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ABSTRACT

Existing data debugging tools allow users to trace model perfor-
mance problems all the way to the data by efficiently identifying
slices (conjunctions of features and values) for which a trained
model performs significantly worse than the entire dataset. To en-
sure accurate and fair models, one solution is to acquire enough
data for these slices. In addition to crowdsourcing, recent data ac-
quisition techniques design cost-effective algorithms to obtain such
data from a union of external sources such as data lakes and data
markets. We demonstrate Plutus, a tool for human-in-the-loop
and model-aware data acquisition pipeline, on SystemDS, as an
open source ML system for the end-to-end data science lifecycle. In
Plutus, a user can efficiently identify problematic slices, connect
to external data sources, and acquire the right amount of data for
these slices in a cost-effective manner.

CCS CONCEPTS

• Information systems→ Information integration; • Comput-
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1 INTRODUCTION

In machine learning, a common assumption is that the training data
accurately represents the data encountered in production. However,
in practice, this assumption is hard to verify and, more importantly,
hard to satisfy. The reason is three-fold. First, it is often impossible to
obtain the training data by randomly sampling from the distribution
of the “full” production data. For instance, the data collected by
a survey is highly skewed toward those people who responded.
Second, even when random sampling is possible the underlying
distribution may not be known in advance. Third, even in scenarios
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where representative samples can be obtained for training, to ensure
model performance, we may need to train with data in which some
parts of data are intentionally over- or under-represented. This
distribution mismatch between training data and production data
has led to numerous severe societal issues [20].

Model Debugging: The goal of ML model debugging is to moni-
tor, analyze, and track the validity of train/validation data andmodel
characteristics. The issues to consider include data errors, lack of
model generalization (e.g., due to overfitting or test data leakage), as
well as model fairness [19]. In particular, existing work [6, 22] aim
to find the top-𝐾 data slices, conjunctions of features and values
such as (gender=‘female’ and degree=‘PhD’), where a model per-
forms significantly worse than for the entire dataset. Finding such
problematic slices is useful for understanding and debugging the
distribution of a training dataset and subsequent model bias [6, 22].

Data Acquisition: For model improvement, existing data acqui-
sition techniques aim to obtain new data from other data sources
and enrich the training data in a way that it satisfies some desired
distribution requirements [4, 15, 18]. While acquiring data for slices
that have insufficient representation may reduce errors for those
slices, it may also influence the model errors on other slices [23],
and thus, the overall loss. This issue arises when slices are corre-
lated and do not benefit the model equally. Thus, naïvely acquiring
equal amounts of data per slice is not optimal. This imbalance is
especially important, because data acquisition is often limited by
budget: acquisition from crowdsourcing, data markets, and data
lakes is often associated with monetary or computation costs.

Fairness: Another challenge is the fairness-accuracy trade-off.
When some notion of fairness is enforced, then usually the predic-
tive accuracy suffers. This trade-off, however, depends on the data
and fairness measures [8]. In the case of a perfectly balanced dataset
and a perfect model, there is no trade-off between demographic
parity and accuracy. For equality of opportunity, given any dataset
and a perfect classifier, no trade-off exists. However, often models
are far away the optimal frontier. Therefore, the fairness-accuracy
trade-off is often treated based on the requirements of applications
and use cases. When fairness is prioritized, we would like to acquire
data such that the models are similarly accurate for different slices,
which may induce lower overall accuracy, and vice versa. Effective
data acquisition requires interpreting and debugging models and
understanding the intricate distribution characteristics of training
data and its synergies with the model performance.

