
Optimizing Tensor Computations:
From Applications to Compilation and Runtime Techniques

Matthias Boehm
TU Berlin

Berlin, Germany

Matteo Interlandi
Microsoft GSL

Los Angeles, CA, USA

Chris Jermaine
Rice University

Houston, TX, USA

SIGMOD 2023

Fri Jun 23, 9am – 10.30am

Who We Are

Matthias Boehm
TU Berlin

Berlin, Germany

Chris Jermaine
Rice University

Houston, TX, USA

SystemML → SystemDS

Matteo Interlandi
Microsoft

Los Angeles, CA, USA

SimSQL, MCDB
TRA

Agenda

• A Case for Tensor Computations [15min]

• Selected Applications [35min]
• Query Processing and Data Analytics

• Data Science Lifecycle Tasks

• Simulation and Sampling

• Selected Runtime Backends [35min]
• Tensor Query Processor (TQP)

• Apache SystemML/SystemDS

• Tensor Relational Algebra

A Case for
Tensor Computations

Motivation: A Historic Perspective

• Two Key Drivers of DB Research
• New analysis workloads (NLP, key/value, RDF/graphs,

documents, time series, ML) and applications

• New HW/infrastructure (multi-/many-core, cloud/serverless,
scale-up/out, NUMA/HBM, RDMA, SSD/NVM, FPGA/GPU/ASIC)

• Past: Waves of General-purpose and Specialized Systems
• Goal #1: Avoid boundary crossing ➔ General-purpose

• Goal #2: New workload + Performance ➔ Specialized systems

• Some Examples

System

New Workloads

New HW/Env

RDBMS

OODBMS

OR

XML OLAP

Hybrid HTAP

Docs

JSON
Datatype

RDF/
graphs NLPMR/Spark Time

In-DB alternativesSQL on

Hadoop

ML Systems

Motivation: Tensor Computations

• Present: Narrow Focus (on Mini-batch SGD)
• Increasingly narrow training/inference focus on deep neural networks

(DNN) mini-batch stochastic gradient descent (SGD)

• Parameter servers and similar distribution strategies

• Communication, security, acceleration primitives for narrow focus

• Future: Broader Focus (on General Tensor Computations)
• General linear algebra programs and tensor computations

• Different architectures (parameter servers,
data- & task-task parallel, hybrid, recursive)

• Wide variety of applications and workload characteristics

dense

graph

sparse

compressed

OLAP Queries / Data Frames / ML Systems
DBMS Data Frames ML Systems

Language Abstraction SQL Relational Algebra ++ Linear Algebra ++

Workload Repeated Queries Explorative Operations Iterative Algorithms

Infrastructure Server
(but RAWdb, DuckDB)

Stateless library
(embedded)

Stateless library (embedded,
but Serving)

Optimization Join ordering, rewrites
Phy. op selection
Query compilation

mmchain opt, rewrites
Phy. op selection
Operation fusion/codegen

➔ Increasing Convergence of Optimization and Runtime Techniques

Runtime Scans, large-small joins,
aggregations;
vectorization

Coarse-grained frame
operations

Coarse-grained tensor
operations
vectorization / mini-batches

Variety of value types Increasing number of
specialized value types

Storage Page layouts w/ SMAs
and compression

Arrays, open formats
(e.g., Arrow, Parquet)

Dense / sparse /
compressed blocks

Long-term Benefits

• #1 Simplicity
• Coarse-grained frame/matrix/tensor

data structures and operations

• Reduced system infrastructure complexity
(boundary crossing)

• #2 Reuse of Compiler/Runtime Techniques
• Focused work and reuse of commonly used compiler/runtime techniques

• Generality over hand-crafted specialized systems and algorithms

• #3 Performance and Scalability
• Leverage HW Accelerators and distributed runtime backends
➔ Increasing specialization and rapid evolution

• Homogeneous arrays and simple parallelization strategies

Build Libraries for
Tensor Ops on HW X

once and reuse

Data
ScienceQuery

Processing
Simulation
Sampling

Tensor Computations

Optimizing Compiler / Runtime

Selected Applications
Query Processing and Data Analytics

Data Science Lifecycle Tasks

Simulation and Sampling

[35 min]

Tensor Computation Runtimes

Query Processing and Data Analytics

CPU GPU TPU Mobile Browser

CPU GPU TPU Mobile Browser

Tensor Computation Runtimes

Query Processing and Data Analytics
TQP

[PVLDB’22]

CPU GPU TPU Mobile Browser

Tensor Computation Runtimes

Query Processing and Data Analytics
TQP

[PVLDB’22]

Hummingbird

[OSDI’22]

CPU GPU TPU Mobile Browser

Tensor Computation Runtimes

Query Processing and Data Analytics

Questions:

1. How do we represent

tabular data as tensors?

2. How can we map SQL

operations into tensor

programs?

3. How can we map

traditional ML model into

tensor computations?

TQP

[PVLDB’22]

Hummingbird

[OSDI’22] [PVLDB’21]

Tensor data representation

Dates as 1-d

numeric tensor

Numeric as

1-d tensor

Strings as UTF-8

2-d tensor (N x max_len)

Def Tensor:

A multidimensional

matrix that is a cornerstone

data structure in AI

TQP

[PVLDB’22]

Dates as 1-d

numeric tensor

Numeric as

1-d tensor

Strings as UTF-8

2-d tensor (N x max_len)

Images as 3-d

tensors

Tensor data representation

Def Tensor:

A multidimensional

matrix that is a cornerstone

data structure in AI

TQP

[CIDR’23]

Numeric as

1-d tensor

Tensor data representation

Dates as 1-d

numeric tensor

Strings as UTF-8

2-d tensor (N x max_len)

Images as 3-d

tensors

receipt

audio as 2-d

tensorsDef Tensor:

A multidimensional

matrix that is a cornerstone

data structure in AI

TQP

[CIDR’23]

Implementing SQL operators using tensor ops

Opt 1:

Opt 2:

TQP

[PVLDB’22]

Hummingbird
[OSDI’20]

• Traditional ML models are composed by: featurizers and ML models

• Each featurizer is defined by an algorithm
• e.g., compute the one-hot encoded version of the input feature

• Each trained model is defined by a prediction function
• Prediction functions can be either algebraic (e.g., linear regression) or

algorithmic (e.g., decision tree models)
• Algebraic models are easy to translate: just implement the same formula in

tensor algebra!

