allows data center federation [89],

where a single federated operation triggers distributed operations

in a Spark [97] or Flink [4] cluster at the federated site.

Federated Requests: The coordinator communicates with

workers through federated requests, using Netty as a network I/O

framework for RPCs and data transfers. To simplify the implemen-

tation of federated operations, we restricted the federation protocol

to only six generic request types:

• READ(ID, fname): Creates a data object from a filename,

reads it, and adds it by ID to the symbol table.

• PUT(ID, data): Receives a transferred data object, and adds
it by given ID to the symbol table.

• GET(ID): Obtains a data object from the federated site’s sym-

bol table, and returns it to the coordinator.

• EXEC_INST(inst): Executes an instruction, which accesses

inputs and outputs by IDs in the symbol table.

• EXEC_UDF(udf): Receives a serialized, user-defined function
(UDF) object, executes this UDF over requested inputs by ID,

may add outputs to the symbol table, and returns a custom

object to the coordinator.

• CLEAR: Cleans up execution contexts and variables.

For efficiency, the coordinator sends RPCs to all workers in parallel,

and a single RPC can contain a sequence of requests and returns

a single response. The simplicity of these request types has two

profound advantages. First, we can reuse existing instructions for

composing federated operations. Second, this design allows for

federation hierarchies. If the worker-local data is federated data, a

worker can also act as a coordinator of a subgroup of workers.

4.2 Federated Linear Algebra
For broad applicability in various ML algorithms and data science

lifecycle tasks, our federated runtime supports both federated linear

algebra and federated parameter servers. Federated linear algebra

utilizes similar strategies as distributed, data-parallel operations but

retains the raw federated data at its federated site. This requirement

creates additional challenges and needs compiler support for finding

valid yet efficient runtime plans if operations do not directly apply.

Basic Linear Algebra: During compilation and runtime, we

check if any inputs are federated data, and dispatch this call to

supported federated instructions. Similar to RDD transformations

and actions [97], these federated instructions then utilize federated

requests—and related high-level primitives for broadcasting and

aggregation—to compute the operations over federated data. If no

aggregation is needed, the output is itself federated data.

Example 2 (Federated Matrix Multiplication). Assume a
matrix-vector (or matrix-matrix with small right-hand-side) multipli-
cation Xv and vector-matrix multiplication v⊤ X with nrow(X) ≫
ncol(X) andX being composed of federated row partitions. For matrix-
vector, we broadcast v via PUT, execute a local matrix-vector multi-
plication per partition via EXEC_INST, which yields a new federated
vector with related federation map (logical rbind here), and finally
execute an optional rmvar instruction via EXEC_INST to clean up
the broadcast v. In contrast, for a vector-matrix, we perform a sliced
broadcast of v (vector parts according to row ranges), execute a lo-
cal vector-matrix multiplication per partition via EXEC_INST, obtain
the results via GET, do a final aggregation via element-wise vector
addition at the coordinator, and again, clean up all intermediates.

Supported Operations: So far, we support—as summarized in

Table 1—federated matrix multiplication, unary aggregates, unary

element-wise operations, binary matrix-matrix, matrix-vector, and

matrix-scalar operations, ternary, quaternary, and parameterized

builtin operations, and various reorganizations. These operations

further support both row- and column-partitioned federated data

via specialized implementations. Most of the binary operations

Table 1: Example Federated Instructions.

Operation Type Examples

Matmult mm, tsmm, mmchain
Aggregates sum, min, max, sd, var, mean

rowSums, . . . , rowMeans, colSums, . . . , colMeans
Unary abs, cos, exp, floor, isNA, log, !, round, sin,

sign, softmax, sqrt, tan, sigmoid,
Binary &, cov, cm /, =, >, >=, %/%, <, <=, log,

max, min, max, -, %%, *, !=, |, +, ˆ, xor
Ternary ctable, ifelse, +*, -*

Quaternary wcemm, wdivmm, wsigmoid, wsloss
Transform/Reorg tfencode, tfapply, tfdecode,

rbind, cbind, t (transpose), removeEmpty
replace, reshape, X[:,:] (matrix indexing)

(e.g., matmult, element-wise) support a single federated input and

consolidate a second federated input (e.g., aggregated intermediates)

in the coordinator. However, whenever two federated inputs are

co-partitioned (e.g., because one originated from the other), we

directly execute federated operations on them as well.

Higher-level Primitives: SystemDS follows the premise that

many data science lifecycle tasks—like data validation, data clean-

ing, feature and model selection, and model debugging—are them-

selves based on machine learning and numerical computation [8].

These higher-level primitives are hierarchically composed from

built-in functions that rely on linear algebra and thus, are directly

supported on federated data as well. In case a binary or ternary

operation is not supported over multiple federated matrices, some

of them are consolidated in the coordinator, or a privacy exception

is thrown if this consolidation would reveal private raw data. For

this reason, we are working toward better compiler support that

proactively considers privacy constraints and generates efficient

runtime plans that adhere to these constraints.

Example 3 (Federated K-Means). Starting bottom-up, individ-
ual ML algorithms are good examples of such higher-level primitives.
For instance, consider the inner loop (after initialization and inside a
loop for multiple runs) of K-Means clustering, where X is a federated,
row-partitioned matrix, and C are the current centroids:

while (term_code == 0) {
Compute Euclidean squared distances records-centroids
D = -2 * (X %*% t(C)) + t(rowSums(C ^ 2));
Find the closest centroid for each record
P = (D <= rowMins(D));
If records belong to multiple centroids, share them
P = P / rowSums(P);
Compute the column normalization factor for P
P_denom = colSums(P);
Compute new centroids as weighted averages
C_new = (t(P) %*% X) / t(P_denom); # ...

}

The first matrix multiplication XC⊤ yields another federated, row-
partitioned matrix. The subsequent row aggregates and element-wise
operations similarly create aligned federated intermediates, which
are then aggregated and only consolidated in aggregate form via
colSums(P) and P⊤ X, where the latter is an aligned matrix multi-
plication of two federated matrices. Note that this built-in function
script is agnostic of local, distributed, or federated input matrices.

While some ML algorithms directly map to federated operations

that preserve private data, other algorithms need dedicated com-

piler assistance for generating valid runtime plans. Specifying data

exchange (i.e., privacy) constraints for federated raw data, tracking

derived properties of intermediates and data transfers, and gener-

ating constraint-aware plans is an important direction for future

work but beyond the scope of this paper.

4.3 Federated Parameter Server
The federated linear algebra backend described so far supports tradi-

tional batch ML algorithms (e.g., first- and second-order) as well as

high-level primitives, but would be very inefficient for mini-batch

algorithms—as used for DNNs—because most federated workers

would stay idle while processing a batch at-a-time. Such mini-

batch algorithms are usually trained with data-parallel parameter

servers or similar distribution strategies. Accordingly, we extended

SystemDS’ parameter server (PS) for federated data as well.

