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ABSTRACT
SystemML aims at declarative, large-scale machine learning
(ML) on top of MapReduce, where high-level ML scripts
with R-like syntax are compiled to programs of MR jobs.
The declarative specification of ML algorithms enables—in
contrast to existing large-scale machine learning libraries—
automatic optimization. SystemML’s primary focus is on
data parallelism but many ML algorithms inherently exhibit
opportunities for task parallelism as well. A major challenge
is how to efficiently combine both types of parallelism for ar-
bitrary ML scripts and workloads. In this paper, we present
a systematic approach for combining task and data paral-
lelism for large-scale machine learning on top of MapReduce.
We employ a generic Parallel FOR construct (ParFOR) as
known from high performance computing (HPC). Our core
contributions are (1) complementary parallelization strate-
gies for exploiting multi-core and cluster parallelism, as well
as (2) a novel cost-based optimization framework for auto-
matically creating optimal parallel execution plans. Exper-
iments on a variety of use cases showed that this achieves
both efficiency and scalability due to automatic adaptation
to ad-hoc workloads and unknown data characteristics.

1. INTRODUCTION
Large-scale data analytics have become an integral part of

online services, enterprise data management, system man-
agement, and scientific applications in order to gain value
from huge amounts of collected data [6, 14]. Finding inter-
esting unknown facts and patterns often requires to analyze
the full data set instead of applying sampling techniques [6].
Recent approaches mainly address this challenge by lever-
aging parallel programming paradigms such as MapReduce
(MR) [8], its open-source implementation Hadoop, or more
general data flow abstractions [17, 32]. These frameworks en-
able large-scale, fault-tolerant, and cost-effective paralleliza-
tion on commodity hardware. Often high-level languages are
used in order to overcome the complexity of multiple MR
jobs per query. Examples are Jaql [3], Pig [26], and Hive [30],

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 7
Copyright 2014 VLDB Endowment 2150-8097/14/03.

which all compile queries to MR jobs for low programming
effort and good out-of-the-box performance.

Besides analyzing big data, the second driving force of
large-scale analytics is the increasing need for advanced
analytics beyond traditional aggregation queries, in terms
of machine learning (ML) and content analysis [6]. These
analytics range from descriptive statistics to data mining
techniques such as clustering, classification, regression, and
association rule mining. Typical applications are log and
sales analysis, recommendations, and customer classifica-
tions. While existing statistical tools such as R and Matlab
provide a rich variety of advanced analysis libraries, they are
not designed—except specific packages [9]—for distributed
computing on big data. Existing work on large-scale ML
ranges from tailor-made distributed ML algorithms [2] to in-
tegrating R into higher-level languages [7]. However, these
approaches require the user to choose the parallelization
strategy—i.e., an appropriate algorithm implementation—
upfront, which is often difficult in ad-hoc analysis scenarios.

In contrast to existing work, SystemML [11, 31] and other
systems like Cumulon [16] enable declarative machine learn-
ing. Complex ML algorithms are expressed in a high-level
language—including linear algebra—and compiled to pro-
grams of MR jobs. This is comparable to languages such as
Jaql, Pig, and Hive but domain-specific for machine learn-
ing. The major advantages of this high-level language ap-
proach are the flexible specification of large-scale ML algo-
rithms and automatic cost-based optimization. However,
there are also fundamental challenges.

Challenges: Any ML system on top of MapReduce faces
two fundamental problems: First, for small datasets, MR
performance is often orders of magnitude worse than par-
allel in-memory computation. The reasons are distributed
operator implementations, distributed/local file system I/O,
and MR framework overhead. Second, the data-parallel MR
paradigm does not inherently support task parallelism for
compute-intensive workloads. However, there are many use
cases such as descriptive statistics, cross-validation, or en-
semble learning that would strongly benefit from task par-
allelism. The major challenge is to provide efficiency and
scalability for the full spectrum from many small to few very
large tasks. Interestingly, both problems are interrelated due
to memory constraints and—as we will show—can be jointly
solved in a dedicated cost-based optimization framework.

Contributions: The primary contribution of this paper
is a systematic approach for combining task and data paral-
lelism for large-scale machine learning on top of MapReduce.
Our core idea is to employ a dedicated ParFOR (Parallel
FOR) construct as known from high-performance comput-
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ing (HPC) and to create optimal parallel execution plans.
For high efficiency and scalability on a wide variety of use
cases, we introduce (1) complementary ParFOR paralleliza-
tion strategies including novel techniques for access-aware
data partitioning and locality, and (2) a novel cost-based
optimization framework for task-parallel ML programs. In
detail, we make the following technical contributions:

• Foundations: After a brief up-to-date background de-
scription of SystemML, we introduce a taxonomy of
task-parallel ML programs, conceptually formulate the
problem, and discuss correctness in Section 2.

• Runtime: We further explain local and remote paral-
lelization strategies for exploiting multi-core and clus-
ter parallelism in Section 3. This includes techniques
for task partitioning, result aggregation, and novel
techniques for data partitioning and co-location.

• Optimizer: Subsequently, we introduce the novel cost-
based optimization for hierarchies of ParFOR loops and
parallel instructions in Section 4. We formulate the
optimization problem, describe our time- and memory-
based cost model, and present our heuristic optimizer.

• Results: Finally, we present experimental results and
insights into our optimizer in Section 5. We study the
effectiveness of parallelization strategies on a variety
of use cases, including comparisons to R and Spark.

2. BACKGROUND AND FOUNDATIONS
As foundations for hybrid parallelization strategies, we

(1) describe the background of SystemML as a data-parallel
ML system, (2) introduce the complementary design space of
task-parallel ML programs via a new taxonomy, and finally,
(3) formulate the ParFOR optimization problem.

2.1 Background SystemML
In the interest of a clear presentation, we briefly describe

the architecture and execution model of SystemML [11, 31].
System Architecture: Figure 1 shows the high-level

architecture of SystemML. ML algorithms are expressed in
DML (Declarative Machine learning Language) with R-like
syntax. DML scripts are parsed to a hierarchical represen-
tation of statement blocks and statements, where statement
blocks are defined by the program structure. Each statement
block is then compiled into DAGs of high-level operators
(HOPs), low-level operators (LOPs), and finally to runtime
plans of program blocks and instructions. At each compi-
lation step, we apply different optimizations. Examples in-
clude constant propagation/folding, common subexpression
elimination (CSE), operator ordering, operator selection, re-
compilation decisions, and piggybacking (packing multiple
instructions into a single MR job). At runtime, the con-
trol program executes the hierarchy of program blocks and
instructions. Instructions are either CP (control program)
instructions that are locally executed in-memory of the mas-
ter process, or MR instructions that are executed as part of
generic MR jobs on a Hadoop cluster, submitted via MR-job
instructions. MR instructions work on blocks of matrices.
The exchange of intermediate results between MR jobs and
CP instructions is done via file exchange over the distributed
file system (HDFS). A multi-level buffer pool controls this
exchange and in-memory matrices. There are again sev-
eral optimizations including decisions on dense/sparse ma-
trix block representations and dynamic recompilation.

Parser DML Statements

Compiler
High-Level Operators

Low-Level Operators

CP 
Instructions

MR 
Instructions

Generic MR Jobs

Control 
Program

Program 
Blocks

Hadoop

Optimi-
zations

Caching

temp 
space

DFS

DML Scripts

Runtime

Figure 1: SystemML Architecture.

