Enter the Warp: Fast and Adaptive Data Transfer with XDBC

Haralampos Gavriilidis Joel Ziegler Midhun Kaippillil Venugopalan
TU Berlin, BIFOLD TU Berlin TU Berlin
Germany Germany Germany

gavriilidis@tu-berlin.de

joel.ziegler@campus.tu-berlin.de

m.venugopalan@tu-berlin.de

Benedikt Didrich Matthias Boehm Volker Markl
TU Berlin TU Berlin, BIFOLD TU Berlin, BIFOLD, DFKI
Germany Germany Germany

b.didrich@campus.tu-berlin.de
ABSTRACT

Fast and scalable data transfer is crucial in today’s decentralized
data ecosystems and data-driven applications, including extraction-
transformation-loading (ETL) pipelines, and data science workflows.
Transfers often occur across heterogeneous environments—ranging
from cloud-hosted systems to local consumer devices—with vary-
ing compute and network constraints. However, existing solutions
struggle to balance performance with generality across such di-
verse setups. We recently proposed XDBC, a holistic data transfer
framework that decomposes the pipeline into logical components
with multiple physical implementations per component. Its modu-
lar architecture enables seamless system integration and automatic
tuning based on workload and environment characteristics. In this
demonstration, we present Enter the Warp, an interactive game
built around XDBC that visualizes data transfer as a space mission.
Players configure transfer parameters, monitor live throughput
metrics, and optimize performance to shield Earth from meteor
strikes, gaining an understanding and hands-on experience of data
transfer challenges in an engaging and intuitive way.

PVLDB Reference Format:

Haralampos Gavriilidis, Joel Ziegler, Midhun Kaippillil Venugopalan,
Benedikt Didrich, Matthias Boehm, and Volker Markl. Enter the Warp: Fast
and Adaptive Data Transfer with XDBC. PVLDB, 18(12): 5315 - 5318, 2025.
doi:10.14778/3750601.3750660

1 INTRODUCTION

Today’s data-driven applications rely on multiple data systems for
storage and processing. Use cases such as machine learning (ML)
[12] and extraction-transformation-loading (ETL) [10, 11] pipelines,
as well as cross-platform and federated queries [5, 9], require trans-
ferring data across system boundaries. These systems operate in
diverse environments, including cloud platforms, on-premise infras-
tructure, and consumer devices. As data ecosystems grow, efficient
yet generic data transfer across heterogeneous environments and
systems becomes increasingly important.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750660

matthias.boehm@tu-berlin.de

volker.markl@tu-berlin.de

Network

- RDBMS " Node " Node Hardware
- NoSQL Channel - Cloud

- Data Warehouse - On-premise
- Dataframe lib SECuM\Data Transfer SESHSENS - FoglEdge

- Dataflow Eng.
- ML platform

- Laptop

- ETL Pipeline
- Federated Query
- Cross-Platform

Applications

- Machine Learning
- DB Replication
- Real-time loT

Figure 1: Data Transfer Across Heterogeneous Topologies.

Challenges of Cross-System Data Transfer: Efficient data
transfer is difficult due to the heterogeneity of systems, data for-
mats, and deployment environments. Solutions typically rely on
specialized connectors, which offer high performance but limited
flexibility; or generic drivers like JDBC/ODBC, which are broadly
compatible but inefficient. Data transfer involves multiple stages—
reading, (de)serialization, (de)compression, and transmission—that
must be tuned to the data and environment characteristics. Striking
the right balance of generality and specialization, while adapting
to environment characteristics, remains a key challenge.

Limitations of Existing Work: Prior work addressed ETL op-
timization [10, 11] and integration flows [3], but efficient cross-
system data transfer is less explored. Recent work showed that
JDBC-like approaches are inefficient due to the row-based design
and metadata overhead [8]. Approaches like Pipegen [7], Zigzag
joins [12], and ConnectorX [13] optimize specific use case scenarios
but lack generality. A broadly applicable framework that adapts to
heterogeneous systems and environments was missing.

XDBC: A Holistic Data Transfer Framework: To address
these challenges, we recently introduced XDBC [4, 6], a modu-
lar framework for efficient and adaptive data movement. XDBC
provides general reader and writer interfaces for integrating ar-
bitrary data systems and decomposes transfers into configurable
components (e.g., read, serialize, compress, transmit). Our heuris-
tic optimizer then automatically selects effective configurations
based on workload and environment characteristics. We found that
decomposing the pipeline allows for better adaptation to environ-
ments, and XDBC outperforms generic data transfer tools by up to
5%, while matching the performance of specialized connectors.

