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ABSTRACT
Many machine learning (ML) systems allow the specification
of ML algorithms by means of linear algebra programs, and
automatically generate efficient execution plans. The oppor-
tunities for fused operators—in terms of fused chains of basic
operators—are ubiquitous, and include fewer materialized
intermediates, fewer scans of inputs, and sparsity exploita-
tion across operators. However, existing fusion heuristics
struggle to find good plans for complex operator DAGs or
hybrid plans of local and distributed operations. In this pa-
per, we introduce an exact yet practical cost-based optimiza-
tion framework for fusion plans and describe its end-to-end
integration into Apache SystemML. We present techniques
for candidate exploration and selection of fusion plans, as
well as code generation of local and distributed operations
over dense, sparse, and compressed data. Our experiments
in SystemML show end-to-end performance improvements
of up to 22x, with negligible compilation overhead.
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1. INTRODUCTION
Large-scale machine learning (ML) aims at statistical

analysis and predictive modeling over large data collec-
tions [23], commonly using data-parallel frameworks like
Spark [104]. State-of-the-art ML systems allow data scien-
tists to express their ML algorithms—ranging from classifi-
cation, regression, and clustering to matrix factorization and
deep learning—in linear algebra and statistical functions [1,
14, 39, 60, 83, 87, 96, 102, 103], and automatically com-
pile efficient execution plans. This high-level specification
simplifies the development of custom ML algorithms, and
allows the adaptation of execution plans to different data,
hardware, and deployment characteristics.
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Figure 1: Examples of Fusion Opportunities.

Fusion Opportunities: There are many opportunities,
where fused operators—in terms of fused chains of basic
operators—can significantly improve performance. First, fu-
sion allows eliminating the unnecessary materialization of
intermediates, whose allocation and write is often a bottle-
neck. Examples are the two intermediates for sum((X�Y)�
Z) in Figure 1(a), where � denotes an inexpensive element-
wise multiplication. Second, fusion can eliminate unneces-
sary scans of inputs by exploiting temporal cell or row local-
ity. For example, X>(Xv)→ ((Xv)>X)> in Figure 1(b) can
be realized in a single row-wise pass over the input because
the intermediate is produced and consumed in a row-aligned
manner. Third, multiple aggregates with shared inputs (e.g.,
sum(X2), sum(X�Y), and sum(Y2) in Figure 1(c)) lever-
age similar opportunities for DAGs (directed acyclic graphs)
of multiple aggregates over common subexpressions (CSEs).
Fourth, “sparse drivers”—i.e., sparse matrices with “sparse-
safe” binary operations such as multiply X�—allow sparsity
exploitation across entire chains of operations. For example,
sum(X�log(UV>+eps)) in Figure 1(d) can be computed for
non-zeros in X only, which changes the asymptotic behavior
by avoiding the computation of huge dense intermediates for
UV>, UV> + eps, and log(UV> + eps).

Existing Work on Operator Fusion: Given the ubiq-
uitous opportunities and high performance impact, operator
fusion has received a lot of attention in the literature. Sys-
temML uses hand-coded fused operators to eliminate inter-
mediates [40] or unnecessary scans [7], and to exploit spar-
sity across operations [14]. In contrast, Cumulon [39] and
MatFast [103] use more generic masked and folded opera-
tors. However, these approaches require dedicated operators
that are limited to fixed patterns of few operators and im-
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Figure 2: Alternative Fusion Plans in DAGs.

pose large development effort for combinations of dense and
sparse inputs [29, 36]. Automatic operator fusion addresses
this issue by access-pattern-aware fusion and subsequent
code generation. Example systems include BTO [9], OptiML
[97], Tupleware [25], Kasen [105], SystemML-SPOOF [29],
Weld [76], TC [100], Julia [11, 43], MATLAB [61], Tensor-
Flow XLA [1, 36], Nervana Graph [54], and TensorRT [75].
In contrast to traditional query optimization and compila-
tion, these systems work with (1) operator DAGs instead
of trees, and (2) dense or sparse linear algebra operations.
However, existing work has limited support for sparse inputs
and sparsity exploitation, and it relies on fusion plans that
are derived with heuristics or even manual declaration.

A Case for Optimizing Fusion Plans: The lack of
a principled approach for optimizing fusion plans becomes
increasingly problematic as code generators cover more op-
eration types. The key challenges are complex DAGs of op-
erations, sparsity exploitation, and different access patterns,
which create a search space that requires optimization:

• Materialization points (e.g., for multiple consumers),

• Sparsity exploitation and ordering of sparse inputs,

• Decisions on fusion patterns (e.g., template types), and

• Constraints (e.g., memory budgets and block sizes),
and costs for local and/or distributed operations.

For a seamless compiler and runtime integration, operators
are restricted to a single output. In DAGs, each intermediate
might be consumed, however, by multiple operators, which
requires materialization decisions to balance redundant com-
pute and materialization costs. For example, Figure 2 shows
a simple DAG with two materialization points (after + and
-) and four valid, alternative fusion plans. Baseline solu-
tions are heuristics like fuse-all (FA) or fuse-no-redundancy
(FNR), but these struggle to find good plans for complex
DAGs or hybrid plans of local and distributed operations.

Contributions: We introduce a practical framework for
the exact, cost-based optimization of operator fusion plans
over DAGs of linear algebra operations. This framework
guarantees—under perfect cost estimates—finding the op-
timal plan regarding the considered decisions. In detail, we
describe its end-to-end integration into open source Apache
SystemML, major design decisions, and key components:

• System Architecture: In Section 2, we describe the
compiler and runtime integration, including examples
of code generation plans and generated operators.

• Candidate Exploration: In Section 3, we introduce a
novel algorithm for the efficient exploration of valid
partial fusion plans and our memoization table.

• Candidate Selection: Section 4 then presents our novel
cost-based optimizer for plan selection with its search
space, cost model, and enumeration algorithm.

• Experiments: In Section 5, we report on experiments
in SystemML that cover micro benchmarks, local and
distributed end-to-end experiments, as well as compar-
isons with Julia, TensorFlow, and fusion heuristics.

Rewrites

Plan Cache

SystemML Compiler

Parse & Validate

Static Rewrites & IPA

Dynamic Rewrites

Memory Estimates

Operator Selection

Gen Runtime Prog

HOPs

LOPs

Script

Execution Plan

Codegen 
Compiler

.class.class

Op 
Cache

HOP DAG Modification

Memo 
Table

(partial 
fusion 
plans)

CPlan Construction

Templates
Candidate Exploration

Cost Model
Candidate Selection

janino/javac
Code Generation

Optimizer

D
yn

am
ic

 R
ec

om
pi

la
tio

n

Supported Operators (as of 07/2018):
 Unary: abs, acos, asin, atan, ceil, cos, cosh, exp, floor, log, log-nz, mult2, pow2, 

round, sign, sin, sinh, sigmoid, sprop, sqrt, tan, tanh.
 Binary: and, bitwand, cbind, div, eq, gt, gte, intdiv, log, log-nz, lt, lte, max, min, 

minus, minus1mult, minus-nz, mod, mult, neq, or, plus, pow, xor.
 Ternary: plus-mult, minus-mult, replace, replace-nan, ifelse.
 Nary: cbind, min, max.
 Unary Aggregate: col-max, col-min, col-sum, col-sumsq, cummax, cummin, cumsum, 

max, min, row-nnz, row-max, row-mean, row-min, row-sum, row-sumsq, sum, sumsq.
 Binary Aggregate: matrix-mult.
 Reorg: trans.
 Indexing: col-rix, col-range-rix.
 Data Gen: seq, matrix-literal, literal.
 Dnn: avgpool, conv2d, maxpool, biasadd, biasmult.

Figure 3: System Architecture Overview.

2. SYSTEM ARCHITECTURE
We describe the architecture of our code generator and its

compiler integration into SystemML [13, 14]. Our optimiza-
tion framework extends the SPOOF framework [29], which
relied on ad-hoc candidate exploration and the FA heuris-
tic. As background, we also sketch code generation plans,
generated operators, and their runtime integration.

2.1 Compiler Integration
SystemML provides a high-level scripting language with

R-like syntax, which includes linear algebra, element-wise
and statistical operations. As shown in Figure 3 (left), a
script is parsed into a hierarchy of statement blocks as delin-
eated by control flow. Per block, we compile DAGs of high-
level operators (HOPs). A HOP represents an operation out-
put, and edges are data dependencies. These DAGs are mod-
ified via static—i.e., size-independent—rewrites, and inter-
procedural analysis (IPA) propagates matrix dimensions
and sparsity from the inputs through the entire program.
Based on this size information, we apply dynamic—i.e., size-
dependent—rewrites and compute memory estimates per
operation. These estimates are in turn used to select lo-
cal or distributed execution types and physical operators.
Similar to adaptive query processing [28], SystemML recom-
piles HOP DAGs during runtime (from dynamic rewrites) to
adapt plans for initially unknown or changing sizes [13].

