
Optimizing Tensor Computations: From Applications to
Compilation and Runtime Techniques

Matthias Boehm
TU Berlin

Berlin, Germany
matthias.boehm@tu-berlin.de

Matteo Interlandi
Microsoft GSL

Los Angeles, CA, USA
matteo.interlandi@microsoft.com

Chris Jermaine
Rice University

Houston, TX, USA
cmj4@rice.edu

ABSTRACT
Machine learning (ML) training and scoring fundamentally relies
on linear algebra programs and more general tensor computations.
Most ML systems utilize distributed parameter servers and similar
distribution strategies for mini-batch stochastic gradient descent
training. However, many more tasks in the data science and engi-
neering lifecycle can benefit from efficient tensor computations.
Examples include primitives for data cleaning, data and model
debugging, data augmentation, query processing, numerical simu-
lations, as well as a wide variety of training and scoring algorithms.
In this survey tutorial, we first make a case for the importance of
optimizing more general tensor computations, and then provide an
in-depth survey of existing applications, optimizing compilation
techniques, and underlying runtime strategies. Interestingly, there
are close connections to data-intensive applications, query rewrit-
ing and optimization, as well as query processing and physical
design. Our goal for the tutorial is to structure existing work, create
common terminology, and identify open research challenges.

CCS CONCEPTS
• Information systems → Data management systems; Data
mining; Computing platforms; • Computing methodologies
→ Machine learning; Distributed computing methodologies;
Parallel computing methodologies; • Mathematics of com-
puting→Mathematical software; • Theory of computation
→ Design and analysis of algorithms.

KEYWORDS
Tensor Computations, Linear Algebra, Declarative Machine Learn-
ing, Data Science, Data Engineering, Large-scale Machine Learning

ACM Reference Format:
Matthias Boehm, Matteo Interlandi, and Chris Jermaine. 2023. Optimizing
Tensor Computations: From Applications to Compilation and Runtime Tech-
niques. In Companion of the 2023 International Conference on Management
of Data (SIGMOD-Companion ’23), June 18–23, 2023, Seattle, WA, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3555041.3589407

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9507-6/23/06. . . $15.00
https://doi.org/10.1145/3555041.3589407

1 INTRODUCTION
Over the past decade(s), a wide variety of machine learning (ML)
systems emerged from the ML/stats, data management, and high-
performance computing communities. Early work focused on sta-
tistical computing platforms like R and ML algorithm libraries like
scikit-learn [98], as well as specialized systems for clustering, ma-
trix factorization [40], graph processing [126], and others. Later
work also provided infrastructure for scalable, distributed compu-
tation [3, 104, 131] and hardware accelerators. Nowadays, most
general-purpose ML systems focus exclusively on distributed pa-
rameter servers [1, 30, 57, 77, 115] and similar distribution strategies
[17, 64, 101] for mini-batch training via stochastic gradient descent
(SGD). Many more tasks in data science and engineering rely on
linear algebra and numerical computation, but they often exhibit
different characteristics and are implemented separately [9].

General Tensor Computations: In contrast to this narrowing
focus on mini-batch SGD, in this tutorial, we make a case for sup-
porting general linear algebra programs and tensor computations
for a wide variety of applications and workload characteristics. Be-
sides diverse ML algorithms and statistical learning [39], there are
new compelling use cases. First, state-of-the-art data integration
[31], feature and semantic type detection [50, 113, 132], and data
cleaning [78, 121] all rely onML. Second, there is work on data impu-
tation, cleaning, and ML tightly interwoven with query processing
[19], which requires integrated systems support [28, 32, 38, 44, 129].
Third, also data augmentation and simulation cleanly map to nu-
merical computation. Recent work applies machine learning for
more cost-effective weather forecasting [2] as well as simulations
of fluid dynamics and material deformation [99]. Interestingly, both
data augmentation and simulation allow for generating unlimited
datasets. Fourth, even complex, enumeration-based algorithms for
model debugging [106] as well as tree-based models [86] can be
expressed and efficiently executed in linear algebra.

Optimizing Tensor Computations: Efficient and scalable sys-
tem infrastructure for such use cases relies—due to complex, hi-
erarchically composed primitives—on optimizing compilers and
generating scalable runtime plans. Given increasing specialization,
hand-crafting plans for different characteristics and deployments
becomes infeasible. Automatic plan generation allows to seamlessly
adapt to diverse workloads and data characteristics. In this con-
text, a rapidly growing set of compilation and runtime techniques
emerges. Our goal for this tutorial is to structure the space, cre-
ate common terminology, and identify open research challenges.
Common terminology and well-defined sub-areas would serve our
community well by focusing efforts and simplifying reuse.

Tutorial Scope: Drawing from our experience building systems
for linear algebra and tensor computations (e.g., SystemML [12],

https://doi.org/10.1145/3555041.3589407
https://doi.org/10.1145/3555041.3589407

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Matthias Boehm, Matteo Interlandi, and Chris Jermaine

SystemDS [11], Hummingbird [86], TQP [44], SimSQL [18, 39, 52,
82]), we aim to survey the state-of-the-art from applications to
compilation and runtime techniques. The technical background is
summarized in Sections 2-4, and the tutorial format is as follows:

• Tutorial Type: Survey,
• Preferred Duration: 3 hours (1.5 hours would also be possible
but only in reduced breadth and depth),

• Target Audience: Systems researchers and practitioners with
basic applied ML background (we do not expect prior knowl-
edge of state-of-the-art algorithms or system internals), and

• Hands-on Tutorial: no HW/SW requirements.

2 TENSOR COMPUTATIONS
In data-centric ML pipelines, there are multiple compelling use
cases for more general tensor computations and respective system
infrastructure in terms of compilation and runtime techniques.

2.1 Data Preparation and Cleaning
The inspiring tutorial by Dong and Rekatsinas [31] made a great
case for the natural symbiosis of data integration and machine
learning. Example tasks that heavily rely on ML—and thus, tensor
computations—are data extraction, schema alignment, entity reso-
lution, and data fusion. Interestingly, the same observation applies
to other data preparation tasks such as data validation [110], data
cleaning [45, 78], outlier/anomaly detection [127], missing value
imputation [121], semantic type detection [50, 132], feature selec-
tion [123], feature engineering [113], and feature transformations
[100]. For example, missing value imputation via chained equa-
tions (mice) [121] repeatedly extracts features with missing values,
trains models (classifiers for categorical, regressors for numerical)
using observed feature values as labels, and utilizes the models for
missing value imputation. For this reason, implementing cleaning
primitives in linear algebra is very compelling because it avoids
unnecessary boundary crossing among systems and libraries.

2.2 Data Augmentation and Simulation
Data augmentation takes a small labeled dataset and generates
many more synthetic examples via transformations and the original
labels. Common transformations include reflections, translations,
shearing, rotations, cropping, and mixup, which increase data cov-
erage for improved generalization. The seminal AlexNet [72] paper
heavily relied on data augmentation (by 2048x the original datasize),
and since then it has become common practice. Recently, additional
work also tunes data augmentation pipelines and their parame-
ters [26], and pushes data augmentation as specialized kernels into
model training to avoid data materialization [29]. Furthermore,
machine learning is also applied for more cost-effective weather
forecasting [2] as well as simulations of fluid dynamics and ma-
terial deformation [99]. In this context, very simple MLP models
are utilized and the simulation characteristics yield a wide variety
of workload characteristics. Prior related work also focused on
Monte Carlo sampling [51], and Markov chain simulation [18, 39].
Both data augmentation and simulation allow for generating unlim-
ited datasets with interesting opportunities of directed sampling
according to model accuracy as well as fusion.