Demonstration: Data Transfer as an Interactive Game: To
study the impact of data transfer optimization, we present an inter-
active game-based demonstration. Users take on a mission to en-
sure efficient data movement across different environments, where

https://doi.org/10.14778/3750601.3750660
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750660

N\ Ve N

Tbhannel Target Node

read deser compress send receive C= serialize write
compress

DN

P
(Source Node
L

Figure 2: Data Transfer Anatomy.

transfer speed determines the strength of a protective shield around
Earth. Each level simulates a unique data transfer scenario with
different systems, hardware capabilities, and network speed. Before
the transfer begins, users configure key parameters and observe
their effects in real time as data flows between a base station and
a spaceship. By interacting with live metrics and adjusting set-
tings dynamically, users develop an intuitive understanding of how
different factors impact data transfer efficiency.

2 MOTIVATION AND BACKGROUND

Next, we present common data transfer applications, discuss data
transfer internals, and outline the limitations of current approaches.

2.1 Data Transfer Applications

Data transfer naturally occurs between diverse systems, e.g., RDBM-
Ses, NoSQL stores, data warehouses, dataflow engines, and ML
platforms, as shown in Figure 1. These systems operate in variety
of hardware environments (cloud, on-premise, edge) and communi-
cate over different networks (local, WAN; high-latency links).

Example Applications: A common data science use case is load-
ing data from PostgreSQL into pandas (e.g. for ML pre-processing).
Users may employ a specialized solution like ConnectorX [13],
which optimizes parallel data extraction; or a generic approach such
as turbodbc [2], which internally relies on ODBC. Even within
this single use case, environments vary: pandas may run locally
on a laptop with limited compute resources and a slow network
connection to a cloud-hosted DBMS, or it may run in a cloud-hosted
Jupyter notebook (e.g., Google Colab) with scalable compute power
and high-bandwidth connectivity. Similar transfer scenarios arise in
other use cases such as Apache Spark loading data from an RDBMS
or migrating data between two PostgreSQL instances. Each scenario
imposes different constraints on compute, memory, and network,
requiring an adaptable data transfer strategy.

2.2 Anatomy of Data Transfers

Data Transfer as a Streaming Pipeline: Data transfer involves
moving data between systems through a sequence of transfor-
mations. As shown in Figure 2, this process follows a streaming
pipeline with distinct stages. First, data are extracted from the source
system, e.g., an RDBMS or file storage. Second, data are deserialized
from the source format into an intermediate format (e.g., row- or
column-based). Third, the intermediate data are optionally com-
pressed (e.g., through snappy) to reduce transmission overhead.
Fourth, the data are transmitted over a network, memory channel,
or file interface, depending on the deployment scenario. On the
receiving side, the data is decompressed (if necessary) and serialized
back from the intermediate format into the target format. Finally,
data are written into the target system, e.g., a DataFrame or RDBMS.

Tuning for Different Environments: While this pipeline re-
mains conceptually similar across applications, the ideal configura-
tion depends on system characteristics. For example, compression
may improve performance in bandwidth-constrained environments
(e.g., a laptop connected to a cloud DBMS) but introduce unneces-
sary overhead in high-throughput cloud-to-cloud transfers. Simi-
larly, the intermediate layout (i.e., row- vs. column-based) and buffer
size affect performance depending on the workload and system ar-
chitecture. For effective data transfer, one should holistically tune
these components to match the underlying execution environment.

2.3 Existing Approaches and their Limitations

Specialized Data Transfer Solutions: Specialized connectors
are designed for specific system pairs, optimizing performance
through direct end-to-end integration. For example, Connector-
X [13] efficiently loads database tables into pandas DataFrames by
parallelizing queries and reducing serialization overhead. Similarly,
PostgreSQL Foreign Data Wrappers (FDWs) [1] allow cross-DBMS
communication by exposing external databases as virtual tables.
While these approaches are efficient, they require substantial engi-
neering effort per system pair and lack adaptability when deployed
in different network or hardware environments.