Example 1. (Correlation) We compute Pearson’s Cor-
relation Coefficient rX,Y = cov(X,Y)/σXσY of two m × 1
vectors X and Y. For a numerical stable realization in DML,
we compute the standard deviations via the second central
moment, the covariance, and finally the coefficient rX,Y :

X = read( "./input/X" ); #data on HDFS

Y = read( "./input/Y" );

m = nrow(X);

sigmaX = sqrt( centralMoment(X,2)*(m/(m-1.0)) );

sigmaY = sqrt( centralMoment(Y,2)*(m/(m-1.0)) );

r = cov(X,Y) / (sigmaX * sigmaY);

write( r, "./output/R" );

Since this script is parsed to a single statement block, we cre-
ate a single HOP DAG as shown in Figure 2. For example,
the statement r = cov(X,Y) / (sigmaX * sigmaY) is com-
piled to three binary operators (b(/), b(cov), b(*)) as part
of this DAG. On LOP level, we then decide on the execu-
tion strategy per operator. If X and Y fit in memory, those
three HOPs can be compiled into a partial CP LOP DAG
of BinaryCP(/), CoVariance, and BinaryCP(*); otherwise
the HOP b(cov) would be compiled to an MR LOP chain of
CombineBinary (aligns blocks of X and Y) and CoVariance

(computes covariance incrementally). Finally, we create a
program block of executable CP/MR instructions, where we
pack multiple MR instructions into shared MR jobs. At run-
time, we sequentially execute this program with materialized
intermediates between instructions. Further details on the
runtime operators cm and cov can be found in [31].

This execution model exploits data parallelism via MR
instructions whenever useful but results in a serial execution
of independent tasks such as independent iterations. We
therefore introduce hybrid ParFOR parallelization strategies
for combining both task and data parallelism because there
are many use cases that would strongly benefit.

b(cov)

X

r (‘./out/r‘)

Y (‘./in/Y‘, 106x1)

b(cm) b(cm)

b(*) b(*)

2

u(sqrt) u(sqrt)

b(*)

b(/)
u()  … unary operator
b()  … binary operator
cov … covariance
cm  … central moment
sqrt … square root 

b(/)

b(-)

1,000,000 1

w/ constant 
propagation
w/ common 
subexpression 
elimination
w/o constant 
folding (1.000001)

(‘./in/X‘, 
106x1)

Figure 2: Example HOP DAG (after CSE).
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Table 1: Taxonomy of Task-Parallel ML Algorithms.
Single Model Multiple Models

Disjoint SQM [5], Data Gen., Univariate Stats,
Data SGD [10] Indep. Models

Overlap. SQM [5], C. SVM [12], Bivariate Stats,
Data ALS, EM, SGD* [10] Meta, CV

All Data Dist.-based, kNN, EL Meta, EL

2.2 A Taxonomy for ML Task Parallelism
We now introduce a taxonomy of task-parallel ML pro-

grams as a basis for reasoning about classes of use cases.
In our context, data parallelism refers to operator-/DAG-
level parallelization, i.e., executing an operation on blocks
of matrices in parallel. In contrast, task parallelism refers to
program-level parallelization, i.e., executing a complex ML
program on iterations in parallel. Our taxonomy (see Ta-
ble 1) employs two perspectives: model- and data-oriented.
First, the model-oriented perspective describes the ML-
algorithm-specific statistical model we compute or use. Mul-
tiple (independent) models inherently exhibit large potential
for task parallelism. Examples are cross-validation (CV) or
ensemble learning (EL). There are also many use cases of
single composable models, i.e., decomposable problems and
aggregation of submodels, that could benefit from task par-
allelism. Example classes are (1) algorithms in statistical
query model (SQM) summation form [5], (2) partitioned
matrix factorization via alternating least squares (ALS), ex-
pectation maximization (EM), or stochastic gradient decent
(SGD) (see [10] for a comprehensive survey), and (3) tree-
based algorithms like decision trees or Cascade support vec-
tor machines (SVMs) [12]. Second, the data-oriented view
describes the data access characteristics of iterations, which
may use disjoint, overlapping, or all data. Those data cate-
gories define applicable optimizations such as partitioning
(disjoint/overlapping) and memoization/sharing (overlap-
ping/all). The bottom line is, we have a variety of use cases
with diverse computation and data access characteristics.

2.3 Problem and Correctness
At the language-level, we provide ParFOR as a high-level

primitive for task parallelism. We now introduce our run-
ning example, formulate the conceptual problem, and sketch
our dependency analysis for ensuring result correctness.

Example 2. (Pairwise Correlation) We now extend
Example 1 to parallel correlation computation for all n(n−
1)/2 pairs of columns of an m×n input matrix D. This use
case is representative for more complex bivariate statistics.

D = read("./input/D");

m = nrow(D);

n = ncol(D);

R = matrix(0, rows=n, cols=n);

parfor( i in 1:(n-1) ) {

X = D[ ,i];

m2X = centralMoment(X,2);

sigmaX = sqrt( m2X*(m/(m-1.0)) );

parfor( j in (i+1):n ) {

Y = D[ ,j];

m2Y = centralMoment(Y,2);

sigmaY = sqrt( m2Y*(m/(m-1.0)) );

R[i,j] = cov(X,Y) / (sigmaX*sigmaY);

}}

write(R, "./output/R");

The outer ParFOR loop iterates from 1 to (n − 1) and com-
putes σ for the first column. Due to symmetry of rX,Y , the
inner loop only iterates from (i+1) to n in order to compute
rX,Y for all pairs of columns. In later discussions, we will
refer to R[i,j]=v and v=D[,i] as left and right indexing,
respectively. The result is an upper-triangular matrix R.

A Case for Optimization: Given a variety of use cases
(see Table 1) and workloads, there is a strong need for dif-
ferent parallel execution strategies. Recall our running ex-
ample; if we have many small pairs, we aim for distributed
in-memory computation, but if we have few very large pairs,
we are interested in scalable data-parallel computation. Ad-
ditional challenges of this example are: (1) a triangular
nested loop control structure, (2) a column-wise data access
on unordered distributed data, and (3) a bivariate all-to-
all data shuffling pattern. Putting it altogether, complex
ParFOR programs and ad-hoc data analysis with unknown
input characteristics require automatic optimization.

Definition 1. (ParFOR Optimization Problem) Given
a ParFOR body denoted prog, a ParFOR predicate p =
([a, b], z) with lower bound a, upper bound b and incre-
ment z, as well as a cluster configuration cc, find a paral-
lel execution plan that minimizes the execution time T with
φ1 : minT (prog(p)) s.t. k ≤ ck ∧m ≤ cm, where k is the
degree of parallelism, m is the memory consumption, and
ck, cm being constraints. Note that the predicate p defines
N = d(b− a + 1)/ze iterations, where a single iteration ex-
ecutes prog exactly once for a specific value of the index
variable and prog(p) must create correct results.

Dependency Analysis: In order to guarantee result cor-
rectness for parallel execution, we apply a loop dependency
analysis. We employ existing techniques from HPC compil-
ers [19] and extend those slightly. For ensuring determinism
and independence, we disprove the existence of any inter-
iteration (loop-carried) dependencies. We use a candidate-
based algorithm based on the conceptual framework of linear
functions. First, we collect dependency candidates C, where
a candidate c ∈ C is defined as a write to a non-local variable.
Second, each candidate c ∈ C is checked via a sequence of
tests (scalar, constant, equals, GCD/Banerjee [19]) against
all written and read variables of the ParFOR body. If we
cannot prove independence, we add c to C′. For range/set
indexing, we introduce artificial index variables and bounds
according to the given range. Third, if C′ = ∅, there is no
loop-carried dependency and the test succeeds; otherwise,
we raise an error. Finally, note that we do not aim for au-
tomatic parallelization of all for loops because this would
hide potential false positive dependencies.

3. PARALLELIZATION STRATEGIES
In order to support the spectrum of use cases, we provide

complementary ParFOR parallelization strategies. They all
adhere to a conceptual master/worker pattern: iterations
are logically grouped to tasks W, k parallel workers execute
those tasks, and finally worker results are merged. Hence,
there are three major aspects to consider: task partitioning,
parallel execution, and result merge. Accordingly, we now
discuss complementary techniques for task partitioning, two
physical realizations of parallel workers, hybrid paralleliza-
tion, result merging, and runtime optimizations for large in-
puts. Finally, our cost-based optimizer exploits these strate-
gies in order to generate efficient parallel execution plans.
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3.1 Task Partitioning
Task partitioning groups iterations to tasks with two ma-

jor but contradictory goals: (1) low task communication
overhead (via few tasks) and (2) good load balance (via
many tasks). Both aspects have high impact. For example,
on MapReduce, task setup can take seconds. However, we
need many tasks to exploit large clusters and load balance is
crucial because the most time-consuming worker determines
the overall execution time. We model a task wi ∈ W as a
logical group of one or many (sequentially executed) itera-
tions with task size li = |wi|. Additionally, W is defined as
a set of disjoint tasks that exactly cover predicate p.

