
Demonstrating CatDB:
LLM-based Generation of Data-centric ML Pipelines

Saeed Fathollahzadeh
saeed.fathollahzadeh@concordia.ca

Concordia University
Montreal, Canada

Essam Mansour
essam.mansour@concordia.ca

Concordia University
Montreal, Canada

Matthias Boehm
matthias.boehm@tu-berlin.de
Technische Universität Berlin

Berlin, Germany

Abstract
AutoML systems automate findingMachine Learning (ML) pipelines
but struggle to scale with large datasets due to time-consuming
data analysis and complex hyper-parameter search spaces. LLMs
(Large Language Models) offer flexibility and scalability for code
generation with strong generalization across coding tasks. However,
generating data-centric ML pipeline scripts is more challenging, as
it requires complex reasoning to align the needs of a dataset with
coding tasks, such as data cleaning or feature transformation. Thus,
LLMs struggle to generate effective and efficient ML pipelines. This
demo paper presents CatDB, which overcomes these challenges by
dynamically generating dataset-specific instructions to guide LLMs
in generating effective pipelines. CatDB profiles datasets to extract
metadata, including refined data catalog information and statistics,
and then uses this metadata to break down pipeline generation into
instructions of tasks such as data cleaning, transformation, and
model training, tailored to specifics of the dataset at hand. This
process enables CatDB to leverage LLM coding capabilities more
effectively. Our evaluation shows CatDB outperforms existing LLM-
based and AutoML systems with up to orders of magnitude faster
runtime on large datasets. The audience will experience CatDB’s
capabilities with commercial and open-source LLMs, using a variety
of real datasets, as shown in our demo video and Colab notebook.

CCS Concepts
• Information systems → Deduplication; Data cleaning; Data
analytics;Online analytical processing; •Computingmethod-
ologies → Machine learning.

Keywords
Data-centric ML Pipelines; Data Catalogs; LLM Code Generation

ACM Reference Format:
Saeed Fathollahzadeh, Essam Mansour, and Matthias Boehm. 2025. Demon-
strating CatDB: LLM-based Generation of Data-centric ML Pipelines. In
Companion of the 2025 International Conference on Management of Data
(SIGMOD-Companion ’25), June 22–27, 2025, Berlin, Germany. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3722212.3725097

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion ’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1564-8/2025/06
https://doi.org/10.1145/3722212.3725097

Table #1
𝑐1 𝑐2 ...
1 a ...
2 - ...
...

Table #2
𝑐1 𝑐2 ...
A 0 ..
B 1 ...
...

.......

Table #N
𝑐1 𝑐2 ... target (y)
1 A ... Yes
2 0 ... No
...

Raw Dataset

from catdb import config, generate_pipeline

from dataprofiling import build_catalog

cfg = config(llm_model=’gpt-4o’)

cat = build_catalog(path=’raw_dataset’)

p = generate_pipeline(catalog=cat, config=cfg)

Pipeline Generation via CatDB
1: import pandas as pd
2: import SimpleImputer
3: import OneHotEncoder
4: import ColumnTransformer
5: import Pipeline
6: import RandomForestRegressor
7: import r2_score

8: trai = pd.read_csv("train.csv")
9: test = pd.read_csv("test.csv")

10: ca = ["Experience", "Gender"]
11: cat = Pipeline(steps=[

("imputer", SimpleImputer(....
("onehot", OneHotEncoder(...

12: preprocessor = ColumnTransformer(
transformers = [("cat",...)]

13: model = RandomForestRegressor(...)
14: p = Pipeline(steps=[....])

15: p.fit(X_train, y_train)
16: y_test_pred = p.predict(X_test)

ML Pipeline

Figure 1: Data-centric ML Pipeline Generation via CatDB.