Generic Data Transfer Solutions: Generic solutions such as
JDBC and ODBC-based connectors on the other hand provide broad
compatibility, allowing various applications to connect to databases
without system-specific implementations. For example, Spark JDBC
enables Spark to read from transactional databases, while turbodbc
optimizes DBMS-to-DataFrame transfers using efficient batch load-
ing [2]. However, these solutions typically rely on row-based trans-
fer formats, incurring metadata overhead [8], and offer limited
tuning options. These generic solutions are generally not designed
to dynamically adapt to different execution environments, leading
to suboptimal performance in different environments.

The Missing Piece: Adaptive Data Transfer: Both specialized
and generic approaches do not adjust configurations based on work-
load and environment characteristics. For example, a PostgreSQL-
to-pandas transfer may require different strategies on a local laptop
with limited bandwidth versus a cloud-hosted Jupyter notebook
with high-speed access. Similarly, transferring data between DBMS
instances or from a DBMS to Spark may require tuning interme-
diate format, compression library, and the degree of parallelism
of individual components (read, serialize, compress, write). Exist-
ing solutions lack dynamic optimization, leading to inefficiencies
in heterogeneous environments. An effective framework should
balance generality (allowing seamless system integration) with spe-
cialization (optimizing performance per environment), and should
offer a modular architecture that decouples transfer components
and supports their independent configuration.

3 XDBC: SCALABLE DATA TRANSFER

XDBC enables fast and scalable data transfer across heterogeneous
systems. We now describe its design principles and architecture.
Design Philosophy: XDBC addresses the tradeoff between
generality and specialization through a modular and extensible
architecture. As shown in Figure 3, the framework follows a client-
server model, where data flows from a source system (e.g., a DBMS)

XDBC SERVER XDBC CLIENT

optimizer

Figure 3: XDBC Architecture Overview

through the XDBC Server to the XDBC Client, which loads them
into the target system. The data transfer pipeline consists of inde-
pendently configurable components for reading, (de)serialization,
(de)compression, transmission, and writing, each supporting multi-
ple physical implementations. XDBC’s optimizer selects transfer
configurations based on system and environment characteristics,
tuning parameters such as compression (e.g., snappy, zstd), in-
termediate format (row, column, Arrow), and the parallelism of
individual components. This design allows XDBC to provide both
plug-and-play extensibility and workload-specific optimizations.

Runtime Architecture: XDBC achieves high performance
through efficient memory management and parallelism. We pre-
allocate a fixed memory segment organized as a ring buffer, and
pass buffer IDs between components instead of copying data. Each
component may utilize multiple workers for improving through-
put, while different components operate in a pipeline-parallel man-
ner. Our recent extension supports runtime reconfiguration, al-
lowing components to be dynamically adjusted to changing envi-
ronments or optimized on the fly. This capability is valuable not
only for demonstration purposes but also for practical reconfigu-
ration in real-world scenarios. XDBC implements back-pressure
through bounded queues between components, enabling scalable,
low-overhead streaming data transfer while gracefully handling
contention.

Adaptive Optimization: Since data transfer performance de-
pends on system, dataset, and environment characteristics, XDBC
includes a lightweight optimizer that automatically tunes configura-
tions to maximize throughput. Our initial optimizer used a heuristic
approach, which worked well in our experiments. We modeled the
pipeline as a sequence of components, each with configurable par-
allelism, and estimated per-component throughput using a cost
model derived from offline profiling. Parallelism was incrementally
assigned to the slowest component until resource constraints were
met. Building on this, we have developed a data-driven optimizer
that not only finds better configurations but can also dynamically
adapt to changing environments on the fly [4]. This approach en-
ables XDBC to achieve high performance without manual tuning.

Built-in Components and Extensibility: XDBC natively sup-
ports common systems and formats such as PostgreSQL, Click-
house, CSV, Parquet, Spark, and pandas. We utilize custom binary
row/column formats and Apache Arrow as intermediate layout,
support multiple compression libraries (e.g., zstd, snappy, 1z4,
1z0), and use TCP transfers via boost.asio. Furthermore, XDBC
is highly extensible: new systems can be integrated by implement-
ing simple read/write interfaces, and new formats or compression
methods can be added via pluggable operators, supporting diverse
workloads and environments with little effort.

400
- xdbe

jdbe
300

£ 200

Time (5)

100

W

0
lineitem acs iot. icn
Datasets

0
lineitem

(a) Pandas from PostgreSQL (b) Spark from PostgreSQL

Figure 4: XDBC Performance Evaluation.

