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Abstract Large-scale machine learning (ML) algo-

rithms are often iterative, using repeated read-only data

access and I/O-bound matrix-vector multiplications to

converge to an optimal model. It is crucial for perfor-

mance to fit the data into single-node or distributed

main memory and enable fast matrix-vector opera-

tions on in-memory data. General-purpose, heavy- and

lightweight compression techniques struggle to achieve

both good compression ratios and fast decompression

speed to enable block-wise uncompressed operations.

Therefore, we initiate work—inspired by database com-

pression and sparse matrix formats—on value-based

compressed linear algebra (CLA), in which heteroge-

neous, lightweight database compression techniques are

applied to matrices, and then linear algebra opera-

tions such as matrix-vector multiplication are executed

directly on the compressed representation. We con-

tribute effective column compression schemes, cache-

conscious operations, and an efficient sampling-based

compression algorithm. Our experiments show that

CLA achieves in-memory operations performance close

to the uncompressed case and good compression ratios,

which enables fitting substantially larger datasets into

available memory. We thereby obtain significant end-

to-end performance improvements up to 9.2x.

1 Introduction

Data has become a ubiquitous resource [24]. Large-scale

machine learning (ML) leverages these large data collec-
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tions in order to find interesting patterns and build ro-

bust predictive models [24,28]. Applications range from

traditional regression analysis and customer classifica-

tion to recommendations. In this context, data-parallel

frameworks such as MapReduce [29], Spark [95], or

Flink [4] often are used for cost-effective parallelized

model training on commodity hardware.

Declarative ML: State-of-the-art, large-scale ML

systems support declarative ML algorithms [17], ex-

pressed in high-level languages, that comprise lin-

ear algebra operations such as matrix multiplications,

aggregations, element-wise and statistical operations.

Examples—at different levels of abstraction—are Sys-

temML [16], Mahout Samsara [78], Cumulon [41],

DMac [93], Gilbert [75], SciDB [82], SimSQL [60], and

TensorFlow [2]. A high level of abstraction gives data

scientists the flexibility to create and customize ML al-

gorithms without worrying about data and cluster char-

acteristics, data representations (e.g., sparse/dense for-

mats and blocking), or execution-plan generation.

Bandwidth Challenge: Many ML algorithms are

iterative, with repeated read-only access to the data.

These algorithms often rely on matrix-vector multipli-

cations to converge to an optimal model; such oper-

ations require one complete scan of the matrix, with

two floating point operations per matrix element. Disk

bandwidth is usually 10x-100x slower than memory

bandwidth, which is in turn 10x-40x slower than peak

floating point performance; so matrix-vector multiplica-

tion is, even in-memory, I/O bound. Hence, it is crucial

for performance to fit the matrix into available mem-

ory without sacrificing operations performance. This

challenge applies to single-node in-memory computa-

tions [42], data-parallel frameworks with distributed

caching such as Spark [95], and hardware accelerators

like GPUs, with limited device memory [2,7,11].



2 Ahmed Elgohary et al.

Table 1 Compression Ratios of Real Datasets (which are used throughout this paper).

Dataset Size Gzip Snappy CLA [32] CLA
(n×m, sparsity nnz/(n ·m), size) (this paper)

Higgs [59] 11,000,000× 28, 0.92, 2.5 GB 1.93 1.38 2.03 2.17

Census [59] 2,458,285× 68, 0.43, 1.3 GB 17.11 6.04 27.46 35.69

Covtype [59] 581,012× 54, 0.22, 0.14 GB 10.40 6.13 12.73 18.19
ImageNet [23] 1,262,102× 900, 0.31, 4.4 GB 5.54 3.35 7.38 7.34

Mnist8m [19] 8,100,000× 784, 0.25, 19 GB 4.12 2.60 6.14 7.32

Airline78 [5] 14,462,943× 29, 0.73, 3.3 GB 7.07 4.28 N/A 7.44
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Fig. 1 Goals of Compressed Linear Algebra.

Goals of Compressed Linear Algebra: Declar-

ative ML provides data independence, which allows for

automatic compression to fit larger datasets into mem-

ory. A baseline solution would employ general-purpose

compression techniques and decompress matrices block-

wise for each operation. However, heavyweight tech-

niques like Gzip are not applicable because decom-

pression is too slow, while lightweight methods like

Snappy achieve only moderate compression ratios. Ex-

isting special-purpose compressed matrix formats with

good performance like CSR-VI [52] similarly show only

modest compression ratios. In contrast, our approach

builds upon research on lightweight database compres-

sion, such as compressed bitmaps and dictionary cod-

ing, as well as sparse matrix representations. Specifi-

cally, we initiate the study of value-based compressed

linear algebra (CLA), in which database compression

techniques are applied to matrices and then linear alge-

bra operations are executed directly on the compressed

representations. Figure 1 shows the goals of this ap-

proach: we want to widen the sweet spot for compres-

sion by achieving both (1) performance close to uncom-

pressed in-memory operations and (2) good compres-

sion ratios to fit larger datasets into memory.

Compression Potential: Our focus is on floating-

point matrices (with 53/11 bits mantissa/exponent), so

the potential for compression may not be obvious. Ta-

ble 1 shows compression ratios for the general-purpose,

heavyweight Gzip and lightweight Snappy algorithms

and for our CLA method on real-world datasets; sizes

are given as rows, columns, sparsity—i.e., ratio of

#non-zeros (nnz) to cells—and in-memory size. We ob-

serve compression ratios of 2.2x–35.7x, due to a mix of

floating point and integer data, and due to features with

relatively few distinct values. In comparison, previously

published CLA results [32] showed compression ratios

of 2x–27.5x and did not include the Airline78 dataset

(years 2007 and 2008 of the Airline dataset [5]). Thus,

unlike in scientific computing [14], enterprise machine-

learning datasets are indeed amenable to compression.

The decompression bandwidth (including time for ma-

trix deserialization) of Gzip ranges from 88 MB/s to

291 MB/s which is slower than for uncompressed I/O.

Snappy achieves a decompression bandwidth between

232 MB/s and 638 MB/s but only moderate compres-

sion ratios. In contrast, CLA achieves good compression

ratios and avoids decompression altogether.

Contributions: Our major contribution is to make

a case for value-based compressed linear algebra (CLA),

where linear algebra operations are directly executed

over compressed matrices. We leverage ideas from

database compression techniques and sparse matrix

representations. The novelty of our approach is to com-

bine both, leading toward a generalization of sparse

matrix representations and operations. In this paper,

we describe an extended version of CLA that improves

previously published results [32]. The structure of the

paper reflects our detailed technical contributions:

– Workload Characterization: We provide the back-

ground and motivation for CLA in Section 2 by giv-

ing an overview of Apache SystemML as a represen-

tative system, and describing typical linear algebra

operations and data characteristics.

– Compression Schemes: We adapt several column-

based compression schemes to numeric matrices in

Section 3 and describe efficient, cache-conscious core

linear algebra operations over compressed matrices.

– Compression Planning: In Section 4, we provide

an efficient sampling-based algorithm for selecting

a good compression plan, including techniques for

compressed-size estimation and column grouping.

– Experiments: In Section 5, we study—with CLA in-

tegrated into Apache SystemML—a variety of ML

algorithms and real-world datasets in both single-

node and distributed settings. We also compare

CLA against alternative compression schemes.
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– Discussion and Related Work: Finally, we discuss

limitations and open research problems, as well as

related work, in Sections 6 and 7.

Extensions of Original Version: Apart from pro-

viding a more detailed discussion, in this paper we ex-

tend the original CLA framework [32] in several ways,

improving both compression ratios and operations per-

formance. The major extensions are (1) the additional

column encoding format DDC for dense dictionary cod-

ing, (2) a new greedy column grouping algorithm with

pruning and memoization, (3) additional operations in-

cluding row aggregates and multi-threaded compres-

sion, and (4) hardened size estimators. Furthermore, we

transferred the original CLA framework into Apache

SystemML 0.11 and the extensions of this paper into

SystemML 0.14. For the sake of reproducible results,

we accordingly repeated all experiments on SystemML

0.14 using Spark 2.1, including additional datasets, mi-

cro benchmarks, and end-to-end experiments.