1 Introduction
Data-centric machine learning (ML) pipelines build on traditional
ML pipelines by emphasizing key data preparation steps, such as
cleaning, transformation, and feature engineering. These stages are
crucial because the dataset quality often has a greater impact on
model accuracy than the choice of algorithm. For example, a data
scientist working with a tabular dataset aims to create a pipeline
that optimizes performance for tasks like classification or regres-
sion. This process involves preparing the dataset through dedicated
primitives—such as handling missing values or scaling numerical
features—to enhance model performance. Data-centric pipelines
are inherently exploratory and require iterative experimentation
and a deep understanding of the dataset’s quality. Hence, designing
high-quality pipelines is computationally intensive and challenging,
especially for domain-specific or large datasets. Human-in-the-loop
approaches heavily depend on expert data scientists to refine the
pipeline, making the process time-consuming and difficult to scale.

AutoML systems automate finding good ML pipelines through
model selection and hyper-parameter tuning. However, these sys-
tems struggle to scale with large datasets due to time-consuming
training and complex hyper-parameter search spaces. In contrast,
large language models (LLMs), such as GPT-4 and Gemini-2, offer
flexibility and scalability for code generation with strong gener-
alization across coding tasks. Unlike code generation, generating
ML pipelines requires in-depth reasoning to align a dataset’s needs
with tailored coding tasks, such as data cleaning or transformation.

LLMs perform generally very well on popular datasets seen dur-
ing training. For example, the prompt "generating an ML pipeline
for the Titanic dataset" with GPT-4 creates an efficient ML pipeline.
However, LLMs struggle with unknown datasets not seen during
training, and generate errors due to hallucinations. Some studies
have explored using LLMs for model selection and pre-processing
in the form of feature engineering. Moreover, these approaches
often face significant performance challenges when applied to large
datasets with numerous features, which leads to performance degra-
dation. Table 1 qualitatively compares state-of-the-art AutoML sys-
tems, such as FLAML [7] andAuto-Sklearn [2], as well as LLM-based
systems, such as CAAFE [4], AIDE [6] and AutoGen [8].

87

https://orcid.org/0000-0003-3723-6191
https://orcid.org/0000-0001-6851-6351
https://orcid.org/0000-0003-1344-3663
https://youtu.be/6Cl7B6ZHAOM
https://colab.research.google.com/drive/1L7UgxX4AbMvp8N4BwofymA54NuuxOM1C
https://doi.org/10.1145/3722212.3725097
https://doi.org/10.1145/3722212.3725097
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3722212.3725097&domain=pdf&date_stamp=2025-06-22

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Saeed Fathollahzadeh, Essam Mansour, and Matthias Boehm

Table 1: Comparison of key capabilities of ML Pipeline generators and AutoML. Dynamic refers to a system’s ability to adjust
workflow based on dataset characteristics and ML tasks. Instinctive means that LLM generated workflows are applied.

Framework Full Verification/ Pre-processing Model Pipeline Cost

Pipeline Error Management Cleaning Feature Selection & Engineering Augmentation Training Improvement Optimization High/Low

AutoML ✗ ✗ ✗ ✗ ✗ Fixed Models Bayes Opt./ Meta-learning/... ✗ N/A
CAAFE [4] ✗ Verification ✗ Feature Engineering ✗ Fixed Model ✗ Multi-Step w/ LLM High
AIDE [6] ✓ ✗ Instinctive Instinctive ✗ Dynamic ✗ Multi-Step w/ LLM High

AutoGen [8] ✓ ✗ Instinctive Instinctive ✗ Instinctive ✗ Multi-Step w/ Human+LLM High
CatDB (our) ✓ ✓ Dynamic Dynamic Dynamic Dynamic Dynamic Instinctive w/ LLM Low

Ta
bl
e
Na
me

Co
lu
mn

Na
me

Statistics

Me
an

Va
l

%
Di
st
in
ct

Va
ls

Mi
n
Va
l

Ma
x
Va
l

To
ta
l
Va
ls

%
Mi
ss
ed

Va
ls

Sa
mp
le

Li
st

Fe
at
ur
e
Ty
pe

De
pe
nd
en
ci
es

LLM

Refine
Feature Types

Deduplicate
Values

Data Catalog Prompt Construction

Infer Rules (R)

Project Metadata (S)

Prompt Template (T)

LLM

Raw Pipeline Code

Parse & Compile

Execute

Error

Error

Manage Pipeline

Figure 2: ML Pipeline Generation Workflow in CatDB.