Background SystemDS PS: The existing SystemDS PS infras-

tructure implements a traditional, data-parallel parameter server

[20, 41, 53, 79], where a central server maintains the current model,

and workers pull the model, perform mini-batch iterations over

disjoint data partitions to compute gradients, and push these back

to the server for aggregation. This functionality is integrated as a

native built-in function and can be invoked in a stateless manner:

M = list(W1, W2, W3, W4, b1, b2, b3, b4, ... vW4); # model
params = list(lr=lr, mu=mu, stride=stride, pad=pad, ...);
Mp = paramserv(model=M, features=X, labels=y,

upd=updateGrad, agg=updateModel, utype=ASP,
freq=BATCH, epochs=200, batchsize=64, ...);

The initialized model—as a list of weight and bias matrices, as well

as additional state matrices like the parameter velocities—and data

is passed as arguments, along with a configuration of update types

(e.g., BSP – bulk-synchronous parallel, ASP – asynchronous), update

frequencies, batch size, number of epochs, data partitioner, hyper-

parameters, and user-defined functions for computing gradients

(updateGrad), updating the model with gradients (updateModel),
and optional validation. Internally, the parameter server then either

runs in local, multi-threaded or distributed Spark mode, where the

latter runs the parameter server locally at the coordinator, spawns

a Spark job with standing worker tasks and directly communicates

via RPCs between the parameter server and workers.

System Architecture: The federated parameter server exhibits

a similar PS architecture, consisting of a server running at the coor-

dinator, and workers at the federated sites for computing gradients

on the private data. During setup, we serialize the gradient and

update functions and send them to the workers. Then one server

thread per worker handles the communication and synchronization

with federated workers, which are executed via a EXEC_UDF(udf)
federated request. Depending on the updated frequency, the model

is updated at the worker, and after a fixed number of batches, the

accrued gradients are sent to the server for aggregation. In contrast

to SystemDS’ multi-threaded parameter server, the gradient func-

tion is compiled in a way that leverages multi-threaded operations

with the available degree of parallelism at each worker.

Federated Data Partitioning: In a typical PS architecture, the

input data is potentially shuffled for randomization, and then evenly

partitioned horizontally among workers. In contrast, the federated

parameter server respects the locality of federated data (specifically,

row-partitioned and aligned federated data X and labels y), which
allows only local shuffling and replication of the private federated

data. The chosen partitioning strategy—unless the data is used with-

out modification—is again executed via a EXEC_UDF(udf) federated
request before the start of iterative training.

Handling Imbalance and Skew: A major challenge in the fed-

erated setting is the handling of imbalance in terms of different

worker data sizes, and skew of the data distributions at the different

federated workers. Imbalance and skew (also known as statistical

heterogeneity [45, 54]) are problematic because an equal number

of epochs results in different numbers of iterations and thus, skew

C
X

NULL
Z
X
Z
Y

B
2100
4350
5500
2500
4900
5200

A
R101
R101
C7

R101
C3

R102

C
X
Y
Z

B
2100
5500

A
R101
C7

R102
C3

C
X-1
Y-2
Z-3

B
1900-1
3100-2

A
C3-1
C5-2

C91-4
C7-3

C
Z
Z
Z
X

NULL
X

B
3500
2600
4400
5400
1900
5200

A
C5
C91
C5

R101
C5

R101

C
X
Z

B
1900
5400

A
C5
C91
R101

X5100R101

R101-5
R102-6

Federated Site 1 Federated Site 2

4300-3
(5501)

Coordinator

0
0
0
0
0
0
0

1
0
1
0
1
0
0

0
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
0
1
0
1
1

0
0
0
0
0
0
0

0
1
0
0
1
0
0

1
0
0
0
0
0
0

0
0
1
1
0
1
1

0
0
0
1
0
1
1

0
0
0
0
0
0
0

1
1
1
0
1
0
0

CBA

0
0
0
0
1
0

0
0
0
0
0
0

0
0
1
0
0
0

0
0
0
0
0
0

1
1
0
1
0
0

0
0
0
0
0
1

1
0
0
1
0
0

0
0
0
0
0
0

0
1
1
0
1
1

1
1
0
1
0
0

0
0
0
0
0
1

0
0
1
0
1
0

CBA merge, sort,
assign codes

apply

partial build partial build

apply

Figure 3: Example Federated Transformencode (binning, recoding, and one-hot encoding).

in execution time, coordination problems in synchronous update

strategies like BSP (where the parameter server waits for all worker

updates), and biased updates, where the biggest federated data

partition solely influences model updates at the end of training.

Subsampling large or replicating small partitions on the other hand

puts disproportionate weight on the observations of small feder-

ated partitions. We are currently using replication with adjusted

weights, but subsampling and replication, weighting schemes, and

hierarchical parameter server architectures (similar to virtual nodes

in Dynamo [21]) is a rich area for future work.

4.4 Federated Data Preparation
BesidesML-based data cleaning and data pre-processing—which are

based on federated linear algebra—there are other data preparation

techniques that require special federated support. These operations

include feature transformations, and data access methods for raw

data. In contrast to typically stateless ML systems and libraries, the

architecture of standing federated workers further provides rich

opportunities for reuse and adaptive data reorganization across

multiple pipeline runs of a single user and multiple tenants.

Feature Transformations: Similar to other, commonly-used

ML systems, SystemDS supports—through operations like frame

transformencode and transformapply—standard feature trans-

formations like recoding (categories to integers), feature hashing

(categories to upper-bounded integers, potentially with collisions),

binning (numeric values to integers), and one-hot encoding (in-

tegers to sparse boolean vectors). The federated instructions of

these operations leverage the flexibility of UDFs via EXEC_UDF
and preserve privacy of the raw federated data. In detail, feder-

ated transformencode uses a two-pass approach. First, we build
encoder-specific metadata for all non-pass-through features (i.e.,

all columns except unmodified numeric columns) at the federated

sites, as well as consolidate—and optionally sort—the metadata for

consistent encoding. Second, we broadcast the aggregated meta-

data, and in a second pass over the federated data, then perform

the actual encoding. The outputs are a federated encoded matrix

with consistently aligned one-hot encoded features (equivalent to

local encoding), and a local metadata frame.

Example 4 (Federated One-hot Encoding). Figure 3 shows
an example of a row-partitioned federated input frame with three
columns A, B, and C. Here, A and C are categorical features subject to
recoding and one-hot encoding, while B is a numerical feature subject

to binning (with three equi-width bins) and one-hot encoding. Not
all categories will appear in all federated sites. For example, feature
A represents regular and custom recipes of our paper production use
case from Section 2.2. In a first step, the federated workers compute
the distinct items for recoded features and min/max values for binned
features. The coordinator consolidates these metadata frames from the
federated sites, merges and sorts the distinct items, computes the bin
boundaries, and finally assigns contiguous integer codes. In a second
step, the global metadata is sent to the federated sites for encoding the
input frame into a numeric matrix. Non-existing categories lead to all-
zero columns but this encoding ensures consistent feature positions for
model training. Federated linear algebra then further allows applying
various techniques for data cleaning and missing value imputation.
These primitives are implemented as script-based built-in functions
and thus, can now be compiled into federated runtime plans as well.
For instance, the NULLs (or NAs) in column C might be imputed
with the mode (most frequent categorical value, imputing X or Z), via
robust functional dependencies [22] (assuming or discovering A →

C , and imputing X and Z, respectively), or by more advanced, ML-
based techniques like multivariate imputation by chained equations
(MICE, which trains regression and classification models for imputing
categorical and numerical columns) [13, 86].