Contributions: We demonstrate Plutus, a human-in-the-loop
data distribution understanding and tailoring pipeline, built upon
SystemDS [3] (an open-source ML system). The main components
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of Plutus include 1) SliceLine [22], an exact and efficient enumer-
ation algorithm for finding the top-𝐾 problematic data slices, where
an ML model performs worse than overall, 2) Distribution Tailoring
(Dt) [18], a suite of algorithms for cost-effectively acquiring data,
with distribution requirements, from a union of external sources,
and 3) a visualization module, for exploring the accuracy-fairness-
cost tradeoffs. The integration of these components on SystemDS
allows users to efficiently iterate over model training, model de-
bugging, and distribution tailoring, as they gain more insights on
problematic slices of data and the impact of distribution on various
measures. In our demonstration scenario, the attendees imperson-
ate a data scientist. They can specify their own training datasets
and data acquisition sources. The participants observe first-hand
how Plutus recommends problematic slices and how it applies
various data tailoring techniques to obtain data for desired slices.
We proceed to discuss related work (Section 2), a solution sketch
(Section 3), and a detailed outline of our demonstration (Section 4).

2 RELATEDWORK

Plutus is related to model debugging and data acquisition, as well
as tools for their joint, exploratory evaluation.

Model Debugging: Besides traditional model debugging via
confusion matrices and their extensions [12], various metrics (e.g.,
area under ROC curve), interactive model training [9], and basic
visualizations (e.g., after dimensionality reduction into 2D), there
is a trend toward exploratory model debugging. First, explanation
techniques such as occlusion-based explanations [17, 24], sparse
linear explanations (LIME) [21], layer-wise relevance propagation
[14], and Shapley additive explanations (SHAP) [16] are utilized to
better understand (often visually) the reasons of predictions and
related errors. Second, finding groups with special properties has
also proven very helpful. Existing techniques include data coverage
analysis [13], explanation tables [11], slice finding [6, 7, 22], and
slice tuning [23]. However, good tooling support for understanding
interactive slice improvements is still lacking.

Data Acquisition: Li et al. consider enhancing model accu-
racy using data markets with a strategy that estimates utilities of
providers’ data, then allocates budget accordingly, and a sequential
predicate selection strategy that focuses on statistically promis-
ing data segments for model improvement [15]. The underlying
assumption is that the market data follows the same distribution
as the desired distribution of the train data. Unlike Dt, Chi et al.
propose to first union data sources, cluster the data, then iteratively
select and evaluate mini-batches from these clusters, and use multi-
armed bandit and reinforcement learning solutions to refine the
cluster selection criteria based on evaluation feedback [4]. Fallah et
al. consider the problem of acquiring data from privacy-sensitive
users for estimating a parameter [10] and establish minimax bounds
for the estimation error at varying privacy levels.

3 SOLUTION SKETCH

Figure 1 depicts the overall architecture of Plutus. In the following,
we describe a summary of the main components of Plutus (model
training, slice finding via SliceLine, distribution tailoring), and the
implementation of this iterative pipeline on top of SystemDS.
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Figure 1: Plutus Architecture.

3.1 Slice Finding

After model training and scoring, we obtain an error vector e (inde-
pendent of the used ML model) that indicates mispredictions on the
train or validation sets (e.g., 0/1 for classification, or mean squared
error for regression). Subsequently, we apply SliceLine [22] in order
to find problematic slices (conjunctions of attributes, where the
model underperforms) for guiding data discovery and sampling.

Problem Formulation:We aim to find the top-K worst slices by
maximizing the following scoring function (subject to a minimum-
support threshold 𝜎 and only positive scores), which balances large
errors 𝑠𝑒 (problematic subset) and large sizes |𝑆 | (coverage):

𝑠𝑐 = 𝛼

(
𝑠𝑒

e
− 1

)
− (1 − 𝛼)

(
|X|
|𝑆 | − 1

)
where 𝛼 ∈ (0, 1] is a weight parameter for slice errors. The com-
pelling properties of this scoring function are that the original data
X has a score of 0, any score larger than 0 is interesting, the er-
ror/size terms are balanced for 𝛼 = 0.5 (a slice 𝑆 with twice the
average error 𝑠𝑒

e but half the size of X has the same score), and the
scoring function is amenable to pruning by monotonicity.