Traditional ML: Prediction Serving

Translating Trees

𝕩3 > 5.1

𝕩 ∈ ℝ6

T

𝕩3 > 2.410

𝕩1 > 1.8 𝕩5 > 0.4

20 30

5040

F

𝑛1

𝑛2 𝑛4

𝑛3

𝑙1

𝑙2 𝑙3

𝑙4 𝑙5

Internal node: 𝑛∗
Leaf node: 𝑙∗

Hummingbird
[OSDI’20]

𝕩1

𝕩2

𝕩3

𝕩4

𝕩5

𝕩6

𝑛1

+1
𝑏 =

−5.1
−1.8
−2.4
−0.4

+1

+1

+1

+1

𝑛2

𝑛3

𝑛4

𝑙1

𝑙2

𝑙3

𝑙4

𝑙5

𝑙𝑣 =

10
20
⋮
50

𝑛∗, 𝑙∗ ∈ [0,1]

𝕩3 > 5.1

𝕩 ∈ ℝ6

T

𝕩3 > 2.410

𝕩1 > 1.8 𝕩5 > 0.4

20 30

5040

F

𝑛1

𝑛2 𝑛4

𝑛3

𝑙1

𝑙2 𝑙3

𝑙4 𝑙5

Hummingbird
[OSDI’20]Translating Trees

𝕩1

𝕩2

𝕩3

𝕩4

𝕩5

𝕩6

𝑛1

+1
𝑏 =

−5.1
−1.8
−2.4
−0.4

+1

+1

+1

+1

𝑛2

𝑛3

𝑛4

𝑙1

𝑙2

𝑙3

𝑙4

𝑙5

𝑙𝑣 =

10
20
⋮
50

𝑛∗, 𝑙∗ ∈ [0,1]

𝕩3 > 5.1

𝕩 ∈ ℝ6

T

𝕩3 > 2.410

𝕩1 > 1.8 𝕩5 > 0.4

20 30

5040

F

𝑛1

𝑛2 𝑛4

𝑛3

𝑙1

𝑙2 𝑙3

𝑙4 𝑙5

Evaluate all conditions together

Hummingbird
[OSDI’20]Translating Trees

𝕩1

𝕩2

𝕩3

𝕩4

𝕩5

𝕩6

𝑛1

+1
𝑏 =

−5.1
−1.8
−2.4
−0.4

+1

+1

+1

+1

𝑛2

𝑛3

𝑛4

𝑙1

𝑙2

𝑙3

𝑙4

𝑙5

𝑙𝑣 =

10
20
⋮
50

𝑛∗, 𝑙∗ ∈ [0,1]

𝕩3 > 5.1

𝕩 ∈ ℝ6

T

𝕩3 > 2.410

𝕩1 > 1.8 𝕩5 > 0.4

20 30

5040

F

𝑛1

𝑛2 𝑛4

𝑛3

𝑙1

𝑙2 𝑙3

𝑙4 𝑙5

Evaluate all conditions together

Evaluate all paths together

Hummingbird
[OSDI’20]Translating Trees

DS Lifecycle: Data Cleaning & Deduplication

• Key Observation
• State-of-the-art data cleaning based on ML (ML for DI, DI for ML)

• Examples: Data extraction, schema alignment, entity resolution, data validation,
data cleaning, outlier detection, missing value imputation, semantic type detection,
data augmentation, feature selection, feature engineering, feature transformations

• Outliers

• Winsorizing

• Outlier by standard dev / quantiles

• Missing Value Imputation

• Imputation by mean / mode [for MCAR]

• Imputation by mice() [for MAR]

[Xin Luna Dong, Theodoros Rekatsinas:
Data Integration and Machine Learning:

A Natural Synergy. SIGMOD 2018]

compute quantiles for lower and upper
ql = quantile(X, 0.05);
qu = quantile(X, 0.95);
replace values outside [ql,qu] w/ ql and qu
Y = min(qu, max(ql, X));

Train
X, y

Score
[Jose Cambronero, John K. Feser, Micah
Smith, Samuel Madden: Query Optimization
for Dynamic Imputation. PVLDB 2017]

Categorical attr. → classification
Numeric attr. → regression

DS Lifecycle: Data Cleaning & Deduplication, cont.

• Entity Resolution Blocking
• Compute word/attribute embeddings + tuple embeddings

• Locality-Sensitive Hashing (LSH) for blocking

• K hash functions h(t) → k-dim hash-code

• L hash tables,
each k hash functions

• Deep Learning for ER
• Automatic representation learning

from text (avoid feature engineering)

• Leverage pre-trained word embeddings for semantics
(no syntactic limitations)

• Examples: DeepER, Magellan

v[t1]=[0.45,0.8,0.85]
v[t2]=[0.4,0.85,0.75]

h1=[-1, 1,1], h2=[1,1, 1],
h3=[-1,-1,1], h4=[-1,1,-1],

[1.2,2.1,-0.4,-0.5]
[1.2,2.0,-0.5,-0.3]

[1,1,-1,-1]
[1,1,-1,-1]

V %*% H

[Muhammad Ebraheem et al:
Distributed Representations of Tuples

for Entity Resolution. PVLDB 2018]

[12]
[12]

Hash
bucket

[Saravanan Thirumuruganathan et al.
Deep Learning for Blocking in Entity

Matching […]. PVLDB 2021]

Distributed Tuple Repr.

Abs Difference /
Hadamard Prod.

DS Lifecycle: Data Cleaning Pipelines
• Automatic Generation of Cleaning Pipelines

• Library of robust, parameterized data cleaning primitives

• Enumeration of DAGs of primitives & hyper-parameter optimization (GA, HB)

[SAGA @ SIGMOD’24a]

P1: gmm → imputeFD → mergeDup → delML Pn: outlierBySd→ mice → delDup → voting

LPn

PP1

LP2LP1

PPn PPnPPnPP1

O

PP1

…

…

……

Outlier Detection → MVI → Deduplication → Resolve Mislabels

Debugging

University Country

TU Graz Austria

TU Graz Austria

TU Graz Germany

IIT India

IIT IIT

IIT Pakistan

IIT India

SIBA Pakistan

SIBA null

SIBA null

University Country

TU Graz Austria

TU Graz Austria

TU Graz Austria

IIT India

IIT India

IIT India

IIT India

SIBA Pakistan

SIBA Pakistan

SIBA Pakistan

A B C D

0.77 0.80 1 1

0.96 0.12 1 1

0.66 0.09 null 1

0.23 0.04 17 1

0.91 0.02 17 null

0.21 0.38 17 1

0.31 null 17 1

0.75 0.21 20 1

null null 20 1

0.19 0.61 20 1

0.64 0.31 20 1

A B C D

0.77 0.80 1 1

0.96 0.12 1 1

0.66 0.09 17 1

0.23 0.04 17 1

0.91 0.02 17 1

0.21 0.38 17 1

0.31 0.29 17 1

0.75 0.21 20 1

0.41 0.24 20 1

0.19 0.61 20 1

0.64 0.31 20 1

Dirty Data After imputeFD(0.5) After MICE

Data
Samples

Target
App

Dirty Data

Rules/Objectives

Top-k
Pipelines

Data- and Task-parallel
ComputationLogical

Physical

Other Systems:
BoostClean,
HoloClean,
Raha-Baran,
Learn2Clean,
DiffPrep

DS Lifecycle: Data Augmentation

• Data Augmentation Overview
• Complex ML models / deep NNs need lots of

labeled data to avoid overfitting ➔ expensive

• Augment training data by synthetic labeled data

• #1: Movement/selection
(translation, rotation, reflection, cropping)