2 Background and Motivation

In this section, we provide the background and motiva-

tion for CLA. After giving an overview of SystemML as

a representative platform for declarative ML, we discuss

common workload and data characteristics, and provide

further evidence of compression potential.

2.1 SystemML Architecture

SystemML [16,34] aims at declarative ML [17], where

algorithms are expressed in a high level language with

R-like syntax and compiled to hybrid runtime plans [42]

that combine single-node, in-memory operations and

distributed operations on MapReduce or Spark. We

outline the features of SystemML relevant to CLA.

ML Program Compilation: An ML script is

first parsed into a hierarchy of statement blocks that

are delineated by control structures such as loops and

branches. Each statement block is translated to a DAG

of high-level operators, and the system then applies var-

ious rewrites, such as common subexpression elimina-

tion, optimization of matrix-multiplication chains, alge-

braic simplifications, and rewrites for dataflow proper-

ties such as caching and partitioning. Information about

data size and sparsity are propagated from the inputs

through the entire program to enable worst-case mem-

ory estimates per operation. These estimates are used

during an operator-selection step, yielding a DAG of

low-level operators that is then compiled into a run-

time program of executable instructions.

Distributed Matrix Representations: System-

ML supports various input formats, all of which are

internally converted into a binary block matrix for-

mat with fixed-size blocks. Similar structures, called

tiles [41], chunks [82], or blocks [16,60,75,94], are

widely used in existing large-scale ML systems. Each

block may be represented in either dense or sparse for-

mat to allow for block-local decisions and efficiency on

datasets with non-uniform sparsity. SystemML uses a

modified CSR (compressed sparse row), CSR, or COO

(coordinate) format for sparse or ultra-sparse blocks.

For single-node, in-memory operations, the entire ma-

trix is represented as a single block [42] to reuse data

structures and operations across runtime backends.

CLA can be seamlessly integrated by adding a new de-

rived block representation and operations. We provide

further details of CLA in SystemML in Section 5.1.

2.2 Workload Characteristics

We now describe common workload characteristics of

linear algebra operations and matrix properties.

An Example: Consider the task of fitting a simple

linear regression model via the conjugate gradient (CG)

method [34,63]. The LinregCG algorithm reads a fea-

ture matrix X and a continuous label vector y, includ-

ing metadata from HDFS, and iterates CG steps until

the error—as measured by an appropriate norm—falls

below a target value. The ML script looks as follows:

1: X = read($1); # n x m feature matrix

2: y = read($2); # n x 1 label vector

3: maxi = 50; lambda = 0.001; # t(X)..transpose of X

4: r = -(t(X) %*% y); ... # %*%..matrix multiply

5: norm_r2 = sum(r * r); p = -r; # initial gradient

6: w = matrix(0, ncol(X), 1); i = 0;

7: while(i < maxi & norm_r2 > norm_r2_trgt) {

8: # compute conjugate gradient

9: q = ((t(X) %*% (X %*% p)) + lambda * p);

10: # compute step size

11: alpha = norm_r2 / sum(p * q);

12: # update model and residuals

13: w = w + alpha * p;

14: r = r + alpha * q;

15: old_norm_r2 = norm_r2;

16: norm_r2 = sum(r^2); i = i + 1;

17: p = -r + norm_r2/old_norm_r2 * p; }

18: write(w, $3, format="text");

Common Operation Characteristics: Two im-

portant classes of ML algorithms are (1) iterative al-

gorithms with matrix-vector multiplications as above,

and (2) closed-form algorithms with transpose-self ma-

trix multiplication. For both classes, a small number of

matrix operations dominate the overall algorithm run-

time (apart from initial read costs). This is especially

true with hybrid runtime plans (see Section 2.1), where
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Table 2 Overview ML Algorithm Core Operations (see
http://systemml.apache.org/algorithms for details).

Algorithm M-V V-M MVChain TSMM

Xv v>X X>
(
w � (Xv)

)
X>X

LinregCG X X X (w/o w�)
LinregDS X X

Logreg X X X (w/ w�)
GLM X X X (w/ w�)

L2SVM X X
PCA X X

operations over small data incur no latency for dis-

tributed computation. In LinregCG, for example, only

lines 4 and 9 access matrix X; all other computations

are inexpensive operations over small vectors or scalars.

Table 2 summarizes the core operations of important

ML algorithms. Besides matrix-vector multiplication

(e.g., line 9), we have vector-matrix multiplication, of-

ten caused by the rewrite X>v → (v>X)> to avoid

transposing X (e.g., lines 4 and 9) because computing

X> is expensive, whereas computing v> involves only a

metadata update. Many systems also implement physi-

cal operators for matrix-vector chains (e.g., line 9) with

optional element-wise weighting w�, and transpose-self

matrix multiplication (TSMM) X>X [7,42,78]. All of

these operations are I/O-bound, except for TSMM with

m� 1 features because its compute workload grows as

O(m2). Other common operations over X are append,

unary aggregates like colSums, and matrix-scalar oper-

ations for intercept computation, scaling, and shifting.

Common Data Characteristics: Despite signif-

icant differences in data sizes—ranging from kilo- to

terabytes—input data for the aforementioned algorithm

classes share common data characteristics:

– Tall and Skinny Matrices: Matrices usually have sig-

nificantly more rows (observations) than columns

(features), especially in enterprise ML [7,96], where

data often originates from data warehouses.

– Non-Uniform Sparsity: Sparse datasets usually have

many features, often created via pre-processing, e.g.,

dummy coding.1 Sparsity, however, is rarely uni-

form, but varies among features. For example, Fig-

ure 2 shows the sparsity skew of our sparse datasets.

– Low Column Cardinalities: Many datasets exhibit

features with few distinct values, e.g., encoded cat-

egorical, binned or dummy-coded features.

– Column Correlations: Correlation among features

is also very common and typically originates from

natural data correlation, use of composite features

such as interaction terms in a regression model (e.g.,

1 Dummy coding transforms a categorical feature having d
possible values into d boolean features, each indicating the
rows in which a given value occurs. The larger the value of d,
the greater the sparsity (from adding d− 1 zeros per row).
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Fig. 3 Cardinality Ratios and Co-Coding.

the second term in y = ax1 + bx1x2), or again pre-

processing techniques like dummy coding.

The foregoing four data characteristics directly moti-

vate the use of column-based compression schemes.

2.3 Compression Potential and Strategy

Examination of the datasets from Table 1 shows that

column cardinality and column correlation should be

key drivers of a column-based compression strategy.

Column Cardinality: The ratio of column cardi-

nality (number of distinct values) to the number of rows

is a good indicator of compression potential because it

quantifies redundancy, independent of value represen-

tations. Figures 3(a) and 3(b) show the ratio of column

cardinality to the number of rows (in %) per column in

the datasets Higgs and Census. All columns of Census

have a ratio below .0008% and the majority of columns

of Higgs have a ratio below 1%. There is also skew in the

column cardinalities; for example, Higgs contains sev-

eral columns having millions of distinct values. These

observations motivate value-centric compression with

fallbacks for high cardinality columns.

Column Correlation: Another indicator of com-

pression potential is the correlation between columns

with respect to the number of distinct value-pairs. For

value-based offset lists, a column i with di distinct

values—including zeros—requires ≈ 8di + 4n bytes,

where n is the number of rows, and each value is en-

coded with 8 bytes plus a list of 4-byte row indexes,
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which represent commonly used types of blocked ma-

trices [16,94]. Co-coding two columns i and j as a sin-

gle group of value-pairs and offsets requires 16dij + 4n

bytes, where dij is the number of distinct value-pairs.

The larger the correlation max(di, dj)/dij , the larger

the size reduction by co-coding. Figures 3(c) and 3(d)

show the size reductions (in MB) by co-coding all pairs

of columns of Higgs and Census. For Higgs, co-coding

any of the columns 8, 12, 16, and 20 with one of most

of the other columns reduces sizes by at least 25 MB.