Efficient Slice Finding: Given a dataset with𝑚 features and
𝑑 𝑗 distinct items per feature, the lattice of all slices is exponen-
tially large. In order to efficiently find the top-K worst slices, we
prune and evaluate each lattice level via a single, (ultra-)sparse
matrix multiplication. First, inspired by Frequent Itemset Mining,
a slice can only be frequent (|𝑆 | ≥ 𝜎) if all its parents (i.e., subsets
of predicates) are frequent. Accordingly, in SliceLine [22] on Sys-
temDS [3], we prune by these sizes, but also by upper-bound scores
(negative or less than current top-K set). Second, we enumerate all
remaining slices S, of a lattice level 𝐿, and efficiently evaluate slices
via (X ⊙ S⊤) = 𝐿 (matrix multiplication and comparison for all
matching predicates), from which we can again derive slice scores
and errors. The iterative nature of Plutus allows for additional
optimizations (i.e., reusing state), which we do not leverage yet.

3.2 Data Distribution Tailoring

Once the user finds and selects problematic slices, Dt algorithms
can assist with cost-effective data acquisition.
Problem Definition: Dt aims to enable integrating data from mul-
tiple sources to construct a target dataset. The input query to Dt
specifies quotas over some groups. In Plutus, groups are the slices
identified by SliceLine. Count requirements are user-specified. An-
other input to Dt is a collection of sources and their corresponding
costs. Data sources can be external, such as crowdsources and data
markets, or data views that are defined by a project-join queries
over a database or a data lake. We assume tuple-at-a-time access for
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a fee to each source. Acquiring samples from sources is associated
with amortized costs per query, whether monetary, annotation,
computation, or integration. For instance, obtaining a source with
the same schema as the target schema may involve data discovery
and integration. In particular, if the views are expensive to compute,
advanced query sampling techniques may be considered [2]. Cur-
rently, Plutus assumes sources have the same schema as the target
and training data schemas. Given a collection L = {𝐷1, . . . , 𝐷𝑛}
of data sources and their costs {𝐶1, . . . ,𝐶𝑛}, Dt aims to build a
target dataset with the count distribution {Q1, . . . ,Q𝑚} on slices
{G1, . . . ,G𝑚}, both decided by the user. The key strategy is to query
adaptively, in a sequential manner, to collect samples that fulfill the
distribution description, while the expected total cost is minimized.
Algorithms: Dt proposes sampling strategies for scenarios in
which data distribution of sources may or may not be known.

RatioColl is an adaptive sampling strategy that chooses a pri-
ority slice𝐺∗ based on the expected cost of satisfying the counts
of each slice independently. Then, the algorithm samples from the
data source 𝐷∗ which minimizes the expected cost to sample it. Let
𝑃𝑖, 𝑗 be the probability to sample 𝐺 𝑗 from 𝐷𝑖 . The priority slice and
its corresponding cost-effective source are chosen as:

𝐺∗ = argmax
𝑗∈[𝑚],𝑄 𝑗>0

(
𝑄 𝑗 · min

𝑖∈[𝑛]

(
𝐶𝑖

𝑃𝑖, 𝑗

))
, 𝐷∗ = argmin

𝐷𝑖 ∈D

(
𝐶𝑖

𝑃𝑖,∗

)
.

This forcesDt to prioritize slices that are rare (small 𝑃𝑖, 𝑗 ), expensive
(large 𝐶𝑖 ), and has a high query count (large 𝑄 𝑗 ).

When distribution of sources are not available, Dt is mapped to
the stochastic multi-arm bandit (MAB) problem, where every data
source is an arm and we would like to select arms sequentially.

