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ABSTRACT
Machine learning (ML) training and scoring fundamentally relies
on linear algebra programs and more general tensor computations.
Most ML systems utilize distributed parameter servers and similar
distribution strategies for mini-batch stochastic gradient descent
training. However, many more tasks in the data science and engi-
neering lifecycle can benefit from efficient tensor computations.
Examples include primitives for data cleaning, data and model
debugging, data augmentation, query processing, numerical simu-
lations, as well as a wide variety of training and scoring algorithms.
In this survey tutorial, we first make a case for the importance of
optimizing more general tensor computations, and then provide an
in-depth survey of existing applications, optimizing compilation
techniques, and underlying runtime strategies. Interestingly, there
are close connections to data-intensive applications, query rewrit-
ing and optimization, as well as query processing and physical
design. Our goal for the tutorial is to structure existing work, create
common terminology, and identify open research challenges.

CCS CONCEPTS
• Information systems → Data management systems; Data
mining; Computing platforms; • Computing methodologies
→ Machine learning; Distributed computing methodologies;
Parallel computing methodologies; • Mathematics of com-
puting→Mathematical software; • Theory of computation
→ Design and analysis of algorithms.
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1 INTRODUCTION
Over the past decade(s), a wide variety of machine learning (ML)
systems emerged from the ML/stats, data management, and high-
performance computing communities. Early work focused on sta-
tistical computing platforms like R and ML algorithm libraries like
scikit-learn [98], as well as specialized systems for clustering, ma-
trix factorization [40], graph processing [126], and others. Later
work also provided infrastructure for scalable, distributed compu-
tation [3, 104, 131] and hardware accelerators. Nowadays, most
general-purpose ML systems focus exclusively on distributed pa-
rameter servers [1, 30, 57, 77, 115] and similar distribution strategies
[17, 64, 101] for mini-batch training via stochastic gradient descent
(SGD). Many more tasks in data science and engineering rely on
linear algebra and numerical computation, but they often exhibit
different characteristics and are implemented separately [9].

General Tensor Computations: In contrast to this narrowing
focus on mini-batch SGD, in this tutorial, we make a case for sup-
porting general linear algebra programs and tensor computations
for a wide variety of applications and workload characteristics. Be-
sides diverse ML algorithms and statistical learning [39], there are
new compelling use cases. First, state-of-the-art data integration
[31], feature and semantic type detection [50, 113, 132], and data
cleaning [78, 121] all rely onML. Second, there is work on data impu-
tation, cleaning, and ML tightly interwoven with query processing
[19], which requires integrated systems support [28, 32, 38, 44, 129].
Third, also data augmentation and simulation cleanly map to nu-
merical computation. Recent work applies machine learning for
more cost-effective weather forecasting [2] as well as simulations
of fluid dynamics and material deformation [99]. Interestingly, both
data augmentation and simulation allow for generating unlimited
datasets. Fourth, even complex, enumeration-based algorithms for
model debugging [106] as well as tree-based models [86] can be
expressed and efficiently executed in linear algebra.

Optimizing Tensor Computations: Efficient and scalable sys-
tem infrastructure for such use cases relies—due to complex, hi-
erarchically composed primitives—on optimizing compilers and
generating scalable runtime plans. Given increasing specialization,
hand-crafting plans for different characteristics and deployments
becomes infeasible. Automatic plan generation allows to seamlessly
adapt to diverse workloads and data characteristics. In this con-
text, a rapidly growing set of compilation and runtime techniques
emerges. Our goal for this tutorial is to structure the space, cre-
ate common terminology, and identify open research challenges.
Common terminology and well-defined sub-areas would serve our
community well by focusing efforts and simplifying reuse.

Tutorial Scope: Drawing from our experience building systems
for linear algebra and tensor computations (e.g., SystemML [12],

https://doi.org/10.1145/3555041.3589407
https://doi.org/10.1145/3555041.3589407


SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Matthias Boehm, Matteo Interlandi, and Chris Jermaine

SystemDS [11], Hummingbird [86], TQP [44], SimSQL [18, 39, 52,
82]), we aim to survey the state-of-the-art from applications to
compilation and runtime techniques. The technical background is
summarized in Sections 2-4, and the tutorial format is as follows:

• Tutorial Type: Survey,
• Preferred Duration: 3 hours (1.5 hours would also be possible
but only in reduced breadth and depth),

• Target Audience: Systems researchers and practitioners with
basic applied ML background (we do not expect prior knowl-
edge of state-of-the-art algorithms or system internals), and

• Hands-on Tutorial: no HW/SW requirements.