Moreover, co-coding any column pair of Census reduces

sizes by at least 9.3 MB. Overall, co-coding column

groups of Census (not limited to pairs) improved the

compression ratio from 12.8x to 35.7x. We therefore try

to discover and co-code column groups.

2.4 Lightweight DB Compression and Sparse Formats

To facilitate understanding of our matrix compression

schemes, we briefly review common database compres-

sion techniques and sparse matrix formats.

Lightweight Database Compression: Modern

column stores typically apply lightweight database

compression techniques [1,56,72,90,97]. For a recent

experimental analysis, see [27]. Common schemes in-

clude (1) dictionary encoding, (2) null suppression,

(3) run-length encoding (RLE), (4) frame-of-reference

(FOR), (5) patched FOR (PFOR), as well as (6) bitmap

indexes and compression. The prevalent schemes, how-

ever, are dictionary and run-length encoding. Dictio-

nary encoding creates a dictionary of distinct values and

replaces each data value with a (smaller) dictionary ref-

erence. In contrast, RLE represents runs of consecutive

entries with equal value as tuples of value, run length,

and, optionally, starting position.

Sparse Matrix Formats: Probably the most

widely used sparse formats are CSR and CSC (com-

pressed sparse rows/columns) [44,64,76], which en-

code non-zero values as index-value pairs in row- and

column-major order, respectively. For example, the ba-

sic CSR format uses an (n + 1)-length array for row

pointers and two O(nnz) arrays for column indexes and

values; a row pointer comprises the starting positions

of the row in the index and value arrays, and column

indexes per row are ordered for binary search.

3 Compression Schemes

We now describe our novel matrix compression frame-

work, including several effective encoding formats for

compressed column groups, as well as efficient, cache-

conscious operations over compressed matrices.

3.1 Matrix Compression Framework

As motivated in Sections 2.2 and 2.3, we represent

a compressed matrix block as a set of compressed

columns. Column-wise compression leverages two key

characteristics: few distinct values per column and high

cross-column correlations. Taking advantage of few dis-

tinct values, we encode a column as a list of distinct

values, or dictionary, together with either a list of off-

sets per value—i.e., a list of row indexes in which the

value appears—or a list of references to distinct values,

where a reference to a value gives the value’s position

in the dictionary. We shall show that, similar to sparse

and dense matrix formats, these formats allow for effi-

cient linear algebra operations.

Column Co-Coding: We exploit column

correlation—as discussed in Section 2.3—by par-

titioning columns into column groups such that

columns within each group are highly correlated.

Columns within the same group are then co-coded as a

single unit. Conceptually, each row of a column group

comprising m columns is an m-tuple t of floating-point

values that represent reals or integers.

Column Encoding Formats: Each offset list and

each list of tuple references is stored in a compressed

representation, and the efficiency of executing linear

algebra operations over compressed matrices strongly

depends on how fast we can iterate over this represen-

tation. We adapt several well-known effective offset-list

and dictionary encoding formats:

– Offset-List Encoding (OLE) is inspired by sparse

matrix formats and encodes the offset lists per value

tuple as an ordered list of row indexes.

– Run-Length Encoding (RLE) is inspired by sparse

bitmap compression and encodes the offset lists per

value tuple as sequence of runs representing starting

row indexes and run lengths.

– Dense Dictionary Coding (DDC) is inspired by dic-

tionary encoding and stores tuple references to the

list of value tuples including zeros.

– Uncompressed Columns (UC) is used as a fallback

if compression is not beneficial; the set of uncom-

pressed columns is stored as a sparse or dense block.

Different column groups may be compressed using dif-

ferent encoding formats. The best co-coding and for-

matting choices are strongly data-dependent and hence

require automatic optimization. We discuss sampling-

based compression planning in Section 4.

Example Compressed Matrix: Figure 4 shows

our running example of a compressed matrix block in

its logical representation. The 10 × 5 input matrix is

encoded as four column groups, where we use 1-based

indexing for row indexes and tuple references. Columns
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Fig. 4 Example Compressed Matrix Block.

2, 4, and 5 are represented as single-column groups and

encoded via RLE, DDC, and UC, respectively. For col-

umn 2 in RLE, we have two distinct non-zero values and

hence two associated offset lists encoded as runs, which

represent starting-row indexes and run lengths. Column

4 in DDC has three distinct values (including zero) and

encodes the data as tuple references, whereas column 5

is a UC group in dense format. Finally, there is a co-

coded OLE column group for the correlated columns 1

and 3, which encodes offset lists for all three distinct

non-zero value-pairs as lists of row indexes.

Notation: For the ith column group, denote by

Ti = { ti1, ti2, . . . , tidi
} the set of di distinct tuples,

by Gi the set of column indexes, and by Oij the set of

offsets associated with tij (1 ≤ j ≤ di). The OLE and

RLE schemes are “sparse” formats in which zero val-

ues are not stored (0-suppressing), whereas DDC is a

dense format, which includes zero values. Also, denote

by α the size in bytes of each floating point value, where

α = 8 for the double-precision IEEE-754 standard.

3.2 Column Encoding Formats

Figure 5 provides an overview of the OLE, RLE, DDC,

and UC representations used in our framework. The

UC format stores a set of columns as an uncompressed

dense or sparse matrix block. In contrast, all of our

compressed formats are value-based, i.e., they store a

dictionary of distinct tuples and a mapping between tu-

ples and rows in which they occur. OLE and RLE use

offset lists to map from value tuples to row indexes.

This is especially effective for sparse data, but also for

dense data with runs of equal values. DDC uses tuple

references to map from row indexes to value tuples, and

is effective for dense data with few distinct items and

UCValue-based

/

Offset lists
(values  rows)

Dense dictionary coding
(rows  values)

DDC2DDC1RLEOLE

dense/
sparse

Fig. 5 Overview of Column Encoding Formats.
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Fig. 6 Data Layout of Compressed Column Groups.

few runs. We use two versions, DDC1 and DDC2, with

1 and 2 byte references for dictionaries with di ≤ 255

and di ≤ 65,535 non-zero tuples, respectively. We now

describe the physical data layout of these encoding for-

mats and give formulas for the in-memory compressed

size SOLE
i , SRLE

i , and SDDC
i . The matrix size is then

computed as the sum of column group size estimates.

Data Layout: Figure 6 shows—as an extension

to our running example from Figure 4 (with more

rows)—the data layouts of OLE, RLE, and DDC col-

umn groups, each composed of up to four arrays. All

encoding formats use a common header of two arrays

for column indexes and fixed-length value tuples, as well

as a data array Di. Tuples are stored in order of decreas-

ing value frequency to improve branch prediction, cache

locality, and pre-fetching. The header of OLE and RLE

groups further contains an array for pointers to the data

per tuple. The physical data length per tuple in Di can

be computed as the difference of adjacent pointers (e.g.,

for ti1 = {7, 6} as 13-1=12) because the encoded offset

lists are stored consecutively. The data array is then

used in an encoding-specific manner.

Offset-List Encoding (OLE): Our OLE format

divides the offset range into segments of fixed length

∆s = 216 in order to encode each offset with only two

bytes. Each offset is mapped to its corresponding seg-

ment and encoded as the difference to the beginning

of its segment. For example, the offset 155,762 lies in

segment 3 (= 1 + b(155,762 − 1)/∆sc) and is encoded

as 24,690 (= 155,762 − 2∆s). Each segment then en-

codes the number of offsets with two bytes, followed by

two bytes for each offset, resulting in a variable physical

length in Di. For example, in Figure 6(a), the nine in-

stances of {7, 6} appear in three consecutive segments,

which gives a total length of 12. Empty segments are

represented as two bytes indicating zero length. Iterat-

ing over an OLE group entails scanning the segmented
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offset list and reconstructing global offsets as needed.