Fixed-Size Schemes: Fixed-size task partitioning cre-
ates tasks with constant size li = cl which trades communi-
cation overhead and load balance. One extreme is näıve task
partitioning with minimal task sizes of li = 1 that leads to
very good load balance but high communication overhead.
Another extreme is static task partitioning with maximal
task sizes of li = dN/ke that leads to very low communica-
tion overhead but potentially poor load balance.

Self-Scheduling Schemes: Additionally, we apply the
Factoring1 self-scheduling algorithm [18] from the area of
HPC, as a simple yet very effective scheme. The basic idea
is to use waves of exponentially decaying task sizes in order
to achieve low communication overhead via large tasks at
the beginning but good load balance via few small tasks
at the end. Factoring computes the task size li for the next
wave of k tasks, based on remaining iterations Ri, as follows:

R0 = N,

Ri+1 = Ri − k · li,
li =

⌈
Ri

xi · k

⌉
=

⌈(
1

xi

)i+1
N

k

⌉
, (1)

with xi = 2 as suggested for unknown variability [18].
As an example, N = 101 and k = 4 gives us a se-
quence of (13, 13, 13, 13, 7, 7, 7, 7, 3, 3, 3, 3, 2, 2, 2, 2, 1) itera-
tions. For specific scenarios, we slightly extended this to
constrained C-/C+Factoring that additionally imposes ei-
ther a minimum constraint l′i = max(li, cmin) (e.g., for re-
duced communication overhead) or a maximum constraint
l′i = min(li, cmax) (e.g., for upper-bounded memory usage).
Regarding communication overhead it is noteworthy that
|W| increases only logarithmically in N with O(k logxN/k).

Task Encoding: For task communication, we use set
and range tasks. Set tasks contain one or many values of the
index variable, while range tasks encode a sequence of values
via a (from, to, increment)-triple for compression if li > 3.

3.2 Local Parallelism
The variety of ParFOR use cases and workloads led to

one of our major design goals: generality in terms of task
parallelism for arbitrary body programs and arbitrary data
sizes. As a first runtime strategy, we now explain LOCAL

ParFOR (ParFOR-L) execution. The basic concept is to ex-
ploit multi-core parallelism by executing tasks concurrently
as local threads within the JVM of SystemML’s control pro-
gram. This enables parallel execution within a single node
with very low overhead and its generality allows arbitrary
instructions and nested parallelism in the ParFOR body.

Runtime Architecture Overview: Figure 3(a) shows
the runtime architecture of ParFOR-L. First, we initialize k
parallel workers, create a task queue, and start the workers

1Factoring differs from guided self-scheduling [27], as used in
OpenMP, in executing waves of tasks with equal size, which
is more robust and naturally fits the MR execution model.

Local 
ParWorker k

ParFOR (local)

Local 
ParWorker 1

while(w deq())
foreach pi w
execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

Task Queue

...

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

(a) Local Parallelism

Hadoop
ParWorker 
Mapper k

ParFOR (remote)

ParWorker 
Mapper 1

map(key,value)
w parse(value)
foreach pi w
execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

...

…
A|MATRIX|./out/A7tmp

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

(b) Remote Parallelism
Figure 3: Architecture ParFOR Execution Strategies.

as threads that continuously dequeue and execute tasks until
no more tasks are available. Second, we do task partitioning
and enqueue tasks to the task queue. Using streaming task
creation allows us to upper-bound the memory consumption
of this task queue. Third, we wait for finished ParFOR execu-
tion by joining all worker threads. Fourth, we aggregate all
worker results. In the following, we describe selected details.

Local Parallel Workers are continuously running
threads that execute one task—and internally one iter-
ation—at-a-time. Each worker gets a deep copy of the
ParFOR body, i.e., program blocks and instructions with
unique filenames, and a shallow copy of the symbol table
in order to ensure isolation. Due to shared address space
and copy-on-write semantics, a shallow copy is sufficient,
i.e., we do not need to copy input matrices.

Task Scheduling assigns tasks to workers, where the sin-
gle task queue is a self-scheduling approach. Since workers
dequeue the next task whenever they finished a task, tem-
poral gaps between task execution are very small. This also
leads to a good load balance, which still depends on task par-
titioning because it determines the scheduling granularity.
Finally, this approach reduces the communication overhead
to a single synchronized dequeue operation per task.

Dynamic Recompilation in SystemML re-optimizes
HOP DAGs during runtime according to the actual ma-
trix characteristics. This is important for initial unknowns.
ParFOR-L requires two extensions: First, we evenly divide
the context memory budget among the k worker threads.
Second, there is the danger of lock contention on the single
HOP DAG. Hence, we create deep copies of relevant DAGs
for each worker and thus enable concurrent recompilation.

3.3 Remote Parallelism
In order to complement the generality of local paral-

lelism (ParFOR-L) with distributed in-memory computa-
tion, we provide a second runtime strategy: REMOTE ParFOR

(ParFOR-R). The basic concept is to execute ParFOR itself as
a single MR job and to execute its body as in-memory CP
instructions, distributed on all nodes of the cluster. This
ensures scalability for large or compute-intensive problems.

Runtime Architecture Overview: The runtime archi-
tecture of ParFOR-R is shown in Figure 3(b). First, we do
task partitioning and serialize the task sequence into a task
file on HDFS. Second, we export all dirty—i.e., updated,
in-memory—input matrices to HDFS. Third, we serialize
the ParFOR program body, i.e., program blocks, instructions,
and referenced DML/external functions, a shallow copy of
the symbol table, as well as internal configurations and store
them in the MR job configuration. Fourth, we submit the
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Figure 4: Examples Hybrid Parallelism.

MR job and wait for its completion. Result matrices of in-
dividual tasks are directly written to HDFS but (varname,
filename)-tuples are collected in the job output. This en-
sures output flexibility and yet fault tolerance. Fifth, we
aggregate results. We now describe again selected details.

MR Job Configuration: ParFOR-R is a map-only MR
job whose input is the task file with one ParFOR task per
line and we use the NLineInputFormat in order to initiate
one map task per ParFOR task. The number of map tasks is
therefore directly controlled via task partitioning, where k
is equal to the number of map slots in the cluster.

Remote Parallel Workers behave like local workers,
except for realizing the MR mapper interface. We initial-
ize the worker by parsing the serialized program and creat-
ing program blocks, instructions, and a symbol table with
unique file names. On each map, we parse the given task,
execute the program for all task iterations, and write result
variables to HDFS. In case of JVM reuse, we also reuse work-
ers in order to exploit cached inputs and pre-aggregate re-
sults. Finally, we do not allow MR-job instructions (nested
MR jobs) inside a remote worker because this incurs the
danger of deadlocks if all map slots are occupied by ParFOR.

Task Scheduling is handed over to the Hadoop sched-
uler, which is important for several reasons. First, it pro-
vides global scheduling for (1) our task- and data-parallel
jobs, as well as (2) other MR-based applications on a shared
cluster. Second, we get MR functionality such as fault toler-
ance, data-locality, and an existing ecosystem. Finally, since
Hadoop executes input splits by decreasing size, we ensure
the ParFOR task order by padding with leading zeros.

3.4 Hybrid Parallelism
The generality of ParFOR allows us to combine parallel ex-

ecution models as needed. We now exemplify hybrid paral-
lelization strategies, where hybrid refers to combing (1) task
and data parallelism, (2) in-memory and MR computation,
as well as (3) multi-core and cluster parallelism. Finally,
hybrid strategies give us great flexibility of creating efficient
execution plans for complex ML algorithms.