Improved Feature Transformations: There are many oppor-

tunities for improved federated feature transformations. First, tech-

niques like zigzag joins [84]—that rely on Bloom filters for pre-

filtering—can be adapted for determining categories that need to

be exchanged with the coordinator, thereby reducing data transfer

and revealed information. Similarly, for features that only exist at a

single federated site (e.g., column-partitioned federated data), we

only need to exchange the number (instead of the set) of distinct

items. Second, there is a tradeoff between privacy and performance

versus accuracy. Instead of recoding, users can resort to feature

hashing (with an agreed hash function), which is computed in a

purely federated manner without data exchange. However, hash

collisions merge multiple categories into one feature, which might

negatively affect accuracy. In our current implementation we sup-

port the different transformations but leave the choice up to the user

because we expect related negotiations among involved parties.

ML Pipelines on Raw Data: The federated raw data is read as

frames or heterogeneous tensors [8] into the standing workers and

then accessed with federated indexing (e.g., for feature selection)

and feature transformations (e.g., transformencode). Similar to

low-latency scoring services, we already reuse deserialized recode

maps at a fine granularity of individual features. Inspired by query

processing on raw data [3, 35, 47], data reorganization via database

cracking [36] / adaptive indexing [37], recycling of intermediates

[38], and lazy maintenance of materialized views [101], we further

aim to leverage the opportunity of standing workers for adaptive

data reorganization. Future work includes three main directions.

• Lineage-based Reuse: First, we will establish lineage-based

caches for reuse [23, 93] and debugging [87] of intermedi-

ates. As a first step, we have already integrated our LIMA

framework for fine-grained lineage tracing and reuse [69].

In this context, there is also potential for multi-tenant data

structures that share partial overlap of feature subsets.

• Compression: Second, free cycles of federated workers can be

used for asynchronous, lossless compression [25, 52] such

as compression planning and compaction of intermediates.

• Incremental Maintenance: Third, the cached and reorganized

intermediates can be—in case of applicable operations—

incrementally maintained [66, 75] for new or deleted data.

In the context of exploratory ML pipelines with repeated raw data

access and data enrichment, such a systematic reorganizationwould

allow to eliminate unnecessary redundancy, and specialize the data

representation for the observed workload characteristics, while

retaining the appearance of a stateless ML system and preserving

the privacy of the federated raw input data.

5 TOWARDS DEPLOYMENT IN PRODUCTION
The ExDRa infrastructure is not deployed in production yet. How-

ever, the use cases described in Section 2 are real production use

cases, which exhibit potential for enterprise federated learning. In

this section, we discuss in more detail the envisioned deployment

of the ExDRa infrastructure, and other deployment models.

5.1 Envisioned Deployment: Private Data
SystemDS and NebulaStream are both large system projects, de-

veloped independently for different use cases of the end-to-end

data science lifecycle and streaming IoT data management. For

enterprise federated learning in the ExDRa infrastructure, both

systems are jointly extended and their strengths come to bear in

the envisioned deployment model. Most importantly, this setup

enables us to mitigate the impedance mismatch between streaming

data sources and iterative, multi-pass federated learning.

Basic Deployment: Figure 4 shows the basic deployment model

of enterprise federated ML in ExDRa. We assume a moderate num-

ber of federated sites (recently called cross-silo federated learning

[45]), each with their local infrastructure and private raw data. At

each federated site, a SystemDS worker is started as a standing

server process, receiving federated requests from the coordinator

via secure communication channels, and accessing permissioned

raw data. Each site also deploys a NES instance with a coordinator

and decentralized topology of workers and sensors for streaming

data acquisition through distributed continuous queries (which

are pre-configured but there is potential for partial push-down of

deployed scoring pipelines). For training, NES appends the col-

lected data to file sinks with configured retention periods, and

every SystemDS ML training session reads the data, and works on

a consistent in-memory snapshot. Thus, batch data and buffered

Federated
Site 1 SystemDS

Worker 1

SystemDS Coordinator

Federated
Site 3

Federated
Site 2

Figure 4: Envisioned SystemDS and NES Deployment.

streams are handled the same, which bridges the gap to iterative

ML training. This execution model has well-defined semantics but

long training sessions might work on partially stale data.

Extensions for Stream Ingestion: In contrast to the generic

basic deployment, there are more specialized scenarios that allow

ingesting input streams into SystemDS workers as well. First, feder-

ated parameter servers (see Section 4.3) process the data in epochs,

one batch of rows at a time. Here, the federated workers can seam-

lessly handle the removal or append of new batches according to the

configured retention periods. However, changing data sizes require

coordination to obtain imbalance ratios for replication and weight

adjustments. Second, for deployed scoring pipelines SystemDS can

act as a serving platform, processing the input streams and return-

ing the predictions to the federated site or coordinator.

TheMissing Pieces: For deployment in production several chal-

lenges remain. First, from an organizational perspective, appro-

priate legal frameworks and business models need to be devised.

Enterprise federated learning can be a win-win for large and small

companies alike: large companies might run the infrastructure and

model training; small and medium-sized enterprise (SMEs) may par-

ticipate as federated sites, which opens up new income channels. In

contrast to existing data marketplaces [28], participating federated

sites can contribute to global model training without sharing their

precious raw data. A crucial aspect is finding the right incentives

for motivating the federated sites to participate with high-quality

raw data (e.g., Jordan’s leave-one-out proposal [42], or contractual

benefits). Second, from a technical perspective, deployment in pro-

duction requires a trusted system infrastructure, and techniques for

generating and verifying federated execution plans under aware-

ness of privacy constraints. Third, it is a never-ending quest for

added business value, stronger privacy, and higher performance.

5.2 Other Deployments: Private Models
Beyond our envisioned deployment for private federated data,

there are other interesting deployments where federated ML mod-

els instead of federated data are kept private. For example, con-

sider a scenario of a subsidiary company that receives—potentially

anonymized—data from the parent company in order to derive pre-

dictions or create insights. Here, the ML models are the subsidiary’s

core assets. Similar examples include telecom providers sharing

mobility data with partners for deriving insights, and hedge funds

sharing financial data and predicting the stock market based on

a stake-weighted federated ensemble of private models [17]. Like

enterprise federated ML, sharing only predictions prevents reverse-

engineering (reconstruction) of the underlying private models.

Figure 5: Basic Algorithm Comparison and Scalability with # Federated Workers (106 × 1,050 feature matrix X).

6 EXPERIMENTS
Our experiments study the performance of the described federated

runtime backend of SystemDS (Section 4), with various ML algo-

rithms and pipelines, network configurations, and in comparison

with local execution and other ML systems.

6.1 Experimental Setup
Baselines: For evaluating the characteristics of federated linear

algebra and parameter servers in controlled yet practically relevant

scenarios, we compare the following four main baselines:

• Local: Our main baseline is SystemDS with local, in-memory

operations, which uses equivalent runtime plans and runtime

operations, but executed locally on a single node.

• Federated LAN: The federated runtime backend dispatches

runtime operations on federated matrices to the described

federated linear algebra operations and parameter server.

For Federated LAN, all coordinator and workers nodes are

part of a local area network (LAN) of two racks, connected

via an HPE FlexFabric5710 48XGT switch.

• Federated WAN: In addition to Federated LAN, we experi-

ment with the federated backend in a wide-area network

(WAN) setting. Here, a client node runs the coordinator in

Copenhagen, Denmark and the workers run in a cluster (de-

scribed below) in Graz, Austria – a distance of more than

1,000 km with round-trip latency of about 35-60ms, and data

transfer bandwidth of about 1.4-2MB/s.

• Other ML Systems: To ensure that Local is a competitive base-

line, we also compare with local execution in Scikit-learn 0.23

[68] for traditional batch ML algorithms, and TensorFlow

2.3.1 [1] for mini-batch neural network workloads. These

systems do not support federated ML.