The size SOLE
i of column group Gi is calculated as

SOLE
i = 4|Gi|+ di

(
4 + α|Gi|

)
+ 2

di∑
j=1

bij + 2zi, (1)

where bij is the number of segments of tuple tij , |Oij |
is the number of offsets for tij , and zi =

∑di

j=1|Oij | is

the total number of offsets—i.e., the number of non-

zero values—in the column group. The header size is

4|Gi|+ di
(
4 + α|Gi|

)
.

Run-Length Encoding (RLE): In RLE, a sorted

list of offsets is encoded as a sequence of runs. Each

run represents a consecutive sequence of offsets, via two

bytes for the starting offset and two bytes for the run

length. We store starting offsets as the difference be-

tween the offset and the ending offset of the preced-

ing run. Empty runs are used when a relative starting

offset is larger than the maximum length of 216. Sim-

ilarly, runs exceeding the maximum length are parti-

tioned into smaller runs. Iterating over an RLE group

entails scanning the runs, as well as reconstructing and

enumerating global offsets per run. The size SRLE
i of

column group Gi is calculated as

SRLE
i = 4|Gi|+ di

(
4 + α|Gi|

)
+ 4

di∑
j=1

rij , (2)

where rij is the number of runs for tuple tij . Again, the

header size is 4|Gi|+ di
(
4 + α|Gi|

)
.

Dense Dictionary Coding (DDC): The DDC

format uses a dense, fixed-length data array Di of n

entries. An entry at position k represents the kth row

as a reference to tuple tij , encoded as its position in

the dictionary, which includes zero if present. There-

fore, the size of the dictionary—in terms of the number

of distinct tuples di—determines the physical size of

each entry. In detail, we use two byte-aligned formats,

DDC1 and DDC2, with one and two bytes per entry.

Accordingly, these DDC formats are only applicable if

di ≤ 28 − 1 or di ≤ 216 − 1. The total size SDDC
i of

column group Gi is calculated as

SDDC
i =

{
4|Gi|+ diα|Gi|+ n if di ≤ 28 − 1

4|Gi|+ diα|Gi|+ 2n if 28 ≤ di ≤ 216 − 1,

(3)

where 4|Gi|+ diα|Gi| denotes the header size of column

indexes and the dictionary of value tuples.

Overall, these column encoding formats encompass

a wide variety of dense and sparse data as well as special

data characteristics. Because they are all value-based

formats, column co-coding and common runtime tech-

niques apply similarly to all of them.

3.3 Operations over Compressed Matrices

We now introduce efficient linear algebra operations

over a set X of column groups. Matrix block opera-

tions are composed of operations over column groups,

facilitating simplicity and extensibility with regard to

compression plans of heterogeneous encoding formats.

We write cv to denote element-wise scalar-vector mul-

tiplication as well as u ·v and u�v to denote the inner

and element-wise products of vectors, respectively.

Overview of Techniques: Table 3 provides an

overview of applied, encoding-format-specific tech-

niques. This includes pre-aggregation, post-scaling, and

cache-conscious techniques (*):

– Pre-Aggregation: The matrix-vector multiplication

q = Xv can be represented with respect to column

groups as q =
∑|X |

i=1

∑di

j=1(tij · vGi)1Oij
, where vGi

is the subvector of v corresponding to the indexes Gi
and 1Oij is the 0/1-indicator vector of offset list Oij .

A straightforward way to implement this computa-

tion iterates over tij tuples in each group, scanning

Oij and adding tij · vGi at reconstructed offsets to

q. However, the value-based representation of com-

pressed column groups allows pre-computation of

uij = tij · vGi once for each tuple tij . The more

columns co-coded and the fewer distinct tuples, the

more this pre-aggregation reduces the number of re-

quired floating point operations.

– Post-Scaling: The vector-matrix product q = v>X

can be written as qGi =
∑di

j=1

∑
l∈Oij

vltij for Gi ∈
X . We compute this as qGi =

∑di

j=1 tij(v · 1Oij
),

i.e., we sum up input-vector values according to the

offset list per tuple, scale this sum only once with

each value in tij (per column), and add the results

to the corresponding output entries.

Both pre-aggregation and post-scaling are distributive

law rewrites of sum-product optimization [31]. Since

multi-threaded vector-matrix multiplication is paral-

lelized over column groups, post-scaling also avoids false

sharing [18] if multiple threads would update disjoint

entries of the same cache lines. Furthermore, UC col-

umn groups are separately parallelized to avoid load

imbalance in case of large uncompressed groups.

Table 3 Overview of Basic Techniques.

Format Matrix-Vector Vector-Matrix

OLE Pre-aggregation, Post-scaling,
horiz. OLE scan* horiz. OLE scan*

RLE Pre-aggregation, Post-scaling,
horiz. RLE scan* horiz. RLE scan*

DDC Pre-aggregation, Post-scaling
DDC1 blocking*

Multi- row partitions, column groups,
threading UC separate UC separate
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Algorithm 1 Cache-Conscious OLE Matrix-Vector

Input: OLE column group Gi, vectors v, q, row range [rl, ru)
Output: Modified vector q (in row range [rl, ru))
1: for j in [1, di] do // distinct tuples

2: πij ← skipScan(Gi, j, rl) // find position of rl in Di

3: uij ← tij · vGi // pre-aggregate value
4: for bk in [rl, ru) by ∆c do // cache partitions in [rl, ru)
5: for j in [1, di] do // distinct tuples

6: for k in [bk,min(bk +∆c, ru)) by ∆s do // segm.
7: if πij ≤ bij + |Oij | then // physical data length

8: addSegment(Gi, πij ,uij , k,q) // update q, πij

Matrix-Vector Multiplication: Despite pre-

aggregation, pure column-wise processing would scan

the n × 1 output vector q once per tuple, resulting

in cache-unfriendly behavior for the typical case of

large n. We therefore use cache-conscious schemes for

OLE and RLE groups based on horizontal, segment-

aligned scans; see Algorithm 1 and Figure 7(a) for the

case of OLE. Multi-threaded operations parallelize over

segment-aligned partitions of rows [rl, ru), which guar-

antees disjoint results and thus avoids partial results per

thread. We find πij , the starting position of each tij in

Di via a skip scan that aggregates segment lengths until

we reach rl (line 2). To minimize the overhead of find-

ing πij , we use static scheduling (task partitioning). We

further pre-compute uij = tij · vGi once for all tuples

(line 3). For each cache partition of size ∆c (such that

∆c · α ·#cores fits in L3 cache, by default ∆c = 2∆s),

we then iterate over all distinct tuples (lines 5-8) but

maintain the current positions πij as well. The inner

loop (lines 6-8) then scans segments and adds uij via

scattered writes at reconstructed offsets to the output q

(line 8). RLE is similarly realized except for sequential

writes to q per run, special handling of partition bound-

aries, and additional state for the reconstructed start

offsets per tuple. In contrast, DDC does not require hor-

izontal scans but allows—due to random access—cache

blocking across multiple DDC groups. However, we ap-

ply cache blocking only for DDC1 because its tempo-

rary memory requirement is bound by 2 KB per group.

Vector-Matrix Multiplication: Similarly, de-

spite post-scaling, pure column-wise processing would

suffer from cache-unfriendly behavior because we would

scan the input vector v once for each distinct tuple. Our

cache-conscious OLE/RLE group operations therefore

again use horizontal, segment-aligned scans as shown in

Figure 7(b). Here we sequentially operate on cache par-

titions of v. The OLE, RLE, and DDC algorithms are

similar to matrix-vector multiplication, but in the in-

ner loop we sum up input-vector values according to the

given offset list or references, and finally, scale the ag-

gregates once with the values in tij . For multi-threaded

operations, we parallelize over column groups, where

disjoint results per column allow for simple dynamic

v1

Gi 

64K
segment

64K

64K
q

3

cache 
partition
(output)

value pre-agg
{7,6} {7,5}{3,4}

4
 

(a) Matrix-Vector

1 3

Gi 

{7,6} {7,5}{3,4}

v
64K

q

cache 
partition
(input)

64K 64K
value 

post-scaling

(b) Vector-Matrix

Fig. 7 Cache-Conscious OLE Operations.

task scheduling. The cache-partition size for OLE and

RLE is equivalent to matrix-vector (by default 2∆s)

except that RLE runs are allowed to cross partition

boundaries due to column-wise parallelization.