• #2: Distortions (stretching, shearing,
lens distortions, color, mixup of images)

➔ Clean mapping to linear algebra operations

• Effects of Data Augmentation
• #1 Regularization for reduced generalization error, not always training error

• #2 Invariance increase by averaging features of augmented data points

➔ Data Augmentation as a Kernel

• Kernel metric for augmentation selection

• Affine transforms on approx. kernel features

[Tri Dao, Albert Gu, Alexander Ratner, Virginia
Smith, Chris De Sa, Christopher Ré: A Kernel Theory

of Modern Data Augmentation. ICML 2019]

[Alex Krizhevsky, Ilya Sutskever, Geoffrey E.
Hinton: ImageNet Classification with Deep

Convolutional Neural Networks. NIPS 2012]
AlexNet

DS Lifecycle: Graph Processing

• Connected Components
• Compute connected

components (subgraphs)

• Vertex-centric processing

• Propagate max(current, msgs)
if != current to neighbors, terminate if no msgs

• Connected Components
in Linear Algebra

• Other Examples
• Page Rank, Shortest Paths

1
2

4
3

5

7 6

Step 0
4

4
4

3

7

7 7

Step 1 4
4

4
4

7

7 7

Step 2 Step 3
converged

initialize state with vertex ids
 c = seq(1,nrow(G));
 diff = Inf; iter = 1;
 # iterative computation of connected components
 while(diff > 0 & (maxi==0 | iter<=maxi)) {
 u = max(rowMaxs(G * t(c)), c);
 diff = sum(u != c)
 c = u; # update assignment
 iter = iter + 1;
 }

[[SIGMOD’10,
SIGMOD’20 Test of Time]

DS Lifecycle: Training Decision Trees

• Input: X (recoded/binned)

• Main Algorithm

• Output:
linearized
tree

X2 = encode(X);
while(length(queue) > 0) {
 node0 = remove(queue, 1);
 [...] = findBestSplit(X2, ...)
 if(validSplit)
 M[, 2*nID-1:2*nID] <- (f,v);
 else
 M[,2*nID] = labelLeaf(…);
 putInQueueCond(ILeft);
 putInQueueCond(IRight); }

Task-parallel
over features

Optional value
sampling O(log m)

Vectorized <= split
evaluation (matmult)

Vectorized
information gain
computation

1 0 0 0 1 0 0
0 0 1 0 0 1 0
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 1 0 0 0 0 1
1 0 0 1 0 0 0
0 1 0 0 1 0 0
1 0 0 0 0 0 1
0 0 1 0 0 1 0
0 0 1 0 0 0 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1

Feature
Matrix X2

0 1 1 1
0 0 1 1
0 1 1 1
1 1 1 1
1 1 1 1
0 0 1 1
0 0 0 1
1 1 1 1
0 1 1 1
0 0 0 1
0 0 1 1
0 0 0 1

DS Lifecycle: Model Debugging

• Problem Formulation
• Intuitive slice scoring function

• Exact top-k slice finding

• 𝑆 ≥ 𝜎 ∧ 𝑠𝑐 𝑆 > 0

• 𝛼 ∈ (0,1]

• Properties & Pruning
• Monotonicity of slice sizes, errors

• Upper bound sizes/errors/scores
→ pruning & termination

• Linear-Algebra-based Slice Finding
• Recoded matrix X, error vector e

• Vectorized implementation in linear algebra
(join & eval via sparse-sparse matrix multiply per lattice level)

• Local and distributed task/data-parallel execution

[Credit: sliceline,
Silicon Valley, HBO]

𝑠𝑐 = 𝛼
ҧ𝑒(𝑆)

ҧ𝑒(𝑋)
− 1 − 1 − 𝛼

𝑋

𝑆
− 1

= 𝛼
𝑋

𝑆
⋅
σ𝑖=1
|𝑆|

𝑒𝑠𝑖

σ
𝑖=1
|𝑋|

𝑒𝑖
− 1 − 1 − 𝛼

𝑋

𝑆
− 1

slice error slice size

[SliceLine @ SIGMOD’21c]

Fairness and Explainability

• Fairness Problem Formulation
• A fairness specification given by a triplet (g, f, 𝜀) induces

(|g(D)|choose 2) fairness constraints on pairs of groups

• A fairness specification is satisfied by a classifier ℎ on 𝐷 iff all
induced fairness constraints are satisfied, i.e., ∀gi,gj ∈ g(D), |f(h,gi)−f(h,gj)| ≤ 𝜀

• Unconstrained
optimization problem

• Explainability via LIME

• Sample perturbations of prediction input
(e.g., hide parts of image, attribute values)

• Locally weighted regression

[H. Zhang et al: OmniFair: A Declarative
System for Model-Agnostic Group Fairness in

Machine Learning, SIGMOD 2021]

max accuracy
s.t. fairness

max accuracy
+ fairness

[Marco Túlio Ribeiro, Sameer Singh,
and Carlos Guestrin: Why Should I Trust
You?: Explaining the Predictions of Any
Classifier, KDD 2016]

Loss Function

Local KernelLinear Models

Regularizer

Sampling and Simulations

• Classical data analysis assumes database data are correct
• Ex: I have a customer c who places an order xc

• xc[i] represents the dollars spent on the ith inventory item purchased

• We would typically assume that the xc[i] value recorded in a database
reflects reality

• But does it always? No!

• Can we afford to ignore the possibility xc[i] is incorrect?

Even if correct on average, can’t afford to ignore the implications
of the extremes…

Flaw of Averages
[Savage09]

To Quantify Risk: Use a Statistical Model

Mean vector: gives
average purchase $$
for this customer

Covariance matrix:
gives correlations in
purchase $$ for this
customer

Vector of std devs
Correlation matrix

Strong correlation between
Item 1 and item 4

To generate a purchase vector:

1) Sample
2) For
3) With probability 0.2
4)

Simulates the case where the
8.2 was never recorded

Given Such a Model

• We can look at an observed purchase vector and “correct” it
• The first entry is high (22.8 vs mean of 15.6)

• But the last entry is low (0 vs mean of 6.9)

• How is this possible with a correlation of 0.95?

• According to our model: most likely the 0 is wrong

• But we don’t know the correct vector

• Go Bayesian! Use Bayes’ rule to sample from

Typically using MCMC

How to Facilitate in a Database?

• Need the ability to move from relations to tensors
• Math uses tensors (vectors, matrices, etc.), not relations!