Cluster Configuration:We ran all experiments described here

on eight nodes, each having a single AMD EPYC 7302 CPU at

3.0−3.3GHz (16 physical/32 virtual cores), 128GB DDR4 RAM at

2.933GHz balanced across 8 memory channels, 2 × 480GB SATA

SDDs (system), 12×2 TB SATA HDDs (data), and 2×10Gb Ethernet.

The nominal peak performance of each node is 768GFLOP/s and

183.2GB/s, whereas we measured 109.6GB/s for an 8GB matrix-

vector multiplication. For wide-area network tests, we use an ad-

ditional client node Dell XPS 15 with one Intel i9-9980HK CPU at

2.4−5.0GHz (8 physical/16 virtual cores), and 32GB DDR4 RAM at

2.666GHz. Our software stack comprises Ubuntu 20.04.1 as operat-

ing system, OpenJDK Java 1.8.0_265, and SystemDS 2.0.0++ (as of

03/2021), configured with native Intel MKL BLAS for dense matrix-

matrix multiplications. The coordinator and worker nodes use con-

sistent JVM configurations of -Xmx110g -Xms110g -Xmn11g, while
the WAN client uses -Xmx30g -Xms30g -Xmn3g.

Workloads: The tested workloads include the ML algorithms

linear regression (LM), L2-regularized support vector machine

(L2SVM) and multi-class logistic regression (MLogReg) for clas-

sification, K-Means for clustering (with K=50 centroids), principal

component analysis (PCA) for dimensionality reduction (with K=10

projected features), as well as two parameter server models: a fully-

connected feed-forward network (FFN) with BSP, 5 epochs, batch

size 512, and trained with stochastic gradient decent (SGD) with

Nesterov momentum, as well as a convolutional neural network

(CNN) with BSP, 2 epochs, batch size 128, and standard SGD. These

algorithms are trained on a synthetic 1M × 1,050 feature matrix

(after one-hot encoding categorical features), which closely resem-

bles the characteristics of the data from our paper production use

case described in Section 2.2. For the CNN scenario though, we use

the standard 60K/10K × 784 MNIST dataset from computer vision.

The feature matrix X is stored as a row-partitioned, federated ma-

trix with balanced partition sizes at the federated sites (i.e., worker

nodes), while the labels y are stored at the coordinator node. We

fix the number of maximum iterations for iterative ML algorithms

and report the end-to-end runtime—including JVM startup and I/O

from binary files—as a mean of (at least) three repetitions.

6.2 ML Algorithms Performance
In a first set of experiments, we compare the local ML algorithms

performance with both Federated LAN and WAN. We also vary

the number of federated workers, evaluate communication settings

such as SSL encryption, and compare other ML systems.

ML Algorithms: Figure 5 shows the end-to-end runtime of the

ML algorithms. As a first step, consider a scenario of three federated

workers (the number of workers is varied on the x-axis), which

require additional communication but also provide more computa-

tional resources. TheML algorithms have different characteristics in

that regard. First, LM internally calls an iterative conjugate-gradient

LM method (used for ncol(X) > 1,024), where each iteration per-

forms an X⊤(Xv) over the federated data. Compared to local, we

observe low overhead and already a runtime improvement with

three workers. The Fed LowerBound represents the remaining local

execution time that is not subject to federated computation and thus,

the best Fed LAN could achieve. Second, L2SVM uses two nested

while loops, where each outer iteration computes gradients, and

Figure 6: Comparison of Communication Settings.

the inner loop performs a line search along the gradient. Since the

federated X is only accessed via matrix-vector and vector-matrix

operations in the outer loop, the differences to the local runtimes

are much smaller. Third, MLogReg also uses two nested while loops,

but each inner iterations performs an X⊤(w ⊙ (Xv)) on the fed-

erated X and accordingly, we see again a solid improvement with

three workers. Fourth, a single run of K-Means has a single while

loop, which uses more compute-intensive matrix-matrix multiplica-

tions as shown in Example 3. Fifth, PCA is a non-iterative algorithm

and computes an Eigen decomposition of X⊤X and subsequently,

projects the data via another matrix multiplication to K=10 fea-

tures. With large number of rows, the two matrix multiplications

dominate the runtime. Both K-Means and PCA accordingly show

also substantial improvements compared to local execution. Finally,

FNN and CNN use the mini-batch parameter server architecture

with local per-batch updates and global per-epoch synchroniza-

tion. The larger compute resources of the federated backend yield

improvements despite the additional communication. Most impor-

tantly, none of these federated ML algorithms ever communicates

the raw input data to the coordinator (and thus, preserve privacy

of the federated data), they all show only small overhead, and in

many cases even runtime improvements. In additional experiments

with federated labels y and/or smaller number of columns (not

shown here), we observe that some algorithms like L2SVM incur

substantially larger overhead though, because all vector operations

of the inner loop are then converted to federated operations as

well, which increases communication without benefiting from the

larger computational resources. In the Federated WAN setting, the

relative communication overhead is also substantially higher, but

even there, the end-to-end overhead is moderate, which renders

federated learning practical for real deployments.

Scalability: Besides the comparison of Local, Federated LAN,

and Federated WAN, Figure 5 also shows the scalability of our fed-

erated backend with increasing number of federated workers. We

investigate strong scaling behavior by keeping the data size con-

stant. The coordinator sends federated requests in parallel to all the

workers and either broadcasts all side inputs or only relevant slices

according to operation requirements. The size of communicated

intermediates is moderate in all scenarios though; typically, we ex-

change only vectors in the number of rows (LM, L2SVM, MLogReg,

KMeans) or columns (LM, L2SVM) of X, columns-by-classes (MLog-

Reg), columns-by-centroids (K-Means), columns-by-columns (PCA),

or model sizes (FFN, CNN). Accordingly, we see good scalability,

where additional workers even improve the runtime up until a point,

where the partitions per worker become so small that communica-

tion increasingly dominates the total runtime. For L2SVM and LM,

Figure 7: Comparison with Other ML Systems.

the improvements are smaller because L2SVM is dominated by vec-

tor operations at the coordinator, and LM has a very small runtime,

where initial startup constitutes a large fraction of total execution

time. In the Federated WAN, the communication overhead is larger

but still moderate overall. As the number of workers increases both

federated computation and—maybe surprisingly—communication

time reduces. The coordinator sends RPCs to all workers in parallel

(which mitigates the additional latency), and the more workers the

smaller some of the transferred intermediates (e.g., n/#workers).

SSL Encryption: As mentioned in Section 4.1, the federated

backend of SystemDS supports SSL-encrypted communication

channels between the coordinator and federated workers. We lever-

age Netty’s SslContext for encrypting the federated requests and

responses including exchanged data. In a next experiment, we study

the overhead this encrypted communication entails. Figure 6 com-

pares LM, K-Means, and FFN—which have very different charac-

teristics and thus, showed different scaling behavior—in the Feder-

ated LAN, Federated WAN, and Federated WAN with SSL settings.

For LM—where exchanged intermediates are small (vectors in the

number of columns)—the overhead of WAN and additional SSL

encryption is limited to about 2x and 10%, respectively. K-Means

shows larger overhead of about 4-8x in a WAN setting due to more

iterations and larger transfers (columns-by-centroids), and again

about 15% overhead for SSL. In contrast, the federated parame-

ter server shows only moderate WAN and SSL overhead because

of the higher computational workload per worker and infrequent

per-epoch global model updates and synchronization.