Special Matrix Multiplications: We also aim at

matrix-vector multiplication chains p = X>(w�(Xv)),

and transpose-self matrix multiplication R = X>X. We

effect the former via a matrix-vector multiply q = Xv,

an uncompressed element-wise multiply u = w�q, and

a vector-matrix multiply p = (u>X)> using the previ-

ously described column group operations. This block-

level, composite operation scans each block twice but

still avoids a second full pass over a distributed X.

Transpose-self matrix multiplication is effected via re-

peated vector-matrix multiplications. For each column

group Gi, we decompress {vk : k ∈ Gi }, one column

vk at a time, and compute p = v>k Xi≤j , where the

condition i ≤ j exploits the symmetry of X>X. Vec-

tors originating from single-column DDC groups are

not decompressed because DDC allows random access

and hence efficient vector-matrix multiplication. Each

non-zero output cell pl is written to the upper trian-

gular matrix only, i.e., to Rk,l if k ≤ l and Rl,k oth-

erwise. Finally, we copy the upper triangle in a cache-

conscious manner to the lower triangle. Multi-threaded

operations parallelize over ranges of column groups.

Other Operations: Various common operations

can be executed very efficiently over compressed ma-

trices without scanning the entire data. In general, this

includes value-based operations that leave the non-zero

structure unchanged and operations that are efficiently

computed via counts. Example operations include:

– Matrix-Scalar Operations: Sparse-safe matrix-scalar

operations—i.e., operations that can safely ignore

zero inputs—such as element-wise matrix power Xc

or element-wise multiplication cX are carried out—

for all encoding formats—with a single pass over

the set of tuples Ti for each column group Gi. For

sparse-unsafe operations, DDC groups similarly pro-

cess only the value tuples because zeros are repre-

sented, whereas OLE and RLE compute the new

value for zeros once, determine a zero indicator vec-

tor, and finally create a modified compressed group.
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– Unary Aggregates: We compute aggregates like sum

or colSums via counts by
∑|X |

i=1

∑di

j=1|Oij |tij . For

each value, we aggregate the RLE run lengths or

OLE lengths per segment, whereas for DDC, we

count occurrences per tuple reference. These counts

are then scaled by the values to compute the aggre-

gate. In contrast, min, max, colMins, and colMaxs

are computed—given zero indicators per column—

over value tuples without accessing the data. Row

aggregates such as rowSums, rowMins, or rowMaxs

are again computed in a cache-conscious manner.

– Statistical Estimates: Similar to unary aggregates,

unweighted order statistics such as quantile or

median, and higher-order statistics such as moment

can be efficiently computed via counts. The idea is

to use the distinct value tuples—padded with a sin-

gle zero entry if necessary—and their corresponding

counts as input to existing uncompressed weighted

statistics, where we use the counts as weights.

– Append Operations: Finally, cbind operations that

append another matrix column-wise to X—as com-

monly used for intercept computation, where we ap-

pend a column of 1’s—are done via simple concate-

nation of column groups by reference.

Although the operation efficiency depends on the indi-

vidual encoding formats, we see common characteristics

because all of our formats are value-based.

4 Compression Planning

Given an uncompressed n×m matrix block X, we au-

tomatically choose a compression plan, that is, a par-

titioning of compressible columns into column groups

and a compression scheme per group. To keep the plan-

ning costs low, we provide novel sampling-based tech-

niques for estimating the compressed size of an OLE,

RLE, or DDC column group Gi. The size estimates are

used for finding the initial set of compressible columns

and a good column-group partitioning. Since exhaustive

(O(mm)) and brute-force greedy (O(m3)) partitioning

are infeasible, we further provide two techniques for col-

umn partitioning, including a new bin-packing-based

technique, as well as an efficient greedy algorithm with

pruning and memoization. Together, these techniques

drastically reduce the number of candidate groups. Fi-

nally, we describe the overall compression algorithm in-

cluding corrections for estimation errors.

4.1 Estimating Compressed Size

We present our estimators for distinct tuples di, non-

zero tuples zi, segments bij , and runs rij that are needed

to calculate the compressed size of a column group Gi
with formulas (1), (2) and (3). The estimators are based

on a small sample of rows S drawn randomly and uni-

formly from X with |S| � n. We have found experi-

mentally that being conservative (overestimating com-

pressed size) and correcting later on yields the most ro-

bust co-coding choices, so we make conservative choices

in our estimator design.

Number of Distinct Tuples: Sampling-based es-

timation of the number of distinct tuples di is a well

studied but challenging problem [21,37,73,87]. We have

found that the hybrid estimator [37] is satisfactory for

our purposes, compared to more expensive estimators

like KMV [12] or Valiants’ estimator [87]. The idea is to

first estimate the degree of variability in the population

frequencies of the tuples in Ti as low, medium, or high,

as measured by the squared coefficient of variation γ2 =

(1/d)
∑d

j=1(nj−n)2/n2, where nj is the population fre-

quency of the jth tuple in Ti and n = (1/d)
∑d

j=1 nj =

n/d is the average tuple frequency. It is shown in [37]

that γ2 can be estimated by γ̂2(d̂) = max(γ̂2
0(d̂), 0),

where γ̂2
0(d̂) = (d̂/|S|2)

∑|S|
j=1 j(j−1)hj+(d̂/n)+1; here

d̂ is an estimator of d and hj is the number of tuples

that appear exactly j times in the sample (1 ≤ j ≤ |S|).
We then apply a “generalized jackknife” estimator that

performs well for the respective variability regime to

obtain an estimate d̂i with [37]:

d̂hybrid =


d̂uj2 if 0 ≤ γ̂2(d̂uj1) < α1

d̂uj2a if α1 ≤ γ̂2(d̂uj1) < α2

d̂Sh3 if α2 ≤ γ̂2(d̂uj1),

(4)

where d̂uj1, d̂uj2, d̂uj2a, and d̂Sh3 denote the unsmoothed

first- and second-order jackknife estimators, the stabi-

lized unsmoothed second-order jackknife estimator, and

a modified Shlosser estimator, respectively. These esti-

mators have the general form

d̂ = dS +K(h1/|S|), (5)

where dS is the number of distinct tuples in the sample

and K is a constant computed from the sample. For

example, the basic d̂uj1 estimator is derived using a first-

order approximation under which each nj is assumed to

equal n/d, leading to a value of K = d(1 − q), where

q = |S|/n is the sampling fraction. We then substitute

this value into Equation (5) and solve for d:

d = dS + d(1− q)(h1/|S|)

d̂uj1 =
(
1− (1− q)(h1/|S|)

)−1
dS .

(6)

For the sake of a self-contained presentation, we also

include the definitions of d̂uj2, d̂uj2a, and d̂Sh3 but refer
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to [37] for a detailed derivation and analysis of these

estimators. The estimator d̂uj2 is defined as follows:

d̂uj2 =
(
1− (1− q)(h1/|S|)

)−1

×
(
dS − h1(1− q) ln(1− q)γ̂2(d̂uj1)/q

)
,

(7)

which explicitly takes into account the variability of

tuple frequencies. The estimator d̂uj2a is a “stabilized”

version of d̂uj2 that is obtained by removing any tuple

whose frequency in the sample exceeds a fixed value c.

Then d̂uj2 is computed over the remaining data and is

incremented by the number of removed tuples. Finally,

the modified Shlosser estimator is given by

d̂Sh3 = dS + h1

( ∑|S|
i=1 iq

2(1− q2)i−1hi∑|S|
i=1(1− q)i

(
(1 + q)i − 1

)
hi

)

×

( ∑|S|
i=1(1− q)ihi∑|S|

i=1 iq(1− q)i−1hi

)2 (8)

which assumes that E[hi]/E[h1] ≈ Hi/H1, where Hj is

the number of tuples having a population frequency j.