This demo paper introduces CatDB, a Catalog-Driven Builder
system powered by LLMs. The pipeline generation with CatDB re-
quires simple API calls, as shown in Figure 1. CatDB improves LLM
performance by providing it with dataset-specific instructions and
relevant context. CatDB profiles datasets to extract valuable meta-
data, including refined catalog information and statistics. Using this
metadata, CatDB breaks down the generation of pipelines into a
sequence of coding tasks related to different stages, such as han-
dling missing values, data cleaning, feature transformations, scaling
numerical features, and training a classifier. These tasks are then
expressed as customized instructions associated with the extracted
metadata. This approach allows CatDB to leverage LLM coding ca-
pabilities more effectively. Our evaluation demonstrates that CatDB
outperforms existing LLM-based and AutoML systems with up to
orders of magnitude faster performance on large datasets.

2 CatDB System Overview
CatDB simplifies the task of generating data-centric ML pipelines
using LLMs by decomposing the generation into three well-defined
sub-problems: data catalog extraction and refinement, LLM prompt
construction, and managing the generated pipeline in terms of error
correction and execution, as illustrated in Figure 2.

2.1 Building and Refining Data Catalog
If the dataset is not already in the catalog, we first profile it to
generate essential metadata. This process includes examining each
column for its schema (name and type), distinct and missing val-
ues, basic statistics (min, max, median), and feature types (e.g.,
categorical or list-based). CatDB classifies attributes by type (e.g.,
string or numeric) and maps them to relevant ML feature types like
Categorical or List. To further enrich the metadata, CatDB utilizes
LLMs to infer feature types and improve the accuracy of the classi-
fications. Our refined feature types and cleaned categorical values
significantly improve ML model performance in various scenarios.

Our goals for catalog refinement, data cleaning, and the extrac-
tion of a refined dataset are: A) Categorizing Sentence Data
Types:We identify string features as potential categorical candi-
dates, addressing mixed representations and missing values that
may hinder accurate classification. CatDB refines values in two

Sy
st
em

Ru
le
s
(In

st
ru
ct
io
ns
)

Ca
ta
lo
g
D
at
a

Task: Generate a data science pipeline in Python 3.10.

Input: A dataset in CSV format, a schema that describes the columns and data types of the dataset,
and a data profiling info that summarizes the statistics and quality of the dataset.

Output: A pipeline code that performs the following steps:

#1: Import the necessary libraries and modules.

#2: Load the training and test datasets. For the training data, utilize the variable
"train_data.csv", and for the test data, employ the variable "test_data.csv".

#3: The user will provide the Schema, and Data Profiling Info of the dataset with columns
appropriately named as attributes.

#4: Perform missing value imputation for features ’Address’ and ’Zip’.

#5: Perform feature extraction (dataset contains categorical values).

#6: Perform feature selection (redundant columns e.g., ’Address’ and ’Zip’).

#7: Select an appropriate ML algorithm.

#8: Assign a default value to a particular hyperparameter.

#9: Evaluate the model.

Dataset Description: A The dataset was obtained from multiple sources, including surveys, job
posting sites, and other publicly available sources.A total of 6704 data points were collected.The
dataset included fivevariables: age, experience, job role, and education level and salary.