ML System Comparison: With the comparison of local and

federated algorithms in mind, we can now turn to a comparison

with other ML systems, specifically Scikit-learn [68] and Tensor-

Flow [1] as widely-used ML systems. We select K-Means, PCA,

FFN, and CNN for comparison in order to limit the influence of

algorithmic differences. The algorithms were configured to yield

a similar number of iterations (e.g., K-Means) and final accuracy.

Figure 7 shows the results comparing local and Federated LAN

configurations of K-Means and PCA with Scikit-learn, and FFN and

CNN with TensorFlow. Overall, we observe mixed results. K-Means

is 1.6x slower than Scikit-learn, while PCA is 2x faster. Similarly,

FFN is 25% faster, while CNN is 2x slower than TensorFlow. We

attribute these differences to remaining algorithmic discrepancies,

and the comparison with best-of-breed ML systems for the different

algorithms, whereas SystemDS aims to support a wide range of al-

gorithms and deployments. For CNN, the overhead is partially due

to SystemDS using sparse conv2d_backward data/filter and other

operations because MNIST and related intermediates are just below

the internal sparsity threshold. Moreover, TensorFlow’s parallel

Figure 8: ML Pipeline Scalability with # Federated Workers.

operator scheduling is advantageous in small mini-batch scenarios.

In additional experiments on a spectrum of data characteristics, we

observed relative improvements of SystemDS compared to the other

ML systems with increasing sparsity, number of rows, and batch

size. Most importantly, these comparisons ground the observed Fed-

erated LAN results in a performance range close to state-of-the-art

systems, supporting the conclusion of applicability in practice.

6.3 ML Pipelines Performance
In a second set of experiments, we now return to our main moti-

vation of supporting entire ML pipelines on federated raw input

data without central data consolidation. We evaluate ML pipelines

of the use cases described in Section 2 on synthetic data.

ML Pipeline Setup: The workload is a simplified training

pipeline P2 of the paper production use case (see Section 2.2). This

pipeline reads the input data of continuous and categorical features

as a federated frame, and transforms the frame via recoding and

one-hot encoding (see Section 4.4) into a numeric input matrix

and a meta frame that holds the recode maps. Subsequently, we

perform value clipping for values outside the interval [−1.5σ , 1.5σ]
of column standard deviations, normalize the data to zero column

means and column standard deviations one, and finally, create 70/30

train and test splits. In order to retain a balanced data distribution

across federated workers, we perform this splitting via a uniformly

sampled selection-matrix-multiply. Finally, we train a regression or

neural network model on the train split, evaluate its performance

on the test split, and write out the model and metadata.

Scalability: Figure 8 shows the total execution time of ML

pipeline P2 on a synthetic federated dataset of 10
6
observations that

map—after encoding—to a 1M×1,050 feature matrix. As the number

of workers increases, we again see good improvements compared

to local operations. The federated transformencode, pre-processing

like outlier removal and normalization, train/test splitting, and LM

training nicely map to federated linear algebra operations. P2_LM

and P2_FNN differ only in the used training algorithm. The larger

compute workload of P2_FNN then explains the better scalability

with more workers. For P2_LM, already a single worker shows im-

provements over local execution because of the additional resources

of a coordinator and one worker compared to a single node, which

can be used for garbage collection and JIT compilation. Finally, we

also partially support the remaining ML pipelines of our use cases

in a federated environment. These pipelines include pre-processing

steps like missing value imputation, PCA, correlation matrices,

density-based clustering, as well as the task-parallel training of

multiple GMM (Gaussian Mixture Model) instances.

7 RELATEDWORK
The ExDRa system is related to existing work of data analysis on

raw data, federated learning systems, as well as model and pipeline

management. We combine and extend techniques of these areas for

exploratory data science workflows on federated raw data.

Data Analysis on Raw Data: Query processing on raw data

[3, 35] processes SQL queries directly on raw input files in order

to avoid expensive data loading in the context of exploratory anal-

ysis. To alleviate repeated parsing and data access overhead, for

example, positional maps and attribute caches are transparently

build and exploited during repeated analysis of the same files [3].

Furthermore, code generation techniques are used to specialize the

query engine for heterogeneous input formats [47]. Orthogonal to

existing work, we aim to support data pre-processing pipelines and

linear algebra programs on such raw data sources. This research

direction is also related to different categories of ML systems. First,

there are ML systems with good support for multi-modal input

features such as DeepDive [78], Overton [70], and Ludwig [64];

systems for more complex feature extraction, and pre-processing

like TFX [7] and SageMaker [18]; and systems for data cleaning

like HoloClean [34, 72], AlphaClean [51], BoostClean [50], and

CPClean [46]. Second, there are ML systems that exploit materi-

alized intermediates for reuse and debugging such as Columbus

[99], Helix [93], Collaborative Optimizer [23], and Mistique [87]. In

contrast to these two categories, we provide system infrastructure

for executing and optimizing ML pipelines on federated raw data.

Federated Learning: Privacy-preserving ML is a very active

research area with major challenges and opportunities. A major

direction is the use and specialization of privacy-enhancing tech-

nologies such as differential privacy [40], fully homomorphic en-

cryption (FHE) [2, 29, 30], and secure multi-party computation

(MPC) [63], where FHE and MPC are often only used for inference,

that is, scoring private user input [19, 30, 44]. In contrast, federated

learning broadly aims to learn ML models without central data con-

solidation and exposing raw input data. Early work on federated or

decentralized learning [9, 56, 60, 61] adopted an architecture simi-

lar to traditional parameter servers [20, 41, 53, 79], but augmented

this architecture by additional techniques such as client sampling

[60], agent-based, fault tolerant, decentralized aggregation [9, 10],

peer-to-peer gradient and model exchange [56, 57, 90], and meta

learning for federated, private recommendation models [58, 65]. A

major challenge for federated parameter servers is statistical (and

hardware) heterogeneity [45, 54] that can negatively affect con-

vergence [12]. Recent techniques include reducing variance [82],

selecting relevant subsets of data [85], tolerating partial client work

[55], partitioning the client population into independent, congruent

groups [74], and adaptive optimization at the server with standard

SGD at the clients [71]. For such algorithmic improvements, also

new benchmarks such as LEAF [12] are emerging.

Federated Learning Systems: In contrast to algorithmic work

on federated learning, infrastructure for federated learning is rel-

atively sparse, and includes agent-based federated (parameter)

servers [9], and systems that rely on privacy-enhancing technolo-

gies tailored for specific algorithms such as tree-based models [92].

A careful reader might wonder if work on in-DBMS ML [24, 39, 59]

could be combined with traditional federated query processing

[43] through wrappers, external tables, or SparkSQL’s data sources

[5]. While conceptually possible, the wrappers would need to al-

low the push down of partial linear algebra operations, and the

federated sources would also require a linear algebra and param-

eter server runtime. More relevant to federated learning, Tensor-

Flow Federated (TFF) [31, 45] recently provides high-level prim-

itives such as tff.federated_broadcast, tff.federated_map,
and tff.federated_mean for composing federated computation.

This TFF API shares design aspects with our federated backend (at

a higher level than our federated requests), but is at a much lower

level than linear algebra programs, focuses primarily on simulat-

ing federated environments, and an open-source federated device

runtime does not exist yet. In contrast to such dedicated APIs, we

aim to support federated data preparation, parameter servers, and

linear algebra programs via automatic plan generation, and thus,

a wide variety of existing algorithms and higher-level primitives

without the need for users to implement federated learning.