2.3 Query Processing
Recently, tensor computations have been proposed for executing
relational operators and even full queries. TCUDB [48] maps join
operations into matrix multiplications for efficient execution on
Tensor Cores [27, 91]. Raven [66] co-optimizes classical ML models
and relational queries. During optimization, Raven can push rela-
tional operations such as projection and filters into the ML model
as tensor operations. TQP [37, 44] maps Spark SQL queries into ten-
sor computations. TQP supports the full TPC-H benchmark. TQP
implements several relational operators (join, aggregation, group
by, etc) as PyTorch tensor programs, and chains them together
to form query plans which are executable on any hardware sup-
ported by PyTorch (e.g., CPU, GPU, TPU [61, 62], etc). Beyond using
tensor computations for allowing queries to leverage hardware ac-
celeration, TQP has also proposed tensor computations for query
processing over unstructured data such as images, as well taking
advantage of the auto-differentiation infrastructure in PyTorch for
enabling differentiable queries [38]. While many preliminary re-
sults are very promising, other work has also pointed out remaining
challenges of mapping queries to TPUs [47].

2.4 ML Algorithms and Debugging
Finally, there is rich literature on first- and second-order optimiza-
tion, statistical learning, a variety of ML models, and more special-
ized fields such as robust optimization. Besides such algorithms—
including tree-based models for both inference [86] and training1—
that naturally map to tensor computations, recently also model de-
bugging, explanations, and fairness constraints have been elegantly
expressed in linear algebra. Examples include linear-algebra-based
slice finding [106], learning curve prediction for different slices
[120], explanations via linear approximations [81, 85, 103], as well
as constrained and unconstrained optimization for fairness and
accuracy [89, 107, 133, 133].

3 COMPILATION TECHNIQUES
Compilation techniques in ML systems are inspired by program-
ming language compilers, query optimization in DBMS, and opti-
mizing HPC compilers. Some of the covered material overlaps with
a previous SIGMOD 2017 tutorial [73] but existing work evolved
significantly in the past six years.

3.1 Simplification Rewrites
Size Propagation: As a basis for advanced compilation techniques,
many systems first propagate size information [16] (e.g., dimensions
and sparsity) and subsequently use this information for memory
and cost estimation. A central challenge is sparsity estimation of
intermediates, which is addressed via naïve metadata estimators
[16], naïve bitset estimators [80, 118], density maps [67, 68], biased
sampling [128], layered graphs [22, 23], and sketches [116]. Besides
sparsity, there has been work on propagating other properties such
as symmetry, constants, and storage formats [105].

1For example, see the veectorized decisionTree() and randomForest() built-in
functions—as well as their corresponding predict functions—in Apache SystemDS [11].

https://github.com/apache/systemds/blob/main/scripts/builtin/decisionTree.dml
https://github.com/apache/systemds/blob/main/scripts/builtin/randomForest.dml

Optimizing Tensor Computations SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA

Rewrites: Applied rewrites then include traditional program-
ming language rewrites—such as common subexpression elimina-
tion, constant folding, branch removal, and loop hoisting [4, 24]—
as well as simplification rewrites for linear algebra expressions
[16, 74, 119], dedicated dynamic programming approaches for ma-
trix multiplication chains, and sparsity exploitation [12, 49]. Exam-
ples systems that apply such rewrites are SystemDS, TensorFlow,
and PyTorch. Graph substitutions are also applied to expressions
in deep neural networks [35, 56]. Other rewrites include loop vec-
torization, and incremental computations [90, 108, 109]. Recent
work aims to overcome the need for hand-crafting simplification
rewrites by automatic rewrite generation and sum-product opti-
mization based on meta-properties of operations [33, 55, 69, 125].

3.2 Operator Fusion and Code Generation
Operator fusion and code generation are used during ahead-of-time
and just-in-time compilation in order to eliminate unnecessary
intermediates, apply scan sharing, exploit sparsity, and specialize
runtime plans to the underlying, increasingly specialized hardware
and runtime strategies. Example systems with dedicated code gen-
erators include BTO [10], Tupleware [25], Kasen [135], SystemDS
[14, 33], Weld [94, 95], TACO [70], PlinyCompute [137], Julia [60],
TensorFlow XLA, PyTorch, Tensor Comprehensions [122], TVM
[20], NIVIDA TensorRT [92], DAPHNE [28], and Tuplex [117]. Re-
cently, several systems were built on top of existing code generators
(e.g., JAX on TensorFlow XLA, and TQP on TVM). MLIR [75] aims
to avoid redundancy by providing compiler-infrastructure as a li-
brary with clearly defined dialects, which gains popularity because
hardware vendors can provide specific dialects for their hardware
devices, easing their adoption. Remaining challenges include in-
creasing the fusion potential for integrated query processing and
linear algebra / tensor operations with dynamic tensor shapes.

3.3 Operator Selection and Placement
Beyond dedicated systems for local and distributed computation,
there are several ML systems with multiple backends. Examples
include PyTorch [97], TensorFlow [1], SystemDS [11], Samsara
[111], DaskML [104], and code generators like TF XLA and TVM
[20]. Predominantly though, operator selection and placement is
still done via heuristics and manual placement. SystemDS also
automatically chooses local and distributed operations depending
on memory estimates and budgets, as well as different physical
operators based on data characteristics. Reinforcement learning has
been successfully used to place neural network layers onto multiple
heterogeneous hardware devices [83]. In addition to placing entire
operators on devices, DTensors [43] in TensorFlow and PyTorch as
well as federated matrices/frames in DAPHNE [28] further allow for
more fine-grained placement of shards of tensors on heterogeneous
devices. Recent work on compiler infrastructure for ASICs also
include the spatial-temporal mapping of data flow graphs to die
space [93] and "hardware islands" of multiple devices [6].

4 RUNTIME STRATEGIES
Underneath the evolving compilation techniques, there are impor-
tant runtime strategies, especially regarding data representations,
parallelization strategies, and dedicated runtime backends.

4.1 Data Representations
Overall, we observe an increasing specialization in terms of parti-
tioning and tiling strategies of matrices/frames; as well as dense,
sparse, and compressed tile representations. First, in terms of over-
all partitioning there are local tensors, distributed collections of
tiles, as well as federated or sharded tensors with implicit/or explicit
sharding information. Distributed collections of tiles originate from
ML systems on data-parallel computing frameworks like Spark
[131], Flink [3], or Dask [104]. Later, such abstractions have also
been adopted for in-DBMS machine learning [52, 82, 112]. This
representation has been proven to be very versatile, and recent
work on tensor relational algebra makes a case for adopting it as a
logical abstraction [54, 129]. Second, at the level of individual tiles,
we see more and more specialized sparse [21, 91] and compressed
[7, 34, 59, 65, 76, 124, 134] matrix representations as well as spe-
cialized data types [71, 91]. Unfortunately, the selection of such
representations is still largely a manual trial and error process.