Schema, and Data Profiling Info:

Experience (string), distinct [60%], missing [0%], categorical-vals [1 year, 2 years, 3 years]
Gender (string), distinct [40%], missing [0%], categorical-vals [Male, Female]
Address (string), distinct [40%], missing [20%], categorical-vals [CA, TX]
Zip (string), distinct [40%], missing [40%], categorical-vals [7050, 7871]

Salary (int, target feature), min-max vals [100, 310], total-vals [5]

Categorical Features: Experience, Gender, Address, Zip

Figure 3: An Example of a prompt (Instructions and Meta-
data), constructed by CatDB for a specific dataset.

ways. (1) we separate composite data into distinct features (e.g.,
splitting an Address attribute into State and Zip) and (2) we split
sentence features into categorical elements, converting them into
hashed numerical features. Additionally, we utilize LLMs to infer
feature types using only attribute names and a small sample set
(10 examples in our system). B) Refining Categorical Data:We
refine semantically equivalent categorical values (e.g., mapping
Gender entries like [F, 0, Male] to [Male, Female]). Given the typ-
ically small set of distinct values, we submit the entire list to the
LLM for generating a mapping of refined to original values.

2.2 Prompt Construction
CatDB analyzes the metadata (e.g., column names, data types, sta-
tistics, and dependencies) to automatically generate dataset-specific
instructions (rules). These rules break down the pipeline genera-
tion into specific coding tasks tailored to subsets of the dataset, as
illustrated in Figure 3. Thus, the constructed prompt guides LLMs
in generating a more efficient pipeline. These rules are related to:

• Data Preparation: Selecting appropriate techniques for han-
dling missing values, normalization, and outlier removal.

• Feature Dependency: Identifying relevant features, extracting
distinct values, and handling dependencies.

• Feature Filter: Removing irrelevant or redundant features.
• Data Augmentation: Generating synthetic data to address
small or imbalanced datasets.

By combining metadata-driven prompts and rules, we guide LLMs
to produce more accurate and efficient ML pipelines. In detail, the
LLM prompts comprise rule messages (R) for guidance and schema
messages (S) for context from the catalog, forming a template (T).

88

Demonstrating CatDB: LLM-based Generation of Data-centric ML Pipelines SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

2.3 Pipeline Generation
The third step involves correcting, refining, and executing the
Python ML pipeline generated by the LLM. Our goal is to apply the
pipeline on the provided dataset and assess its performance. This
process also requires handling various errors, including syntactic,
semantic, and runtime issues.

Validation and Error Management: While we guide the LLM
with metadata, errors are inevitable due to the inherent random-
ness of LLMs. To address this, CatDB includes a dedicated error
management component. We categorize errors into three groups:

• Environment and Package Errors: We handle missing pack-
ages and out-of-memory issues with predefined strategies.

• Syntax and Parse Errors:We automatically fix common syntax
errors or resubmit the pipeline to the LLM for correction.

• Runtime and Semantic Errors: We run pipelines on a sample,
identify errors, and iteratively refine the pipeline with LLM
assistance (up to 𝜏 times) and domain knowledge.

3 Demonstration Scenarios
To demonstrate the utility of CatDB in ML applications, we will
guide attendees through the following steps for using CatDB. We
describe intended user interactions through Python code in six
steps (see Figure 4), using the Adult dataset as a running example.

Step 1. Installation and Prerequisites: We initially install
CatDB, from our open-source GitHub repository that provides a
Python API. No external libraries are required. CatDB is not a data
profiling framework but utilizes outputs from profiling systems,
such as the profiling system of KGLiDS [3].

Step 2. Required APIs: The config and generate_pipeline
APIs from CatDB, along with build_catalog from KGLiDS, are
essential for generating end-to-end data-centric ML pipeline. End-
users can utilize the prepare_dataset API to split (into train, test,
and validation sets) and materialize their data. Furthermore, CatDB
features a powerful create_report API that generates and visual-
izes data catalog information and pipeline generation outputs. This
API is highly valuable for debugging and gaining a comprehensive
dataset overview. The build_catalog API can be changed if the
user decides to utilize a different data profiling framework.