Experimental Findings: In our original work, we have con-
ducted extensive experiments across diverse environments [6].
Here, we highlight two key end-to-end benchmarks. For a data sci-
ence application (PostgreSQL-to-pandas, Figure 4a), XDBC outper-
forms generic solutions like turbodbc by up to 8x and matches spe-
cialized ones like ConnectorX. For an ETL application (PostgreSQL-
to-Spark, Figure 4b), XDBC outperforms Spark’s generic JDBC data
source by up to 5X. Our micro-benchmarks show that individually
tuning components is crucial for performance. XDBC’s optimizer
effectively selects configurations with minimal overhead, demon-
strating that adaptive tuning is practical and beneficial. Overall,
XDBC bridges the gap between generality and specialization, out-
performing generic approaches and matching specialized solutions.

4 DEMONSTRATION: ENTER THE WARP

To make data transfer concepts clear and engaging, we present
“Enter the Warp”, a custom interactive game built on top of the
XDBC framework. In this simulation, Earth is under constant me-
teor threat, and users must complete data transfer missions to gen-
erate a protective shield. Each mission mirrors a real data transfer,
requiring users to configure source and target systems, tune param-
eters, and adapt to environment constraints. Higher throughput
translates into faster shielding and better scores. Through gamifica-
tion, our demo illustrates data transfer concepts, i.e., heterogeneity
of environments, pipeline configuration, and runtime behavior, by
turning them into interactive and visually intuitive challenges. We
now describe the game structure, scenarios, and user interactions.
Data Transfer Environments as Campaigns and Levels: The
game is organized into campaigns, each consisting of multiple levels
that reflect different data transfer environments. Each level simu-
lates a unique system setup, varying the source and target systems
(e.g., PostgreSQL, pandas, Spark, CSV), as well as the compute capac-
ity of the server (base station, source system) and client (spaceship,
target system). The network connecting them is represented as
an interstellar link, whose bandwidth fluctuates based on in-game
events. Changing environments are covered by scenarios such as a
damaged base station (limited server cores), a weakened spaceship
(limited client cores), or atmospheric anomalies (constrained net-
work). These scenarios illustrate the real-world heterogeneity of
data transfers across cloud, on-premise, and edge deployments.
Parameter Selection for Base Station and Spaceship: Before
launching a mission, users configure data transfer parameters via
the setup interface (see Figure 5a), which determines how efficiently
data moves between the base station (server) and the spaceship
(client). Each level introduces different constraints, such as limited

Throughput

Environment characteristics

Base stationsarvar Clent spaca ship

obal pararmeters
Server Base Station

Server parameters

(a) Parameter Selection.

Throughput

Client Ship

(b) View from the cockpit: Users can change parameters and view performance impact.

Figure 5: Enter the Warp: Configuration screen and cockpit view, visualizing data transfer metrics and live reconfiguration.

CPU, restricted client resources, or high-latency networks, requir-
ing informed decisions. For example, excessive parallelism can hurt
performance in CPU-bound settings, while compression may add
unnecessary overhead in high-bandwidth scenarios. Compression
algorithms also trade higher compression ratios for greater com-
pute cost, making them unsuitable for low-resource environments.
To guide users, each level provides hints illustrating key trade-offs
and linking decisions to real-world scenarios. Users must balance
these parameters carefully to maximize transfer throughput.

Real-Time Transfers (Navigating the Warp): After selecting
parameters, users enter the warp, initiating the data transfer mission
(see Figure 5b). Inside the spaceship’s cockpit, they monitor live
system metrics, including per-component throughput and queue
loads. This visualization shows how parameter choices impact per-
formance, allowing users to identify bottlenecks and inefficiencies.
Linking parameter changes to XDBC’s internal metrics gives users
insights into its dynamic adaptation and performance. Users can
further refine strategy by adjusting parameters and observing their
impact. In the background, an actual XDBC transfer runs: an opti-
mized transfer strengthens Earth’s shield, while inefficient setups
let more meteors through. Users can directly observe how different
environments and constraints influence throughput; for example,
setting more threads than available cores may reduce performance
due to contention, while enabling compression on a low-resource
base station may hurt throughput but improve it in low-bandwidth,
high-resource scenarios. After the mission, users add their name to
the leaderboard and compete for top throughput.

Game Setup: We implemented our interface in 1ibGDX, an open-
source game developement framework based on OpenGL. The in-
terface sends user configurations and interactions to a controller
component, which in turn adjusts a docker-based simulation envi-
ronment running actual XDBC transfers on the participating sys-
tems. The controller also collects the runtime metrics and forwards
them to the frontend, to adjust the visualizations.