4.2 Parallelization Strategies
Over the last decade, a wide variety of parallelization strategies
has been devised, often designed to exploit the characteristics of
the underlying hardware and compute infrastructure. First, data-
parallel operations follow an SPMD (single-program, multiple-data)
model on distributed collections. A variety of physical operators
for broadcast-based, shuffle-based, and specialized operations has
been proposed and integrated into ML systems [12, 53, 111]. Second,
for use cases like hyper-parameter tuning, cross-validation, and
embarrassingly-parallel programs, task parallelism (e.g., via paral-
lel for loops) and hybrid parallelism (e.g., concurrent data-parallel
jobs on large-scale datasets) has been adopted as well [15, 63, 114].
Third, irregular workloads—as used in reinforcement learning—are
addressed with task-dependency-graphs and future-based sched-
uling [79, 84] as well as tightly integrated architectures of CPU
drivers and hardware accelerators [46]. Fourth, distributed mini-
batch training relies on parameter servers [1, 30, 57, 77, 115] and
similar distribution strategies [41]. Here, we often differentiate
data- and model-parallel parameter servers, which hold data and
model partitions, respectively. Given the challenges of efficient data
exchange and synchronization barriers, compared to tuned single-
node implementations, recent work added dedicated parallelization
for training multiple models [87, 88], sampled, independent subnet
training [130], as well as sparsity and locality exploitation for sparse
and skewed parameter access (e.g., matrix factorization) [101, 102].

4.3 Alternative Backends
Although many ML systems comprise custom runtime backends—
with the help of communication libraries such as gRPC, MPI, and
NCCL [36]—there is commonly used infrastructure. The first gen-
eration of parameter servers [30, 115] often relied on parameter
management on Key/Value-stores. Similarly, Function-as-a-Service
(FaaS) ML systems—which aim for low start-up costs and automatic
elasticity—communicate over rather slow Key-Value Stores and
even object stores like S3 [58]. A very popular infrastructure are
general-purpose data-parallel computation frameworks like Spark
[131], Flink [3], and Dask [104]. Other backends include Ray [84] for
irregular task-parallelism, SQL with dedicated matrix/vector types

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Matthias Boehm, Matteo Interlandi, and Chris Jermaine

and recursive computation [52], and federated learning backends
(e.g., SystemDS federated [8] and TensorFlow federated [42, 64])
with additional integration of privacy enhancing technologies. The
individual ML system backends also implement specific techniques
for providing efficient data access. Examples include buffer-pool-
like eviction of live variables from GPU to CPU memory or from
CPU memory to disk [13], dedicated tile layouts (aka page layouts)
with reordered and padded rows [5], as well as in-memory and
disk-based index structures for out-of-core data [68, 96, 136].

5 BIOGRAPHIES
The tutorial presenters have backgrounds from industry and academia,
and have built various systems with different architectures.

Matthias Boehm: Matthias Boehm is a full professor for large-
scale data engineering at Technische Universität Berlin and the
BIFOLD research center. His research group focuses on high-level,
data science-centric abstractions as well as systems and tools to
execute these tasks in an efficient and scalable manner. From 2018
through 2022,Matthias was a BMK-endowed professor for dataman-
agement at Graz University of Technology, Austria, and a research
area manager for data management at the co-located Know-Center
GmbH. Prior to 2018, he was a postdoc and research staff mem-
ber at IBM Research - Almaden, CA, USA, with a major focus on
compilation and runtime techniques for declarative, large-scale
machine learning in Apache SystemML. Matthias received his Ph.D.
from Dresden University of Technology, Germany in 2011 with a
dissertation on cost-based optimization of integration flows.

Matteo Interlandi: Matteo Interlandi is a Principal Scientist
in the Gray Systems Lab (GSL) at Microsoft, working at the inter-
section between Machine Learning and Database Systems. Before
Microsoft, he was a Postdoctoral Scholar at the University of Califor-
nia, Los Angeles. Prior to joining UCLA, he was Research Associate
at the Qatar Computing Research Institute and at the Institute for
Human and Machine Cognition. Matteo received his Ph.D. from
the University of Modena and Reggio Emilia. Matteo’s work has
received a best demo award at VLDB 2022, an honorable mention
at SIGMOD 2021 and was featured in the “Best of VLDB 2016”.

Christopher Jermaine: Chris Jermaine is a J.S. Abercrombie
Professor of Engineering and Chair, of the CS department at Rice
University. He studies data analytics: how to analyze, store, re-
trieve, and manipulate large and heterogeneous data sets. Within
this problem space, most of his work focuses on: (1) The systems-
oriented problems that arise when building software to manage
and process large and diverse data sets, especially systems for ma-
chine learning; and (2) The difficulties that arise when applying
statistical methods to such data sets. Chris received a BA from the
Mathematics Department at UCSD, an MSc from the Computer
Science and Engineering Department at OSU, and a PhD from the
College of Computing at Georgia Tech. He is the recipient of a
2008 Alfred P. Sloan Foundation Research Fellowship, a National
Science Foundation CAREER award, a 2007 ACM SIGMOD Best
Paper Award, a 2009 ACM SIGKDD Best Paper Runner-Up, a 2017
ICDE Best Paper Award, and a 2019 VLDB Best Paper Runner-Up.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon

Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for
Large-Scale Machine Learning. In OSDI. 265–283.

[2] Shreya Agrawal, Luke Barrington, Carla Bromberg, John Burge, Cenk Gazen,
and Jason Hickey. 2019. Machine Learning for Precipitation Now- casting from
Radar Images. CoRR abs/1912.12132 (2019).

[3] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Frey-
tag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker
Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax,
Sebastian Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. 2014.
The Stratosphere platform for big data analytics. VLDB J. 23, 6 (2014), 939–964.
https://doi.org/10.1007/s00778-014-0357-y

[4] Randy Allen and Ken Kennedy. 2001. Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. Morgan Kaufmann.

[5] Arash Ashari, Naser Sedaghati, John Eisenlohr, and P. Sadayappan. 2014. An effi-
cient two-dimensional blocking strategy for sparse matrix-vector multiplication
on GPUs. In ICS. 273–282. https://doi.org/10.1145/2597652.2597678

[6] Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven
Hand, Dan Hurt, Michael Isard, Hyeontaek Lim, Ruoming Pang, Sudip Roy,
Brennan Saeta, Parker Schuh, Ryan Sepassi, Laurent El Shafey, Chandramo-
han A. Thekkath, and Yonghui Wu. 2022. Pathways: Asynchronous Distributed
Dataflow for ML. In MLSys. https://proceedings.mlsys.org/paper/2022/hash/

[7] Sebastian Baunsgaard and Matthias Boehm. 2023. AWARE: Workload-aware,
Redundancy-exploiting Linear Algebra. In SIGMOD. https://doi.org/10.1145/
3588682

[8] Sebastian Baunsgaard, Matthias Boehm, Ankit Chaudhary, Behrouz Derakhshan,
Stefan Geißelsöder, Philipp M. Grulich, Michael Hildebrand, Kevin Innerebner,
Volker Markl, Claus Neubauer, Sarah Osterburg, Olga Ovcharenko, Sergey
Redyuk, Tobias Rieger, Alireza Rezaei Mahdiraji, Sebastian Benjamin Wrede,
and Steffen Zeuch. 2021. ExDRa: Exploratory Data Science on Federated Raw
Data. In SIGMOD. 2450–2463. https://doi.org/10.1145/3448016.3457549

[9] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo,
Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti
Ramesh, Sudip Roy, Steven EuijongWhang, MartinWicke, JarekWilkiewicz, Xin
Zhang, and Martin Zinkevich. 2017. TFX: A TensorFlow-Based Production-Scale
Machine Learning Platform. In SIGKDD. 1387–1395.