Codegen Compiler Integration: Conceptually, our
code generator modifies the HOP DAGs—as shown in Fig-
ure 3 (middle ?)— after dynamic rewrites by replacing parts
with fused operators. We do not consider rewrites and fu-
sion jointly, which is an interesting direction for future work.
Fused operators are represented via generic SpoofOps that
consist of meta data and the generated classes. These opera-
tors are still valid HOPs and thus, seamlessly leverage the re-
maining compilation steps such as memory estimates, oper-
ator selection (e.g., local/distributed), or runtime plan gen-
eration. We also invoke the code generator during dynamic
recompilation, which is important for many algorithms in
practice because our optimizer depends on known size in-
formation for costing and validity constraints. For example,
sum((X�Y)�Z) with unknown dimensions of Y, only al-
lows fusing sum(TMP � Z) to ensure correct handling of
vector broadcasting. Such partial fusion is problematic be-
cause fused operators do not preserve their semantics (e.g.,
sum(�)) and thus, limit fusion potential once the size of Y
becomes known. Therefore, our compiler integration retains
the original HOP DAGs for dynamic recompilation. Apply-
ing codegen during recompilation is, however, challenging
regarding its optimization and compilation overhead.

Codegen Architecture: Figure 3 (right) shows the
codegen compiler architecture that comprises five well-
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Figure 4: Example Code Generation Plans (CPlans).

abstract class SpoofCellwise

execute() {
 for all rows r 
  for all cols c
    out[r,c] =   
    genexec(
       in[r,c]);
}

abstract
  genexec();

 class TMP10 
   extends 
   SpoofCellwise

 @Override
 genexec() {
   ...
 } 

(skeleton) (generated)

Figure 5: Runtime Integra-
tion of Fused Operators.

defined compilation steps. First, on candidate exploration
(Section 3), we make a bottom-up pass over the HOP DAG
to explore all valid partial fusion plans and store these plans
in a memoization table. Second, candidate selection (Sec-
tion 4) chooses the optimal subset of partial fusion plans
using a fusion-aware cost model. Third, we construct code
generation plans (CPlans, Section 2.2) for all selected fu-
sion plans. These CPlans are further enhanced via low-level
simplification rewrites for better code quality (Section 4.4).
Fourth, we then recursively expand templates for all CPlans
to generate Java source code per operator, as well as compile
and load the classes with the janino [99] compiler. Gener-
ated operators are maintained in an operator cache—which
identifies equivalent CPlans via hashing—to avoid redun-
dant code generation and compilation. Finally, we replace
the covered sub-DAGs with the fused operators. These sepa-
rate compilation steps are very valuable for debugging with-
out affecting fusion potential or compilation overhead.

2.2 Code Generation Plans
Code generation plans (CPlans) are a backend-inde-

pendent representation of fused operators and allow for re-
cursive code generation. We generate code via a depth-first
template expansion to ensure a valid ordering of code frag-
ments according to their data dependencies. Such plans con-
sist of CNodes, which are either template or basic opera-
tion nodes. Template nodes represent generic fused opera-
tor skeletons that have a specific data binding and contain
a DAG of basic operations that encodes the data flow.

Example Expressions: We illustrate CPlans for two
typical expressions with high performance impact of fusion.
The first expression is part of an inner-loop update rule of
ALS-CG (alternating least squares via conjugate gradient)
[14], which computes a low-rank factorization X ≈ UV>:

O = ((X 6= 0)� (UV>))V + 10−6 �U� r, (1)

where � denotes an element-wise multiply. Typically, X
is large but sparse, and the rank (i.e., ncol(U)) is in the
tens to hundreds. This expression requires—similar to Fig-
ure 1(d)—a sparsity-exploiting operator to avoid computing
and materializing the dense outer-product-like UV>. The
second expression stems from the inner-loop of MLogreg
(multinomial—i.e., multiclass—logistic regression):

Q = P[ , 1 : k]� (Xv)

H = X>(Q−P[ , 1 : k]� rowSums(Q)),
(2)

where X is the feature matrix and k = #classes−1. This pat-
tern requires—similar to Figure 1(b)—fusion to avoid mul-
tiple passes over X and intermediates of size nrow(X)× k.

Code Generation: Figure 4 shows the three CPlans of
fused operators constructed for our example expressions.
Figure 4(a) shows the CPlan of an Outer template operator
for I = ((X 6= 0) � (UV>))V, which is sparsity-exploiting
and thus improves performance proportional to the sparsity
of X. From this CPlan, we generate the following code:

1: public final class TMP4 extends SpoofOuterProduct {
2: public TMP4() {super(OuterType.RIGHT);}
3: protected void genexec(double a,double[] a1,int a1i,
4: double[] a2,int a2i,double[] c,int ci,...,int len) {
5: double TMP0 = (a != 0) ? 1 : 0; // see Sec. 4.4
6: double TMP1 = dotProduct(a1, a2, a1i, a2i, len);
7: double TMP2 = TMP0 * TMP1;
8: vectMultAdd(a2, TMP2, c, a2i, ci, len); }}

For each non-zero value Xij , we compute the scalar inner
product wij of row vectors Ui and Vj , scale Vj by wij , and
add it to the output with Ii+=wij �Vj , where dotProduct

and vectMultAdd refer to a library of vector primitives. Fig-
ure 4(b) shows the CPlan of an additional cell-wise operator
for I + 10−6 � U � r, which avoids two intermediates but
cannot be fused into the previous Outer due to its aggre-
gation and the sparse-unsafe addition. We use a SideInput

abstraction to access additional dense or sparse inputs.

1: public final class TMP10 extends SpoofCellwise {
2: public TMP10() {super(CellType.NO_AGG,null,false);}
3: protected double genexec(double a, SideInput[] b,
4: double[] scalars,..., int rix, int cix) {
5: double TMP5 = getValue(b[0], n, rix, cix);
6: double TMP6 = a * 1.0E-6;
7: double TMP7 = getValue(b[1], rix);
8: double TMP8 = TMP6 * TMP7;
9: double TMP9 = TMP5 + TMP8;

10: return TMP9; }}

Figure 4(c) shows the row-wise CPlan of Expression (2).
This single-pass operator exploits temporal row locality by
accessing Xi twice (lines 6/11), and it avoids six large in-
termediates. The memory for row intermediates is managed
via preallocated ring buffers per thread (here of size 5).

1: public final class TMP25 extends SpoofRowwise {
2: public TMP25() {super(RowType.COL_AGG_B1_T,true,5);}
3: protected void genexecDense(double[] a, int ai,
4: SideInput[] b, double[] c,..., int len) {
5: double[] TMP11 = getVector(b[1].vals(rix),...);
6: double[] TMP12 = vectMatMult(a,b[0].vals(rix),...);
7: double[] TMP13 = vectMult(TMP11, TMP12, 0, 0,...);
8: double TMP14 = vectSum(TMP13, 0, TMP13.length);
9: double[] TMP15 = vectMult(TMP11, TMP14, 0,...);

10: double[] TMP16 = vectMinus(TMP13, TMP15, 0, 0,...);
11: vectOuterMultAdd(a, TMP16, c, ai, 0, 0,...); }
12: protected void genexecSparse(double[] avals, int[]
13: aix, int ai, SideInput[] b, ..., int len){...}}
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Template Types: Generalizing the previous examples,
we use four template types T = (Row,Cell,MAgg,Outer).
The row-wise (Row) template binds to sparse/dense rows of
a main input Xi, a list of sparse/dense side inputs, and a
vector of scalars. Similarly, the cell-wise (Cell) and multi ag-
gregate (MAgg) templates bind to cells Xij and side inputs.
All templates can be marked sparse-safe in which case they
only process non-zero rows or cells of the main input. Fi-
nally, the outer-product (Outer) template binds to non-zero
cells in X, rows in U and V, as well as dense side inputs.
Template variants include different aggregation types, such
as none (e.g., X+Y), row (e.g., rowSums(X+Y)), column (e.g.,
colSums(X+Y)), or full (e.g., sum(X+Y)), which have different
implementations and allow to infer the output dimensions.