Model and Pipeline Management: The model and pipeline

management components in ExDRa are related to several subareas.

First, ML pipeline management in Columbus [99], KeystoneML [81],

and TuPaQ [80] similarly aim to remove unnecessary redundancy

in feature selection and hyper-parameter tuning workloads. Sec-

ond, recent frameworks like MLflow [14, 96] and ModelDB [88]

also provide catalogs and repositories of pipelines and models,

experiment tracking, and related provenance information. Third,

AutoML tools like Auto-WEKA [83], Auto-WEKA 2.0 [48], Auto-

sklearn [26], TPOT [67], Alpine Meadow [77], Amazon SageMaker

Autopilot [18], and other AutoML cloud services (e.g., Azure ML,

Google AutoML) [100] provide means of pipeline recommendations.

Beyond state-of-the-art, ExDRa focuses on data science workflows

on federated raw data, and pipeline recommendations that offer

good accuracy-runtime tradeoffs in this challenging context.

8 CONCLUSIONS
To summarize, we gave an overview of the ExDRa system for ex-

ploratory data science on federated raw data. We described use

cases, deployment and privacy models, the system architecture,

selected features of SystemDS’ federated runtime backend, and

promising experimental results. Compared to local ML training,

federated linear algebra programs and federated parameter servers

exhibit only small to moderate overhead (and can even improve the

runtime). At the same time, federated learning preserves the pri-

vacy of federated raw data via practical means such as aggregates

and encrypted communication. In conclusion, federated learning

shows great promise for broad applicability in practice. The auto-

matic generation of federated execution plans then allows reusing

and deploying a wide variety of ML algorithms, as well as data

preparation and model debugging techniques in such federated

environments. However, a deployment in a multi-company context

further requires a trusted system infrastructure, and means of gen-

erating and verifying federated execution plans under awareness of

privacy constraints. Beyond this hardening of the infrastructure, we

see many opportunities for future work, especially regarding ML

pipelines on federated raw data, a fine-grained spectrum of privacy

enhancing technologies with different tradeoffs, and self-balancing

incentives for participating federated sites.

ACKNOWLEDGEMENTS
The ExDRa project is funded through the bilateral program “ICT of

the Future – Smart Data Economy" by the German Federal Ministry

for Economic Affairs and Energy (BMWi, 01MD19002), and the

Austrian Federal Ministry for Climate Action, Environment, Energy,

Mobility, Innovation and Technology (BMK, 873838). Additional

contributions by Sebastian Benjamin Wrede were made within

the Know-Center GmbH, DDAI COMET module (funded by BMK,

BMDW, FFG, SFG, and industrial partners). Furthermore, we also

thank Arnab Phani, David Weissteiner, and Valentin Leutgeb for

their valuable contributions to the implementation of SystemDS’

federated backend, as well as our anonymous reviewers for their

constructive criticism, comments, and suggestions.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon

Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Mar-

tin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for

Large-Scale Machine Learning. In OSDI. 265–283.
[2] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. 2018. A Survey

on Homomorphic Encryption Schemes: Theory and Implementation. ACM
Comput. Surv. 51, 4 (2018), 79:1–79:35.

[3] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anas-

tasia Ailamaki. 2012. NoDB: Efficient Query Execution on Raw Data Files. In

SIGMOD. 241–252.
[4] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Frey-

tag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker

Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax,

Sebastian Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. 2014.

The Stratosphere platform for big data analytics. VLDB J. 23, 6 (2014), 939–964.
[5] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and

Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In SIGMOD.
1383–1394.

[6] Yannis Bakos, Hanna Halaburda, and Christoph Müller-Bloch. 2021. When

permissioned blockchains deliver more decentralization than permissionless.

Commun. ACM 64, 2 (2021), 20–22.

[7] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria

Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo,

Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti

Ramesh, Sudip Roy, Steven EuijongWhang, MartinWicke, JarekWilkiewicz, Xin

Zhang, and Martin Zinkevich. 2017. TFX: A TensorFlow-Based Production-Scale

Machine Learning Platform. In SIGKDD. 1387–1395.
[8] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert

Ginthör, Kevin Innerebner, Florijan Klezin, Stefanie N. Lindstaedt, Arnab Phani,

Benjamin Rath, Berthold Reinwald, Shafaq Siddiqui, and Sebastian Benjamin

Wrede. 2020. SystemDS: A Declarative Machine Learning System for the End-

to-End Data Science Lifecycle. In CIDR.
[9] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi,

Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and

Jason Roselander. 2019. Towards Federated Learning at Scale: System Design.

In MLSys.
[10] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.

Practical Secure Aggregation for Privacy-Preserving Machine Learning. In CCS.
1175–1191.

[11] Brendan Burns, Brian Grant, David Oppenheimer, Eric A. Brewer, and John

Wilkes. 2016. Borg, Omega, and Kubernetes. Commun. ACM 59, 5 (2016), 50–57.

[12] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konecný, H. Brendan McMahan,

Virginia Smith, and Ameet Talwalkar. 2018. LEAF: A Benchmark for Federated

Settings. CoRR abs/1812.01097 (2018).

[13] José Cambronero, John K. Feser, Micah J. Smith, and Samuel Madden. 2017.

Query Optimization for Dynamic Imputation. PVLDB 10, 11 (2017), 1310–1321.

[14] Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi,

Sue Ann Hong, Andy Konwinski, Clemens Mewald, Siddharth Murching, Tomas

Nykodym, Paul Ogilvie, Mani Parkhe, Avesh Singh, Fen Xie, Matei Zaharia,

Richard Zang, Juntai Zheng, and Corey Zumar. 2020. Developments in MLflow:

A System to Accelerate the Machine Learning Lifecycle. In DEEM@SIGMOD.
5:1–5:4.

[15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible

and Efficient Machine Learning Library for Heterogeneous Distributed Systems.

CoRR abs/1512.01274 (2015).

[16] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and Caleb

Welton. 2009. MAD Skills: New Analysis Practices for Big Data. PVLDB 2, 2

(2009), 1481–1492.

[17] Richard Craib, Geoffrey Bradway, Xander Dunnwith, and Joey Krug. 2017. Nu-

meraire: A Cryptographic Token for Coordinating Machine Intelligence and

Preventing Overfitting. https://numer.ai/

[18] Piali Das, Nikita Ivkin, Tanya Bansal, Laurence Rouesnel, Philip Gautier, Zo-

har S. Karnin, Leo Dirac, Lakshmi Ramakrishnan, Andre Perunicic, Iaroslav

Shcherbatyi, Wilton Wu, Aida Zolic, Huibin Shen, Amr Ahmed, Fela Winkel-

molen, Miroslav Miladinovic, Cédric Archembeau, Alex Tang, Bhaskar Dutt,

Patricia Grao, and Kumar Venkateswar. 2020. Amazon SageMaker Autopilot: a

white box AutoML solution at scale. In DEEM@SIGMOD. 2:1–2:7.
[19] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E. Lauter, Saeed

Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: an optimizing

compiler for fully-homomorphic neural-network inferencing. In PLDI. 142–156.
[20] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.

Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker,

Ke Yang, and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In

NeurIPS. 1232–1240.
[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.