Parallel MR Jobs (Figure 4(a)): If the ParFOR body
contains operations on large data, we cannot run in-memory
operations via ParFOR-R. However, ParFOR-L exploits multi-
core parallelism for CP and MR-job instructions, and hence
can run parallel MR jobs. This is beneficial for latency hid-
ing and full resource exploitation. For instance, consider our
running example with a 109 × 5 matrix D, i.e., 10 pairs of
2 · 8 GB each. We would run two nested ParFOR-L and thus,
MR jobs for indexing, covariance and central moment of all
pairs in parallel. The best MR job configuration (e.g., num-
ber of reducers) depends on the ParFOR degree of parallelism
k and we might get piggybacking potential across iterations.

Mixed Nested Parallelism (Figures 4(b)/4(c)): In case
of nested ParFOR—as used in our running example—where
only the outer contains an MR-job instruction, we can use

ParFOR-R for the inner. This leads to parallel ParFOR MR
jobs, in parallel to the MR jobs from the outer. If there are
only CP instructions, we can use a ParFOR-R for the outer.
Within those map tasks, we can additionally use multi-
threaded ParFOR-L for the inner to exploit all resources.

3.5 Parallel Result Aggregation
After local or remote execution, we automatically consol-

idate all worker results, which is crucial for usability and
performance. There are two important observations from
dependency analysis. First, result variables are the depen-
dency candidates C, i.e., updated, non-local matrices. Sec-
ond, independence implies that worker results are disjoint.
Conceptually, we distinguish two scenarios, in both of which
the original result matrix R still exists due to copy-on-write.
First, if R is empty, we simply need to copy all non-zero val-
ues from all workers into the final result. An instance of this
scenario is our running example. Second, if R is non-empty,
we need to copy all (zero and non-zero) values that differ
from the original ones. An example is distributed matrix
factorization, where we iteratively modify subblocks in par-
allel. We call those two cases with and without compare.

We support three strategies: (1) local in-memory, (2) local
file-based, and (3) parallel remote result aggregation. Local
in-memory pins R into memory, creates the compare matrix
if necessary, and merges all worker results one-at-a-time.
Local file-based uses a virtual staging file of indexed blocks,
which can be viewed as a radix sort of blocks. It maps worker
result and compare blocks, and merges one result block at-a-
time. Parallel remote uses a dedicated MR job whose inputs
are the worker results and if necessary the compare matrix.
Mappers then tag blocks as data or compare, while reducers
get the compare block and then merge one block at-a-time.

3.6 Runtime Optimizations
With the aim of efficiency and scalability for workloads

with large input matrices, we introduce additional dedicated
runtime optimizations. At a high level, this includes novel
techniques for (1) access-aware data partitioning, which ap-
plies to disjoint/overlapping access and (2) access-aware
data locality, which applies to disjoint/overlapping/all ac-
cess. Additionally, we also change the replication factor for
overlapping/all access, but this is a pure optimizer decision.
Access-awareness over the entire ParFOR body program is
crucial for cost estimation and correct plan generation.

Data Partitioning: For large matrices, i.e., if the mem-
ory consumption of an operation exceeds the memory bud-
get, we execute that operation as an MR instruction in order
to ensure robustness. This has serious implications because
we cannot execute ParFOR-R and we execute at least one
MR job per iteration and thus, potentially many MR jobs
that repeatedly scan the entire data. A key observation is
that we often have very large input matrices but individual
ParFOR iterations work only on rows, columns or blocks of
moderate size. In those scenarios, the MR job for repeated
indexed access is one of the most expensive operations. Our
basic idea is (1) to transparently partition the input ma-
trix according to the access pattern and (2) to rewrite the
body to direct indexed access of partitions. We apply data
partitioning only for read-only matrices and pure row- or
column-wise access pattern. This ensures that no opera-
tion other than indexed access is affected. For each input
matrix D, we recursively analyze all accesses in the ParFOR
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body; if there is a common row- or column-wise pattern, this
becomes the partitioning scheme. We then accordingly par-
tition D into directly accessible files and recompile indexed
accesses with forced execution type depending on the par-
tition size. We provide two realizations: (1) local file-based,
and (2) parallel remote partitioning both of which create one
SequenceFile per partition. Local file-based is a two-phase
out-of-core algorithm that reads the input, appends blocks
to a partitioned staging file, and finally creates a partitioned
matrix. Parallel remote is a dedicated MR job, where map-
pers do the partitioning on a block level and reducers write
partitions. For high performance of partitioning and read,
we also support block-wise partitioning (groups of rows or
columns) with a block size close to the HDFS block size.

Data Locality: Since ParFOR-R uses a task file as the
input, Hadoop cannot co-locate relevant map tasks to the
input matrices or partitions. This leads to unnecessary
data transfer because—especially on large clusters—data-
local access becomes unlikely. Our basic idea is to explicitly
provide location information of relevant matrices and parti-
tions per logical task in order to enable data locality. We do
this for the largest input matrix. We use a dedicated input
format (specialized NLineInputFormat) and input split (spe-
cialized FileSplit). Whenever splits are requested from
this input format, we analyze the matrix partitioning infor-
mation and create our wrapper split around each original file
split. Instead of reporting the location of the small task file
splits, we (1) parse our logical task (one per split), (2) get
the locations of all related partition files, (3) count frequen-
cies, and finally (4) report the top-k frequent nodes as lo-
cations. Since, Hadoop treats all reported locations equally,
we report only the hosts with top-1 frequency, as shown in
Figure 5 for one index access of our running example. For
range tasks, i.e., (from, to, increment)-triples, we heuristi-
cally analyze only locations of the first and last iteration
because locality is examined serially before job submission.

4. OPTIMIZATION FRAMEWORK
Hybrid parallelization strategies give us great opportuni-

ties. However, finding the optimal parallel execution plan
is challenging because local decisions affect each other due
to shared resources and data-flow properties, which span a
huge search space. In the following, we present a tailor-made
optimization framework including (1) the problem formula-
tion, (2) a cost model and statistics estimation, as well as
(3) plan rewrites and an optimization algorithm. The gen-
erality of this framework allows to reason about hybrid task
and data parallelism of arbitrary complex ML programs.

4.1 Problem Formulation
During initial compilation, important matrix characteris-

tics and most importantly the ParFOR problem size N might
be unknown. This led to the major design decision to ap-
ply ParFOR optimization as a second optimization phase—as
done in parallel DBMSs such as XPRS [15]—at runtime for

ec0 ParFOR

b(cm)

Generic ParFOR

ec1 Generic

RIX LIX b(cov)...

RIX b(cm)... cmec = 600 MB
ckec = 1

cmec = 1024 MB
ckec = 16

MR

ec  … execution context
cm … memory constraint
ck  … parallelism constraint 

Figure 6: Plan Tree of Running Example.

each top-level ParFOR. As a foundation, we now define the
plan representation and related optimization problem.

Definition 2. (Plan Tree) P is a tree of nodes n ∈ NP

with height h, modeling ParFOR and its body prog. Inner
nodes are program blocks and refer to an unordered set of
child nodes c(n), where edges represent containment rela-
tionships. Leaf nodes are operations. Nodes have a node
type nt, an execution type et, a degree of parallelism k, and
specific attributes A. P spans a non-empty set of execu-
tion contexts ECP , where the root node r(P ) and specific
et define a context with memory cmec and parallelism ckec
constraints. Shared resources are global constraints.

Example Plan Tree: Figure 6 shows the plan tree
P of our running example. Inner nodes refer to ParFOR

and generic program blocks; leaf nodes refer to operations
(HOPs in this case). The root node defines the context of the
master process with its constraints (e.g., the max JVM size).
Since the nested ParFOR has et = MR, there is a second con-
text of the map task process. Note there is a mapping from
nodes in P to HOP DAGs and runtime plans. Based on the
plan tree (Def. 2) and our overall objective (Def. 1), we now
can define the plan tree optimization problem.