2.3 Runtime Integration
SystemML uses—like many other ML systems [39, 83, 102,

103]—a blocked matrix format to store distributed matrices
as a collection of block indexes and blocks, as well as lo-
cal matrices as a single block to reuse the block runtime.
Accordingly, the generated fused operators process blocks.

Block Operations: Templates refer to generic skeletons
of fused operators, which are inspired by algorithmic skele-
tons [24]. Figure 5 shows the runtime integration of a Cell
operator. Unlike other work [9, 25, 52, 100], we made the
conscious design decision not to generate the data access
into the fused operators. Instead, the hand-coded skeleton
implements the data access of dense, sparse, or compressed
[30] matrices and calls an abstract (virtual) genexec method
for each value. Generated operators (e.g., TMP10 in Figure 5)
then inherit the skeleton and override genexec, which yields
very lean yet efficient operators. The skeleton also handles
multi-threading, cache blocking, memory management, and
pseudo-sparse-safe aggregations1. Sharing skeletons and vec-
tor primitives can also reduce the instruction footprint and
thus, instruction cache misses, which is a known bottleneck
in OLTP [93] and scale-out workloads [32].

Distributed Operations: The generated operators are
directly used for distributed Spark operations as well. We
support data-parallel fused operators and fused operators in
task-parallel parfor loops [12]. For both, we ship the gen-
erated class codes via task closures to the executors, where
the classes are compiled, but reused across tasks. We use ad-
ditional skeletons for (1) consolidating inputs via join and
broadcast, and (2) aggregating results when necessary.

Since the codegen framework is part of recompilation dur-
ing runtime, efficient candidate exploration and selection—
as discussed in the next sections—is crucial for performance.

3. CANDIDATE EXPLORATION
The exploration of candidate fusion plans aims to identify

all valid partial fusion plans to provide a common input for
different plan selection policies and simplify optimization.
However, the exponential search space prohibits the enu-
meration of all possible plans. Instead, we enumerate partial
fusion plans per operator, which represent local fusion deci-
sions but no combinations of these local plans. We describe
the representation of partial fusion plans in our central mem-
oization table, and an efficient algorithm for populating this
memo table in a single pass over the HOP DAG.

1For example, rowMins(X) can be computed over non-zeros only,
but it requires corrections for missing 0s if nnz(X[i,])<ncol(X).
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b .. binary
rix .. right indexing

r(t) .. transpose
ua .. unary aggregate 

Figure 6: Example Memo Table (w/ basic pruning).

3.1 Memoization Table
Our memoization (memo) table consists of a set of groups,

where each group represents the output of an operator in
the HOP DAG, i.e., a logical subexpression. Each group is
identified by the operator ID, has access to its operator meta
data, and contains a set of valid partial fusion plans for this
operator. A partial fusion plan is called a memo table entry,
and can reference other groups to represent fusion decisions.
This structure is similar to groups and group expressions in
the Cascades Optimization Framework [17, 37, 91], but we
use it merely as a compact representation of fusion plans,
which only includes operators that are amenable to fusion.

Memo Table Entries: A memo table entry is a tuple
(type, {i1, .., ik}, closed), consisting of a template type a list
of inputs, and a closed type. The inputs correspond to HOP
inputs (i.e., data dependencies) by position, and each input
is either a group reference to indicate fusion or -1 for ma-
terialization. A reference from an entry to a group implies
that the group contains at least one compatible fusion plan.
Finally, the close status can be open valid, open invalid (i.e.,
an invalid entry point), closed valid, and closed invalid.

Example: We use Expression (2) from Section 2.2 to il-
lustrate the structure of our memo table. Figure 6 shows the
HOP DAG and the related memo table after candidate ex-
ploration. All eight operators are represented by groups in
the memo table. Group 11 refers to the final matrix multi-
plication (i.e., binary aggregate ba(+*)), and contains three
memo table entries of type Row. These entries encode fusion
alternatives: (1) fuse right R(-1,9), (2) fuse left R(10,-1), and
(3) fuse both R(10,9). Instead of encoding all alternative
subplans along inputs, we only reference the input groups.
This memo table then allows for simple costing and fusion
by traversing the HOP DAG top down (i.e., starting from
the outputs), probing for fusion plans, traversing group ref-
erences, and determining the input HOPs from where this
process repeats until we reach the leaf HOPs.

3.2 Open-Fuse-Merge-Close Exploration
Given an operator DAG G, a set of template types T ,

and an empty memo table W, we aim to efficiently discover
all valid partial fusion plans P . We introduce a bottom-
up algorithm that is template-oblivious and populates the
memo table in a single pass over the DAG.
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Algorithm 1 OFMC Explore (recursive)

Input: An operator gi of DAG G w/ |gi| inputs, memo table W
Output: A populated memo table W
1: // Memoization of processed operators – – – – – – – – – – –
2: if gi ∈ W[?] then
3: return W
4: // Recursive candidate exploration – – – – – – – – – – – – –
5: for all j in 1 to |gi| do // for all operator inputs
6: ofmcExplore(gj , W)
7: // Open initial operator plans – – – – – – – – – – – – – – –
8: for all t ∈ T do // for all template types
9: if t.open(gi) then // probe opening condition

10: W[gi]← createPlans(gi,null, t)
11: // Fuse and merge operators plans – – – – – – – – – – – – –
12: for all j in 1 to |gi| do // for all operator inputs
13: for all t in W[gj ] do // for all distinct templates
14: if t.fuse(gi, gj) then
15: W[gi]←W[gi] ∪ createPlans(gi, gj , t)
16: // Close operator plans if required – – – – – – – – – – – – –
17: for all me in W[gi] do // for all memo entries
18: me.closed← t(me.type).close(gi)
19: if me.closed < 0 then // closed invalid
20: W[gi]←W[gi] \me
21: W[?]←W[?] ∪ gi // mark operator as processed
22: return W

OFMC Template Abstraction: As the basis of our
candidate exploration algorithm, we define the open-fuse-
merge-close (OFMC) template abstraction:

• open(Hop h): Indicates if a new fused operator of this
template can be started at HOP h, covering its opera-
tion and reading materialized inputs. For example, the
condition of an Outer template is an outer-product-like
matrix multiplication like UV> with size constraints.

• fuse(Hop h, Hop in): Indicates if an open fused op-
erator (of this template) at the input HOP in can be
expanded to its consumer HOP h. For example, a Cell
template can fuse valid unary, binary, or ternary oper-
ations, valid aggregations, and inner products.

• merge(Hop h, Hop in): Indicates if an open fused op-
erator at the consumer HOP h can be expanded to its
input HOP in, i.e., if it can merge with fused operators
of valid types at the input. An example is the merge
of Cell templates into Row templates.

• close(Hop h): Indicates the close status of the tem-
plate after the HOP h and its validity. For example,
any aggregation closes a Cell template (as valid or in-
valid), whereas only column-wise or full aggregations
close a Row template. Outer templates are also vali-
dated for the existence of sparsity exploiting operators.

This abstraction separates template-specific conditions from
the DAG traversal and the population of the memo table.

OFMC Algorithm: Based on the memo table and
OFMC abstraction, we introduce the OFMC exploration
algorithm shown by Algorithm 1. This algorithm is called
recursively in a depth-first manner to populate the memo
table bottom-up. First, we check for already processed
operators—indicated by a set of visited operators W[?]—
(lines 1-3) to avoid redundant exploration if nodes are reach-
able over multiple paths. Second, we recursively explore all
|gi| input operators (lines 4-6) because these input data de-
pendencies constitute potential fusion references. Third, we
explore all templates for valid opening conditions at the cur-
rent operator (lines 7-10). In case of a valid opening condi-

tion, we add this memo entry and enumerate merge plans
with createPlans as discussed below. This merging is im-
portant to cover scenarios such as X>(y � z), where the
matrix-vector multiplication with X opens a Row template,
which can also merge Cell templates over y� z. Fourth, we
extend open fusion plans from the inputs (lines 11-15) via
fuse (extend from input to consumer) and merge (extend
from consumer to inputs). This step entails iterating over
all distinct templates types of all inputs and probing the
pair-wise fusion conditions fuse(h,in). In case of a valid
condition, we again call createPlans, which constructs a
memo table entry for the fused operator, and enumerates all
local plan combinations for inputs that satisfy the pair-wise
merge condition merge(h,in). These plan sets—of total size
≤ |T |·2|gi|—are then added to the group of the current oper-
ator. Fifth, we check all group entries for closing conditions
(lines 16-20). Entries that satisfy the closing condition of
their templates are either removed (invalid) or marked as
closed (valid), while all other entries remain open.