• And the ability to sample random values from distributions

Assume sales data are stored relationally:

sale (cust_id, sale_date, prod_id, amt)

First step, transform into vectors:

CREATE VIEW vecs AS

SELECT VECTORIZE (label_scalar (prod_id, amt))

 AS sale_vec, cust_id, sale_date

FROM sale

GROUP BY cust_id, sale_date

Creates a tuple of type (int, numerical)
Agg function to create a vector from (int,
numerical) pairs; the int is the dim

Linear Algebra

on an RDBMS
[ICDE17]

Now We Have a Set of Vectors

• Compute observed mean and covariance on a per-customer basis
• Will serve as an empirical prior for each customer

• So-called “empirical Bayes”

We now have a view containing sales vectors

vecs (sale_vec, cust_id, sale_date)

It’s easy to create a table having the mean vector for each customer:

CREATE VIEW means AS

SELECT AVG (sale_vec) AS avg_sale, cust_id

FROM vecs

GROUP BY cust_id

And now one that has the empirical covariance matrix:

CREATE VIEW covers AS

SELECT AVG (outer_product (v.sale_vec - m.avg_sale,

 v.sale_vec - m.avg_sale)) AS covar, v.cust_id

FROM vecs AS v, means AS m

WHERE v.cust_id = m.cust_id

GROUP BY v.cust_id

We Are Ready To Create a Simulated Table

• Invoke a special UDF called a “VG function”
• In our case, ResampleVec encapsules an MCMC algorithm to “fix” sales vector

Here are the views we’ve created:

vecs (sale_vec, cust_id, sale_date)

means (avg_sale, cust_id)

covars (covar, cust_id)

It’s easy to create a table having the mean vector for each cust:

CREATE TABLE simulated_sales AS

 FOR EACH v IN vecs

 WITH sale_vec AS ResampleVec (v.sale_vec,

 (SELECT m.avg_sale FROM means AS m WHERE m.cust_id = v.cust_id),

 (SELECT c.covar FROM covars AS c WHERE c.cust_id = v.cust_id))

 SELECT v.cust_id, v.sale_date, s.value

 FROM sale_vec s

VG function accepts old vec

For each sale, use VG function to sample new vec
ResampleVec is a VG function that simulates the sale

Subquery to get the mean

Subquery to get the covariance

Then stitch together output tuples

Now, queries over this simulated table return a
distribution of results. Ex:

SELECT AVG (s.value)

FROM simulated_sales s, cust c

WHERE s.cust_id = c.cust_id AND

 c.region = ‘northeast’ AND

 s.sale_date = ‘12-23-22’

MCDB
[SIGMOD08]

Stochastic Simulations

• Can use these tools to build database-valued Markov chains
• Faciltates very large scale Bayesian machine learning

• Can illustrate with a toy example

This table has a single tuple:

people (start_loc)

This table has info on cities:

city (city_id, transition_probs)

Vector where start_loc[i] tells us how
many people are currently located at city i

Vector where transition_probs[i]
tells us probability of transitioning from
city_id to city i

Goal: implement a simple Markov chain that
has people moving from city to city accorging
to the specified probabilities

Initialize the simulation:

CREATE TABLE locations[0] (cur_loc) AS

 SELECT * FROM people

Simulate the transitions out of each city:

CREATE TABLE transitions[i] (next_pos) AS

 FOR EACH c in city

 WITH next_pos AS Multinomial (

 (SELECT l.cur_loc[c.city_id]

 FROM locations[i - 1] AS l),

 c. transition_probs)

 SELECT n.value

 FROM next_pos s

And aggregate over all of the source cities to find the number
of people in each destination:

CREATE TABLE locations[i] AS

 SELECT SUM (next_pos)

 FROM transitions[i]

Note how use of vectors
makes this quite simple!

SimSQL
[SIGMOD13]

References
[SIGMOD'24] Shafaq Siddiqi, Matthias Boehm: Saga: A Scalable Framework for Optimizing Data Cleaning Pipelines for Machine Learning Appl ications, SIGMOD 2024
[SIGMOD'23] Peng Li, Zhiyi Chen, Xu Chu, Kexin Rong: DiffPrep: Differentiable Data Preprocessing Pipeline Search for Learning over Tabular Data, SIGMOD 2023
[PVLDB'22] Dong He, Supun Chathuranga Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur, Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstantinos
Karanasos, Matteo Interlandi: Query Processing on Tensor Computation Runtimes. Proc. VLDB Endow. 15(11): 2811-2825 (2022)
[PVLDB'21] Saravanan Thirumuruganathan, Han Li, Nan Tang, Mourad Ouzzani, Yash Govind, Derek Paulsen, Glenn Fung, AnHai Doan: Deep Learning for Blocking in
Entity Matching: A Design Space Exploration. Proc. VLDB Endow. 14(11): 2459-2472 (2021)
[SIGMOD'21] Hantian Zhang, Xu Chu, Abolfazl Asudeh, Shamkant B. Navathe: OmniFair: A Declarative System for Model-Agnostic Group Fairness in Machine Learning.
SIGMOD 2021
[SIGMOD’21] Svetlana Sagadeeva, Matthias Boehm: SliceLine: Fast, Linear-Algebra-based Slice Finding for ML Model Debugging. SIGMOD Conference 2021: 2290-2299
[OSDI'20] Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo Curino, Markus Weimer, Matteo Interlandi: A Tensor Compiler for Unified Machine
Learning Prediction Serving. OSDI 2020
[ICML'19] Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, Christopher Ré: A Kernel Theory of Modern Data Augmentation. ICML 2019
[PVLDB'18] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad Ouzzani, Nan Tang: Distributed Representations of Tuples for Entity
Resolution. PVLDB 2018
[SIGMOD'18] Xin Luna Dong, Theodoros Rekatsinas: Data Integration and Machine Learning: A Natural Synergy. SIGMOD 2018
[PVLDB'17] José Cambronero, John K. Feser, Micah J. Smith, Samuel Madden: Query Optimization for Dynamic Imputation. PVLDB 2017
[KDD'16] Marco Túlio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should I Trust You?": Explaining the Predictions of Any Classifier. KDD 2016
[NeurIPS'12] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: ImageNet Classification with Deep Convolutional Neural Networks. NeurIPS 2012
[SIGMOD'10] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski: Pregel: a system for large-scale
graph processing. SIGMOD 2010

Selected Runtime Backends
Tensor Query Processor (RDBMS→MLSys)

Apache SystemDS (MLSys)

Tensor Relational Algebra (MLSys → RDBMS)

[35 min]

Spark SQL
Query Plan

Sort Operator

Tensorizer

Tensor
program

CPU AMD GPU

Parser and Optimizer
SQL Query

Hardware

Converter

Primitive-based IR
(PIR)