Definition 3. (Plan Tree Optimization Problem)
Given an initial plan tree P , which is assumed to be the
optimal sequential plan per program block, transform P into
a semantically equivalent plan tree P ′ that is optimal w.r.t.

φ2 : min T̂ (r(P ))

s.t. ∀ec ∈ ECP : M̂(r(ec)) ≤ cmec ∧
K(r(ec)) ≤ ckec.

(2)

Thus, the goal is to minimize the execution time of the plan
tree’s root node T̂ (r(P )) under the hard constraints of max-

imum total memory consumption M̂(r(ec)) and maximum
total parallelism K(r(ec)) per execution context ec. Valid
transformations are node operator selection (et), node con-
figuration changes (k, A), and structural changes of P .

In contrast to traditional query optimization, P covers (1)
a complex ML program with control flow, linear algebra op-
erators, task and data parallelism, which require dedicated
rewrites and cost modeling, and (2) hard constraints, which
require dedicated search strategies and cost estimation.

Complexity: The plan tree optimization problem is a
multiple knapsack problem with multiple constraints, which
is known to be NP-hard. Its specific properties are a vari-
able hierarchy of items and knapsacks, as well as multiple
variable capacity constraints. In detail, n is an item and
T̂ (n) is the item value. Each context ec defines a knapsack
with constraints cmec and ckec. P with ECP defines the
item and knapsack hierarchies, where multiple knapsacks
share common constraints (e.g., cluster parallelism).
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4.2 Cost Model
As a fundamental precondition for optimization, we need

a cost model and accurate estimates. According to objective
φ2, there are different requirements on those estimates. We
are interested in the expected execution time since this is our
soft constraint but we need worst-case estimates for memory
and parallelism in order to guarantee those hard constraints.
This is important for preventing out-of-memory situations.
Furthermore, we need an analytical cost model that allows
us to cost arbitrary plan alternatives. We now describe de-
tails of (1) estimating memory and execution time for leaf
nodes, and (2) aggregating statistics over plan trees.

4.2.1 Worst-Case Memory Estimates
Memory estimation for leaf nodes of a plan tree works

on HOP DAGs. We are interested in estimates for CP op-
erations but it also applies to block computations in MR.
For each DAG, we use a bottom-up approach of recursively
propagating matrix characteristics and estimating memory.

Matrix Characteristics: Important matrix character-
istics for memory estimates are the matrix dimensions d1,
d2 and the matrix sparsity ds. For worst-case memory esti-
mates, we also need worst-case estimates of those character-
istics. Fortunately, many operators of linear algebra (e.g.,
matrix multiplication) allow to exactly infer their output
dimensions. Inferring the sparsity is more difficult due to
potential skew but there are, for example, sparsity preserv-
ing operations like s · X (s /∈ {0,NaN,∞}). For unknown
characteristics, we assume d1 =∞, d2 =∞ and ds = 1.

Memory Estimates: Based on worst-case matrix char-
acteristics, which have been propagated through the DAG,
we estimate per operation its output memory M̂(out(n))

and operation memory M̂(n) as follows (simplified):

M̂(out(n)) =

{
d1(116 B + 12 B · d2ds) sparse

8 B · d1d2 dense

M̂(n) =
∑

∀ci∈in(n)

M̂(out(ci)) + M̂(n, k) + M̂(out(n)),

(3)

where dense matrices are double arrays and sparse matrices
use compressed rows of (column index, value)-pairs. This
estimate reflects our runtime model of CP instructions that
pin all inputs in(n) and the output out(n) into memory.
Hence, the memory estimate is the sum of input, intermedi-
ate (depending on internal parallelism k), and output sizes.

Example Memory Estimates: Figure 7 depicts part
of the HOP DAG of our running example’s inner ParFOR.
Assume a 106 × 10 input matrix D with sparsity ds = 1.
Accordingly, we estimate the output size of right indexing
(RIX) as 8 MB and the total operation memory as 88 MB.

The worst-case memory estimate of a leaf node of P is
then defined as the operation memory estimate M̂(n) of its
mapped HOP if et = CP and as a constant MC if et = MR
because then it is executed in a separate context.

D
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Figure 7: Example Memory Estimates.
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4.2.2 Time Estimates
Estimating time for leaf nodes of a plan tree is more chal-

lenging than memory. For accurate estimates, we need to
take runtime properties of operators into account. Our ba-
sic idea therefore relies on offline performance profiling of
runtime instructions, done once for a cluster configuration.

Performance profiling measures T of relevant instruc-
tions Op for variables V, varying one v ∈ V at-a-time. Dif-
ferent execution types and matrix representations are mod-
eled as different instructions. We then create polynomial re-
gression models as cost functions CT,Op(v) for each (v,Op)-
combination. The profile is the set of CT,Op(v) for all v ∈ V.

Cost Function Scaling then estimates T̂ via this cost
profile as follows for a given request Q with ∀v ∈ V : ∃p(v) ∈
Q, where fx(qx) is a shorthand for CT,Op(x = qx):

T̂ (Q,A) = fd(qd,A) ·
∏

∀x∈(Q−d)

fx(qx,A)

fx(dx,A)
· corr(Q). (4)

Scaling one-dimensional cost functions makes a fundamen-
tal independence assumption, which is important for effi-
cient profiling but can lead to low accuracy. We therefore
use correction terms, based on ratios of number of float-
ing point operations, e.g., for matrix shape adjustments.
This correction is crucial for high accuracy due to a shape-
dependent asymptotic behavior. For example, consider a
matrix multiplication AB, where each matrix has 106 cells,
i.e., 8 MB. Multiplying two 1,000 × 1,000 matrices requires
2 GFlop, while a dot product of 106 × 1 vectors requires
only 2 MFlop, i.e., a relative difference of 103. To summa-
rize, scaled cost functions allow us to accurately estimate
time, even for different behavior of dense/sparse operations.

Example Time Estimates: Assume a query Q: qd =
700,000, qd1 = 1,000, qd2 = 700, and qs = 0.7 for CP,
dense, transpose-self matrix multiplication X>X. Further,
assume cost functions for datasize fD(d) and sparsity fS(s),
created with squared matrices and defaults dd = 500,000
and ds = 0.5. We pick fD as the leading dimension and get
fD(qd) = 325 ms. Then, we scale it to T̂ (qd, qs) = T̂ (qd) ·
fS(qs)/fS(ds) = 438 ms as shown in Figure 8. Last, we do

the correction T̂ = T̂ (qd, qs) · corr(Q) and get T̂ = 366 ms.
Finally, we assign the time estimates from mapped HOPs

and instructions to plan tree leaf nodes again.

4.2.3 Plan Tree Aggregate Statistics
Memory and time estimates for arbitrary complex pro-

grams are then aggregates of leaf node estimates.
Memory Estimates: The worst-case estimate of mem-

ory consumption for a ParFOR node is computed with

M̂(n) =

{
k · max
∀ci∈c(n)

M̂(ci) et = CP

MC et = MR,
(5)

as the number of workers times the most-memory consuming
operation since those operations are executed sequentially.
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The memory estimate for all other inner-nodes (for, while,

if, func, and generic) is M̂(n) = max∀ci∈c(n) M̂(ci). One
challenge is to incorporate shared reads into memory esti-
mates in order to prevent large overestimation. This is done
by splitting M̂ into shared M̂+ and non-shared M̂− parts
and scaling M̂+ by the number of consumers.

Time Estimates: Average-case time estimates are the
sum of child node estimates due to sequential execution:

T̂ (n) = wn

∑
∀ci∈c(n)

T̂ (ci), wn =


dN̂/ke parfor

N̂ for,while

1/|c(n)| if

1 otherwise.

(6)

Since, we cannot determine N̂ for while and unknown
for/parfor, we estimate it as a constant N̂ = Nc there.
This reflects at least that the body is likely executed mul-
tiple times. Furthermore, the time estimate of an if is a
weighted sum because only one branch is executed at-a-time.