Algorithm Analysis: Overall, our algorithm has linear
time and space complexity in the number of operators. Mem-
oization ensures that we visit each operator exactly once and
the OFMC conditions apply only locally to an operator and
its inputs. These conditions still have access to the HOPs
and thus, the entire DAG, but this flexibility is only ex-
ploited in rare cases such as recognizing t(cumsum(t(X)))

as a row operation. For each operator gi (with |gi| inputs),

we enumerate and store up to O(2|gi| · |T |) memo entries,
but the supported |T | = 4 templates and unary, binary, and
ternary2 basic operators (i.e., max(|gi|) = 3), give us an up-
per bound of 32 · |G| plans, and works very well in practice.

4. CANDIDATE SELECTION
Given an operator DAG G and a memo table of partial

fusion plans P , candidate selection aims to choose the opti-
mal subset of plans P ? that applied to G minimizes costs C.
The optimal plans are subject to a set of constraints Z such
as memory budgets, and block size restrictions imposed by
distributed matrix formats. We describe the space of alterna-
tives, the cost model, the cost-based enumeration algorithm
MPSkipEnum, and the final construction of CPlans. The
basic ideas are to (1) split the set of partial fusion plans into
independent partitions, (2) restrict the search per partition
to interesting points, (3) linearize the resulting exponential
search space, (4) enumerate and cost plans with skipping of
search space areas that can be safely pruned, and (5) use a
plan cache for repeated optimization problems.

Selection Heuristics: Common baseline solutions to the
fusion problem for DAGs are the following heuristics:

• Fuse-All (FA) aims at maximal fusion, which leads to
redundant compute on CSEs. This heuristic is similar
to lazy evaluation in Spark [104], delayed arrays in
Repa [47], and code generation in SPOOF [29].

• Fuse-No-Redundancy (FNR) takes another extreme of
fusion without redundant compute, which leads to ma-
terializing all intermediates with multiple consumers.
This heuristic is similar to caching in Emma [2].

In the following, we use these heuristics as baselines but
focus solely on finding the cost-optimal set of fusion plans.

2An exception are nary cbind, min, and max operations, but these
are uncommon and rarely have more than five inputs (25 ·1 = 32).
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4.1 Plan Partitions and Interesting Points
In preparation of plan enumeration, we analyze the fusion

plans P to characterize the search space by independent par-
titions, and interesting materialization points per partition.

Plan Partitions: We define the plan partitions P of
P as its connected components in terms of fusion refer-
ences. Therefore, partitions are unreachable via fusion and
thus, are optimized separately. Figure 7 shows an example
with three partitions. A partitioning can originate from un-
supported operations or aggregations like sum or colSums,
which close all templates. In addition, we define the follow-
ing terminology. First, root nodes Ri of a partition Pi (with
Ri ⊆ Pi) are never referenced from fusion plans g ∈ Pi and
thus, always materialized. These roots are the entry points
for partition analysis and costing. Second, input nodes Ii of
a partition Pi (with Ii ∩ Pi = ∅) are nodes whose output is
read by a node g ∈ Pi. Third, materialization points Mi of
a partition Pi (withMi ⊆ Pi∧Mi∩Ri = ∅) are nodes with
multiple consumers of which at least one belongs to Pi.

Interesting Points: Materialization points are interest-
ing because fusion can cause redundant compute. General-
izing this notion, we define the search space per partition by
its interesting points M′i. These points are boolean fusion

decisions and our optimizer considers all 2|M
′
i| plans:

• Materialization Point Consumers: Each data depen-
dency g ←Mij | g ∈ Pi on a materialization point is
considered separately, which is important for avoiding
unnecessary reads in overlapping fused operators.

• Template Switches are data dependencies (gi ← gj),
where W[gj ] contains templates that are not in W[gi],
which is important for finding sparsity-exploiting plans
such as X�UV> in Y + X�UV>.

A true assignment of a point (gi ← gj) dictates the material-
ized consumption of gj . Hence, all fusion plans with a fusion
reference from gi to gj are considered invalid for costing.

4.2 Cost Model
Given a plan assignment q of interesting points, we com-

pute the costs C(Pi|q) of a plan partition Pi with an analyt-
ical cost model for DAG-structured fusion plans as follows:

C(Pi|q) =
∑

p∈Pi|q

(
T̂w
p + max

(
T̂ r
p , T̂

c
p

))
. (3)

Each p is a basic or fused operator defined by q and the DAG
structure. T̂w

p , T̂ r
p , and T̂ c

p are estimates of operator write,
read, and computation times. The read and write estimates
are derived from the input and output sizes, normalized by
peak memory bandwidth. For example, reading a 100M×10
(i.e., 1G) dense input matrix at 32 GB/s peak read band-

width, gives us a time estimate of T̂ r
p = 1G · 8 B/32 GB/s =

0.25 s. Similarly, the compute time is derived from the num-
ber of floating point operations and peak compute band-
width. We take max(T̂ r

p , T̂
c
p ) to account for overlapping read

and compute costs, while adapting to I/O- and compute-
bound operations. Sparsity-exploiting operators simply scale
these estimates down by the sparsity of the main input. This
simple cost model works well in practice because (1) it is
only used for plan comparisons, (2) fusion-specific errors do
not propagate (unlike in join ordering [41]), and (3) dynamic
recompilation updates input sizes during runtime if needed.

Cost Computation via Cost Vectors: Efficient and
correct costing requires (1) memoizing processed sub-DAGs

partition root 
node R32

partition
P1

materialization 
points M

partition input I32

partition
P2

partition
P3 operators with 

fusion plans

Figure 7: Example Plan Partitions and Terminology.

if they are reachable over multiple paths, (2) accounting
for shared reads and CSEs within fused operators, and (3)
accounting for redundant compute of overlapping fused op-
erators. We tackle this challenge via DAG traversal and cost
vectors cp per fused operator. The partition costs C(Pi|q)
are computed with getPlanCost starting from its roots
Ri without cost vectors, indicating materialized outputs. At
each operator, we then either open or extend a fused opera-
tor and query the memo table for the best valid fusion plan of
the current template. For existing fusion references, we call
getPlanCost with cp; otherwise, we add the input to cp

and cost it without cp. This vector cp also captures the com-
pute costs of included operators. After processing all inputs
of an opened operator, we summarize cp with formula (3)
and add it to the total costs. Non-partition consumers of in-
termediates inside a fused operator trigger an additional call
of getPlanCost without cp. Memoizing pairs of operators
and cost vectors returns zero costs for processed operators,
while correctly accounting for redundant compute.

Constraints and Distributed Operations: We han-
dle the constraints Z via a prefiltering of entries that are
known to violate constraints. Remaining violations are then
assigned infinite costs during enumeration and costing. Sim-
ilarly, we also use different read bandwidths for inputs of
distributed operations to reflect the cost of distributed joins
and broadcasts, according to the input sizes of computed
cost vectors and available memory budgets.

4.3 Enumeration Algorithm MPSkipEnum

Given a fusion partition Pi and its interesting pointsM′i,
we aim to find the optimal plan q? that minimizes costs. We
introduce the remarkably simple yet efficient MPSkipEnum
algorithm that linearizes the exponential search space, enu-
merates and costs plans with the ability to skip entire sub-
spaces using cost-based and structural pruning techniques.

Basic Enumeration: Algorithm 2 shows the basic enu-
meration approach. We iterate over the linearized search

space of all 2|M
′
i| plans (lines 3-21). In each iteration, we

create the specific plan q (line 4), cost the plan with get-
PlanCost (line 18), and maintain the best plan q? and its
costs C (lines 19-21). Figure 8(a) shows an example search
space of |M′i| = 4 interesting points and its 16 plans. This
basic enumeration approach is simple and has no space re-
quirements. However, evaluating the exponential number of
plans quickly becomes infeasible as |M′i| increases. There-
fore, we apply two high-impact, lossless pruning techniques.

Cost-Based Pruning (lines 12-16): We maintain the
costs of the best plan C, which is a monotonically decreasing
upper bound of the optimal plan. By computing a lower
bound C of unseen plans, we can safely prune these plans
whenever C ≥ C. We compute C from static and plan-
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dependent costs. The static costs CPi
comprise the read of

inputs Ii, the minimal compute (with no redundancy and
corrections for sparsity-exploitation), and the write of roots
Ri. The plan-dependent costs are obtained by getMPCost
without DAG traversal, based on the read and write costs of
distinct materializations in M′i|q. Our search space is then
linearized from negative to positive assignments, which is
crucial for effective pruning. We evaluate the left- and right-
most plans—i.e., the FA and FNR heuristics—first (line 2),
which yields a good C from the beginning. Our search space
layout then allows skipping entire subspaces. Figure 8(a)
shows an example, whereM′i2 is set to true (⊕). If C of the
first plan in this subspace (with M′i3 and M′i4 set to false)
exceeds C, we can prune the subspace because other plans
are known to increase the materialization costs and thus C.