Number of OLE Segments: In general, not all

elements of Ti will appear in the sample. Denote by T o
i

and T u
i the sets of tuples observed and unobserved in

the sample, and by doi and dui their cardinalities. The

latter can be estimated as d̂ui = d̂i − doi , where d̂i is

obtained as described above. We also need to estimate

the population frequencies of both observed and unob-

served tuples. Let fij be the population frequency of

tuple tij and Fij the sample frequency. A näıve esti-

mate scales up Fij to obtain fnäıve
ij = (n/|S|)Fij . Note

that
∑

tij∈T o
i
fnäıve
ij = n implies a zero population fre-

quency for each unobserved tuple. We adopt a standard

way of dealing with this issue and scale down the näıve

frequency estimates by the estimated “coverage” Ci of

the sample Ci =
∑

tij∈T o
i
fij/n. The usual estimator of

coverage, originally due to Turing (see [35]), is

Ĉi = max
(
1−N (1)

i /|S|, |S|/n
)
. (9)

This estimator assumes a frequency of one for un-

seen tuples, computing the coverage as one minus the

fraction of singletons N
(1)
i in the sample—that is the

number of tuples that appear exactly once in S (i.e.,

N
(1)
i = h1). We add the lower sanity bound |S|/n to

handle the special case N
(1)
i = |S|. For simplicity, we

assume equal frequencies for all unobserved tuples. The

resulting frequency estimation formula for tuple tij is

f̂ij =

{
(n/|S|)ĈiFij if tij ∈ T o

i

n(1− Ĉi)/d̂
u
i if tij ∈ T u

i .
(10)

We can now estimate the number of segments bij in

which tuple tij appears at least once (this modified

interval 4 (η4=5)  

99 9 9 0 8.28.2 9 9 0 9 9 3 3 9 09 9 9

border

offsets: 1 2 ...

est. unseen 9s: 10
→ est. #runs(9): 5.9

(6.875 + 4 · -0.25)
→ true #runs(9): 5 

unseenRLE
{2} 9

3 A=0 A=0 A=-1 A=1

Fig. 8 Estimating the Number of RLE Runs r̂ij .

definition of bij ignores empty segments for simplicity

with negligible error in our experiments). There are l =

n−|S| unobserved offsets and estimated f̂uiq = f̂iq−Fiq

unobserved instances of tuple tiq for each tiq ∈ Ti. We

adopt a maximum-entropy (maxEnt) approach and as-

sume that all assignments of unobserved tuple instances

to unobserved offsets are equally likely. Denote by B the

set of segment indexes and by Bij the subset of indexes

corresponding to segments with at least one observation

of tij . Also, for k ∈ B, let lk be the number of unob-

served offsets in the kth segment and Nijk the random

number of unobserved instances of tij assigned to the

kth segment (Nijk ≤ lk). Set Yijk = 1 if Nijk > 0

and Yijk = 0 otherwise. Then we estimate bij by its

expected value E[bij ] under our maxEnt model:

b̂ij = E[bij ] = E
[
|Bij |+

∑
k∈B\Bij

Yijk
]

= |Bij |+
∑

k∈B\Bij

P (Nijk > 0)

= |Bij |+
∑

k∈B\Bij

[1− h(lk, f̂
u
ij , l)],

(11)

where h(a, b, c) =
(
c−b
a

)/(
c
a

)
is a hypergeometric prob-

ability. Note that b̂ij ≡ b̂ui for tij ∈ T u
i , where b̂ui is

the value of b̂ij when f̂uij = (1− Ĉi)n/d̂
u
i and |Bij | = 0.

Thus our estimate of the sum
∑di

j=1 bij in Equation (1)

is
∑

tij∈T o
i
b̂ij + d̂ui b̂

u
i .

Number of Non-Zero Tuples: We estimate the

number of non-zero tuples as ẑi = n−f̂i0, where f̂i0 is an

estimate of the number of zero tuples in X:Gi . Denote by

Fi0 the number of zero tuples in the sample. If Fi0 > 0,

we can proceed as above and set f̂i0 = (n/|S|)ĈiFi0,

where Ĉi is given by Equation (9). If Fi0 = 0, then we

set f̂i0 = 0; this estimate maximizes ẑi and hence ŜOLE
i

per our conservative estimation strategy.

Number of RLE Runs: The number of RLE runs

rij for tuple tij is estimated as the expected value of

rij under the maxEnt model. Because this expected

value is very hard to compute exactly and Monte Carlo

approaches are too expensive, we approximate E[rij ]

by considering one interval of consecutive unobserved

offsets at a time as shown in Figure 8. Adjacent in-

tervals are separated by a “border” comprising one

or more observed offsets. As with the OLE estimates,

we ignore the effects of empty and very long runs.

Denote by ηk the length of the kth interval and set

η =
∑

k ηk. Under the maxEnt model, the number fuijk
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of unobserved tij instances assigned to the kth interval

is hypergeometric, and we estimate fuijk by its mean

value: f̂uijk = (ηk/η)f̂uij . Given that f̂uijk instances of

tij are assigned randomly and uniformly among the

ηk possible positions in the interval, the number of

runs rijk within the interval (ignoring the borders) is

known to follow a so-called “Ising-Stevens” distribu-

tion [46, pp. 422-423] and we estimate rijk by its mean:

r̂ijk = f̂uijk(ηk − f̂uijk + 1)/ηk. To estimate the contribu-

tion from the borders, assume that each border com-

prises a single observed offset. For a small sampling

fraction this is the likely scenario but we handle bor-

ders of arbitrary width. If the border offset that sep-

arates intervals k and k + 1 is an instance of tiq for

some q 6= j, then Aijk = 0, where Aijk is the contri-

bution to rij from the border; in this case our estimate

is simply Âijk = 0. If the border offset is an instance

of tij , then Aijk depends on the values of the unseen

offsets on either side. If both of these adjacent offsets

are instances of tij , then Aijk = −1, because the run

that spans the border has been double counted. If nei-

ther of these adjacent offsets are instances of tij , then

Aijk = 1, because the instance of tij at the border

constitutes a run of length 1. We estimate Aijk by its

approximate expected value, treating the intervals as

statistically independent:

Âijk = E[Aijk]

≈

(
ηk − f̂uijk

ηk

)(
ηk+1 − f̂uij(k+1)

ηk+1

)
(1)

+

(
f̂uijk
ηk

)(
f̂uij(k+1)

ηk+1

)
(−1)

= 1− (2f̂uijk/ηk) = 1− (2f̂uij/η).

(12)

We modify this formula appropriately for the left- and

rightmost borders. Our final estimate for the number

of runs is r̂ij =
∑

k r̂ijk +
∑

k Âijk.

4.2 Partitioning Columns into Groups

Partitioning compressible columns into co-coded col-

umn groups comprises two major steps: column parti-

tioning and column grouping. Column partitioning di-

vides a given set of compressible columns into indepen-

dent partitions in order to reduce the grouping costs.

Column grouping then considers disjoint combinations

of columns per partition. The overall objective of both

steps is to maximize the compression ratio. Since ex-

haustive and brute-force grouping are infeasible, we fo-

cus on inexact but fast techniques.

Column Partitioning: We observed empirically

that (1) column grouping usually generates groups of

few columns, and that (2) the time needed for group

extraction from the sample, to estimate its size, in-

creases as the sample size, the number of distinct tu-

ples, or the matrix density increases. These two obser-

vations motivate a heuristic strategy where we divide

the columns into a set of independent partitions and

then apply grouping within each partition to form the

column groups. Due to the super-linear complexity of

grouping, partitioning can significantly reduce the over-

all costs. In detail, we provide two heuristic techniques:

– Static Partitioning: Correlated columns often ap-

pear in close proximity to each other. Static parti-

tioning exploits this by dividing a list of columns

into dm/ke consecutive column partitions.