Sort PIR Operator

NVIDA GPU

Data
Ingestion

Executor

…

Tensor program for Sort

Tensor program for Join

Tensor program for Filter

SQL to Tensor conversion: Tensor Query Processor (TQP)
co

n
ve

rs
io

n
 t

im
e

 in
 t

h
e

1
0

s
o

f
m

ill
is

e
co

n
d

s
(w

\o
 S

p
ar

k
p

ar
si

n
g

an
d

 o
p

ti
m

iz
at

io
n

 t
im

e)

TQP
[PVLDB’22]

Pros and Con of Tensor Query Processor

Limitations

Pro
- Scalable Approach (no need to reimplement the query processor for each new hardware)

- Leverage the massive investments in special HW

1

10

100

GPU Database
(TQP)

SQL Server 2022 Snowflake DataBricks
(Photon)

To
ta

l r
u

n
ti

m
e

(s
ec

o
n

d
s)

TPCH Scale Factor 50

Spark SQL
Query Plan

Sort Operator

Tensorizer

Tensor
program

CPU AMD GPU

Parser and Optimizer
SQL Query

Hardware

Converter

Primitive-based IR
(PIR)

Sort PIR Operator

NVIDA GPU

Data
Ingestion

Executor

…

Tensor program for Sort

Tensor program for Join

Tensor program for Filter

SQL to Tensor conversion: Tensor Query Processor (TQP)

TQP
[PVLDB’22]

Query

Plan

Sort Operator

Tensorizer

Tensor

program

CPU GPU TPU Xbox

Parser and Optimizer
SQL Query

Hardware

Tracing

TorchScript IR

Converter

Exporting

Antares IR

Primitive-based IR

(PIR)

Sort PIR Operator

Fuser

Code Generator

Fused IR

…

Tensor program for Sort

Custom Tensor program for Join

Tensor program for Filter

Data

Ingestion
Executor

Antares is a Cross-compiling
Engine for Microsoft 1st/2nd
party devices

https://github.com/microsoft/antares

FPGA

Extending TQP

TQP
[DAMON’23]

TCUDB
[SIGMOD’22]

https://github.com/microsoft/antares

Predictable usage pattern: gamers mostly play during the evenings (AKA dark time)

Interesting HW configuration: APU design where CPU and GPU share HBM (no PCI-e)

xCloud

© Microsoft Corporation

 Azure

TPCH on Xbox (SF 10, P100)

0

50

100

150

200

250

300

350

400

6 14 17 19

R
u

n
ti

m
e

(m
s)

TPCH SF 10

TQP (GPU) TQP (GPU + PCIe) TQP (Xbox) DuckDB TQP (CPU)

GPU: NVIDIA P100
Xbox: Series X
CPU: Xeon E5-2690 (14 cores)

TQP
[DAMON’23]

TPCH on Xbox (SF 10, P100)

0

50

100

150

200

250

300

350

400

6 14 17 19

R
u

n
ti

m
e

 (
m

s)

TPCH SF 10

TQP (GPU) TQP (GPU + PCIe) TQP (Xbox) DuckDB TQP (CPU)

789

20x

GPU: NVIDIA P100
Xbox: Series X
CPU: Xeon E5-2690 (14 cores)

TQP
[DAMON’23]

TPCH on Xbox (SF 10, P100)

0

50

100

150

200

250

300

350

400

6 14 17 19

R
u

n
ti

m
e

(m
s)

TPCH SF 10

TQP (GPU) TQP (GPU + PCIe) TQP (Xbox) DuckDB TQP (CPU)

789

3x

GPU: NVIDIA P100
Xbox: Series X
CPU: Xeon E5-2690 (14 cores)

TQP
[DAMON’23]

TPCH on Xbox (SF 10, P100)

0

50

100

150

200

250

300

350

400

6 14 17 19

R
u

n
ti

m
e

(m
s)

TPCH SF 10

TQP (GPU) TQP (GPU + PCIe) TQP (Xbox) DuckDB TQP (CPU)

789

GPU: NVIDIA P100
Xbox: Series X
CPU: Xeon E5-2690 (14 cores)

TQP
[DAMON’23]

AI-Centric Database System

Broader implications of having a DBMS on an ML runtime backend

Integration with AI ecosystem

TQP DEMO

[PVLDB’22]

AI-Centric Database System

Multi-modal data support

SELECT
 input AS images,
 image_text_similarity_model("KFC Receipt", input) AS score
FROM attachments
ORDER BY score DESC
LIMIT 1

Broader implications of having a DBMS on an ML runtime backend

TQP

[CIDR’23]

AI-Centric Database System

Automatic Differentiation

Digit Size Count

0
Small 1

Large 0

1
Small 1

Large 0

2
Small 0

Large 1

3
Small 0

Large 1

4
Small 0

Large 0

5
Small 0

Large 1

6
Small 0

Large 0

7
Small 2

Large 0

8
Small 0

Large 2

9
Small 0

Large 2

Digit Size Count

0
Small 1

Large 0

1
Small 1

Large 0

2
Small 0

Large 1

3
Small 0

Large 1

4
Small 0

Large 0

5
Small 0

Large 1

6
Small 0

Large 0

7
Small 2

Large 0

8
Small 0

Large 2

9
Small 0

Large 0

SELECT Digit, Size, COUNT(*)

FROM parseImageToTable(Image)

GROUP BY Digit, Size

Trainable Table
Value Function

Example Query Inputs

Example Query Outputs

Broader implications of having a DBMS on an ML runtime backend

TQP

[CIDR’23]

AI-Centric Database System

Tensorframes

as accelerator for

Pandas Dataframes

0

10

20

30

40

50

60

70

80

90

100

Q1 Q6 Q14

Sp
ee

d
u

p
 (b

as
e/

TQ
P

)

TPC-H Queries SF 10 A100

86X

64X

8X

Broader implications of having a DBMS on an ML runtime backend

Apache SystemDS

[SIGMOD’15,’17,’19,’21abc,’23abc,‘24]
[PVLDB’14,’16ab,’18,’22]
[ICDE’11,’12,’15]
[CIDR’17,’20]
[VLDBJ’18]
[CIKM’22]
[DEBull’14]
[PPoPP’15] Hadoop or Spark Cluster

(scale-out)
In-Memory Single Node

(scale-up)

Runtime

Compiler

Language

DML Scripts

since 2010/11since 2012 since 2015

APIs: Command line, JMLC,
Spark MLContext, Spark ML,

(20+ Scalable Algorithms)

GPUs

since 2014/16

07/2020 Renamed to SystemDS
05/2017 Apache Top-Level Project
11/2015 Apache Incubator Project
08/2015 Open Source Release

Write Once,
Run Anywhere

Federated
(LA progs, PS)

since 2019Other
Prototype
Backends:

Netezza
Apache Flink

Apache SystemDS: Compilation & Execution

LinregDS (Direct Solve)

X = read($1);
y = read($2);
intercept = $3;
lambda = 0.001;
...