The number of skipped plans (line 15) is 2|M
′
i|−x−1, where

x = lastIndexOf(q, true). In addition, getPlanCost stops
costing a plan whenever the partial costs exceed C.

Structural Pruning (lines 7-11): Similar to state-of-
the-art join enumeration [66, 67, 73], we exploit the graph
structure of Pi and its interesting points M′i for additional
pruning. The key observation is that interesting points can—
predicated on their assignment—create independent sub-
problems because they act as fusion barriers. Figure 8(b)
shows an example; if M′i1 = true, the two sub-problems
of M′i3 and (M′i2,M′i4) are independent. Inspired by con-
ditioning techniques for probabilistic databases [55], and
the selection of optimization units for MapReduce work-
flows [59], we build a reachability graph RG over M′i to
determine cut sets. We use single points, composite points of
equivalent inputs, and pairs of these as candidates. For each
candidate cut set cs, we get the points S1 reachable from
the roots to cs, and the points S2 reachable from the cs.
Cut sets are then sorted in ascending order of their scores:((

2|cs| − 1
)
/2|cs| · 2|M

′
i|
)

+
(

1/2|cs| ·
(

2|S1| + 2|S2|
))

s.t. S1 ∩ S2 = ∅, S1 6= ∅, and S2 6= ∅.
(4)

Intuitively, the two terms compute the total number of plans
where cs is inactive and active; a cs is only active if ∀c ∈
cs : c = true. This order maximizes pruning and defines
the top of the search tree. We store each cs along with its
sub-problems. During enumeration, we then probe these cut
sets (line 7), call MPSkipEnum recursively for their sub-
problems (lines 10-11), combine the results into a global plan
for costing, and finally prune the subspace (line 21).

Graceful Approximation: Despite good pruning effec-
tiveness, there are no guarantees on reducing the exponen-
tial search space for arbitrary DAGs. To ensure robustness
in production, we further use—inspired by graceful degrada-
tion for join enumeration [69, 73]—approximate techniques
for large problems of |M′i| ≥ 15. First, we stop optimizing
when C drops below (1 + ε) ·CPi

, which helps for long tails

Algorithm 2 Materialization Point Skip Enumerate

Input: memo tableW, plan partition Pi, reachability graph RG,
interesting points M′i, offset off

Output: The best plan q?

1: // opening heuristic: evaluate FA and FNR heuristics

2: [q?, C]← evalFirstAndLastPlan(W,Pi,M′i, off)

3: for all j in 2 to 2|M
′
i|−off − 1 do // evaluate plans

4: q← createAssignment(|M′i| − off, off, j)
5: pskip← 0
6: // pruning via skip-ahead – – – – – – – – – – – – – – – –
7: if RG 6= null ∧ isCutSet(RG,q) then // structural
8: pskip← getNumSkipPlans(RG,q)
9: S ← getSubProblems(RG,q)

10: for all k in 1 to |S| do
11: q[Sk.ix]←MPSkipEnum(W,Pi,null, Sk.m, Sk.off)
12: else // cost-based
13: C ← CPi

+ getMPCost(W,Pi,M′i,q)

14: if C ≥ C then
15: j ← j + getNumSkipPlans(q)− 1
16: continue
17: // plan costing and comparison – – – – – – – – – – – – –

18: C ← getPlanCost(W,Pi,M′i,q, C)

19: if q? = null ∨ C < C then
20: q? ← q; C ← C
21: j ← j + pskip
22: return q?

with minor changes. Second, we reuse plans via a plan cache
for repeated optimizations. This cache uses an inexpensive,
approximate plan signature based on Pi and the initial costs
C. Collisions are highly unlikely for large problems and plan
caching helps significantly for recompilation in mini-batch
algorithms. Third, MPSkipEnum is an anytime algorithm
that allows returning the currently best plan at any time
(e.g., once an optimization budget is reached).

4.4 CPlan Construction and Rewrites
With the optimal plan q?, we then prune the memo ta-

ble P to obtain the optimal P ? and mechanically construct
CPlans for all fused operators of the given DAG. Before
code generation, these CPlans are enhanced by rewrites.
First, we apply low-level simplification rewrites. For exam-
ple, consider I = ((X 6= 0) � (UV>))V from Figure 4(a).
Since the Outer template binds to non-zero input cells, we
remove the unnecessary (X 6= 0)�. Second, we apply com-
mon subexpression elimination to avoid redundancy within
fused operators. This is important for operations such as
conv2d that are broken-up into their elementary row-wise
operations (e.g., im2col, matrixMult, and reshape), which
avoids redundant im2col operations if a batch is fed into
multiple conv2d operations, a pattern found in neural net-
works such as Sentence CNN [51] and Inception [98].

5. EXPERIMENTS
Our experiments study the performance characteristics of

code generation for linear algebra programs and the opti-
mization of fusion plans. To this end, we investigate (1) sev-
eral interesting micro-benchmark patterns, (2) dense, sparse,
ultra-sparse, and compressed data, as well as (3) single-node
and large-scale, end-to-end experiments.

5.1 Experimental Setting
Setup: We ran the experiments on a 1+6 node cluster of

one head node (2x4 Intel Xeon E5530 @ 2.40 GHz-2.66 GHz,
hyper-threading, 64 GB RAM @800 MHz) and six worker
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Figure 9: Operations Performance of Example Cell and MAgg Patterns (D .. dense, S .. sparse).

Table 1: Real Datasets and their Characteristics.
Name Data Size Sparsity Fmt

m× n nnz/(m× n)
Airline78 [4] 14,462,943× 29 0.73 D
Mnist8m [15] 8,100,000× 784 0.25 S
Netflix [44] 480,189× 17,770 0.012 S

Amazon [38, 62] 8,026,324× 2,330,066 0.0000012 S

Table 2: ML Algorithms and Configurations.
Name Type Icpt λ ε MaxIter
L2SVM 2 classes 0 10−3 10−12 20 (∞)
MLogreg 2 classes 0 10−3 10−12 20 (10)

GLM bin.-probit 0 10−3 10−12 20 (10)
KMeans 1 run, k=5 N/A N/A 10−12 20
ALS-CG rank=20, wL2 N/A 10−3 10−12 20 (rank)

AutoEncoder |batch|=512 N/A N/A N/A
nrow(X)
|batch|

H1=500, H2=2

nodes (2x6 Intel Xeon E5-2440 @ 2.40 GHz-2.90 GHz, hyper-
threading, 96 GB DDR3 RAM @1.33 GHz, registered ECC,
12x2 TB disks), 10Gb Ethernet, and CentOS Linux 7.4. The
nominal peak memory bandwidth and compute per node are
2x32 GB/s from local memory, (47.9 GB/s measured with a
modified STREAM [63]), 2x12.8 GB/s over QPI (Quick Path
Interconnect), and 2x115.2 GFLOP/s. We used OpenJDK
1.8.0 161, Python 2.7.5, Apache Hadoop 2.7.3, and Apache
Spark 2.2.0, in yarn-client mode, with 6 executors, 24 cores
per executor, 35 GB driver memory, 65 GB executor mem-
ory, and default memory fractions (0.6/0.5), which results
in an aggregate cluster memory of 6 · 65 GB · 0.6 = 234 GB.

Datasets and ML Algorithms: To study different data
characteristics, we use both synthetic and real datasets. The
synthetic datasets were created with algorithm-specific data
generation scripts, and the real datasets are summarized in
Table 1. Airline78 refers to the years 2007/2008 of the Air-
line dataset [4], Mnist8m is a scaled version of the Mnist60k
dataset of hand-written digits, created with the InfiMNIST
data generator [15], Netflix is the Netflix Prize user-movie
rating dataset [44], and Amazon is the books category of
the Amazon product review dataset [38, 62]. With the goal
of reflecting the diversity of ML algorithms, we conduct
end-to-end experiments for six algorithms from classifica-
tion, regression, clustering, matrix factorization, and neural
networks. Table 2 shows these algorithms and their configu-
rations. The parameters Icpt, λ, ε, and MaxIter refer to the
intercept type, the regularization, the convergence tolerance,
and the maximum number of outer (and inner) iterations.