[10] Geoffrey Belter, Elizabeth R. Jessup, Ian Karlin, and Jeremy G. Siek. 2009. Au-
tomating the generation of composed linear algebra kernels. In SC. https:
//doi.org/10.1145/1654059.1654119

[11] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert
Ginthör, Kevin Innerebner, Florijan Klezin, Stefanie N. Lindstaedt, Arnab Phani,
Benjamin Rath, Berthold Reinwald, Shafaq Siddiqui, and Sebastian Benjamin
Wrede. 2020. SystemDS: A Declarative Machine Learning System for the End-
to-End Data Science Lifecycle. In CIDR.

[12] Matthias Boehm, Michael Dusenberry, Deron Eriksson, Alexandre V. Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Freder-
ick Reiss, Prithviraj Sen, Arvind Surve, and Shirish Tatikonda. 2016. SystemML:
Declarative Machine Learning on Spark. Proc. VLDB Endow. 9, 13 (2016), 1425–
1436. https://doi.org/10.14778/3007263.3007279

[13] Matthias Boehm, Arun Kumar, and Jun Yang. 2019. DataManagement in Machine
Learning Systems. Morgan & Claypool Publishers. https://doi.org/10.2200/
S00895ED1V01Y201901DTM057

[14] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexan-
dre V. Evfimievski, and Niketan Pansare. 2018. On Optimizing Operator Fusion
Plans for Large-Scale Machine Learning in SystemML. Proc. VLDB Endow. 11,
12 (2018), 1755–1768. https://doi.org/10.14778/3229863.3229865

[15] Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen,
Yuanyuan Tian, Douglas Burdick, and Shivakumar Vaithyanathan. 2014. Hybrid
Parallelization Strategies for Large-Scale Machine Learning in SystemML. Proc.
VLDB Endow. 7, 7 (2014), 553–564. https://doi.org/10.14778/2732286.2732292

[16] Matthias Böhm, Douglas R. Burdick, Alexandre V. Evfimievski, Berthold Rein-
wald, Frederick R. Reiss, Prithviraj Sen, Shirish Tatikonda, and Yuanyuan
Tian. 2014. SystemML’s Optimizer: Plan Generation for Large-Scale Ma-
chine Learning Programs. IEEE Data Eng. Bull. 37, 3 (2014), 52–62. http:
//sites.computer.org/debull/A14sept/p52.pdf

[17] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi,
Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. 2019. Towards Federated Learning at Scale: System Design.
In MLSys.

[18] Zhuhua Cai, Zografoula Vagena, Luis Leopoldo Perez, Subramanian Arumugam,
Peter J. Haas, and Christopher M. Jermaine. 2013. Simulation of database-valued
markov chains using SimSQL. In SIGMOD. 637–648. https://doi.org/10.1145/
2463676.2465283

[19] José Cambronero, John K. Feser, Micah J. Smith, and Samuel Madden. 2017.
Query Optimization for Dynamic Imputation. Proc. VLDB Endow. 10, 11 (2017),

https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1145/2597652.2597678
https://proceedings.mlsys.org/paper/2022/hash/
https://doi.org/10.1145/3588682
https://doi.org/10.1145/3588682
https://doi.org/10.1145/3448016.3457549
https://doi.org/10.1145/1654059.1654119
https://doi.org/10.1145/1654059.1654119
https://doi.org/10.14778/3007263.3007279
https://doi.org/10.2200/S00895ED1V01Y201901DTM057
https://doi.org/10.2200/S00895ED1V01Y201901DTM057
https://doi.org/10.14778/3229863.3229865
https://doi.org/10.14778/2732286.2732292
http://sites.computer.org/debull/A14sept/p52.pdf
http://sites.computer.org/debull/A14sept/p52.pdf
https://doi.org/10.1145/2463676.2465283
https://doi.org/10.1145/2463676.2465283

Optimizing Tensor Computations SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA

1310–1321.
[20] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan,

Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. In OSDI. 578–594. https://www.usenix.
org/conference/osdi18/presentation/chen

[21] Stephen Chou, Fredrik Kjolstad, and Saman P. Amarasinghe. 2018. Format
abstraction for sparse tensor algebra compilers. Proc. ACM Program. Lang. 2,
OOPSLA (2018), 123:1–123:30. https://doi.org/10.1145/3276493

[22] Edith Cohen. 1997. Size-Estimation Framework with Applications to Transitive
Closure and Reachability. J. Comput. Syst. Sci. 55, 3 (1997), 441–453. https:
//doi.org/10.1006/jcss.1997.1534

[23] Edith Cohen. 1998. Structure Prediction and Computation of Sparse Matrix
Products. J. Comb. Optim. 2, 4 (1998), 307–332.

[24] Keith D. Cooper and Linda Torczon. 2004. Engineering a Compiler. Morgan
Kaufmann.

[25] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig,
Ugur Çetintemel, and Stan Zdonik. 2015. An Architecture for Compiling UDF-
centric Workflows. Proc. VLDB Endow. 8, 12 (2015), 1466–1477. https://doi.org/
10.14778/2824032.2824045

[26] Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le.
2019. AutoAugment: Learning Augmentation Strategies From Data. In CVPR.
113–123. https://doi.org/10.1109/CVPR.2019.00020

[27] William J. Dally. 2018. Hardware for Deep Learning. https://youtu.be/
zDBF0xwQW-0 MLSys Keynote.

[28] Patrick Damme et al. 2022. DAPHNE: An Open and Extensible System Infras-
tructure for Integrated Data Analysis Pipelines. In CIDR. https://www.cidrdb.
org/cidr2022/papers/p4-damme.pdf

[29] Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and
Christopher Ré. 2019. A Kernel Theory of Modern Data Augmentation. In
ICML (Proceedings of Machine Learning Research, Vol. 97). 1528–1537. http:
//proceedings.mlr.press/v97/dao19b.html

[30] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.
Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker,
Ke Yang, and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In
NeurIPS. 1232–1240.

[31] Xin Luna Dong and Theodoros Rekatsinas. 2018. Data Integration and Machine
Learning: A Natural Synergy. In SIGMOD. 1645–1650. https://doi.org/10.1145/
3183713.3197387

[32] Joseph Vinish D’silva, Florestan De Moor, and Bettina Kemme. 2018. AIDA
- Abstraction for Advanced In-Database Analytics. Proc. VLDB Endow. 11, 11
(2018), 1400–1413.

[33] Tarek Elgamal, Shangyu Luo, Matthias Boehm, Alexandre V. Evfimievski, Shirish
Tatikonda, Berthold Reinwald, and Prithviraj Sen. 2017. SPOOF: Sum-Product
Optimization and Operator Fusion for Large-Scale Machine Learning. In CIDR.
http://cidrdb.org/cidr2017/papers/p3-elgamal-cidr17.pdf

[34] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and Berthold
Reinwald. 2018. Compressed linear algebra for large-scale machine learning.
VLDB J. 27, 5 (2018), 719–744.