– Bin Packing: Since data characteristics affect group-

ing costs, we also provide a bin-packing-based tech-

nique. The weight of the ith column is the cardi-

nality ratio d̂i/n, indicating its estimated contribu-

tion to the grouping costs. The capacity of a bin

is a tuning parameter β, which ensures moderate

grouping costs. Bin packing minimizes the number

of bins, which maximizes grouping potential while

controlling the processing costs. We made the de-

sign choice of a constant bin capacity—independent

of zi—to ensure constant compression throughput

irrespective of blocking configurations. We solve this

problem with the first-fit decreasing heuristic [45].

Column Grouping: A brute-force greedy method

for grouping a set of compressible columns into col-

umn groups starts with singleton groups and executes

merging iterations. At each iteration, we merge the two

groups yielding maximum compression ratio with re-

gard to the entire block, i.e., minimum absolute change

in size ∆Ŝij = Ŝij− Ŝi− Ŝj . We terminate when no fur-

ther size reductions are possible, i.e., no change in size

is below 0. Although compression ratios are estimated

from a sample, the cost of the brute-force method is

O(m3). Our greedy column grouping algorithm (Algo-

rithm 2) improves this näıve brute-force method via

pruning and memoization. We execute merging itera-

tions until the working set W does not change any-

more (lines 2-14). In each iteration, we enumerate all

|W |·(|W |−1)/2 candidate pairs of groups (lines 4-5). A

candidate can be safely pruned if any of its input groups

has a size smaller than the currently best change in size

∆Ŝopt, i.e., the change in size of the best group opt

(lines 7-8). This pruning threshold uses a natural lower

bound Ŝij = max(Ŝi, Ŝj) because at best the smaller

group does not add any size. Substituting Ŝij into ∆Ŝij

yields the lower bound ∆Ŝij = −min(Ŝi, Ŝj). Although
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Algorithm 2 Greedy Column Grouping
Input: A set of columns C
Output: A set of column groups CG
1: W ′ ← C, W ← ∅
2: while W ′ 6= W do // until no further compression

3: W ←W ′, opt← null

4: for all i in 1 to |W | do
5: for all j in i+ 1 to |W | do
6: // Candidate pruning (without group extraction)

7: if −min(ŜWi
, ŜWj

) > ∆Ŝopt then
8: continue

9: // Group creation with memoization

10: Wij ← createGroup(Wi,Wj ,memo)

11: if ∆ŜWij
< ∆Ŝopt then

12: opt←Wij

13: if ∆Ŝopt < 0 then // group selection

14: W ′ ←W ∪ opt− opti − optj // modify working set

15: return CG←W ′

this pruning does not change the worst-case complex-

ity, it works very well in practice: e.g., on Census, we

prune 2,789 of 3,814 candidates. Any remaining can-

didate is then evaluated, which entails extracting the

column group from the sample, estimating its size Ŝ,

and updating the best group opt (lines 10-12). Observe

that each merging iteration enumerates O(|W |2) candi-

dates, but—ignoring pruning—only O(|W |) candidates

have not been evaluated in prior iterations; these are the

ones formed by combining the previously merged group

with each element of the remaining working set. Hence,

we apply memoization in createGroup to reuse com-

puted statistics such as Ŝij , which reduces the overall

worst-case complexity—in terms of group extractions—

from O(m3) to O(m2). On Census, we reuse 501 of

the remaining 1,025 candidates. Finally, we select the

merged group and update the working set (lines 13-

14). Maintaining opt within the memo table across it-

erations can improve pruning efficiency but requires re-

moving overlapping groups upon group selection.

4.3 Compression Algorithm

We now describe the matrix block compression algo-

rithm (Algorithm 3). Note that we transpose the input

in case of row-major dense or sparse formats to avoid

performance issues due to column-wise extraction.

Planning Phase (lines 2-12): Planning starts by

drawing a sample of rows S from X. For each column i,

the sample is first used to estimate the compressed col-

umn size SC
i by ŜC

i = min(ŜRLE
i , ŜOLE

i , ŜDDC
i ), where

ŜRLE
i , ŜOLE

i , and ŜDDC
i are obtained by substituting

the estimated d̂i, ẑi, r̂ij , and b̂ij into formulas (1)–

(3). We conservatively estimate the uncompressed col-

umn size as ŜUC
i = min(nα, ẑi(4 + α)), which covers

both dense and sparse, with moderate underestimation

for sparse as it ignores CSR row pointers. However,

Algorithm 3 Matrix Block Compression
Input: Matrix block X of size n×m
Output: A set of compressed column groups X
1: CC ← ∅, CUC ← ∅, G ← ∅, X ← ∅
2: // Planning phase – – – – – – – – – – – – – – – – – – –

3: S ← sampleRowsUniform(X, sample size)
4: for all columns i in X do // classify
5: cmp ratio← ẑiα/min(ŜRLE

i , ŜOLE
i , ŜDDC

i )
6: if cmp ratio > 1 then

7: CC ← CC ∪ i
8: else

9: CUC ← CUC ∪ i
10: bins← runBinPacking(CC) // group
11: for all bins b in bins do

12: G ← G ∪ greedyColumnGrouping(b)
13: // Compression phase – – – – – – – – – – – – – – – – –

14: for all column groups Gi in G do // compress

15: do
16: biglist← extractBigList(X,Gi)
17: cmp ratio← getExactCmpRatio(biglist)
18: if cmp ratio > 1 then
19: X ← X ∪ compressBigList(biglist), break
20: k ← removeLargestColumn(Gi)
21: CUC ← CUC ∪ k
22: while |Gi| > 0
23: return X ← X ∪ createUCGroup(CUC)

this estimate allows column-wise decisions independent

of |CUC|, where sparse-row overheads might be amor-

tized in case of many columns. Columns whose esti-

mated compression ratio ŜUC
i /ŜC

i exceeds 1 are added

to a compressible set CC. In a last step, we divide the

columns in CC into bins and apply our greedy column

grouping (Algorithm 2) per bin to form column groups.

Compression Phase (lines 13-23): The compres-

sion phase first obtains exact information about the pa-

rameters of each column group and uses this informa-

tion to adjust the groups, correcting for any errors in-

duced by sampling during planning. The exact informa-

tion is also used to make the final decision on encoding

formats for each group. In detail, for each column group

Gi, we extract the “big” (i.e., uncompressed) list that

comprises the set Ti of distinct tuples together with the

uncompressed lists of offsets for the tuples. The big lists

for all groups are extracted during a single column-wise

pass through X using hashing. During this extraction

operation, the parameters di, zi, rij , and bij for each

group Gi are computed exactly, with negligible over-

head. These parameters are used in turn to calculate

the exact compressed sizes SOLE
i , SRLE

i , and SDDC
i and

exact compression ratio SUC
i /SC

i for each group.

Corrections: Because the column groups are orig-

inally formed using compression ratios that are esti-

mated from a sample, there may be false positives, i.e.,

purportedly compressible groups that are in fact incom-

pressible. Instead of simply storing false-positive groups

as part of a single UC group, we attempt to correct the

group by removing the column with largest estimated
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compressed size. The correction process is repeated un-

til the remaining group is either compressible or empty.

After each group has been corrected, we choose the op-

timal encoding format for each compressible group Gi
using the exact parameter values di, zi, bij , and rij to-

gether with the formulas (1)–(3). The incompressible

columns are collected into a single UC column group

that is encoded in sparse or dense format based on the

exact number of non-zeros.

Parallel Compression: Our compression algo-

rithm also allows for straightforward parallelization.

For multi-threaded compression, we simply apply a

multi-threaded transpose and replace the sequential

for loops on lines 4, 11, and 14 with parallel parfor

loops because these loops are free of loop-carried de-

pendencies. For distributed compression, we retain a

blocked matrix representation and compress matrix

blocks independently in a data-local manner.

5 Experiments

We study CLA in SystemML over a variety of ML pro-

grams and real-world datasets in order to understand

compression characteristics and operation performance.