ExploreExploit is a simple and efficient algorithm with two
phases: exploration and exploitation. The time horizon is at most
some unknown constant multiple of the total count requirement,
denoted 𝑄 . As such, Plutus crudely approximates 𝑇 ≈ 𝑄 Then Dt
sets the exploration phase to be 𝛼𝑇 2/3 iterations for some tunable
parameter 𝛼 , during which ExploreExploit uniformly explores
each source. This phase is batched and parallelized. During ex-
ploitation, it calls RatioColl as a subroutine, with a modification
to estimate 𝑃𝑖, 𝑗 with increasing accuracy as it samples data sources.

Cost Analysis: RatioColl has a tight asymptotic expected cost
for the case of two groups and sources, and outperforms various
baselines. Since ExploreExploit batches and parallelizes explo-
ration at the beginning, it is often more cost and runtime efficient
than asymptotically optimal algorithms. It achieves sublinear re-
gret if the time horizon is accurately estimated. In practice, both
strategies outperform random source selection baseline. We refer
interested readers to [18] for detailed description and analysis.

3.3 Implementation

Configuration: Plutus is configurable with a config file. The
required fields include database connection string(s) for the initial
dataset and additional data sources, name and type of input and
prediction columns, and bin borders for consistent binning over
multiple iterations. On startup, Plutus reads the config file and
fetches the initial training data.

Frontend: The dashboard is implemented in Plotly Dash [1].
User inputs trigger callback functions that update the state of global

variables to track model performance, slices found, and additional
data acquired over iterations. Callbacks also visualize model per-
formance and DT cost breakdown.

Middleware: The frontend issues API calls to a Python middle-
ware which calls database queries, handles data processing, and
orchestrates the three phases’ main algorithms.

Training: The model training utilizes XGBoost, a popular gradi-
ent boosting library that performs well on tabular data [5].

SliceLine:We utilize the SystemDS Python API to find the prob-
lematic slices using the data and errors from model training. Under
the covers, the DSL-based SliceLine function is compiled to runtime
plans according to data and cluster characteristics. Plutus allows
exploring different parameters for the individual datasets, including
the number of slices 𝑘 as well as slice size and error weighing 𝛼 .

Data Tailoring:We implement RatioColl, ExploreExploit,
and a random baseline. Priority sources are computed efficiently
using matrices. For ExploreExploit, exploration parameter 𝛼 =

1/2 works well in practice. We simulate external data sources by
implementing them as PostgreSQL queries.

4 DEMONSTRATION DESCRIPTION

Wedemonstrate Plutus using the Flights1 andNYPD-stop&question2
datasets. We describe intended user interactions in four steps (Fig-
ure 2) using the Flights dataset as our running example3.

Step 1. Model Training: Suppose the goal is to accurately pre-
dict the arrival delay of a flight. A user can use xgboost for training
boosted trees. The user can verify the validation loss, compare it to
train loss. Plutus visualizes the validation loss for existing slices.

Step 2. Model Debugging with SliceLine: To identify prob-
lematic slices, a user sets parameters such as scoring parameters 𝛼 ,
number of slices to find, the maximum level of lattice to search, and
minimum number of support required for each slice. Upon running
SliceLine, the problematic slices are displayed and the user can set
the desired number of data points for each slice.

Step 3. Data Acquisition and Enrichment with Dt: Plutus
displays the distribution of slices in each connected data source for
explainability. Next, the user can run RatioColl and ExploreEx-
ploit algorithms and compare them with a random baseline. For
better understanding of Dt algorithms, the system visualizes the
ratio of samples the algorithms have collected from each source.
This feedback allows a user to visually investigate the trade-off of
cost and data diversity. Finally, the user can enrich the training data
with the acquired data and return to the training phase.

Step 4.Model Training andAccuracy-Fairness Trade-offVi-

sualization: The user can iterate through the pipeline with various
slice distribution hypotheses and investigate the accuracy-fairness
trade-off. The interactivity of the human-in-the-loop Plutus facili-
tates experimentation and finding the right balance for a usecase.
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Figure 2: Plutus Demonstration Scenario.
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