[35] Jingzhi Fang, Yanyan Shen, Yue Wang, and Lei Chen. 2020. Optimizing DNN
Computation Graph using Graph Substitutions. Proc. VLDB Endow. 13, 11 (2020),
2734–2746. http://www.vldb.org/pvldb/vol13/p2734-fang.pdf

[36] Shaoduo Gan, Xiangru Lian, Rui Wang, Jianbin Chang, Chengjun Liu, Hongmei
Shi, Shengzhuo Zhang, Xianghong Li, Tengxu Sun, Jiawei Jiang, Binhang Yuan,
Sen Yang, Ji Liu, and Ce Zhang. 2021. BAGUA: Scaling up Distributed Learning
with System Relaxations. Proc. VLDB Endow. 15, 4 (2021), 804–813. https:
//doi.org/10.14778/3503585.3503590

[37] Apurva Gandhi, Yuki Asada, Victor Fu, Advitya Gemawat, Lihao Zhang, Rathi-
jit Sen, Carlo Curino, Jesús Camacho-Rodríguez, and Matteo Interlandi. 2022.
The Tensor Data Platform: Towards an AI-centric Database System. CoRR
abs/2211.02753 (2022). https://doi.org/10.48550/arXiv.2211.02753

[38] Apurva Gandhi, Yuki Asada, Victor Fu, Advitya Gemawat, Lihao Zhang, Rathijit
Sen, Carlo Curino, Jesus Camacho-Rodriguez, and Matteo Interlandi. 2023. The
Tensor Data Platform: Towards an AI-centric Database System. In CIDR. https:
//www.cidrdb.org/cidr2023/papers/p68-gandhi.pdf

[39] Zekai J. Gao, Shangyu Luo, Luis Leopoldo Perez, and Chris Jermaine. 2017.
The BUDS Language for Distributed Bayesian Machine Learning. In SIGMOD.
https://doi.org/10.1145/3035918.3035937

[40] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. 2011. Large-
scale matrix factorization with distributed stochastic gradient descent. In
SIGKDD. 69–77. https://doi.org/10.1145/2020408.2020426

[41] Google. 2019. Inside TensorFlow: tf.distribute.Strategy. https://www.youtube.
com/watch?v=jKV53r9-H14

[42] Google. 2020. TensorFlow Federated: Machine Learning on Decentralized Data .
https://www.tensorflow.org/federated

[43] Google. 2022. DTensor Concepts. https://www.tensorflow.org/guide/dtensor_
overview

[44] Dong He, Supun Chathuranga Nakandala, Dalitso Banda, Rathijit Sen, Karla
Saur, Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstanti-
nos Karanasos, and Matteo Interlandi. 2022. Query Processing on Tensor
Computation Runtimes. Proc. VLDB Endow. 15, 11 (2022), 2811–2825. https:
//www.vldb.org/pvldb/vol15/p2811-he.pdf

[45] Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, and Theodoros Rekatsinas. 2019.
HoloDetect: Few-Shot Learning for Error Detection. In SIGMOD. 829–846. https:
//doi.org/10.1145/3299869.3319888

[46] Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Kemaev, John Quan, Thomas
Keck, Fabio Viola, and Hado van Hasselt. 2021. Podracer architectures for
scalable Reinforcement Learning. CoRR abs/2104.06272 (2021). https://arxiv.
org/abs/2104.06272

[47] Pedro Holanda and Hannes Mühleisen. 2019. Relational Queries with a Tensor
Processing Unit. In DaMoN. 19:1–19:3. https://doi.org/10.1145/3329785.3329932

[48] Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. 2022. TCUDB: Accelerating
Database with Tensor Processors. In SIGMOD. 1360–1374. https://doi.org/10.
1145/3514221.3517869

[49] Botong Huang, Shivnath Babu, and Jun Yang. 2013. Cumulon: optimizing
statistical data analysis in the cloud. In SIGMOD. 1–12. https://doi.org/10.1145/
2463676.2465273

[50] Madelon Hulsebos, Kevin Zeng Hu, Michiel A. Bakker, Emanuel Zgraggen,
Arvind Satyanarayan, Tim Kraska, Çagatay Demiralp, and César A. Hidalgo.
2019. Sherlock: A Deep Learning Approach to Semantic Data Type Detection.
In SIGKDD. 1500–1508. https://doi.org/10.1145/3292500.3330993

[51] Ravi Jampani, Fei Xu, MingxiWu, Luis Leopoldo Perez, Christopher M. Jermaine,
and Peter J. Haas. 2008. MCDB: a monte carlo approach to managing uncertain
data. In SIGMOD. 687–700. https://doi.org/10.1145/1376616.1376686

[52] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris
Jermaine, and Zekai J. Gao. 2019. Declarative Recursive Computation on an
RDBMS. Proc. VLDB Endow. 12, 7 (2019), 822–835.

[53] Dimitrije Jankov, Binhang Yuan, Shangyu Luo, and Chris Jermaine. 2021. Dis-
tributed Numerical and Machine Learning Computations via Two-Phase Ex-
ecution of Aggregated Join Trees. Proc. VLDB Endow. 14, 7 (2021), 1228–1240.
https://doi.org/10.14778/3450980.3450991

[54] Chris Jermaine. 2021. The Tensor-Relational Algebra, and Other Ideas in Ma-
chine Learning System Design. In SSDBM. 270. https://doi.org/10.1145/3468791.
3472262

[55] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic
generation of graph substitutions. In SOSP. 47–62. https://doi.org/10.1145/
3341301.3359630

[56] Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia,
and Alex Aiken. 2019. Optimizing DNN Computation with Relaxed Graph
Substitutions. In MLSys. https://proceedings.mlsys.org/book/276.pdf

[57] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. 2017. Heterogeneity-aware
Distributed Parameter Servers. In SIGMOD. 463–478.

[58] Jiawei Jiang, Shaoduo Gan, Yue Liu, FanlinWang, Gustavo Alonso, Ana Klimovic,
Ankit Singla,WentaoWu, and Ce Zhang. 2021. Towards Demystifying Serverless
Machine Learning Training. In SIGMOD. 857–871. https://doi.org/10.1145/
3448016.3459240

[59] Sian Jin, Chengming Zhang, Xintong Jiang, Yunhe Feng, Hui Guan, Guanpeng
Li, Shuaiwen Song, and Dingwen Tao. 2021. COMET: A Novel Memory-Efficient
Deep Learning Training Framework by Using Error-Bounded Lossy Compres-
sion. Proc. VLDB Endow. 15, 4 (2021), 886–899. https://doi.org/10.14778/3503585.
3503597

[60] Steven G. Johnson. 2017. More Dots: Syntactic Loop Fusion in Julia. https:
//julialang.org/blog/2017/01/moredots/

[61] Norman P. Jouppi and otjers. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In ISCA. 1–12. https://doi.org/10.1145/3079856.3080246

[62] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil,
James Laudon, Cliff Young, and David A. Patterson. 2020. A domain-specific
supercomputer for training deep neural networks. Commun. ACM 63, 7 (2020),
67–78. https://doi.org/10.1145/3360307

[63] Julia. 2022. Parallel Computing. https://docs.julialang.org/en/v1/manual/
parallel-computing/

[64] Peter Kairouz, Brendan McMahan, and Virginia Smith. 2020. Federated Learn-
ing Tutorial. In NeurIPS. https://slideslive.com/38935813/federated-learning-
tutorial

[65] Vasileios Karakasis, Theodoros Gkountouvas, Kornilios Kourtis, Georgios I.
Goumas, and Nectarios Koziris. 2013. An Extended Compression Format for
the Optimization of Sparse Matrix-Vector Multiplication. IEEE Trans. Parallel
Distributed Syst. 24, 10 (2013), 1930–1940. https://doi.org/10.1109/TPDS.2012.290

[66] Konstantinos Karanasos, Matteo Interlandi, Fotis Psallidas, Rathijit Sen,
Kwanghyun Park, Ivan Popivanov, Doris Xin, Supun Nakandala, Subru Kr-
ishnan, Markus Weimer, Yuan Yu, Raghu Ramakrishnan, and Carlo Curino.
2020. Extending Relational Query Processing with ML Inference. In CIDR.
http://cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf

[67] David Kernert, Frank Köhler, andWolfgang Lehner. 2015. SpMacho - Optimizing
Sparse Linear Algebra Expressions with Probabilistic Density Estimation. In

https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1145/3276493
https://doi.org/10.1006/jcss.1997.1534
https://doi.org/10.1006/jcss.1997.1534
https://doi.org/10.14778/2824032.2824045
https://doi.org/10.14778/2824032.2824045
https://doi.org/10.1109/CVPR.2019.00020
https://youtu.be/zDBF0xwQW-0
https://youtu.be/zDBF0xwQW-0
https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf
https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf
http://proceedings.mlr.press/v97/dao19b.html
http://proceedings.mlr.press/v97/dao19b.html
https://doi.org/10.1145/3183713.3197387
https://doi.org/10.1145/3183713.3197387
http://cidrdb.org/cidr2017/papers/p3-elgamal-cidr17.pdf
http://www.vldb.org/pvldb/vol13/p2734-fang.pdf
https://doi.org/10.14778/3503585.3503590
https://doi.org/10.14778/3503585.3503590
https://doi.org/10.48550/arXiv.2211.02753
https://www.cidrdb.org/cidr2023/papers/p68-gandhi.pdf
https://www.cidrdb.org/cidr2023/papers/p68-gandhi.pdf
https://doi.org/10.1145/3035918.3035937
https://doi.org/10.1145/2020408.2020426
https://www.youtube.com/watch?v=jKV53r9-H14
https://www.youtube.com/watch?v=jKV53r9-H14
https://www.tensorflow.org/federated
https://www.tensorflow.org/guide/dtensor_overview
https://www.tensorflow.org/guide/dtensor_overview
https://www.vldb.org/pvldb/vol15/p2811-he.pdf
https://www.vldb.org/pvldb/vol15/p2811-he.pdf
https://doi.org/10.1145/3299869.3319888
https://doi.org/10.1145/3299869.3319888
https://arxiv.org/abs/2104.06272
https://arxiv.org/abs/2104.06272
https://doi.org/10.1145/3329785.3329932
https://doi.org/10.1145/3514221.3517869
https://doi.org/10.1145/3514221.3517869
https://doi.org/10.1145/2463676.2465273
https://doi.org/10.1145/2463676.2465273
https://doi.org/10.1145/3292500.3330993
https://doi.org/10.1145/1376616.1376686
https://doi.org/10.14778/3450980.3450991
https://doi.org/10.1145/3468791.3472262
https://doi.org/10.1145/3468791.3472262
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630
https://proceedings.mlsys.org/book/276.pdf
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.14778/3503585.3503597
https://doi.org/10.14778/3503585.3503597
https://julialang.org/blog/2017/01/moredots/
https://julialang.org/blog/2017/01/moredots/
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3360307
https://docs.julialang.org/en/v1/manual/parallel-computing/
https://docs.julialang.org/en/v1/manual/parallel-computing/
https://slideslive.com/38935813/federated-learning-tutorial
https://slideslive.com/38935813/federated-learning-tutorial
https://doi.org/10.1109/TPDS.2012.290
http://cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Matthias Boehm, Matteo Interlandi, and Chris Jermaine

EDBT. 289–300.
[68] David Kernert, Wolfgang Lehner, and Frank Köhler. 2016. Topology-Aware Op-

timization of Big Sparse Matrices and Matrix Multiplications on Main-Memory
Systems. In ICDE. 823–834.

[69] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ: Questions
Asked Frequently. In PODS. 13–28. https://doi.org/10.1145/2902251.2902280

[70] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman P.
Amarasinghe. 2017. The tensor algebra compiler. Proc. ACM Program. Lang. 1,
OOPSLA (2017), 77:1–77:29. https://doi.org/10.1145/3133901

[71] Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K. Bansal, William
Constable, Oguz Elibol, Stewart Hall, Luke Hornof, Amir Khosrowshahi,
Carey Kloss, Ruby J. Pai, and Naveen Rao. 2017. Flexpoint: An Adap-
tive Numerical Format for Efficient Training of Deep Neural Networks.
In NeurIPS. 1742–1752. https://proceedings.neurips.cc/paper/2017/hash/
a0160709701140704575d499c997b6ca-Abstract.html

[72] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Im-
ageNet Classification with Deep Convolutional Neural Networks. In
NeurIPS. 1106–1114. https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[73] Arun Kumar, Matthias Boehm, and Jun Yang. 2017. Data Management in
Machine Learning: Challenges, Techniques, and Systems. In SIGMOD. 1717–
1722. https://doi.org/10.1145/3035918.3054775

[74] Rasmus Munk Larsen and Tatiana Shpeisman. 2019. TensorFlow
Graph Optimizations. https://web.stanford.edu/class/cs245/slides/
TFGraphOptimizationsStanford.pdf Guest Lecture Stanford.

[75] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques A. Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation. In CGO. IEEE, 2–14. https://doi.org/10.1109/CGO51591.
2021.9370308

[76] Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey F. Naughton,
and Jignesh M. Patel. 2019. Tuple-oriented Compression for Large-scale Mini-
batch Stochastic Gradient Descent. In SIGMOD. 1517–1534.

[77] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling
Distributed Machine Learning with the Parameter Server. In OSDI. 583–598.

[78] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021.
CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Clas-
sification Tasks. In ICDE. 13–24. https://doi.org/10.1109/ICDE51399.2021.00009

[79] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-
berg, Joseph Gonzalez, Michael I. Jordan, and Ion Stoica. 2018. RLlib: Abstrac-
tions for Distributed Reinforcement Learning. In ICML, Vol. 80. 3059–3068.
http://proceedings.mlr.press/v80/liang18b.html

[80] Weifeng Liu and Brian Vinter. 2014. An Efficient GPU General Sparse Matrix-
Matrix Multiplication for Irregular Data. In IPDPS. 370–381.

[81] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. InNeurIPS. 4765–4774. https://proceedings.neurips.cc/paper/
2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

[82] Shangyu Luo, Zekai J. Gao, Michael N. Gubanov, Luis Leopoldo Perez, and
Christopher M. Jermaine. 2017. Scalable Linear Algebra on a Relational Database
System. In ICDE. 523–534.

[83] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen,
Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff
Dean. 2017. Device Placement Optimization with Reinforcement Learning. In
ICML, Vol. 70. 2430–2439.

[84] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jor-
dan, and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging AI
Applications. In OSDI. 561–577. https://www.usenix.org/conference/osdi18/
presentation/nishihara

[85] Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou. 2019. Incremen-
tal and Approximate Inference for Faster Occlusion-based Deep CNN Explana-
tions. In SIGMOD. 1589–1606. https://doi.org/10.1145/3299869.3319874

[86] Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo
Curino, Markus Weimer, and Matteo Interlandi. 2020. A Tensor Compiler
for Unified Machine Learning Prediction Serving. In OSDI. 899–917. https:
//www.usenix.org/conference/osdi20/presentation/nakandala

[87] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2019. Cerebro: Efficient and
Reproducible Model Selection on Deep Learning Systems. In DEEM@SIGMOD
Workshop. 6:1–6:4. https://doi.org/10.1145/3329486.3329496

[88] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A Data
System for Optimized Deep Learning Model Selection. Proc. VLDB Endow. 13,
11 (2020), 2159–2173. http://www.vldb.org/pvldb/vol13/p2159-nakandala.pdf

[89] Felix Neutatz, Felix Biessmann, and Ziawasch Abedjan. 2021. Enforcing Con-
straints for Machine Learning Systems via Declarative Feature Selection: An
Experimental Study. In SIGMOD. 1345–1358. https://doi.org/10.1145/3448016.
3457295

[90] Milos Nikolic, Mohammed Elseidy, and Christoph Koch. 2014. LINVIEW: incre-
mental view maintenance for complex analytical queries. In SIGMOD. 253–264.