Parallelism: Finally, we also aggregate total parallelism
with K(n) = k · max∀ci∈c(n)K(ci). For excluding remote
parallelism we use K(n) = 1, if et = MR.

4.3 Optimization Algorithm
We now discuss an algorithm for finding optimal parallel

execution plans. Due to the huge search space, we support
a spectrum of optimizers with different complexity. Each
optimizer is characterized by: (1) the used cost model, (2)
the rewrites that define the search space, and (3) the search
strategy. Here, we describe our default heuristic optimizer.

Heuristic Optimizer Overview: Our heuristic opti-
mizer uses (1) a time- and memory-based cost model without
shared reads, (2) heuristic high-impact rewrites, and (3) a
transformation-based search strategy with global optimiza-
tion scope. The time-based cost model enables accurate
estimates but requires a pre-created profile. If no profile
exists, we use a memory-based cost model and—instead of
time estimates—additional heuristics that local, in-memory
computations require less time than their MR alternatives.

Rewrites: The search space is defined by a variety
of ParFOR-specific heuristic rewrites. This comprises (1)
rewrites regarding ParFOR parallelization strategies and (2)
rewrites exploiting repeated, parallel iteration execution.
First, examples for ParFOR-centric rewrites are operator
selection such as selecting the ParFOR execution type et
(CP/MR, i.e., ParFOR-L/ParFOR-R), task partitioning and
result aggregation methods. Example configuration changes
include choosing the degree of parallelism k and task sizes.
Structural plan changes are, for example, artificial nested
ParFOR for multi-threaded map tasks, unfolding ParFOR in
recursive functions, and changing ParFOR to for. Second,
examples for iteration-aware rewrites include again operator
selection like data partitioning, where we choose the parti-
tioning scheme, partitioning method, and execution type et
of left and right indexing. Example configuration changes
are choosing matrices for co-location, and changing the par-
tition replication factor r. Most of these rewrites need to
take the entire plan tree P into account.

Search Strategy: We use a transformation-based, top-
down search strategy that transforms P and its mapped
program into P ′. This follows the fundamental heuristic to
apply available parallelism as high as possible in the plan
tree to cover more operations and reduce synchronization.
Our simple yet very effective approach uses a well-defined

rewrite order. First, we apply data-flow rewrites that change
the memory estimates of P . This includes data and re-
sult partitioning because we potentially recompile related
indexed reads/writes to in-memory operations. Second, we
recursively decide—starting at the root of P—on ParFOR

execution type and degree of parallelism. Based on memory
constraints and estimates, we can directly compute the max-
imum parallelism to apply per level. Third, for all subtrees
rooted by ParFOR, we apply execution-type-specific rewrites.
For ParFOR-L this includes task partitioner and recompi-
lation budget, while for ParFOR-R this includes data co-
location, replication factors, nested ParFOR, and task parti-
tioner. Fourth, and finally, we decide on result merge strate-
gies, handle recursive functions, and recompile unnecessary
ParFOR to for. The majority of rewrites has a complexity
of O(|NP |) with exceptions of up to O(|NP |2). This strat-
egy finds the optimal plan according to the heuristically re-
stricted search space but guarantees all constraints of φ2.

5. EXPERIMENTAL EVALUATION
The aim of our evaluation is to study ParFOR paralleliza-

tion strategies and its optimization for a variety of use cases.
To summarize, the major findings and insights are:

Hybrid Parallelization: ML use cases exhibit di-
verse workload characteristics. Complementary paralleliza-
tion strategies and optimization are key to achieve high per-
formance. The R comparisons confirmed this since each use
case required a different hand-chosen strategy. In contrast,
our optimizer generated good plans with negligible overhead.

High-Impact Rewrites: Depending on the use case,
different rewrites matter the most. For large inputs with in-
dexed access it is data partitioning, locality and replication;
for large compute it is ParFOR-R, i.e., distributed in-memory
operations; for many iterations it is task partitioning; and
for large outputs it is result partitioning and merging.

R and Spark Comparison: Our optimizer achieved
performance comparable to pure in-memory computations
(local and distributed) on small problems, significant im-
provements on larger problems, and very good scalability.
Furthermore, both R and Spark required careful prevention
of out-of-memory situations (since they are pure runtimes),
while our optimizer guarantees memory constraints.

5.1 Experimental Setting
Setup: We ran our experiments on a 5 node cluster, i.e.,

3 nodes of 2x4 X5550 @ 2.67GHz and 2 nodes of 2x4 X5560
@ 2.80GHz; each node with hyper-threading enabled, 64 GB
RAM, 1.5 TB storage (6 disks in RAID-0), 1 Gb Ethernet,
and SUSE Linux Enterprise Server 11 64bit. For repro-
ducible results, all experiments measured total execution
times from outside SystemML (as of 07/2013), which con-
servatively assumes a shared cluster and uses the heuristic
ParFOR optimizer without pre-created profile. The default
number of reducers per MR job was set to 10. We used IBM
Hadoop Cluster 1.1.1 and IBM JDK 1.6.0 64bit. Our Hadoop
cluster2 was configured with 80/40 map/reduce slots, with-
out JVM reuse, and an HDFS block size of 128 MB. All ex-
periments used initial/max JVM sizes of 1 GB for the master
and map/reduce tasks, and a memory budget ratio of 0.7.

Data and Use Cases: For investigating different
data characteristics, we use synthetic data, created with

2We measured the singlenode HDFS throughput with DFS-
IO (1 file, 1 GB) as up to 456 MB/s read and 107 MB/s write.
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Figure 9: Results of Pairwise Correlation (Descriptive Statistics).

algorithm-specific DML data generators. Furthermore, we
use a spectrum of three use cases ranging from data- to
compute-intensive. For each use case, we investigate scenar-
ios of small (S), medium (M), and large (L) input data. All
use cases are based on real-world problems, where experi-
ments on the real data showed similar results.

Baseline Comparisons: The baselines are (1) Sys-
temML’s serial FOR, (2) R 2.15.1 64bit [9] (unlimited mem-
ory), incl. the parallel R packages doMC (multi-core, 1 node
× 8 cores) and doSNOW (cluster, type socket, 5 nodes × 1/8
cores), as well as (3) Spark 0.8.0 [32] (5×16 workers, 16 GB
memory per node, 10 reducers, standalone on top of our
HDFS). For a fair comparison, both SystemML and R use
(1) binary inputs/outputs, and (2) equivalent script-level al-
gorithms, while for Spark, we ported our runtime operators
and hand-tuned alternative runtime plans. To the best of
our knowledge, there is no publicly available MR-based ML
system on an abstraction level comparable to SystemML.

5.2 Use Case 1: Descriptive Statistics
Our first use case is the data-intensive pairwise correla-

tion (Corr) from our running example (Ex. 2), represent-
ing more complex real-world use cases of bivariate statistics
from finance and log analysis. Its characteristics are (1)
large, dense, partitionable input, (2) small output, (3) few
iterations, and (4) a simple algorithm but nested ParFOR.

Scenario S: The small scenario uses a dense 105 × 100
input matrix, i.e., 80 MB in dense binary format and 4,950
pairs. Figure 9(a) compares FOR and ParFOR-L for increas-
ing numbers of threads k. For k = 1, we see that the ParFOR

overhead is negligible. We also observe good speedups with
more threads up to 4.6x at k = 16. The best speedup is
below 8x because this includes parsing/compilation (2 s),
read/write, and JIT compile. Figure 9(b) compares the plan
alternatives ParFOR-L with k = 8, ParFOR-R w/ and w/o re-
mote partitioning (2 and 1 MR jobs), and the choice of our
optimizer (Opt) for increasing numbers of columns n. The
time differences are mainly due to MR job latency as well as
more I/O and JIT compile. Our optimizer picks ParFOR-L

up to n = 56 and then switches to ParFOR-R because it tries
to exploit k = 16 threads and hence, estimates the memory
as 730 MB, i.e., greater than the budget of 717 MB.