Step 3. LLM Configuration:We support online LLMs (OpenAI,
Google Gemini, and Graq) that provide services. Therefore, the end-
user only needs to pass the model name, and CatDB will identify
the source of the services. Naturally, the API key is required for
cost management and authorization. As mentioned throughout the
paper, LLMs are prone to hallucinations. To address and mitigate
hallucinations, to reduce LLM randomization, and to provide multi-
ple options, we can generate more pipelines by passing a number of
iterations (iteration=7 in Figure 4). While LLMs have numerous
configuration parameters (such as temperature, and maximum num-
ber of tokens) that are hidden from the high-level API for simplicity,
end-users can modify the CatDB default settings.

Step 4. Dataset Preparation: As part of an ML pipeline, the
end-user must split the dataset, indicate the task type (binary/multi-
class classification or regression), and specify the target feature.
Our optional dataset preparation API simplifies this process.

Step 5. BuildDataCatalog:Weprofile a given raw input dataset
via our create_report API that computes and visualizes five main

1

2

3

4

5

5.1

6

6.1

Figure 4: CatDB Data-Centric ML Pipeline Generation
Demonstration (CoLab Link).

diagrams (Step 5.1), and we materialize all this information as ex-
tended catalog metadata: 1)Dataset Overview & Distinct Values: This
diagram presents the column data types and their ratios. For exam-
ple, the Adult dataset contains nine columns of data type string,
representing 60% of the total columns. Additionally, the distinct
values diagram shows the number of unique values per column.
2) Feature Types: The second analysis in CatDB identifies feature
types (Categorical, Numerical, and Sentence). Identifying these
types informs for data pre-processing and substantially impacts
model training. We have extended the KGLiDS framework to in-
corporate feature type identification, utilizing the dataset overview
statistics for this purpose. 3) Missing Value Report: This diagram
visualizes data density within each feature. The missing value ratio
can inform about a need for missing value imputation or feature
reduction during pre-processing. 4) Categorical Feature Material-
ization: We compute and visualize the categorical features and the
frequency of each unique item within individual columns. This
frequency information serves two purposes: selecting appropriate
feature transformations (e.g., one-hot encoding, binning), and for
classification, checking for class imbalance.

Step 6. Pipeline Generation: CatDB generates pipelines with
data catalog and LLM configurations, then runs the pipelines and

89

https://colab.research.google.com/drive/1L7UgxX4AbMvp8N4BwofymA54NuuxOM1C

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Saeed Fathollahzadeh, Essam Mansour, and Matthias Boehm

Table 2: Performance Comparison of 8 Datasets (Iteration = 1, TO: Time Out, OOM: Out of Memory)

Dataset Metric LLM CatDB CAAFE AIDE AutoGen AutoML AutoML w/ Cleaning & Augmentation
Single Chain TabPFN R.Forest A.Sklearn H2O FLAML Autogluon A.Sklearn H2O FLAML Autogluon

Airline AUC-ovr
GPT-4o 100.0 100.0 N/A 100.0 OOM 100.0 TO TO

Gemini-1.5 100.0 100.0 OOM 100.0 100.0 OOM 100.0 TO TO No Training Model
Llama3.1-70b 100.0 100.0 N/A 99.0 OOM 100.0 TO TO

IMDB AUC
GPT-4o 98.62 98.58 N/A 100.0 OOM 100.0 100.0 99.99 OOM 99.99 99.99 TO

Gemini-1.5 99.98 99.98 OOM N/A 100.0 OOM 100.0 99.99 97.5 OOM 99.99 99.99 TO
Llama3.1-70b 97.18 96.38 N/A 50.0 OOM 100.0 99.99 99.99 OOM 99.99 99.75 TO

Accidents AUC-ovr
GPT-4o 94.21 95.01 OOM 84.62 TO 94.44 OOM 93.9 93.94 97.34 OOM 91.49 93.12 94.95