In SOSP. 205–220.
[22] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael

Stonebraker, Ahmed K. Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad

Ouzzani, and Nan Tang. 2017. The Data Civilizer System. In CIDR.
[23] Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Ziawasch Abedjan, Tilmann

Rabl, and Volker Markl. 2020. Optimizing Machine Learning Workloads in

Collaborative Environments. In SIGMOD. 1701–1716.
[24] Joseph Vinish D’silva, Florestan De Moor, and Bettina Kemme. 2018. AIDA -

Abstraction for Advanced In-Database Analytics. PVLDB 11, 11 (2018), 1400–

1413.

[25] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and Berthold

Reinwald. 2018. Compressed linear algebra for large-scale machine learning.

VLDB J. 27, 5 (2018), 719–744.
[26] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,

Manuel Blum, and Frank Hutter. 2019. Auto-sklearn: Efficient and Robust

Automated Machine Learning. In Automated Machine Learning. 113–134.
[27] Food and Agriculture Organization of the United Nations. 2017. World fertilizer

trends and outlook to 2020, Summary Report. http://www.fao.org/3/a-i6895e.pdf.

[28] Michael Fruhwirth, Michael Rachinger, and Emina Prlja. 2020. Discovering

Business Models of Data Marketplaces. In HICSS. 1–10.
[29] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In STOC.

169–178.

[30] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael

Naehrig, and John Wernsing. 2016. CryptoNets: Applying Neural Networks to

Encrypted Data with High Throughput and Accuracy. In ICML, Vol. 48. 201–210.
[31] Google. 2020. TensorFlow Federated: Machine Learning on Decentralized Data .

https://www.tensorflow.org/federated

[32] Philipp M. Grulich, Sebastian Breß, Steffen Zeuch, Jonas Traub, Janis von Ble-

ichert, Zongxiong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly: Efficient

Stream Processing Through Adaptive Query Compilation. In SIGMOD. 2487–
2503.

[33] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2020.

Building High Throughput Permissioned Blockchain Fabrics: Challenges and

Opportunities. PVLDB 13, 12 (2020), 3441–3444.

[34] Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, and Theodoros Rekatsinas. 2019.

HoloDetect: Few-Shot Learning for Error Detection. In SIGMOD. 829–846.
[35] Stratos Idreos, Ioannis Alagiannis, Ryan Johnson, and Anastasia Ailamaki. 2011.

Here are my Data Files. Here are my Queries. Where are my Results?. In CIDR.
57–68.

[36] Stratos Idreos, Martin L. Kersten, and StefanManegold. 2007. Database Cracking.

In CIDR. 68–78.
[37] Stratos Idreos, Stefan Manegold, and Goetz Graefe. 2012. Adaptive indexing in

modern database kernels. In EDBT. 566–569.
[38] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves. 2010.

An architecture for recycling intermediates in a column-store. ACM Trans.
Database Syst. 35, 4 (2010), 24:1–24:43.

[39] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris

Jermaine, and Zekai J. Gao. 2019. Declarative Recursive Computation on an

RDBMS. PVLDB 12, 7 (2019), 822–835.

[40] Zhanglong Ji, Zachary Chase Lipton, and Charles Elkan. 2014. Differential

Privacy and Machine Learning: a Survey and Review. CoRR abs/1412.7584

(2014).

[41] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. 2017. Heterogeneity-aware

Distributed Parameter Servers. In SIGMOD. 463–478.
[42] Michael Jordan. 2018. SysML: Perspectives and Challenges. https://www.

youtube.com/watch?v=4inIBmY8dQI MLSys Keynote.

[43] Vanja Josifovski, Peter M. Schwarz, Laura M. Haas, and Eileen Tien Lin. 2002.

Garlic: a new flavor of federated query processing for DB2. In SIGMOD. 524–532.
[44] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In

USENIX Security Symposium. 1651–1669.

[45] Peter Kairouz, Brendan McMahan, and Virginia Smith. 2020. Federated Learn-

ing Tutorial. In NeurIPS. https://slideslive.com/38935813/federated-learning-

tutorial

[46] Bojan Karlas, Peng Li, Renzhi Wu, Nezihe, Merve Guerel, Xu Chu, Wentao Wu,

and Ce Zhang. 2021. Nearest Neighbor Classifiers over Incomplete Information:

From Certain Answers to Certain Predictions. PVLDB (2021).

[47] Manos Karpathiotakis, Ioannis Alagiannis, and Anastasia Ailamaki. 2016. Fast

Queries Over Heterogeneous Data Through Engine Customization. PVLDB 9,

12 (2016), 972–983.

[48] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-

Brown. 2017. Auto-WEKA 2.0: Automatic model selection and hyperparameter

optimization in WEKA. J. Mach. Learn. Res. 18 (2017), 25:1–25:5.
[49] Ahmed Koubaa and Zoltan Koran. 1995. Measure of the internal bond strength

of paper/board. Tappi Journal 78 (1995).
[50] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, and Eugene Wu. 2017.

BoostClean: Automated Error Detection and Repair for Machine Learning. CoRR
abs/1711.01299 (2017).

[51] Sanjay Krishnan and Eugene Wu. 2019. AlphaClean: Automatic Generation of

Data Cleaning Pipelines. CoRR abs/1904.11827 (2019).

[52] Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey F. Naughton,

and Jignesh M. Patel. 2019. Tuple-oriented Compression for Large-scale Mini-

batch Stochastic Gradient Descent. In SIGMOD. 1517–1534.
[53] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,

Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling

Distributed Machine Learning with the Parameter Server. In OSDI. 583–598.
[54] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated

Learning: Challenges, Methods, and Future Directions. IEEE Signal Process. Mag.
37, 3 (2020), 50–60.

[55] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,

and Virginia Smith. 2020. Federated Optimization in Heterogeneous Networks.

In MLSys.
[56] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.

2017. Can Decentralized Algorithms Outperform Centralized Algorithms? A

Case Study for Decentralized Parallel Stochastic Gradient Descent. In NeurIPS.
5330–5340.

[57] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. 2018. Asynchronous Decentral-

ized Parallel Stochastic Gradient Descent. In ICML. 3049–3058.
[58] Yujie Lin, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Dongxiao Yu, Jun Ma,

Maarten de Rijke, and Xiuzhen Cheng. 2020. Meta Matrix Factorization for

Federated Rating Predictions. In SIGIR. 981–990.
[59] Shangyu Luo, Zekai J. Gao, Michael N. Gubanov, Luis Leopoldo Perez, and

Christopher M. Jermaine. 2017. Scalable Linear Algebra on a Relational Database

System. In ICDE. 523–534.
[60] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-

works from Decentralized Data. In AISTATS. 1273–1282.
[61] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas.

2016. Federated Learning of Deep Networks using Model Averaging. CoRR
abs/1602.05629 (2016).

[62] C. Mohan. 2019. State of Public and Private Blockchains: Myths and Reality. In

SIGMOD. 404–411.
[63] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scal-

able Privacy-Preserving Machine Learning. In IEEE Symposium on Security and
Privacy. 19–38.

[64] Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. 2019. Ludwig: a type-

based declarative deep learning toolbox. CoRR abs/1909.07930 (2019).

[65] Peter Müllner, Dominik Kowald, and Elisabeth Lex. 2021. Robustness of Meta

Matrix Factorization Against Strict Privacy Constraints. CoRR abs/2101.06927

(2021).