if(intercept == 1) {
 ones = matrix(1, nrow(X), 1);
 X = append(X, ones);
}

I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:
• driver mem: 20 GB
• exec mem: 60 GB

dg(rand)
(103x1,103)

r(diag)

X
(108x103,1011)

y
(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)

b(solve)

write

Scenario:

X: 108 x 103, 1011

y: 108 x 1, 108

➔ Hybrid Runtime Plans:
• Size propagation / memory estimates
• Integrated CP / Spark runtime
• Dynamic recompilation during runtime

800MB

800GB

800GB
8KB

172KB

1.6TB

1.6TB

16MB
8MB

8KB

CP

SP

CP

CP

CP

SP
SP

CP

1.6GB

800MB

16KB

X

y

r’(CP)

mapmm(SP) tsmm(SP)

r’(CP)

(persisted in
MEM_DISK)

X1,1

X2,1

Xm,1

➔ Distributed Matrices
• Fixed-size matrix blocks
• Data-parallel operations

Other Systems:
In-RDBMS, RIOT

Apache SystemDS: Rewrites

• Example Static Rewrites (size-independent)

• Common Subexpression Elimination

• Constant Folding / Branch Removal /
Block Sequence Merge

• Static Simplification Rewrites

• Right/Left Indexing Vectorization

• For Loop Vectorization

• Spark checkpoint/repartition injection

• Example Dynamic Rewrites (size-dependent)
• Dynamic Simplification Rewrites

• Matrix Mult Chain Optimization

→

t(X)

1kx1k

X

1kx1k

Z

1

2,002 MFLOPs

sum(λ*X) → λ*sum(X)
sum(X+Y) → sum(X)+sum(Y)

X

Y

X→ Y
 ┬

*

trace(X%*%Y) → sum(X*t(Y))

O(n3) O(n2)

rowSums(X) → X, iff ncol(X)=1
sum(X^2) → X%*%t(X), iff ncol(X)=1

t(X)

1kx1k

X

1kx1k

p

1

4 MFLOPs

Size propagation and sparsity estimation

Sparsity Estimation
& Sparse DP Enum
[MNC @ SIGMOD’19]

Other Systems:
TensorFlow, PyTorch

[DEBull’14, CIDR’17,
SIGMOD’19]

Apache SystemDS: Operator Fusion & Codegen

• Motivation: DAGs of linear algebra (LA) operations and statistical functions
with materialized intermediates → ubiquitous fusion opportunities

• Examples

[SPOOF @ CIDR’17,
PVLDB’18]

sum(X*Y*Z)

a) Intermediates b) Single-
Pass

t(X)%*%(X%*%v)
→t(t(X%*%v)%*%X)

c) Multi-
Aggregates

d) Sparsity
Exploitation

Other Systems:
BTO, Tupleware, Kasen, Weld, TACO, Julia, TF XLA, JAX, TVM, DAPHNE, PyTorch, Triton

SystemDS: Operator Fusion & Codegen, cont.

• MLogreg Inner Loop (main expr on feature matrix X)

1: Q = P[, 1:k] * (X %*% v)
2: H = t(X) %*% (Q - P[, 1:k] * rowSums(Q))

public final class TMP25 extends SpoofRow {
 public TMP25() {
 super(RowType.COL_AGG_B1_T, true, 5);
 }
 protected void genexecDense(double[] a, int ai,
 SideInput[] b, double[] c,..., int len) {
 double[] TMP11 = getVector(b[1].vals(rix),...);
 double[] TMP12 = vectMatMult(a, b[0].vals(rix),...);
 double[] TMP13 = vectMult(TMP11, TMP12, 0, 0,...);
 double TMP14 = vectSum(TMP13, 0, TMP13.length);
 double[] TMP15 = vectMult(TMP11, TMP14, 0,...);
 double[] TMP16 = vectMinus(TMP13, TMP15, 0, 0,...);
 vectOuterMultAdd(a, TMP16, c, ai, 0, 0,...); }
 protected void genexecSparse(double[] avals, int[] aix,
 int ai, SideInput[] b, ..., int len) {...}
}

Apache SystemDS: Lineage-based Reuse

• Lineage as Key Enabling Technique
• Trace lineage of ops (incl. non-determinism), dedup for loops/funcs

• Model versioning, data reuse, incr. maintenance, autodiff, debugging

• Full Reuse of Intermediates
• Before executing instruction, probe output lineage in cache
Map<Lineage, MatrixBlock>

• Cost-based/heuristic caching and eviction decisions (compiler-assisted)

• Partial Reuse of Intermediates
• Problem: Often partial result overlap

• Reuse partial results via dedicated rewrites
(compensation plans)

for(i in 1:numModels)
 R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
 l = matrix(reg,ncol(X),1)
 A = t(X) %*% X + diag(l)
 b = t(X) %*% y
 beta = solve(A, b) ...}

m_steplm = function(...) {
 while(continue) {
 parfor(i in 1:n) {
 if(!fixed[1,i]) {
 Xi = cbind(Xg, X[,i])
 B[,i] = lm(Xi, y, ...)
 } }
 # add best to Xg (AIC)
} }

X

t(X)

m>>n

[LIMA @ SIGMOD’21]

Other Systems:
COLUMBUS, KeystoneML, Helix, PRETZEL, MISTIQUE,
Alpine Meadow, Collaborative Optimizer

Example:
steplm

Apache SystemDS: Workload-aware CLA

• Lossless Matrix Compression
• Improved general applicability (adaptive compression time,

new compression schemes, new kernels, intermediates, workload-aware)

• Sparsity → Redundancy exploitation
(data redundancy, structural redundancy)

• Workload-aware Compression
• Workload summary
→ compression

• Compressed Representation
→ execution planning

[AWARE @ SIGMOD’23]

Other Systems:
TOC, Spark/Flink, NetCDF/HDF5, SciDB,
TileDB, Sprintz, Grammar, Factorized

Runtime for Tensor-Relational Computations

• Tensor-based computations can easily be specified relationally
• Why? Consider Einstein summation notation

Example… multiplying two matrices:Example… MLP:• These are all relational computations!
• Always an (optional) aggregation

• On top of a projection

• On top of an (optional) join tree

• Ex: MatMul

• First join A and B on j index

• Then projection to multiply matched entries

• Then aggregate, grouping on i and k indices

General

Relativity
[Einstein16]

But Pure Relational Can Be Slow

• Relational is good: we know how to scale relational computations
• But pure relational (each entry in a tensor is a tuple) will not perform well

• Why? Relational mult of two 80K by 80K matrices produces 512 trillion intermediate tuples

• Small overhead associated with each tuple means performance is poor

• Tensor relations allow the best of both

Consider the matrix:

Decompose into a set
of (rowID, colID,
chunk) triples:

Tensor

Relational

Algebra
[VLDB21a]

Tensor Relations

• These are relations
• So distributing to multiple machines/devices (GPUs) is easy

• Scaling to very large computations (operands don’t fit in GPU RAM) is also easy

• But actual data manipulations over sub-tensors done with efficient CPU/GPU kernels

• Example: MatMul over tensor relations
Kernels

Imagine two 80K by 80K matrices decomposed into 1K by 1K chunks

Now only 80 X 80 X 80 = 512K intermediate tuples from join; low overhead, but plenty of parallelism

Tensor-Relational Computations: Use a DBMS?