Gemini-1.5 94.2 94.21 OOM 84.25 TO 96.54 OOM 90.96 95.36 97.17 OOM 84.35 93.35 94.91
Llama3.1-70b 95.0 95.18 OOM 84.02 TO 93.83 OOM 92.92 94.95 97.35 OOM 93.09 92.93 94.72

Financial AUC-ovr
GPT-4o 100.0 99.9 OOM 85.24 TO 100.0 OOM 100.0 100.0 99.99 OOM 99.01 100.0 100.0

Gemini-1.5 100.0 100.0 OOM 84.9 TO 100.0 OOM 100.0 100.0 99.99 OOM 100.0 100.0 100.0
Llama3.1-70b 100.0 100.0 OOM 85.94 TO 100.0 OOM 100.0 100.0 99.99 OOM 99.01 100.0 100.0

CMC AUC-ovr
GPT-4o 68.66 73.81 73.13 67.91 71.56 71.61 TO 76.39 76.39 27.22 TO 74.15 73.62 72.81

Gemini-1.5 68.84 74.33 73.13 67.95 72.02 71.61 TO 75.17 77.23 25.71 TO 74.43 75.65 71.11
Llama3.1-70b 73.15 71.03 75.7 74.29 71.56 71.53 TO 75.96 75.89 27.22 TO 75.71 74.24 71.11

Bike-Sharing 𝑅2
GPT-4o 76.83 86.89 39.46 39.46 TO < 0 90.97 60.0 TO < 0 92.27 92.3

Gemini-1.5 92.06 92.12 Doesn’t support 94.27 93.55 94.32 < 0 93.82 64.29 93.17 < 0 93.29 93.18
Llama3.1-70b 79.54 88.04 93.47 93.5 94.39 < 0 93.82 72.15 93.17 < 0 92.81 92.15

House-Sales 𝑅2
GPT-4o 87.48 86.34 75.41 N/A 89.81 15.68 87.99 86.69 83.57 26.5 77.7 84.19

Gemini-1.5 99.99 87.98 Doesn’t support 75.41 87.9 89.86 TO 89.94 90.34 84.07 15.91 77.7 83.6
Llama3.1-70b 87.96 89.0 87.87 87.9 89.89 TO 89.39 90.36 84.13 TO 83.62 84.19

NYC 𝑅2
GPT-4o 48.58 55.17 32.64 68.74 10.14 TO 56.38 43.25 9.56 31.56 62.85 41.24

Gemini-1.5 67.22 65.53 Doesn’t support 69.25 68.74 62.41 TO 68.82 45.16 33.72 TO 68.91 51.97
Llama3.1-70b 48.58 48.58 68.71 68.75 56.67 35.28 65.88 45.56 57.04 31.57 69.42 55.59

automatically fixes runtime and syntax errors. The CatDB pipeline
reports have three main sections: 6.1.) Analytics Report Tab: i)
Pipeline Runtime Report: Expresses LLM latency, pipeline validation,
and pipeline execution times per iteration. This capability allows
the identification of slow pipelines. ii) Pipeline Performance: Ex-
amines pipeline performance on both training and test datasets.
For each task, two different metrics are offered and visualized as
box-plots (binary classification: AUC and F1-score, multi-class clas-
sification: AUC-ovr and Log-loss, regression: R2-score and RMSE).
iii) Pipeline Cost: Reports the pipeline cost, which is the number of
tokens used by a pipeline prompt and an error prompt to generate
the ML pipeline and fix runtime and syntax errors. iv) Error Cate-
gorization and Frequency: Shows the frequency and types of errors
in different diagrams. 6.2.) Prompt Visualization Tab: Visual-
izes the constructed prompts submitted to the LLM in the System
Prompt & Catalog Data tabs, demonstrating all this information
in a hierarchical tree structure. This hierarchical tree primarily
shows which data from the data catalog is projected, filtered, and
combined to form a the submitted LLM prompt.