Scenario M: Figure 9(c) shows the results of the medium
scenario, where we increased the input size to 107×100, i.e.,

8 GB. Since this exceeds our memory budget, right indexing
is initially compiled to MR. We again compare several plan
alternatives, where we set k = 5 for ParFOR-L to meet the
JVM constraints. First, we observe a large execution time
of 41 h for serial FOR because it uses 5,049 MR jobs for col-
umn indexing. Second, although we already exploit 64 of 80
map slots for a single MR job on 8 GB, ParFOR-L improves
the runtime by almost 4x due to latency hiding, full uti-
lization of map/reduce slots, and parallel CP instructions.
Third, partitioning (remote and local) has a huge impact on
ParFOR-L because it replaces the 5,049 indexing jobs with
one partitioning operation. Local partitioning shows better
performance due to partition locality at the master node.
Fourth, partitioning is also an enabler for ParFOR-R that led
to additional improvements. Finally, our optimizer produces
the best plan—via additional rewrites (e.g., replication) as
detailed in Subsection 5.4—for a speedup of 404x.

R Comparison: Figure 9(d) shows the R results. The
R scripts implement this use case via moment and cov, while
scripts with the dedicated cor were only up to 9% faster. For
doMC and doSNOW we returned index-value list results due to
their output restrictions. For scenario S, R provides very
good performance, where doMC performed best because the
broadcast overhead of doSNOW was not amortized. Although
our optimizer switched too early to ParFOR-R and despite
our numerical stable operators [31], our runtime is compa-
rable. For an even smaller scenario XS, there is essentially
no difference between DML (Opt) and doMC. On scenario
M, serial R and doMC scale linearly, while doSNOW scales even
better because its overheads have less impact. Note that we
had to reduce the degree of parallelism for doMC and doSNOW

to 3 in order to prevent swapping because they create mul-
tiple copies of the entire dataset. Although, doSNOW shows
the better relative behavior, doMC still performs best of R.
However, our optimized plan was 2x faster. We also con-
ducted a large experiment with 107 × 1,000 input (Scenario
L), which means 80 GB and 499,500 pairs. ParFOR-R alone
read 40 TB from HDFS. However, we see linear scalability
and an aggregated throughput of 2.3 GB/s. This scenario
cannot be executed in R because D does not fit in-memory
and exceeds R’s constraint of 231 elements per matrix.

Spark Comparison: Figure 9(d) also shows the Spark
results. We implemented three categories of plans via
Sparks Java API (JavaPairRDD) and SystemML’s binary
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format/operations, w/o buffer pool: (1) data-parallel (par-
allel indexing, cm, cov), (2) hybrid (parallel indexing, local
cm, cov), and (3) task-parallel (parallel outer loop). For
data-parallel and hybrid, we investigate different RDD stor-
age levels (memory-only, memory-and-disk) for D (and X).
For task-parallel plans, we investigate different input trans-
fers (task serialization, broadcast variables, and HDFS par-
titions via our data partitioning, replication 1). First, Spark
shows impressive performance for data-parallel and hybrid
plans. Compare Scenario M, Hybrid against SystemML FOR

from Figure 9(c) (equivalent plans): the 13x improvement is
reasoned by distributed in-memory data and fast job/task
scheduling. Second, despite fast jobs, data-parallel/hybrid
plans do not perform well for this task-parallel use case due
to many jobs (15,048/10,098 for scenarios XS, S, M). Third,
task-parallel plans with Spark’s mechanisms quickly run out
of memory. With our partitioning, Spark performs very well
on Scenario M, which is comparable to ParFOR-R w/ remote
partitioning (RwRP, Figure 9(c)). On Scenario L, even this
plan fails because column partitioning runs out of memory
at groupByKey(). However, conceptually all presented tech-
niques could be transferred to Spark as well.

Larger Clusters: We also conducted experiments on two
larger clusters of (a) 1+15 nodes (2x4 E5440 @ 2.83GHz, 4
disks), 120/60 map/reduce and (b) 1+18 nodes (1x6 E5-
2430 @ 2.20GHz, 11 disks), 216/108 map/reduce. We see
consistent results for Scenario L of 13,009 s and 5,581 s.
Compared to the result of 17,321 s with 80 mappers, this
means linear scaling with increasing degree of parallelism.
This very good scalability allows us to effectively address
larger problems with additional hardware resources.

5.3 Use Case 2: Meta Learning
As a second use case, we use compute-intensive meta

learning approaches: linear regression feature subsampling
(LinReg) and logistic regression parameter search (Logistic).

5.3.1 Linear Regression, Feature Subsampling
This linear regression example is based on a real use case

from an insurance company. We have an m × n input ma-
trix X, a vector y, and we want to compute N ordinary
least square models of z randomly chosen features. We com-
pute the normal equations once with A = X>X + λIn and
b = X>y, where λIn is the regularization. Each ParFOR

iteration then picks z = 15 random features out of [1, n],
projects A and b, solves the system of equations with an
external function calling JLAPACK, and writes the vector
of coefficients to a result variable. This use case is charac-
terized as (1) small, dense ParFOR input, (2) moderate-size
output, (3) many iterations, and (4) a simple algorithm but
potentially large matrix multiplications before ParFOR.

Scenario S: The small scenario has a dense 104× 103 in-
put matrix X, i.e., 80 MB. Figure 10(a) shows the runtime
with log-scaled increasing N . For one model, we see the time
of initial matrix multiplications. Serial FOR and ParFOR-L

perform well up to 1,000 models, while ParFOR-R exhibits
additional job setup latency. Our optimizer switches too
early—at 100 models—from ParFOR-L to ParFOR-R. One key
observation is, however, that as N further increases the run-
time for serial increases dramatically. The reason is copy-
on-write for left indexing which copies zN/2 non-zero values
per iteration and dominates costs for large N . This effect
occurs time-delayed for ParFOR-L due to a natural result
partitioning across k workers. ParFOR-R and our optimized
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(b) Scenario M

Scenario DML R R doMC R doSNOW

S (104 × 103) 180 239 1,872 4,616 / 2,599
M (106 × 103) 238 1,631 3,034 5,737 / 3,739
L (107 × 103) 574 – – – / –

(c) R Comparison [s]
Figure 10: Results of Linear Regression.
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(b) Scenario M

Scenario DML R R doMC R doSNOW

S (104 × 103) 31 370 60 82 / 35
M (106 × 103) 239 19,869 4,621 4,041 / 1,097
L (106 × 105) 619 49,860 12,355 10,492 / 2,550

(c) R Comparison [s]

Figure 11: Results of Logistic Regression.

plan do not have this problem due to result partitioning per
task. For even larger N , our optimizer would control result
partitioning via C+Factoring according to the result size.

Scenario M: The medium scenario increases the data
size to 106×103, i.e., 8 GB. The behavior (see Figure 10(b))
is the same as in Scenario S, except for a larger offset for
initial matrix multiplications. This makes a case for hybrid
runtime plans where we exploit data parallelism for matrix
multiplications and task parallelism for model training.

R Comparison: Figure 10(c) shows the R baselines, im-
plemented via matrix multiplications and solve that also
calls LAPACK. For Scenario S, DML is almost 1.5x faster
than R serial, while interestingly, both parallel R strategies
are significantly slower. Serial R uses in-place updates here,
while we do copy-on-write. However, we gain from paral-
lelism and result partitioning. Both doMC and doSNOW suffer
from expensive result merge. We tuned the parameters of
doMC and doSNOW; increasing .maxcombine from 100 to 500,
gave a 2x improvement which supports the argument of re-
sult merge overhead. For Scenario M, DML is 7x faster than
R due to data-parallel matrix multiplications. The large sce-
nario increases the data size to 107× 103, i.e., 80 GB, where
we see very good scalability of data-parallel matrix multi-
plications. Again, R cannot execute Scenario L.