Takeaways and Engagement: Efficient data transfer is critical
in modern applications. Our “Enter the Warp” game offers an inter-
active way to explore these challenges. By tuning parameters in a

guided manner and observing real-time performance, users build
intuition for optimizing data movement across diverse environ-
ments. The demo also showcases XDBC’s runtime reconfiguration,
addressing the challenge of finding good configurations in dynamic
settings. A live leaderboard encourages competition, and top scorers
will receive small prizes at the end of the sessions.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from the German Federal Min-
istry of Education and Research under the grants BIFOLD25B and
01IS17052 (as part of the Software Campus project PolyDB). We
thank Stefanie Lenk for designing the game assets for our demo.

REFERENCES

[1] 2025. PostgreSQL wiki | Foreign data wrappers. https://wiki.postgresql.org/wiki/
Foreign_data_wrappers#Specific_SQL_Database_Wrappers. Accessed: July 15,
2025.

[2] 2025. Turbodbc - Turbocharged database access for data scientists. https://
turbodbc.readthedocs.io/en/latest/. Accessed: July 15, 2025.

[3] Matthias Boehm. 2011. Cost-based optimization of integration flows. (2011).
https://nbn-resolving.org/urn:nbn:de:bsz:14- qucosa- 67936

[4] Benedikt Didrich et al. 2025. Learning to Accelerate: Tuning Data Transfer
Parameters. In AIDB@VLDB 2025.

[5] Haralampos Gavriilidis et al. 2023. In-Situ Cross-Database Query Processing. In
ICDE. https://doi.org/10.1109/ICDE55515.2023.00214

[6] Haralampos Gavriilidis et al. 2025. Fast and Scalable Data Transfer Across
Data Systems. Proc. ACM Manag. Data 3, 3, Article 157 (June 2025). https:
//doi.org/10.1145/3725294

[7] Brandon Haynes, Alvin Cheung, and Magdalena Balazinska. 2016. PipeGen: Data
pipe generator for hybrid analytics. In SoCC. https://doi.org/10.1145/2987550.
2987567

[8] Mark Raasveldt and Hannes Miihleisen. 2017. Don’t hold my data hostage: a case
for client protocol redesign. PVLDB (2017). https://doi.org/10.14778/3115404.
3115408

[9] Raghav Sethi et al. 2019. Presto: SQL on everything. In ICDE. https://doi.org/10.
1109/ICDE.2019.00196

[10] Alkis Simitsis, Panos Vassiliadis, and Timos K. Sellis. 2005. Optimizing ETL
Processes in Data Warehouses. In ICDE. https://doi.org/10.1109/ICDE.2005.103

[11] Alkis Simitsis, Kevin Wilkinson, and Petar Jovanovic. 2013. xPAD: a platform
for analytic data flows. In SIGMOD. https://doi.org/10.1145/2463676.2465247

[12] Yuanyuan Tian et al. 2016. Building a Hybrid Warehouse: Efficient Joins between
Data Stored in HDFS and Enterprise Warehouse. ACM TODS (2016). https:
//doi.org/10.1145/2972950

[13] Xiaoying Wang et al. 2022. ConnectorX: accelerating data loading from databases
to dataframes. PVLDB 15, 11 (2022). https://doi.org/10.14778/3551793.3551847

https://wiki.postgresql.org/wiki/Foreign_data_wrappers#Specific_SQL_Database_Wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers#Specific_SQL_Database_Wrappers
https://turbodbc.readthedocs.io/en/latest/
https://turbodbc.readthedocs.io/en/latest/
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-67936
https://doi.org/10.1109/ICDE55515.2023.00214
https://doi.org/10.1145/3725294
https://doi.org/10.1145/3725294
https://doi.org/10.1145/2987550.2987567
https://doi.org/10.1145/2987550.2987567
https://doi.org/10.14778/3115404.3115408
https://doi.org/10.14778/3115404.3115408
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1109/ICDE.2005.103
https://doi.org/10.1145/2463676.2465247
https://doi.org/10.1145/2972950
https://doi.org/10.1145/2972950
https://doi.org/10.14778/3551793.3551847

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Data Transfer Applications
	2.2 Anatomy of Data Transfers
	2.3 Existing Approaches and their Limitations

	3 XDBC: Scalable Data Transfer
	4 Demonstration: Enter the Warp
	Acknowledgments
	References