4 Experiments
Settings. We developed two variants: CatDB, which uses a sin-
gle prompt, and CatDB Chain, which uses a chain of prompts for
pre-processing, feature engineering, and model selection. We eval-
uate our system on 8 real-world datasets across classification and
regression tasks, and compare it with two groups of baselines: LLM-
based Pipelines where we compare with AIDE [6], AutoGen [8],
and CAAFE [4] (which leverage LLMs for feature engineering and
pipeline generation), as well as AutoML Systems where we com-
pare with AutoML tools for tabular data including AutoGluon [1],
H2O [5], FLAML [7], and Auto-Sklearn [2].

Quality of Generated Pipelines: Table 2 shows the results for
all classification (binary/multi-class) and regression tasks. Overall,
we see reliable performance of CatDB and CatDB Chain compared
to the state-of-the-art systems. Every row shows the test AUC/𝑅2
for a dataset/LLM pair. CatDB and CatDB Chain achieve a majority

of top rankings. Here, CatDB Chain yields generally better per-
formance for larger datasets, where the task splitting ensures all
tasks are represented (e.g., CatDB missed feature engineering for
CMC), reduces errors, and achieves very good accuracy. In contrast,
CAAFE TabPFN failed on large datasets, and many AutoML tools
ran into out-of-memory errors or timeouts.

Runtime of Generated Pipelines: CatDB’s runtime—which
includes data loading, metadata projection, rule definition, pipeline
generation, validation, error management, and execution—is fast
across all datasets. CAAFE succeeded with smaller datasets but
failed on larger ones after 4 days, due to data pre-processing domi-
nating its runtime. AIDE and AutoGen often spent excessive time
retrying requests and executing naive grid search pipelines. In con-
trast, CatDB and CatDB Chain executed successfully on all datasets,
with performance improvements by guiding LLMs to only generate
necessary primitives and parallelized code.

5 Conclusions
CatDB guides LLMs with data catalog information, data-specific
instructions, and error handling. This approach enables CatDB
to leverage LLM coding capabilities more effectively to generate
robust and efficient data-centric ML pipelines at moderate costs.

References
[1] Nick Erickson and et al. 2020. AutoGluon-Tabular: Robust and Accurate AutoML

for Structured Data. CoRR abs/2003.06505 (2020). https://arxiv.org/abs/2003.06505
[2] Matthias Feurer and et al. 2015. Efficient and Robust Automated Machine Learning.

In NeurIPS 28. 2962–2970.
[3] Mossad Helali and et al. 2024. KGLiDS: A Platform for Semantic Abstraction,

Linking, and Automation of Data Science. In ICDE.
[4] Noah Hollmann and et al. 2023. Large Language Models for Automated Data

Science: Introducing CAAFE for Context-Aware Automated Feature Engineering.
In NeurIPS. https://arxiv.org/pdf/2305.03403

[5] Erin LeDell and et al. 2020. H2o automl: Scalable automatic machine learning. In
Proceedings of the AutoML Workshop at ICML, Vol. 2020. ICML.

[6] Dominik Schmidt and et al. 2024. AIDE: Human-Level Performance in Data Science
Competitions. https://www.weco.ai/blog/technical-report

[7] Chi Wang and et al. 2021. FLAML: A Fast and Lightweight AutoML Library. In
Proceedings of Machine Learning and Systems (MLSys). mlsys.org.

[8] Qingyun Wu and et al. 2024. AutoGen: Enabling Next-Gen LLM Applications via
Multi-Agent Conversation. In ICLR 2024 Workshop on LLM Agents.

90

https://arxiv.org/abs/2003.06505
https://arxiv.org/pdf/2305.03403
https://www.weco.ai/blog/technical-report

	Abstract
	1 Introduction
	2 CatDB System Overview
	2.1 Building and Refining Data Catalog
	2.2 Prompt Construction
	2.3 Pipeline Generation

	3 Demonstration Scenarios
	4 Experiments
	5 Conclusions
	References