5.3.2 Logistic Regression, Parameter Search
As a more complex example—based on a real use case

from an automotive manufacturer—we do parameter search
on a trust region Newton method for logistic regression [22].
This algorithm exposes a regularization parameter C, which
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Figure 12: Selected Optimizer Decisions (*).

we investigate via a ParFOR parameter grid search over C =
θ1((y = 1) + θ2(y = −1)) with θ1 ∈ {1, .1, .01, .001, .0001}
and θ2 ∈ [5/N, 1] for N ≥ 5. This use case is characterized
as (1) moderate-size, sparse input, (2) small output, (3) few
iterations, and (4) a complex iterative algorithm.

Scenario S: The inputs of the small scenario are a sparse
104 × 103 matrix X (ds = 0.01) and a dense 104 vector y,
i.e., 1.3 MB. We set outer/inner max iterations (model/step
size convergence) to 1,000. Figure 11(a) shows the results
for increasing number of models N , where the maximum
number of observed outer iterations was 13. ParFOR-L shows
a good speedup due to the compute-intensive use case, while
ParFOR-R has again latency overhead but scales better for
larger N . Our optimizer picks ParFOR-L up to N = 90 but
switched too early (at N = 100) to the robust ParFOR-R.

Scenario M: The medium scenario increases the input
size to 106 × 103, i.e., 130 MB. Figure 11(b) shows the re-
sults, where the maximum number of observed outer iter-
ations was 18. The moderate speedup of ParFOR-L is rea-
soned by a reduced degree of parallelism of k = 3 to meet
the JVM constraints. Due to the compute-intensive work-
load, ParFOR-R shows the best performance and scalability,
where for N ≤ 80, we do not fully exploit the cluster and
are affected by load imbalance. Finally, our optimizer uses
ParFOR-R right from N = 10 due to memory pressure.

R Comparison: Figure 11(c) shows the R baselines. Due
to the compute-intensive workload our optimized plan is al-
ready 12x faster than serial R, 2x faster than R doMC, and
level with doSNOW. For Scenario M, the behavior is similar
but the relative speedup of DML and doSNOW increased due
to amortized distribution costs. DML scales better and is
now 4.6x faster than doSNOW due to a higher degree of paral-
lelism and faster serial execution. Scenario L further inves-
tigates sparse inputs by increasing the data size to 106×105

but decreasing the sparsity to ds = 0.0001, i.e., still 130 MB.
The maximum number of observed iterations was 22. R was
able to execute Scenario L due to sparse input. However,
DML scales better than the R alternatives and R serial is
already 81x slower which makes it infeasible.

5.4 Optimizer Deep-Dive
Finally, we take a closer look at selected optimizer deci-

sions and the actual optimization overhead itself. The use
cases are Corr, LinReg, and Logistic as introduced before.

Replication Factor: Setting the partition replication
factor r had large impact for the Corr use case. Figure 12(a)
shows the time breakdown for ParFOR-R on Scenario M with
increasing r. Partitioning time increases sublinearly due to
asynchronous replication but the execution time decreases
significantly due to nested, i.e., the quadratic number of,
partition reads. Note that together with data locality the
trend is similar but damped. Hence, our optimizer set r = 5.

Task Partitioner: Task partitioning plays an impor-
tant role for low communication overhead but good load
balance. Figure 12(b) compares different task partitioner
(Näıve/Fixed-Size, Factoring, Static) for ParFOR-R on Sce-
nario M of all use cases. For few iterations (Corr and Logis-
tic, 100/150) both Näıve and Factoring used minimal task
sizes of li = 1 that led to very good load balance at low
overhead and hence performed best. For many iterations
(LinReg, 106), even Fixed-size with a task size of li = 100
(i.e., 10,000 tasks) led to large communication overhead,
while Näıve was infeasible. In contrast, Factoring showed
low communication overhead due to a logarithmic number
of tasks (1,120). Static showed—despite the lowest commu-
nication overhead—suboptimal performance in cases with
time variability per iteration (Corr, Logistic) due to load
imbalance. Hence, our optimizer applied Näıve/Factoring.

Optimization Overhead: Dependency analysis is neg-
ligible because it took less than 0.1 ms on all use cases, even
for Logistic with more than 150 lines of DML. The actual
optimization time including plan tree creation was also very
low. For use cases Corr and LinReg—with plan tree sizes
of |NP | = 21 and |NP | = 11, respectively—it was always
below 85 ms. The more complex Logistic had a plan size of
|NP | = 238 and h = 10 but also required less than 110 ms.

6. RELATED WORK
Large-Scale ML: With regard to declarative ML, we

classify existing systems according to its abstraction level.
First, at the lowest level, there are many tailor-made, large-
scale ML algorithms. Second, frameworks like Mahout [2]
and MADlib [29], or platforms like R [9] and Matlab [28] pro-
vide dedicated packages for large-scale computation. Third,
there is a variety of distributed ML systems. Spark [32],
ScalOps [4], and Revolution R’s RMR [9] provide script-level
map and reduce functions. Twitter’s ML integration [23]
uses Pig storage functions. R [9] and Matlab [28] provide—
similar to ParFOR—parallel for loops. Systems like Ri-
cardo [7] execute R/Jaql queries and R scripts on distributed
data partitions. Alternatives include distributed graph pro-
cessing systems like Distributed GraphLab [24] but those
require a vertex-centric view. In contrast, we do not require
to explicitly specify the parallelization strategy. Fourth, in
SystemML [11, 31] we aim for declarative large-scale ML
and optimization for runtime. Users write high-level ML
algorithms and our optimizer compiles hybrid—potentially
distributed—plans. Cumulon [16] introduced several im-
provements and optimizes for monetary costs under time
constraints but does not support task parallelism. Hence, it
could benefit from ParFOR as well. Fifth, at an even higher
level, systems like MLbase [20] specify ML tasks and op-
timize for runtime and accuracy. This is challenging but
orthogonal because our optimizations can be used there as
well for realizing logical learning plans.

MR Program Optimization: Cost-based optimization
for large-scale ML did not receive much attention yet. How-
ever, recent work already laid foundations for MR program
and query optimization. This includes static code analysis
for operator reordering [17], profiling/cost modeling of black
box programs [13], configuration optimization [13, 21], work-
flow optimization via pickybacking [21, 25] and dynamic re-
optimization [1]. These approaches are also important steps
towards optimizing ML programs. However, in that context
they fall short for two reasons: First, most existing work
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focus on optimizing pure data flows of relational or black-
box operators, which stands in contrast to complex ML
programs. RIOT [33] already observed that mapping ML
programs to SQL queries does not always exploit the full
optimization potential. Accordingly, Zhang et al. optimized
I/O sharing for complex programs [34] but for singlenode
execution only. Second, due to the focus on black-box op-
erators, there is a lack of analytical cost models for plan
comparisons. Cumulon [16] already presented time estima-
tion but for data-parallel ML operations only. Our opti-
mization framework is a first step towards both challenges
of optimizing task-parallel ML programs.

7. CONCLUSIONS
To summarize, we introduced a systematic approach of

combined task and data parallelism for large-scale ML. In
detail, we presented complementary ParFOR parallelization
strategies and the related optimization framework. The ex-
periments showed that our optimizer achieves out-of-the-box
(1) performance comparable to pure in-memory computa-
tions on small problems, (2) significant improvements on
larger problems, and (3) very good scalability. In conclusion,
users can now specify task- and data-parallel ML algorithms
in an easy and flexible way via a high-level primitive, with-
out hand-tuning the execution plan. Most importantly, the
combined task and data parallelism on top of MapReduce
allows—in contrast to custom parallelization schemes—to
share cluster resources with other MR-based systems be-
cause the MR scheduler provides global scheduling. Finally,
there are many directions for future work. First, this in-
cludes advanced runtime and optimization strategies. Sec-
ond, Hadoop Next Generation (YARN) allows to specify
context constraints via so-called resource containers, which
gives us even more optimization opportunities.
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