[91] NVIDIA. 2020. A100 Tensor Core GPU Architecture.
[92] NVIDIA. 2022. TensorRT Developer Guide. https://docs.nvidia.com/

deeplearning/tensorrt/pdf/TensorRT-Developer-Guide.pdf
[93] Kunle Olukotun. 2021. "Let the Data Flow!". In CIDR.
[94] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul

Palamuttam, Parimarjan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk,
Saman P. Amarasinghe, Samuel Madden, and Matei Zaharia. 2018. Evaluating
End-to-End Optimization for Data Analytics Applications in Weld. Proc. VLDB
Endow. 11, 9 (2018), 1002–1015. https://doi.org/10.14778/3213880.3213890

[95] Shoumik Palkar, James Thomas, Anil Shanbhag, Malte Schwarzkopf, Saman P.
Amarasinghe, and Matei Zaharia. 2017. A Common Runtime for High Perfor-
mance Data Analysis. In CIDR. http://cidrdb.org/cidr2017/papers/p127-palkar-
cidr17.pdf

[96] Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy G. Mattson.
2016. The TileDB Array Data Storage Manager. Proc. VLDB Endow. 10, 4 (2016),
349–360. https://doi.org/10.14778/3025111.3025117

[97] Adam Paszke et al. 2019. PyTorch: An Imperative Style, High- Performance
Deep Learning Library. In NeurIPS.

[98] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.

[99] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia.
2021. Learning Mesh-Based Simulation with Graph Networks. ICLR (2021).

[100] Arnab Phani, Lukas Erlbacher, and Matthias Boehm. 2022. UPLIFT: Paralleliza-
tion Strategies for Feature Transformations in Machine Learning Workloads.
Proc. VLDB Endow. 15, 11 (2022), 2929–2938. https://www.vldb.org/pvldb/vol15/
p2929-phani.pdf

[101] Alexander Renz-Wieland, Rainer Gemulla, Zoi Kaoudi, and Volker Markl. 2022.
NuPS: A Parameter Server for Machine Learning with Non-Uniform Parameter
Access. In SIGMOD. 481–495. https://doi.org/10.1145/3514221.3517860

[102] Alexander Renz-Wieland, Rainer Gemulla, Steffen Zeuch, and Volker Markl.
2020. Dynamic Parameter Allocation in Parameter Servers. Proc. VLDB Endow. 13,
11 (2020), 1877–1890. http://www.vldb.org/pvldb/vol13/p1877-renz-wieland.pdf

[103] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In SIGKDD. 1135–1144.
https://doi.org/10.1145/2939672.2939778

[104] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms
and Task Scheduling. In SCIPY.

[105] Hongbo Rong, Jongsoo Park, Lingxiang Xiang, Todd A. Anderson, and Mikhail
Smelyanskiy. 2016. Sparso: Context-driven Optimizations of Sparse Linear
Algebra. In PACT. 247–259. https://doi.org/10.1145/2967938.2967943

[106] Svetlana Sagadeeva and Matthias Boehm. 2021. SliceLine: Fast, Linear-Algebra-
based Slice Finding for ML Model Debugging. In SIGMOD. 2290–2299. https:
//doi.org/10.1145/3448016.3457323

[107] Ricardo Salazar, Felix Neutatz, and Ziawasch Abedjan. 2021. Automated Feature
Engineering for Algorithmic Fairness. Proc. VLDB Endow. 14, 9 (2021), 1694–1702.
https://doi.org/10.14778/3461535.3463474

[108] Sebastian Schelter. 2020. "Amnesia" - Machine Learning Models That Can Forget
User Data Very Fast. In CIDR. http://cidrdb.org/cidr2020/papers/p32-schelter-
cidr20.pdf

[109] Sebastian Schelter, Stefan Grafberger, and Ted Dunning. 2021. HedgeCut: Main-
taining Randomised Trees for Low-Latency Machine Unlearning. In SIGMOD.
1545–1557. https://doi.org/10.1145/3448016.3457239

[110] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Bieß-
mann, and Andreas Grafberger. 2018. Automating Large-Scale Data Quality
Verification. Proc. VLDB Endow. 11, 12 (2018), 1781–1794. https://doi.org/10.
14778/3229863.3229867

[111] Sebastian Schelter, Andrew Palumbo, Shannon Quinn, Suneel Marthi, and An-
drew Musselman. 2016. Samsara: Declarative Machine Learning on Distributed
Dataflow Systems.

[112] Maximilian E. Schüle, Tobias Götz, Alfons Kemper, and Thomas Neumann.
2022. ArrayQL Integration into Code-Generating Database Systems. In EDBT.
https://doi.org/10.5441/002/edbt.2022.04

[113] Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, and Arun Kumar.
2021. Towards Benchmarking Feature Type Inference for AutoML Platforms. In
SIGMOD. 1584–1596. https://doi.org/10.1145/3448016.3457274

[114] Gaurav Sharma and Jos Martin. 2009. MATLAB®: A Language for Parallel
Computing. Int. J. Parallel Program. 37, 1 (2009), 3–36. https://doi.org/10.1007/
s10766-008-0082-5

[115] Alexander J. Smola and Shravan M. Narayanamurthy. 2010. An Architecture
for Parallel Topic Models. Proc. VLDB Endow. 3, 1 (2010), 703–710.

[116] Johanna Sommer,Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald,
and Peter J. Haas. 2019. MNC: Structure-Exploiting Sparsity Estimation for
Matrix Expressions. In SIGMOD. 1607–1623. https://doi.org/10.1145/3299869.
3319854

https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/3133901
https://proceedings.neurips.cc/paper/2017/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1145/3035918.3054775
https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf
https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/ICDE51399.2021.00009
http://proceedings.mlr.press/v80/liang18b.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://www.usenix.org/conference/osdi18/presentation/nishihara
https://www.usenix.org/conference/osdi18/presentation/nishihara
https://doi.org/10.1145/3299869.3319874
https://www.usenix.org/conference/osdi20/presentation/nakandala
https://www.usenix.org/conference/osdi20/presentation/nakandala
https://doi.org/10.1145/3329486.3329496
http://www.vldb.org/pvldb/vol13/p2159-nakandala.pdf
https://doi.org/10.1145/3448016.3457295
https://doi.org/10.1145/3448016.3457295
https://docs.nvidia.com/deeplearning/tensorrt/pdf/TensorRT-Developer-Guide.pdf
https://docs.nvidia.com/deeplearning/tensorrt/pdf/TensorRT-Developer-Guide.pdf
https://doi.org/10.14778/3213880.3213890
http://cidrdb.org/cidr2017/papers/p127-palkar-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p127-palkar-cidr17.pdf
https://doi.org/10.14778/3025111.3025117
https://www.vldb.org/pvldb/vol15/p2929-phani.pdf
https://www.vldb.org/pvldb/vol15/p2929-phani.pdf
https://doi.org/10.1145/3514221.3517860
http://www.vldb.org/pvldb/vol13/p1877-renz-wieland.pdf
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2967938.2967943
https://doi.org/10.1145/3448016.3457323
https://doi.org/10.1145/3448016.3457323
https://doi.org/10.14778/3461535.3463474
http://cidrdb.org/cidr2020/papers/p32-schelter-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p32-schelter-cidr20.pdf
https://doi.org/10.1145/3448016.3457239
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.5441/002/edbt.2022.04
https://doi.org/10.1145/3448016.3457274
https://doi.org/10.1007/s10766-008-0082-5
https://doi.org/10.1007/s10766-008-0082-5
https://doi.org/10.1145/3299869.3319854
https://doi.org/10.1145/3299869.3319854

Optimizing Tensor Computations SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA

[117] Leonhard F. Spiegelberg, Rahul Yesantharao, Malte Schwarzkopf, and Tim
Kraska. 2021. Tuplex: Data Science in Python at Native Code Speed. In SIGMOD.
1718–1731. https://doi.org/10.1145/3448016.3457244

[118] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. 2011. The
Architecture of SciDB. In SSDBM. 1–16.