Baselines: As baseline comparisons, we use the following
systems with consistent double precision (i.e., FP64) inputs:

• SystemML 1.0++ (Feb’18): The baselines are Base,
and Fused (hand-coded fused operators, SystemML’s
default). Gen is our exact, cost-based optimizer (with-
out approximation), but we also compare the fuse-all
(FA) and fuse-no-redundancy (FNR) heuristics.

• Julia 0.6.2: As a baseline with LLVM code genera-
tion, we use Julia [11] (without fusion), and JuliaGen
(with fusion based on Julia’s dot syntax) [43]. Similar
to SystemML, Julia dispatches operations internally to
sparse and dense kernels for all operations.

• TensorFlow 1.5: We also compare TensorFlow (TF) [1]
(without fusion), and TFGen, i.e., TensorFlow XLA
[36], but only for dense micro benchmarks due to very
limited support for sparse tensors. We built TF from
sources with -march=native -O3 to enable XLA.

5.2 Operations Performance
In a first set of experiments, we study the multi-threaded

performance of our four templates on representative expres-
sions, which have been introduced in Figure 1. These ex-
periments were run on a single worker node, through Sys-
temML’s JMLC API (prepared scripts with in-memory in-
puts), and with the JVM flags -Xmx80g -Xms80g -Xmn8g

-server. We used warmup runs for JIT compilation and
report the mean runtime of 20 subsequent runs, including
recompilation (and thus, CPlan construction) overhead.

Cell Operations: Figures 9(a) and 9(b) show the run-
times for sum(X � Y � Z) over dense and sparse data.
Each input is of size m × 103 (with sparsity 0.1 for sparse
data), where we vary m ∈ (103, 104, 105, 106). For the small
103×103 input (i.e., 8 MB), Fuse and Gen are only 4x faster
because intermediates fit into the L3 cache (15 MB). As we
increase the datasize, Fused and Gen yield a 10x improve-
ment and reach peak single-socket/remote memory band-
width of ≈ 25 GB/s. In contrast, JuliaGen shows only mod-
erate improvements over Julia because the aggregation is
not fused and both are single-threaded. TF’s multi-threaded
operations are competitive for small data due to the reuse
of allocated intermediates. However, Gen is 2.4x faster for
larger data because TF still writes intermediates. TFGen
shows a consistent slowdown due to single-threaded opera-
tions. Operator fusion for sparse inputs is more challenging;
in fact, JuliaGen causes a slowdown due to sparse lookups.
Gen handles such cases more efficiently via stateful iterators
under the covers of the stateless getValue() abstraction.

Multi-Aggregate Operations: Figure 9(c) and 9(d)
show the runtimes for the two aggregates sum(X�Y) and
sum(X� Z) over dense and sparse data as describe before.
These aggregates qualify as multi-aggregate due to their
shared input X. The characteristics are similar to Cell oper-
ations with two notable differences. First, the performance
of Julia and JuliaGen are identical—except for special cases
with different garbage collection behavior—because Julia
does neither fuse element-wise operations with aggregations
nor consider multi-aggregates. Second, the hand-coded op-
erators of Fused only apply to sum(X�Y) and sum(X�Z)
individually, causing a redundant read of X. In contrast, Gen
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Figure 10: Operations Performance of Example Row and Outer Patterns (D .. dense, S .. sparse).
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Figure 11: 1G Benchmarks on Xeon Gold 6138.

compiles a multi-aggregate (with 2× 1 output vector), and
in case of sparse data, correctly selects X as sparse driver
which makes the entire multi-aggregate sparse-safe.

Row Operations: Row-wise operations are also very
common. Figures 10(a) and 10(b) show the runtimes for a
matrix-vector multiplication chain with weighting X>(w �
(Xv)) over sparse and dense data, where we vary the size
of X as before and v is a 103 × 1 vector. Julia does not
fuse these matrix-vector operations and suffers from single-
threaded execution. TF’s runtime is dominated by trans-
posing X because X>(w � (Xv)) is not rewritten into
((w � (Xv))>X)>. With a modified DAG, the TF run-
time improves from 9.2 s to 1.6 s. TFGen causes again a
consistent slowdown. In contrast, Fuse, and Gen (283 ms)
yield peak single-socket/remote memory bandwidth, and a
2x improvement over Base by exploiting temporal row local-
ity, where each 8 KB row fits into the 32 KB L1 cache. Fig-
ure 10(c) further shows the results of a matrix-matrix multi-
plication chain X>(W� (XV)) over dense data, where V is
a 103×2 matrix. Base and Fused are equivalent because the
hand-coded mmchain operator only applies to matrix-vector
chains. In contrast, Gen yields again a 2x improvement.

Outer-Product Operations: Figure 10(d) shows the
runtime of an outer-product expression sum(X�log(UV>+
10−15)), which can exploit sparsity over X�. We set the size
of X to 2 ·104×2 ·104, the rank of U and V to 100, and vary
the sparsity of X with sp ∈ (1, 10−1, 10−2, 10−3, 10−4). Base,
Julia, and JuliaGen show almost constant runtime, which
means Julia does not exploit sparsity. Julia calls native
BLAS matrix multiplications but this expression is largely
dominated by the costs for log(), where UV> attributes to
less than 15%. For this reason, Base with native BLAS only
slightly improved performance. For dense data, TF shows
very good performance but does not support sparse opera-
tions. In contrast, Fused and Gen achieve, for sp = 10−4,
an improvement of three orders of magnitude and even if X
is dense, an improvement of 5x compared to Base, due to
multi-threaded execution without intermediates.

Modern Server HW: For validation, we repeated se-
lected micro benchmarks on a modern server of 2x20 In-
tel Xeon Gold 6138 @ 2.00 GHz-3.70 GHz, hyper-threading,
768 GB DDR4 RAM @2.66 GHz, reg. ECC (peak bandwidth:
memory 2x119.21 GB/s, compute 2x1.25 TFLOP/s). Fig-
ure 11 shows the results for the large 1G Cell, MAgg, and
Row scenarios (9(a)-9(d), 10(a)-10(c)). Overall, we see simi-
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Figure 12: Compressed Operations: sum(X2).

lar characteristics but larger speedups due to the higher de-
gree of parallelism (80 vcores), which increases the relative
Base overheads for allocating and writing intermediates.

Compressed Linear Algebra (CLA): All templates
support operations over compressed matrices with column-
wise compression, heterogeneous encoding formats, and col-
umn co-coding [30]. Figure 12 shows the runtime for comput-
ing the sparse-safe expression sum(X2) over Airline78 and
Mnist8m. For these datasets, CLA achieves compression ra-
tios of 7.44x and 7.32x. On uncompressed data (ULA), fused
operators yield similar speedups as for synthetic data be-
cause they avoid the expensive materialization of X2. On
compressed data (CLA), however, Base and Fused show
equivalent performance for this special case, because X2 is
only computed over the dictionary of distinct values with a
shallow copy of the compressed data. CLA achieves substan-
tial improvements due to computing the sum via counts per
value and reduced memory bandwidth requirements. The
Gen templates similarly call—under the conditions of a sin-
gle input and sparse-safe operations—the generated oper-
ator only for distinct values, which achieves performance
remarkably close to hand-coded CLA operations.

Instruction Footprint: Separating operator skeletons
and vector primitives from the generated operators reduces
the instruction footprint. To evaluate its impact, we use
sum(f(X/rowSums(X))), where we generate f as a sequence
of k row operations X � i and X as a dense 105 × 103 ma-
trix (800 MB). Gen uses the vector primitive vectMultWrite
(with 8-fold loop unrolling) and—independent of k—two
vector intermediates per thread. Figure 13(a) shows the
runtime of Gen and Gen inlined, where the latter inlines
vectMultWrite. For more than 31 operations, Gen inlined
is two orders of magnitude slower because the code size of its
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Figure 14: Java Class Compilation and Loading.
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genexec method exceeds 8 KB, which is the JVM threshold
for JIT compilation. Figure 13(b) reports the runtime with
disabled threshold, where both operators show the same run-
time up to 96 operations. However, for 101 and more opera-
tions, Gen inlined does no longer fit into the L1 instruction
cache (32 KB), which leads to a significant slowdown.

5.3 Compilation Overhead
In a second set of experiments, we investigate the compi-

lation overhead of code generation and optimization. Since
the relative overhead decreases with increasing input size, we
use the very small Mnist60k dataset (60K×784, sparse). We
use again the single worker node setup and report algorithm-
level statistics as the mean of 5 runs, including read times.