• DBMS engine can be improved. Consider MatMul on multiple machines/devices

Imagine two 80K by 80K matrices decomposed into 6400, 1K by 1K chunks; perform compute on 256 machines/devices

Join produces 6400 x 80 result chunks
Hash partitioned into 6400 buckets to aggregate

Agg requires transferring approximately 6400 x 80 = 512000 chunks across machines/devices

However, there’s an algorithm that can do the mult with 3 x 8 x 6400 = 153600 xfers, all 256 busy

Join can only keep 80 machines/devices busy (just 80 unique join keys)

Agg’ed Join Trees
[VLDB21b]

Each proc. gets 6400/64
= 100 chunks of A

Can Do Much Better

Optimal 3D algorithm

Each processor performs
pairwise mult of local chunks

Replicate A m1/3 times
Replicate B m1/3 times
Reduce: m1/3 xfers of
 partial outputs

Asymptotically less
comm than relational
by a m1/3 factor

3D MatMul
[IBM95]

What Is the Issue?

• DBMS treats all relational ops as separate
• Best way to do the join: hash A, hash B—just xfer A and B once

• But this sets you up for a terrible aggregation…

• Xfer equivalent to 80x the size of input matrix in our example

• Compare to 8x in the case of the 3D in our example

• 3D multiply xfers A and B eight times during join---so join is more expensive
• But then aggregation is set up nicely, so much faster

• Trade-off: expensive join for inexpensive agg is not available to a DBMS

Tensor-Relational: New Engine Needed

• Such computations are fundamentally different from classical relational
• Few tuples, but very large

• Computationally intensive part is running the kernels, not linking tuples

• Time required to transfer subtensors across machines dominates

• How should a tensor-relational engine work?

Given this

First create variants of A, B that
have tensor IDs, dropping tensors

Execute the computation over
tuples with tensors removed, but
only collect lineage

• Use relational lineage as input to an optimization
problem

• Where to place kernels

• So as to minimize communication, while ensuring load
balancing

• Can plan everything, down to swaps in and out of
device memory!

• Then execute on a specialized dataflow engine

How Well Does This Work?

• Simple comparison
• Tensor-relational runtime with lineage-based planning vs. broadcast matrix multiply

• CPU cluster, Amazon EC2

• Multiply non-square matrices of size 𝑁 × 𝐾 and 𝐾 × 𝑀, split into 1K by 1K chunks

References
[DaMoN'23] Wei Cui, Qianxi Zhang, Spyros Blanas, Jesús Camacho-Rodríguez, Brandon Haynes, Yinan Li, Ravi Ramamurthy, Peng Cheng, Rathijit Sen, Matteo Interlandi: Query
Processing on Gaming Consoles. DaMoN 2023
[CIDR'23] Apurva Gandhi, Yuki Asada, Victor Fu, Advitya Gemawat, Lihao Zhang, Rathijit Sen, Carlo Curino, Jesus Camacho-Rodriguez, and Matteo Interlandi: The Tensor Data
Platform: Towards an AI-centric Database System. CIDR 2023.
[SIGMOD’23] Sebastian Baunsgaard, Matthias Boehm: AWARE: Workload-aware, Redundancy-exploiting Linear Algebra. SIGMOD 2023
[CIDR’22] Patrick Damme et al:: DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines. CIDR 2022
[CIKM'22] Sebastian Baunsgaard, Matthias Boehm, Kevin Innerebner, Mito Kehayov, Florian Lackner, Olga Ovcharenko, Arnab Phani, Tobias Rieger, David Weissteiner,
Sebastian Benjamin Wrede: Federated Data Preparation, Learning, and Debugging in Apache SystemDS. CIKM 2022
[PVLDB'22a] Dong He, Supun Chathuranga Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur, Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstantinos
Karanasos, Matteo Interlandi: Query Processing on Tensor Computation Runtimes. PVLDB 15(11): 2811-2825 (2022)
[PVLDB'22b] Yuki Asada, Victor Fu, Apurva Gandhi, Advitya Gemawat, Lihao Zhang, Vivek Gupta, Ehi Nosakhare, Dalitso Banda, Rathijit Sen, Matteo Interlandi:
Share the Tensor Tea: How Databases can Leverage the Machine Learning Ecosystem. PVLDB 15(12): 3598-3601 (2022)
[PVLDB'22c] Arnab Phani, Lukas Erlbacher, Matthias Boehm: UPLIFT: Parallelization Strategies for Feature Transformations in Machine Learning Workloads. PVLDB 2022
[PVLDB21a] Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, Chris Jermaine: Tensor Relational Algebra for Distributed Machine Learning System Design.
Proc. VLDB Endow. 14(8): 1338-1350 (2021)
[PVLDB21b] Dimitrije Jankov, Binhang Yuan, Shangyu Luo, Chris Jermaine: Distributed Numerical and Machine Learning Computations via Two-Phase Execution of Aggregated
Join Trees. Proc. VLDB Endow. 14(7): 1228-1240 (2021)
[SIGMOD’21] Arnab Phani, Benjamin Rath, Matthias Boehm: LIMA: Fine-grained Lineage Tracing and Reuse in Machine Learning Systems. SIGMOD 2021
[SIGMOD'21] Sebastian Baunsgaard, Matthias Boehm, Ankit Chaudhary, Behrouz Derakhshan, Stefan Geißelsöder, Philipp M. Grulich, Michael Hildebrand, Kevin Innerebner,
Volker Markl, Claus Neubauer, Sarah Osterburg, Olga Ovcharenko, Sergey Redyuk, Tobias Rieger, Alireza Rezaei Mahdiraji, Sebastian Benjamin Wrede, Steffen Zeuch: ExDRa:
Exploratory Data Science on Federated Raw Data. SIGMOD 2021
[CIDR’20] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert Ginthör, Kevin Innerebner, Florijan Klezin, Stefanie N. Lindstaedt, Arnab Phani,
Benjamin Rath, Berthold Reinwald, Shafaq Siddiqui, Sebastian Benjamin Wrede: SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle.
CIDR 2020
[SIGMOD’19] Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald, Peter J. Haas: MNC: Structure-Exploiting Sparsity Estimation for Matrix
Expressions. SIGMOD 2019