2 TENSOR COMPUTATIONS
In data-centric ML pipelines, there are multiple compelling use
cases for more general tensor computations and respective system
infrastructure in terms of compilation and runtime techniques.

2.1 Data Preparation and Cleaning
The inspiring tutorial by Dong and Rekatsinas [31] made a great
case for the natural symbiosis of data integration and machine
learning. Example tasks that heavily rely on ML—and thus, tensor
computations—are data extraction, schema alignment, entity reso-
lution, and data fusion. Interestingly, the same observation applies
to other data preparation tasks such as data validation [110], data
cleaning [45, 78], outlier/anomaly detection [127], missing value
imputation [121], semantic type detection [50, 132], feature selec-
tion [123], feature engineering [113], and feature transformations
[100]. For example, missing value imputation via chained equa-
tions (mice) [121] repeatedly extracts features with missing values,
trains models (classifiers for categorical, regressors for numerical)
using observed feature values as labels, and utilizes the models for
missing value imputation. For this reason, implementing cleaning
primitives in linear algebra is very compelling because it avoids
unnecessary boundary crossing among systems and libraries.

2.2 Data Augmentation and Simulation
Data augmentation takes a small labeled dataset and generates
many more synthetic examples via transformations and the original
labels. Common transformations include reflections, translations,
shearing, rotations, cropping, and mixup, which increase data cov-
erage for improved generalization. The seminal AlexNet [72] paper
heavily relied on data augmentation (by 2048x the original datasize),
and since then it has become common practice. Recently, additional
work also tunes data augmentation pipelines and their parame-
ters [26], and pushes data augmentation as specialized kernels into
model training to avoid data materialization [29]. Furthermore,
machine learning is also applied for more cost-effective weather
forecasting [2] as well as simulations of fluid dynamics and ma-
terial deformation [99]. In this context, very simple MLP models
are utilized and the simulation characteristics yield a wide variety
of workload characteristics. Prior related work also focused on
Monte Carlo sampling [51], and Markov chain simulation [18, 39].
Both data augmentation and simulation allow for generating unlim-
ited datasets with interesting opportunities of directed sampling
according to model accuracy as well as fusion.

2.3 Query Processing
Recently, tensor computations have been proposed for executing
relational operators and even full queries. TCUDB [48] maps join
operations into matrix multiplications for efficient execution on
Tensor Cores [27, 91]. Raven [66] co-optimizes classical ML models
and relational queries. During optimization, Raven can push rela-
tional operations such as projection and filters into the ML model
as tensor operations. TQP [37, 44] maps Spark SQL queries into ten-
sor computations. TQP supports the full TPC-H benchmark. TQP
implements several relational operators (join, aggregation, group
by, etc) as PyTorch tensor programs, and chains them together
to form query plans which are executable on any hardware sup-
ported by PyTorch (e.g., CPU, GPU, TPU [61, 62], etc). Beyond using
tensor computations for allowing queries to leverage hardware ac-
celeration, TQP has also proposed tensor computations for query
processing over unstructured data such as images, as well taking
advantage of the auto-differentiation infrastructure in PyTorch for
enabling differentiable queries [38]. While many preliminary re-
sults are very promising, other work has also pointed out remaining
challenges of mapping queries to TPUs [47].

2.4 ML Algorithms and Debugging
Finally, there is rich literature on first- and second-order optimiza-
tion, statistical learning, a variety of ML models, and more special-
ized fields such as robust optimization. Besides such algorithms—
including tree-based models for both inference [86] and training1—
that naturally map to tensor computations, recently also model de-
bugging, explanations, and fairness constraints have been elegantly
expressed in linear algebra. Examples include linear-algebra-based
slice finding [106], learning curve prediction for different slices
[120], explanations via linear approximations [81, 85, 103], as well
as constrained and unconstrained optimization for fairness and
accuracy [89, 107, 133, 133].