Operator Compilation: Gen uses an operator cache for
reusing compiled operators (across DAGs and during dy-
namic recompilation) as well as the fast janino compiler.
Figure 14 shows the impact of these components on the
compilation overhead. There are two major insights. First,
janino consistently improves the performance of class com-
pilation and loading by one and a half orders of magnitude
compared to the standard javac compiler. Second, the op-
erator cache significantly reduces the compilation overhead,
especially for algorithms with dynamic recompilation (i.e.,
MLogreg, GLM, ALS-CG, and AutoEncoder). The observed
operator cache hit rates of the six algorithms are 8/20,
1,492/1,520, 56/115, 46/67, 5,632/5,657, and 2,241/2,260.
Besides the reduced compilation overhead, the plan cache
also reduces the asynchronous JIT compilation overhead and
thus, improves the end-to-end performance. For example, on
ALS-CG, the JIT compilation time reduced from 262 s to
25 s, which improved the runtime from 171 s to 81 s.

Plan Enumeration: The second major overhead is the
cost-based plan selection due to its exponential search space
and the need for DAG traversal when costing a plan. Fig-
ure 15 shows the total number of evaluated—i.e., costed—
plans, for the six algorithms and different configurations
without partitioning (all), with partitioning (partition),
and with partitioning and both pruning techniques (parti-
tion+prune). Overall, none of the algorithms requires more
than a few thousand plans, for two reasons. First, focusing
on interesting points and optimizing partitions—i.e., con-
nected components of fusion plans—independently, is very
impactful. For example, the largest DAG of AutoEncoder
has 71 operators with partial fusion plans after candidate
exploration, which would result in an infeasible number of

Table 3: End-to-End Compilation Overhead.
Name Total [s] # Compile Compile [ms]
L2SVM 1.2 14 / 20 / 12 55 (39)
MLogreg 3.2 426 / 1,580 / 28 366 (85)

GLM 3.0 212 / 126 / 59 350 (230)
KMeans 2.0 65 / 75 / 21 112 (73)
ALS-CG 81.1 1,662 / 5,658 / 25 1,067 (72)

AutoEncoder 26.1 132 / 2,260 / 19 491 (63)

271 > 1021 plans. Instead we only consider interesting points
and optimize partitions independently. This partitioning re-
duces the number of plans by more than four orders of mag-
nitude. Second, the individual pruning techniques, but es-
pecially cost-based pruning, are very effective as well. For
example on GLM, pruning reduces the number of evaluated
plans by almost seven orders of magnitude, which rendered
an analysis of optimization time without pruning infeasible.

Codegen Statistics: Table 3 summarizes the resulting
codegen statistics for our ML algorithms. These statistics
include the execution time, number of compiled plans (opti-
mized HOP DAGs, created CPlans, and compiled classes),
as well as the compilation overhead (total codegen and class
compilation time). Overall, the overhead is very small—
below one second for most algorithms—despite a substan-
tial number of optimized DAGs (up to 1,662), constructed
CPlans (up to 5,658), and compiled operators (up to 59). To
summarize, effective pruning techniques, a simple operator
cache, and the fast janino compiler significantly reduce the
compilation overhead, which makes codegen practical.

5.4 Single-Node End-to-End Experiments
Our third set of experiments studies the end-to-end per-

formance impact on ML algorithms. Given the results of
our micro benchmarks, we mostly restrict this comparison
to Base, Fused, and Gen but also include the fusion heuris-
tics FA, and FNR to evaluate the quality of fusion plans. We
report the end-to-end algorithm runtime—invoked through
spark-submit with 35 GB driver—as a mean of 3 runs.

Data-Intensive Algorithms: Many traditional ML al-
gorithms are data-intensive, i.e., memory-bandwidth bound.
In addition to scans of the feature matrix X, these algo-
rithms often use many vector and matrix operations, which
become a bottleneck for small or large numbers of features.

Table 4: Runtime of Data-Int. Algorithms [s].
Name Data Base Fused Gen FA FNR

106 × 10 7 5 3 3 4
107 × 10 42 28 6 7 13

L2SVM 108 × 10 446 276 37 44 92
Airline78 151 105 24 26 45
Mnist8m 203 156 113 115 116
106 × 10 10 9 5 5 6
107 × 10 65 55 15 17 27

MLogreg 108 × 10 733 538 106 132 307
Airline78 190 142 48 52 74
Mnist8m 478 308 240 307 291
106 × 10 28 28 11 11 17
107 × 10 212 200 22 26 61

GLM 108 × 10 2,516 2,290 140 184 592
Airline78 385 337 50 54 112
Mnist8m 511 373 207 251 275
106 × 10 11 11 4 4 7
107 × 10 120 95 15 16 36

KMeans 108 × 10 1,471 1,471 136 147 662
Airline78 110 101 32 34 51
Mnist8m 229 203 160 185 187
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Figure 16: Increasing Size of Intermediates.

Table 5: Runtime of Compute-Int. Algorithms [s].
Name Data Base Fused Gen FA FNR

104 × 104 426 20 25 215 226
ALS- 105 × 104 23,585 96 80 13,511 12,353
CG 106 × 104 N/A 860 722 N/A N/A

Netflix N/A 1,026 789 N/A N/A
Amazon N/A 17,335 7,420 N/A N/A

103 × 104 8 9 7 7 8
Auto- 104 × 104 51 48 31 31 36

Encoder 105 × 104 615 560 286 288 325
Mnist1m 597 562 379 449 420

Accordingly, Table 4 shows the results for dense inputs with
10 features, but we also use real datasets. Fused shows only
moderate improvements because its patterns are mostly lim-
ited to two or three operators. Compared to Fused, Gen
shows significant end-to-end improvements due to fewer in-
termediates (which also reduces buffer pool evictions), fewer
scans, and multi-threaded operations with fewer barriers and
thus better utilization. On the 108 × 10 (8 GB) scenario, we
see speedups of 7x, 5x, 16x, and 10x. Regarding heuristics,
FA mostly outperforms FNR due to fewer intermediates.
For robustness, Gen uses both FA and FNR as an open-
ing heuristic. Gen—with its exact cost-based optimizer—
then outperforms FA by up to 27% for algorithms such
as L2SVM, MLogreg and GLM that exhibit complex DAG
structures. In contrast to the FA and FNR heuristics, Gen
also guarantees the optimality of the chosen fusion plans.

Hybrid Algorithms: MLogreg and KMeans are in-
teresting hybrid algorithms, which change from memory-
bandwidth- to compute-bound as we increase the number
of classes/centroids k. Figure 16 shows the results for an
input of size 107 × 100 (8 GB) and varying k. Apart from
similar trends as before, there are three insights. First, the
Gen runtime remains almost constant up until k = 8 because
it is still memory-bandwidth-bound. Second, k also affects
the size of intermediates (107 × k, i.e., 2.5 GB for k = 32),
which causes more evictions for Base and Fused. Third, for
the case of k = 2, multiple rewrites and fused operators are
applied, whereas, Gen shows very robust performance.

Compute-Intensive Algorithms: We also study the
compute-intensive algorithms ALS-CG for matrix factoriza-
tion and AutoEncoder for dimensionality reduction. Table 5
shows the results of ALS-CG on sparse data (sparsity 0.01),
AutoEncoder on dense data, as well as real datasets. For
ALS-CG, Fused and Gen show huge improvements due to
sparsity exploitation in the update rules and loss compu-
tations. Gen outperforms Fused due to less evictions as
the data size increases. The fusion heuristics fail to find
good plans for the update rules because—without consid-
ering interesting points for sparsity exploitation—they fuse
too many operations, which disallowed the use of sparse-safe
Outer templates. Thus, Base, FA, and FNR are not applica-
ble for larger datasets. Even for AutoEncoder, Gen and the
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Figure 17: Julia Comparison for L2SVM.

fusion heuristics show a good 2x improvement, despite the
mini-batch algorithm (with small intermediates), and many
compute-intensive matrix-matrix multiplications.

Julia Comparison: In addition, we compare Julia for
L2SVM as a selected ML algorithm, where manual fusion is
feasible. For a fair comparison, we use the same SystemML
setup as before (35 GB memory, read from HDFS), whereas
Julia runs with unlimited memory and we exclude its read
time. Julia and JuliaGen refer to two different scripts with
(1) the materialization of all intermediates and (2) fused
expressions using Julia’s dot syntax with hand-tuned reuse
of beneficial CSEs. Figure 17 shows the results for dense
and sparse inputs. Julia performs similar to Base and Fused
(see Table 4), while JuliaGen further improves performance
by 2x. Gen is still almost 5x faster due to (1) fusion of
element-wise operations with aggregation and matrix mul-
tiply, (2) cost-based optimization including the selection of
multi-aggregates, and (3) multi-threaded execution.