References, cont.
[PVLDB’18] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexandre V. Evfimievski, Niketan Pansare: On Optimizing Operator Fusion Plans for Large-
Scale Machine Learning in SystemML. Proc. VLDB Endow. 11(12): 1755-1768 (2018)
[VLDBJ’18] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, Berthold Reinwald: Compressed linear algebra for large-scale machine learning. VLDB J. 27(5):
719-744 (2018)
[CIDR’17] Tarek Elgamal, Shangyu Luo, Matthias Boehm, Alexandre V. Evfimievski, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen: SPOOF: Sum-Product Optimization and
Operator Fusion for Large-Scale Machine Learning. CIDR 2017
[ICDE17] Shangyu Luo, Zekai J. Gao, Michael N. Gubanov, Luis Leopoldo Perez, Christopher M. Jermaine: Scalable Linear Algebra on a Relational Database System. ICDE 2017:
523-534
[PVLDB’16b] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, Berthold Reinwald: Compressed Linear Algebra for Large-Scale Machine Learning. PVLDB
2016
[PVLDB’16a] Matthias Boehm, Michael Dusenberry, Deron Eriksson, Alexandre V. Evfimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Frederick Reiss,
Prithviraj Sen, Arvind Surve, Shirish Tatikonda: SystemML: Declarative Machine Learning on Spark. PVLDB 9(13): 1425-1436 (2016)
Botong Huang, Matthias Boehm, Yuanyuan Tian, Berthold Reinwald, Shirish Tatikonda, Frederick R. Reiss: Resource Elasticity for Large-Scale Machine Learning. SIGMOD 2015
[DEBul’14] Matthias Boehm, Douglas R. Burdick, Alexandre V. Evfimievski, Berthold Reinwald, Frederick R. Reiss, Prithviraj Sen, Shirish Tatikonda, Yuanyuan Tian: SystemML's
Optimizer: Plan Generation for Large-Scale Machine Learning Programs. IEEE Data Eng. Bull. 37(3): 52-62 (2014)
[PVLDB’14] Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen, Yuanyuan Tian, Douglas Burdick, Shivakumar Vaithyanathan: Hybrid Parallelization Strategies
for Large-Scale Machine Learning in SystemML. PVLDB. 7(7): 553-564 (2014)
[SIGMOD13] Zhuhua Cai, Zografoula Vagena, Luis Leopoldo Perez, Subramanian Arumugam, Peter J. Haas, Christopher M. Jermaine: Simulation of database-valued Markov
chains using SimSQL. SIGMOD Conference 2013: 637-648
[Savage09] Savage, Sam L., and Harry M. Markowitz. The flaw of averages: Why we underestimate risk in the face of uncertainty. John Wiley & Sons, 2009.
[SIGMOD08] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher M. Jermaine, Peter J. Haas: MCDB: a monte carlo approach to managing uncertain data.
SIGMOD Conference 2008: 687-700
[IBM95] Agarwal, Ramesh C., et al. "A three-dimensional approach to parallel matrix multiplication." IBM Journal of Research and Development 39.5 (1995): 575-582.
[Einstein16] Einstein, Albert (1916). "The Foundation of the General Theory of Relativity". Annalen der Physik.

Conclusions

• Future: Broader Focus (on General Tensor Computations)
• General linear algebra programs and tensor computations

• Different architectures (parameter servers, data-/task-task parallel)

• Wide variety of applications and workload characteristics

• Long-term Benefits
• Simplicity

• Reuse of Compilation and
Runtime Techniques

• Performance and Scalability

• Lots of Open Challenges
and Research Opportunities

dense

graph

sparse

compressed

Data
ScienceQuery

Processing
Simulation
Sampling

Tensor Computations

Optimizing Compiler / Runtime

	Slide 1: Optimizing Tensor Computations: From Applications to Compilation and Runtime Techniques
	Slide 2: Who We Are
	Slide 3: Agenda
	Slide 4: A Case for Tensor Computations
	Slide 5: Motivation: A Historic Perspective
	Slide 6: Motivation: Tensor Computations
	Slide 7: OLAP Queries / Data Frames / ML Systems
	Slide 8: Long-term Benefits
	Slide 9: Selected Applications
	Slide 10: Query Processing and Data Analytics
	Slide 11: Query Processing and Data Analytics
	Slide 12: Query Processing and Data Analytics
	Slide 13: Query Processing and Data Analytics
	Slide 14: Tensor data representation
	Slide 15: Tensor data representation
	Slide 16: Tensor data representation
	Slide 17: Implementing SQL operators using tensor ops
	Slide 18: Traditional ML: Prediction Serving
	Slide 19: Translating Trees
	Slide 20: Translating Trees
	Slide 21: Translating Trees
	Slide 22: Translating Trees
	Slide 23: DS Lifecycle: Data Cleaning & Deduplication
	Slide 24: DS Lifecycle: Data Cleaning & Deduplication, cont.
	Slide 25: DS Lifecycle: Data Cleaning Pipelines
	Slide 26: DS Lifecycle: Data Augmentation
	Slide 27: DS Lifecycle: Graph Processing
	Slide 28: DS Lifecycle: Training Decision Trees
	Slide 29: DS Lifecycle: Model Debugging
	Slide 30: Fairness and Explainability
	Slide 31: Sampling and Simulations
	Slide 32: To Quantify Risk: Use a Statistical Model
	Slide 33: Given Such a Model
	Slide 34: How to Facilitate in a Database?
	Slide 35: Now We Have a Set of Vectors
	Slide 36: We Are Ready To Create a Simulated Table
	Slide 37: Stochastic Simulations
	Slide 38: References
	Slide 39: Selected Runtime Backends
	Slide 40
	Slide 41: Pros and Con of Tensor Query Processor
	Slide 42
	Slide 43: Antares is a Cross-compiling Engine for Microsoft 1st/2nd party devices
	Slide 44: xCloud
	Slide 45: TPCH on Xbox (SF 10, P100)
	Slide 46: TPCH on Xbox (SF 10, P100)
	Slide 47: TPCH on Xbox (SF 10, P100)
	Slide 48: TPCH on Xbox (SF 10, P100)
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Apache SystemDS
	Slide 54: Apache SystemDS: Compilation & Execution
	Slide 55: Apache SystemDS: Rewrites
	Slide 56: Apache SystemDS: Operator Fusion & Codegen
	Slide 57: SystemDS: Operator Fusion & Codegen, cont.
	Slide 58: Apache SystemDS: Lineage-based Reuse
	Slide 59: Apache SystemDS: Workload-aware CLA
	Slide 60: Runtime for Tensor-Relational Computations
	Slide 61: But Pure Relational Can Be Slow
	Slide 62: Tensor Relations
	Slide 63: Tensor-Relational Computations: Use a DBMS?
	Slide 64: Can Do Much Better
	Slide 65: What Is the Issue?
	Slide 66: Tensor-Relational: New Engine Needed
	Slide 67: How Well Does This Work?
	Slide 68: References
	Slide 69: References, cont.
	Slide 70: Conclusions