3 COMPILATION TECHNIQUES
Compilation techniques in ML systems are inspired by program-
ming language compilers, query optimization in DBMS, and opti-
mizing HPC compilers. Some of the covered material overlaps with
a previous SIGMOD 2017 tutorial [73] but existing work evolved
significantly in the past six years.

3.1 Simplification Rewrites
Size Propagation: As a basis for advanced compilation techniques,
many systems first propagate size information [16] (e.g., dimensions
and sparsity) and subsequently use this information for memory
and cost estimation. A central challenge is sparsity estimation of
intermediates, which is addressed via naïve metadata estimators
[16], naïve bitset estimators [80, 118], density maps [67, 68], biased
sampling [128], layered graphs [22, 23], and sketches [116]. Besides
sparsity, there has been work on propagating other properties such
as symmetry, constants, and storage formats [105].

1For example, see the veectorized decisionTree() and randomForest() built-in
functions—as well as their corresponding predict functions—in Apache SystemDS [11].

https://github.com/apache/systemds/blob/main/scripts/builtin/decisionTree.dml
https://github.com/apache/systemds/blob/main/scripts/builtin/randomForest.dml
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Rewrites: Applied rewrites then include traditional program-
ming language rewrites—such as common subexpression elimina-
tion, constant folding, branch removal, and loop hoisting [4, 24]—
as well as simplification rewrites for linear algebra expressions
[16, 74, 119], dedicated dynamic programming approaches for ma-
trix multiplication chains, and sparsity exploitation [12, 49]. Exam-
ples systems that apply such rewrites are SystemDS, TensorFlow,
and PyTorch. Graph substitutions are also applied to expressions
in deep neural networks [35, 56]. Other rewrites include loop vec-
torization, and incremental computations [90, 108, 109]. Recent
work aims to overcome the need for hand-crafting simplification
rewrites by automatic rewrite generation and sum-product opti-
mization based on meta-properties of operations [33, 55, 69, 125].

3.2 Operator Fusion and Code Generation
Operator fusion and code generation are used during ahead-of-time
and just-in-time compilation in order to eliminate unnecessary
intermediates, apply scan sharing, exploit sparsity, and specialize
runtime plans to the underlying, increasingly specialized hardware
and runtime strategies. Example systems with dedicated code gen-
erators include BTO [10], Tupleware [25], Kasen [135], SystemDS
[14, 33], Weld [94, 95], TACO [70], PlinyCompute [137], Julia [60],
TensorFlow XLA, PyTorch, Tensor Comprehensions [122], TVM
[20], NIVIDA TensorRT [92], DAPHNE [28], and Tuplex [117]. Re-
cently, several systems were built on top of existing code generators
(e.g., JAX on TensorFlow XLA, and TQP on TVM). MLIR [75] aims
to avoid redundancy by providing compiler-infrastructure as a li-
brary with clearly defined dialects, which gains popularity because
hardware vendors can provide specific dialects for their hardware
devices, easing their adoption. Remaining challenges include in-
creasing the fusion potential for integrated query processing and
linear algebra / tensor operations with dynamic tensor shapes.

3.3 Operator Selection and Placement
Beyond dedicated systems for local and distributed computation,
there are several ML systems with multiple backends. Examples
include PyTorch [97], TensorFlow [1], SystemDS [11], Samsara
[111], DaskML [104], and code generators like TF XLA and TVM
[20]. Predominantly though, operator selection and placement is
still done via heuristics and manual placement. SystemDS also
automatically chooses local and distributed operations depending
on memory estimates and budgets, as well as different physical
operators based on data characteristics. Reinforcement learning has
been successfully used to place neural network layers onto multiple
heterogeneous hardware devices [83]. In addition to placing entire
operators on devices, DTensors [43] in TensorFlow and PyTorch as
well as federated matrices/frames in DAPHNE [28] further allow for
more fine-grained placement of shards of tensors on heterogeneous
devices. Recent work on compiler infrastructure for ASICs also
include the spatial-temporal mapping of data flow graphs to die
space [93] and "hardware islands" of multiple devices [6].