[119] Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Tiark Rompf, Hassan
Chafi, Michael Wu, Anand R. Atreya, Martin Odersky, and Kunle Olukotun.
2011. OptiML: An Implicitly Parallel Domain-Specific Language for Machine
Learning. In ICML. 609–616. https://icml.cc/2011/papers/373_icmlpaper.pdf

[120] Ki Hyun Tae and Steven Euijong Whang. 2021. Slice Tuner: A Selective Data
Acquisition Framework for Accurate and Fair Machine Learning Models. In
SIGMOD. 1771–1783. https://doi.org/10.1145/3448016.3452792

[121] Stef van Buuren and Karin Groothuis-Oudshoorn. 2011. mice: Multivariate
Imputation by Chained Equations in R. Journal of Statistical Software, Articles
45, 3 (2011), 1–67.

[122] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, and
Albert Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-
Performance Machine Learning Abstractions. CoRR abs/1802.04730 (2018).
http://arxiv.org/abs/1802.04730

[123] William N. Venables and Brian D. Ripley. 2002. Modern Applied Statistics with S,
4th Ed. Springer.

[124] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash
Gopalakrishnan. 2018. Training Deep Neural Networks with 8-bit Floating
Point Numbers. In NeurIPS. 7686–7695. https://proceedings.neurips.cc/paper/
2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html

[125] Yisu Remy Wang, Shana Hutchison, Dan Suciu, Bill Howe, and Jonathan Leang.
2020. SPORES: Sum-Product Optimization via Relational Equality Saturation
for Large Scale Linear Algebra. Proc. VLDB Endow. 13, 11 (2020), 1919–1932.
http://www.vldb.org/pvldb/vol13/p1919-wang.pdf

[126] Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, and James Cheng. 2016.
Big Graph Analytics Systems. In SIGMOD. 2241–2243. https://doi.org/10.1145/
2882903.2912566

[127] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei
Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn J.
Keogh. 2016. Matrix Profile I: All Pairs Similarity Joins for Time Series: A
Unifying View That Includes Motifs, Discords and Shapelets. In ICDM. 1317–
1322. https://doi.org/10.1109/ICDM.2016.0179

[128] Yongyang Yu, MingJie Tang, Walid G. Aref, Qutaibah M. Malluhi, Mostafa M.
Abbas, and Mourad Ouzzani. 2017. In-Memory Distributed Matrix Computation
Processing and Optimization. In ICDE.

[129] Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, and
Chris Jermaine. 2021. Tensor Relational Algebra for Distributed Machine
Learning System Design. Proc. VLDB Endow. 14, 8 (2021), 1338–1350. https:
//doi.org/10.14778/3457390.3457399

[130] Binhang Yuan, Cameron R. Wolfe, Chen Dun, Yuxin Tang, Anastasios Kyrillidis,
and Chris Jermaine. 2022. Distributed Learning of Fully Connected Neural
Networks using Independent Subnet Training. Proc. VLDB Endow. 15, 8 (2022),
1581–1590. https://www.vldb.org/pvldb/vol15/p1581-wolfe.pdf

[131] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing. In NSDI. 15–28.

[132] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çagatay Demiralp,
and Wang-Chiew Tan. 2020. Sato: Contextual Semantic Type Detection in
Tables. Proc. VLDB Endow. 13, 11 (2020), 1835–1848. http://www.vldb.org/pvldb/
vol13/p1835-zhang.pdf

[133] Hantian Zhang, Xu Chu, Abolfazl Asudeh, and Shamkant B. Navathe. 2021.
OmniFair: A Declarative System for Model-Agnostic Group Fairness in Machine
Learning. In SIGMOD. 2076–2088. https://doi.org/10.1145/3448016.3452787

[134] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. 2017.
ZipML: Training Linear Models with End-to-End Low Precision, and a Little Bit
of Deep Learning. In ICML, Vol. 70. 4035–4043. http://proceedings.mlr.press/
v70/zhang17e.html

[135] Mingxing Zhang, Yongwei Wu, Kang Chen, Teng Ma, and Weimin Zheng. 2016.
Measuring and Optimizing Distributed Array Programs. Proc. VLDB Endow. 9,
12 (2016), 912–923. https://doi.org/10.14778/2994509.2994511

[136] Yi Zhang, Kamesh Munagala, and Jun Yang. 2011. Storing Matrices on Disk:
Theory and Practice Revisited. Proc. VLDB Endow. 4, 11 (2011), 1075–1086.
http://www.vldb.org/pvldb/vol4/p1075-zhang.pdf

[137] Jia Zou, R. Matthew Barnett, Tania Lorido-Botran, Shangyu Luo, Carlos Mon-
roy, Sourav Sikdar, Kia Teymourian, Binhang Yuan, and Chris Jermaine. 2018.
PlinyCompute: A Platform for High-Performance, Distributed, Data-Intensive
Tool Development. In SIGMOD. https://doi.org/10.1145/3183713.3196933

https://doi.org/10.1145/3448016.3457244
https://icml.cc/2011/papers/373_icmlpaper.pdf
https://doi.org/10.1145/3448016.3452792
http://arxiv.org/abs/1802.04730
https://proceedings.neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html
http://www.vldb.org/pvldb/vol13/p1919-wang.pdf
https://doi.org/10.1145/2882903.2912566
https://doi.org/10.1145/2882903.2912566
https://doi.org/10.1109/ICDM.2016.0179
https://doi.org/10.14778/3457390.3457399
https://doi.org/10.14778/3457390.3457399
https://www.vldb.org/pvldb/vol15/p1581-wolfe.pdf
http://www.vldb.org/pvldb/vol13/p1835-zhang.pdf
http://www.vldb.org/pvldb/vol13/p1835-zhang.pdf
https://doi.org/10.1145/3448016.3452787
http://proceedings.mlr.press/v70/zhang17e.html
http://proceedings.mlr.press/v70/zhang17e.html
https://doi.org/10.14778/2994509.2994511
http://www.vldb.org/pvldb/vol4/p1075-zhang.pdf
https://doi.org/10.1145/3183713.3196933

	Abstract
	1 Introduction
	2 Tensor Computations
	2.1 Data Preparation and Cleaning
	2.2 Data Augmentation and Simulation
	2.3 Query Processing
	2.4 ML Algorithms and Debugging

	3 Compilation Techniques
	3.1 Simplification Rewrites
	3.2 Operator Fusion and Code Generation
	3.3 Operator Selection and Placement

	4 Runtime Strategies
	4.1 Data Representations
	4.2 Parallelization Strategies
	4.3 Alternative Backends

	5 Biographies
	References