[66] Milos Nikolic, Mohammed Elseidy, and Christoph Koch. 2014. LINVIEW: incre-

mental view maintenance for complex analytical queries. In SIGMOD. 253–264.
[67] Randal S. Olson and Jason H. Moore. 2019. TPOT: A Tree-Based Pipeline

Optimization Tool for Automating Machine Learning. In Automated Machine
Learning. 151–160.

[68] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau,

Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:

Machine Learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.

https://numer.ai/
http://www.fao.org/3/a-i6895e.pdf
https://www.tensorflow.org/federated
https://www.youtube.com/watch?v=4inIBmY8dQI
https://www.youtube.com/watch?v=4inIBmY8dQI
https://slideslive.com/38935813/federated-learning-tutorial
https://slideslive.com/38935813/federated-learning-tutorial

[69] Arnab Phani, Benjamin Rath, and Matthias Boehm. 2021. LIMA: Fine-grained

Lineage Tracing and Reuse in Machine Learning Systems. In SIGMOD.
[70] Christopher Ré et al. 2020. Overton: A Data System for Monitoring and Improv-

ing Machine-Learned Products. In CIDR.
[71] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,

Jakub Konecný, Sanjiv Kumar, and H. Brendan McMahan. 2020. Adaptive

Federated Optimization. CoRR abs/2003.00295 (2020).

[72] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-

Clean: Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017),

1190–1201.

[73] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms

and Task Scheduling. In SCIPY.
[74] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. 2019. Clustered Fed-

erated Learning: Model-Agnostic Distributed Multi-Task Optimization under

Privacy Constraints. CoRR abs/1910.01991 (2019).

[75] Sebastian Schelter. 2020. "Amnesia" - Machine Learning Models That Can Forget

User Data Very Fast. In CIDR.
[76] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar

Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan Den-

nison. 2015. Hidden Technical Debt in Machine Learning Systems. In NeurIPS.
2503–2511.

[77] Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann,

Philipp Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal, and Tim Kraska.

2019. Democratizing Data Science through Interactive Curation of ML Pipelines.

In SIGMOD. 1171–1188.
[78] Jaeho Shin, SenWu, FeiranWang, Christopher De Sa, Ce Zhang, and Christopher

Ré. 2015. Incremental Knowledge Base Construction Using DeepDive. PVLDB
8, 11 (2015), 1310–1321.

[79] Alexander J. Smola and Shravan M. Narayanamurthy. 2010. An Architecture

for Parallel Topic Models. PVLDB 3, 1 (2010), 703–710.

[80] Evan R. Sparks, Ameet Talwalkar, Daniel Haas, Michael J. Franklin, Michael I.

Jordan, and Tim Kraska. 2015. Automating model search for large scale machine

learning. In SoCC. 368–380.
[81] Evan R. Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J. Franklin,

and Benjamin Recht. 2017. KeystoneML: Optimizing Pipelines for Large-Scale

Advanced Analytics. In ICDE. 535–546.
[82] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. 2018. D

2
: Decen-

tralized Training over Decentralized Data. In ICML (Proceedings of Machine
Learning Research), Vol. 80. 4855–4863.

[83] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.

Auto-WEKA: combined selection and hyperparameter optimization of classifi-

cation algorithms. In SIGKDD. 847–855.
[84] Yuanyuan Tian, Fatma Özcan, Tao Zou, Romulo Goncalves, and Hamid Pirahesh.

2016. Building a HybridWarehouse: Efficient Joins between Data Stored in HDFS

and Enterprise Warehouse. ACM Trans. Database Syst. 41, 4 (2016), 21:1–21:38.
[85] Tiffany Tuor, Shiqiang Wang, Bong Jun Ko, Changchang Liu, and Kin K. Leung.

2020. Overcoming Noisy and Irrelevant Data in Federated Learning. CoRR
(2020).

[86] Stef van Buuren and Karin Groothuis-Oudshoorn. 2011. mice: Multivariate

Imputation by Chained Equations in R. Journal of Statistical Software, Articles
45, 3 (2011), 1–67.

[87] Manasi Vartak, Joana M. F. da Trindade, Samuel Madden, and Matei Zaharia.

2018. MISTIQUE: A System to Store and Query Model Intermediates for Model

Diagnosis. In SIGMOD. 1285–1300.
[88] Manasi Vartak and Samuel Madden. 2018. MODELDB: Opportunities and

Challenges in Managing Machine Learning Models. IEEE Data Eng. Bull. 41, 4
(2018), 16–25.

[89] Ashish Vulimiri, Carlo Curino, Brighten Godfrey, Konstantinos Karanasos, and

George Varghese. 2015. WANalytics: Analytics for a Geo-Distributed Data-

Intensive World. In CIDR.
[90] Pijika Watcharapichat, Victoria Lopez Morales, Raul Castro Fernandez, and

Peter R. Pietzuch. 2016. Ako: Decentralised Deep Learning with Partial Gradient

Exchange. In SoCC. 84–97.
[91] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In

SciPy. 56–61.
[92] Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi.

2020. Privacy Preserving Vertical Federated Learning for Tree-based Models.

PVLDB 13, 11 (2020), 2090–2103.

[93] Doris Xin, Litian Ma, Jialin Liu, Stephen Macke, Shuchen Song, and Aditya G.

Parameswaran. 2018. Helix: Accelerating Human-in-the-loop Machine Learning.

PVLDB 11, 12 (2018), 1958–1961.

[94] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya G.

Parameswaran. 2018. Helix: Holistic Optimization for Accelerating Iterative

Machine Learning. PVLDB 12, 4 (2018), 446–460.

[95] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated

Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol.
10, 2 (2019), 12:1–12:19.

[96] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong,

Andy Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani

Parkhe, Fen Xie, and Corey Zumar. 2018. Accelerating the Machine Learning

Lifecycle with MLflow. IEEE Data Eng. Bull. 41, 4 (2018), 39–45.
[97] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory

Cluster Computing. In NSDI. 15–28.
[98] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavri-

ilidis, Dimitrios Giouroukis, Philipp M. Grulich, Sebastian Breß, Jonas Traub,

and Volker Markl. 2020. The NebulaStream Platform for Data and Application

Management in the Internet of Things. In CIDR.
[99] Ce Zhang, Arun Kumar, and Christopher Ré. 2014. Materialization Optimizations

for Feature Selection Workloads. In SIGMOD. 265–276.
[100] Hantian Zhang, Luyuan Zeng, Wentao Wu, and Ce Zhang. 2017. How Good

Are Machine Learning Clouds for Binary Classification with Good Features?

CoRR abs/1707.09562 (2017).

[101] Jingren Zhou, Per-Åke Larson, and Hicham G. Elmongui. 2007. Lazy Mainte-

nance of Materialized Views. In VLDB. 231–242.

	Abstract
	1 Introduction
	2 Use Cases
	2.1 Fertilizer Production
	2.2 Paper Production
	2.3 Enterprise Federated ML

	3 System Architecture
	3.1 Workbench and Pipeline Management
	3.2 Federated ML Runtime
	3.3 Model Management and Experiments
	3.4 Streaming Data Acquisition

	4 Federated Runtime
	4.1 Federated Data and Backend Design
	4.2 Federated Linear Algebra
	4.3 Federated Parameter Server
	4.4 Federated Data Preparation

	5 Towards Deployment in Production
	5.1 Envisioned Deployment: Private Data
	5.2 Other Deployments: Private Models

	6 Experiments
	6.1 Experimental Setup
	6.2 ML Algorithms Performance
	6.3 ML Pipelines Performance

	7 Related Work
	8 Conclusions
	References