4 RUNTIME STRATEGIES
Underneath the evolving compilation techniques, there are impor-
tant runtime strategies, especially regarding data representations,
parallelization strategies, and dedicated runtime backends.

4.1 Data Representations
Overall, we observe an increasing specialization in terms of parti-
tioning and tiling strategies of matrices/frames; as well as dense,
sparse, and compressed tile representations. First, in terms of over-
all partitioning there are local tensors, distributed collections of
tiles, as well as federated or sharded tensors with implicit/or explicit
sharding information. Distributed collections of tiles originate from
ML systems on data-parallel computing frameworks like Spark
[131], Flink [3], or Dask [104]. Later, such abstractions have also
been adopted for in-DBMS machine learning [52, 82, 112]. This
representation has been proven to be very versatile, and recent
work on tensor relational algebra makes a case for adopting it as a
logical abstraction [54, 129]. Second, at the level of individual tiles,
we see more and more specialized sparse [21, 91] and compressed
[7, 34, 59, 65, 76, 124, 134] matrix representations as well as spe-
cialized data types [71, 91]. Unfortunately, the selection of such
representations is still largely a manual trial and error process.

4.2 Parallelization Strategies
Over the last decade, a wide variety of parallelization strategies
has been devised, often designed to exploit the characteristics of
the underlying hardware and compute infrastructure. First, data-
parallel operations follow an SPMD (single-program, multiple-data)
model on distributed collections. A variety of physical operators
for broadcast-based, shuffle-based, and specialized operations has
been proposed and integrated into ML systems [12, 53, 111]. Second,
for use cases like hyper-parameter tuning, cross-validation, and
embarrassingly-parallel programs, task parallelism (e.g., via paral-
lel for loops) and hybrid parallelism (e.g., concurrent data-parallel
jobs on large-scale datasets) has been adopted as well [15, 63, 114].
Third, irregular workloads—as used in reinforcement learning—are
addressed with task-dependency-graphs and future-based sched-
uling [79, 84] as well as tightly integrated architectures of CPU
drivers and hardware accelerators [46]. Fourth, distributed mini-
batch training relies on parameter servers [1, 30, 57, 77, 115] and
similar distribution strategies [41]. Here, we often differentiate
data- and model-parallel parameter servers, which hold data and
model partitions, respectively. Given the challenges of efficient data
exchange and synchronization barriers, compared to tuned single-
node implementations, recent work added dedicated parallelization
for training multiple models [87, 88], sampled, independent subnet
training [130], as well as sparsity and locality exploitation for sparse
and skewed parameter access (e.g., matrix factorization) [101, 102].

4.3 Alternative Backends
Although many ML systems comprise custom runtime backends—
with the help of communication libraries such as gRPC, MPI, and
NCCL [36]—there is commonly used infrastructure. The first gen-
eration of parameter servers [30, 115] often relied on parameter
management on Key/Value-stores. Similarly, Function-as-a-Service
(FaaS) ML systems—which aim for low start-up costs and automatic
elasticity—communicate over rather slow Key-Value Stores and
even object stores like S3 [58]. A very popular infrastructure are
general-purpose data-parallel computation frameworks like Spark
[131], Flink [3], and Dask [104]. Other backends include Ray [84] for
irregular task-parallelism, SQL with dedicated matrix/vector types
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and recursive computation [52], and federated learning backends
(e.g., SystemDS federated [8] and TensorFlow federated [42, 64])
with additional integration of privacy enhancing technologies. The
individual ML system backends also implement specific techniques
for providing efficient data access. Examples include buffer-pool-
like eviction of live variables from GPU to CPU memory or from
CPU memory to disk [13], dedicated tile layouts (aka page layouts)
with reordered and padded rows [5], as well as in-memory and
disk-based index structures for out-of-core data [68, 96, 136].

5 BIOGRAPHIES
The tutorial presenters have backgrounds from industry and academia,
and have built various systems with different architectures.

Matthias Boehm: Matthias Boehm is a full professor for large-
scale data engineering at Technische Universität Berlin and the
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agement at Graz University of Technology, Austria, and a research
area manager for data management at the co-located Know-Center
GmbH. Prior to 2018, he was a postdoc and research staff mem-
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machine learning in Apache SystemML. Matthias received his Ph.D.
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