5.5 Large-Scale End-to-End Experiments
Finally, we also study large-scale (i.e., distributed) al-

gorithms. We use three datasets: D200m (200M × 100,
dense, 160 GB), S200m (200M×103, sparsity 0.05, 121 GB),
Mnist80m (81M×784, sparsity 0.25, 204 GB), which all fit in
aggregate memory (234 GB), and we report the end-to-end
runtime, with 35 GB driver, as a mean of 3 runs in Table 6.

Distributed Algorithms: Gen shows again substantial
improvements compared to Fused (up to 22x for KMeans).
Unlike in the single-node experiments, however, the fusion
heuristics show brittle performance characteristics. For ex-
ample, FA even leads to slowdowns on L2SVM and MLo-
greg. This effect is caused by too eager fusion of vector
operations—that could be executed at the driver—into dis-
tributed operations over large inputs. For distributed opera-
tions, these additional vector inputs (of up to 1.6 GB per vec-
tor) cause unnecessary broadcasting overhead to all 6 worker
nodes and partial evictions of broadcasts—which are stored
as MEMORY AND DISK in the executor’s block managers—from
aggregate memory. In contrast, Gen creates good plans by
reasoning about template switches and broadcast costs.

Table 6: Runtime of Distributed Algorithms [s].
Name Data Base Fused Gen FA FNR

D200m 1,218 895 347 1,433 539
L2SVM S200m 1,481 1,066 373 2,205 575

Mnist80m 1,593 1,114 552 1,312 896
D200m 5,435 3,872 2,695 3,591 5,943

MLogreg S200m 4,386 3,904 2,705 3,414 3,915
Mnist80m 5,105 4,250 3,377 8,936 7,883

D200m 12,365 10,921 1,913 2,080 4,115
GLM S200m 11,852 10,681 1,935 2,269 3,770

Mnist80m 5,303 3,876 1,246 1,607 2,399
D200m 5,452 5,426 321 331 6,913

KMeans S200m 5,255 5,205 241 238 7,325
Mnist80m 2,182 2,164 356 510 3,881
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6. RELATED WORK
We review work from query compilation, loop and opera-

tor fusion, and the optimization of DAGs and fusion plans.
Query Compilation: Already System R compiled SQL

statements—for repetitive transactions—into machine code
[19, 20], but compilation was later abandoned due to main-
tenance and debugging issues [82]. Motivated by the trend
toward in-memory databases, query compilation was then
reconsidered by JAMDB [82], HIQUE [56], DBToaster [50],
and HyPer [70]. Kennedy et al. introduced the compilation of
incremental view maintenance programs in DBToaster [50],
while Neumann made a case for LLVM-based query compi-
lation in HyPer to support ad-hoc queries with low compi-
lation overhead [70]. LegoBase [53, 89] and DBLAB/L [88]
focused on a modular compilation chain to exploit relational
and compiler optimizations. Several systems also include re-
stricted ML workloads into query compilation. Examples are
the compilation of UDF-centric workflows in Tupleware [25],
Lambda expressions in Hyper [78], the LLVM-based compi-
lation of Java UDFs [86], and query compilation with UDFs
in Flare [31]. Lang et al. explored the integration with scans
over compressed blocks in Hyper [57], which—similar to our
Row template over compressed matrices—extracts tuples to
temporary storage. Menon et al. further introduced the no-
tion of relaxed operator fusion to reason about temporary
materialization in Peloton [65]. Additional directions are ab-
stractions for different HW backends in Voodoo [80], oper-
ator fusion for GPUs in HorseQC [34], and compiled data
access over heterogeneous formats in Proteus [45]. Mean-
while, query compilation is heavily used in many modern
data systems such as Hyper [71], Impala [101], Hekaton [33],
MemSQL [90], Tupleware [25], Peloton [79], and SparkSQL
[5]. However, most of these systems do not handle DAGs,
linear algebra, or the challenges of sparsity exploitation.

Loop and Operator Fusion: Loop fusion, tiling and dis-
tribution [3, 49] aim at merging multiple loops into combined
loops and vice versa—without introducing redundancy or
loop-carried dependencies—to improve locality, parallelism,
or memory requirements. Existing work typically relies on
the affine [58] or polyhedral [81, 100] models to build an
inter-loop dependency graph [3]. Since loop fusion is known
to be NP-complete [27, 49], typically greedy [48] or heuristic
[64] methods are used. Also, loop fusion usually only con-
siders dense data access. Recent research aims at specialized
IRs for staged transformations—which does allow sparsity
exploitation for restricted cases of unary operations—[84],
normalization of comprehensions in Emma [2], distributed
applications on heterogeneous hardware [16], and cross-
library optimization in Weld [76, 77]. In ML systems, opera-
tor fusion aims at merging multiple operations over matrices
or tensors into fused operations. In contrast to loop fusion,
the dependencies are implicitly given by the data flow graph
and operation semantics [9]. SystemML uses rewrites to re-
place patterns with hand-coded, local or distributed fused
operators [7, 14, 40]. Other systems like Cumulon [39] and
MatFast [103] use more generic masked and folded binary
operators to exploit sparsity, which still require the material-
ization of masks and sparse intermediates. Automatic oper-
ator fusion addresses these limitations. BTO [9] introduced
a refine-and-optimize approach for fusing BLAS Level 1/2
operations in local linear algebra kernels, whereas OptiML
[97] provided operator fusion for both CPU and GPUs. Tu-
pleware [25, 26] and Kasen [105] introduced operator fusion

for distributed programs. SystemML-SPOOF [29] also sup-
ports operator fusion for local and distributed operations, as
well as sparsity-exploitation. Additionally, Sparso [85] prop-
agates context in sparse linear algebra programs. Recent
work like TVM [21, 22] also considers FPGAs and ASICs.
Meanwhile, operator fusion and code generation are being
integrated into many systems in practice. Examples are Sys-
temML, TensorFlow XLA [1, 36], Julia [11, 43], MATLAB
[61], Intel Nervana Graph [54], NVIDIA TensorRT [75], and
TC (Caffe2, PyTorch) [100]. However, all these systems rely
on fusion heuristics or manual declaration of fusion plans.

Optimizing DAGs and Fusion Plans: Large opera-
tor DAGs are ubiquitous in ML workloads, which is chal-
lenging due to their scale and missing optimal substructure.
Neumann pioneered the work on generating optimal DAG-
structured query plans [68, 72], while others heuristically
share CSEs via materialized views [68, 92, 106] or com-
mon operators [6, 18, 35]. Recent work further introduced
a greedy algorithm with guaranteed approximation factor
[46]. Sideways information passing such as semi-join reduc-
tions [10], magic sets [8], bypass plans for disjunctive queries
[95], or adaptive information passing [42, 74] also deal with
DAGs, but are not integrated with query compilation. Al-
though most ML systems have compiler and runtime sup-
port for DAGs, their rewrite systems—such as SystemML’s
static and dynamic rewrites [13] or KeystoneML’s cache
management [94]—handle DAGs in a heuristic or greedy
manner. Similarly, the literature on optimizing fusion plans
is very sparse. Frameworks such as OptiML [97], Emma [2],
Kasen [105], Voodoo [80], SystemML-SPOOF [29], Weld [76,
77], and TensorFlow XLA [1, 36] all use fusion heuristics,
which miss opportunities. Tupleware [25] combines heuris-
tics and cost-based decisions for micro-optimizations such as
predication and loop tiling. Furthermore, BTO (Build to Or-
der BLAS) [9] and TC (Tensor Comprehensions) [100] use
k-greedy and evolutionary algorithms to iteratively refine
linear algebra kernels. In contrast, we focus on entire oper-
ator DAGs, exact cost-based optimization (with optimality
guarantee), and sparsity exploitation across operators.

7. CONCLUSIONS
We introduced an exact, cost-based optimization frame-

work for operator fusion plans over DAGs of linear alge-
bra operations, and described its compiler and runtime in-
tegration into SystemML. Our experiments show that op-
timized fusion plans match the performance of hand-coded
fused operators, and yield—due to their generality and cost-
awareness—significant end-to-end improvements compared
to hand-coded operators and fusion heuristics. In conclusion,
we believe that the optimization of fusion plans is a corner-
stone of future declarative, large-scale ML systems. The ma-
jor benefits are the high performance impact, the reduced
development effort, and the broad applicability with regard
to ML algorithms, dense, sparse, and compressed data, as
well as local and distributed operations. Interesting future
work includes—as outlined in the SPOOF vision [29]—the
holistic optimization of fusion plans and rewrites, the inclu-
sion of additional operation types, and code generation for
heterogeneous hardware including GPUs.
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