To summarize, the major insights are:

Operations Performance: CLA achieves in-

memory matrix-vector multiply performance close to

uncompressed operations without need for decompres-

sion. Sparse-safe scalar and aggregate operations show

huge improvements due to value-based computation.

Compression Ratio: CLA yields substantially

better compression ratios than lightweight general-

purpose compression. Hence, CLA provides large end-

to-end performance improvements, of up to 9.2x and

2.6x, respectively, when uncompressed or lightweight-

compressed matrices do not fit in memory.

Effective Compression Planning: Sampling-

based compression planning yields good compression

plans—i.e., good choices of encoding formats and co-

coding schemes, and thus, good compression ratios—at

moderate costs that are easily amortized.

5.1 Experimental Setting

Cluster Setup: We ran all experiments on a

1+6 node cluster, i.e., one head node of 2x4 Intel

E5530 @ 2.40 GHz-2.66 GHz with hyper-threading en-

abled and 64 GB RAM @800 MHz, as well as 6 nodes

of 2x6 Intel E5-2440 @ 2.40 GHz-2.90 GHz with hyper-

threading enabled, 96 GB RAM @1.33 GHz (ECC, reg-

istered), 12x2 TB disks, 10Gb Ethernet, and Cen-

tOS Linux 7.3. The nominal peak performance per

Table 4 ULA/CLA Default Parameters.

Parameter Value

Matrix block size 16,384
Sparsity threshold nnz/(n ·m) nnz/(n ·m) < 0.4 ∧

SUC
sparse < SUC

dense

Sample fraction q 0.05
Hybrid estimator α1/α2 0.9 / 30

Column partitioning Bin Packing
Bin capacity β 3.2 · 10−5

OLE/RLE cache block size ∆c 2∆s = 217

DDC cache block size 2,048

node for memory bandwidth and floating point oper-

ations are 2x32 GB/s from local memory (we measured

47.9 GB/s), 2x12.8 GB/s over QPI (Quick Path Inter-

connect), and 2x115.2 GFLOP/s. We used OpenJDK

1.8.0, and Apache Hadoop 2.7.3, configured with 11

disks for HDFS and local working directories. We ran

Apache Spark 2.1, in yarn-client mode, with 6 execu-

tors, 25 GB driver memory, 60 GB executor memory,

and 24 cores per executor. Finally, we used Apache Sys-

temML 0.14 (RC1, April 2017) with default configura-

tion, except for a larger block size of 16K rows.

Implementation Details: We integrated CLA

into SystemML; if enabled, the system automatically

injects—for any multi-column input matrix—a so-

called compress operator via rewrites, after initial read

or text conversion but before checkpoints. This applies

to both single-node and distributed Spark operations,

where the execution type is chosen based on mem-

ory estimates. The compress operator transforms an

uncompressed into a compressed matrix block includ-

ing compression planning. Making our compressed ma-

trix block a subclass of the uncompressed matrix block

yielded seamless integration of all operations, serializa-
tion, buffer pool interactions, and dynamic recompila-

tion. In case of unsupported operations, we automati-

cally decompress and apply uncompressed operations,

which was not necessary in our end-to-end experiments.

Baseline Comparisons: To isolate the effects of

compression, we compare CLA against Apache Sys-

temML 0.14 with (1) uncompressed linear algebra

(ULA), which uses either sparse or dense Java lin-

ear algebra operations2, (2) heavyweight compression

(Gzip), and (3) lightweight compression (Snappy and

LZ43), where we use native compression libraries and

ULA. We also compare with (4) CSR-VI [52], a sparse

format with dictionary encoding, and D-VI, a derived

dense format. Table 4 shows the general as well as

CLA-specific configuration parameters used throughout

2 The results with native BLAS libraries would be similar
because memory-bandwidth and I/O are the bottlenecks.
3 For consistency with previously published results [32], we

use Snappy, which was the default codec in Spark 1.x. How-
ever, we also include LZ4, which is the default in Spark 2.x.
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Table 5 Compression Plans of Real Datasets (min/max counts over multiple runs, number of columns per type in parentheses).

Dataset m |X | #OLE #RLE #DDC1 #DDC2 #UC #Values

Higgs 28 17 0 0 1 (4) 15 (15) 1 (9) 218,739
Census 68 14 4 (20) 7 (27) 2 (14) 0 0 16,563

′′ 16 5 (24) 9 (34) 3 (20) ′′ ′′ 22,719
Covtype 54 28 4 (4) 18 (43) 4 (4) 2 (2) 0 14,026

′′ 29 5 (5) 19 (44) ′′ ′′ ′′ 14,027
ImageNet 900 604 425 (559) 0 170 (306) 0 0 95,002

′′ 627 457 (594) ′′ 187 (341) ′′ ′′ 100,594
Mnist8m 784 767 578 (586) 0 198 (198) 0 0 187,195

′′ 781 583 (586) ′′ ′′ ′′ ′′ 200,815
Airline67 29 23 10 (10) 3 (4) 2 (3) 7 (8) 0 42,016

′′ 25 13 (13) 4 (7) 2 (4) ′′ ′′ 43,327

our experiments unless otherwise specified. The sparsity

threshold indicates when we use a sparse uncompressed

block representation and operations. For the hybrid es-

timator from Equation (4), we use the recommended

threshold parameters of α1 = 0.9 and α2 = 30 [37], nu-

merically stable implementations, and for d̂uj2a, a mod-

ified stabilization cut-off c = maxtij∈T o
i

(Fij)/2 instead

of c = 50 as it provided better robustness in our setting.

ML Programs and Datasets: For end-to-end ex-

periments, we used several common algorithms: Lin-

regCG (linear regression conjugate gradient), LinregDS

(linear regression direct solve), MLogreg (multinomial

logistic regression), GLM (generalized linear models,

poisson log), L2SVM (L2 regularized support vector

machines), and PCA (principal component analysis) as

described in Table 2. We configured these algorithms as

follows: max outer iterations moi = 10, max inner iter-

ations mii = 5, intercept icp = 0, convergence tolerance

ε = 10−9, regularization λ = 10−3. LinregDS/PCA are

non-iterative and LinregCG is the only iterative algo-

rithm without nested loops. We ran all experiments over

real and scaled real datasets, introduced in Table 1. For

our end-to-end experiments, we used (1) the InfiMNIST

data generator [19] to create an Mnist480m dataset of

480 million observations with 784 features (1.1 TB in bi-

nary format) and binomial, i.e., binary, class labels, as

well as (2) replicated versions of the ImageNet dataset

and again binomial labels. We use binomial4 labels to

compare a broad range of ML algorithms.

5.2 Compression and Operations

To provide a deeper understanding of both compres-

sion and operations performance, we discuss several

micro benchmarks. Recall that our overall goal is to

4 For Mnist with its original 10 classes, we created the labels
with y← (y == 7) (i.e., class 7 against the rest), whereas for
ImageNet with its 1,000 classes, we created the labels with
y ← (y0 > (max(y0) − (max(y0) − min(y0))/2)), where we
derived y0 = Xw from the data X and a random model w.

achieve excellent compression while maintaining oper-

ations performance close to other methods, in order to

achieve significant end-to-end performance benefits. We

conducted these micro benchmarks on a single worker

node with 80 GB Java heap size. We used 5 warmup

runs for just-in-time compilation, and report the aver-

age execution time over 20 subsequent runs.

Summary of Compression Plans: To explain the

micro benchmarks on operations performance, we first

summarize the compression layouts for our datasets.

Due to sample-based compression planning with ran-

dom seeds, there are moderate variations between lay-

outs for different runs. However, the compressed sizes

differed by less than 3.9% in all cases. Table 5 shows

the layouts observed over 20 runs in terms of the num-

ber of column groups per type (with the number of

columns in parentheses), as well as the total num-

ber of distinct tuples after co-coding; we report min

and max counts as two rows—these coincide for Higgs.

We see that OLE and DDC are more common than

RLE. Both OLE and DDC are applied on almost ev-
ery dataset, targeting complementary sparse and dense

data and thereby handling non-uniform sparsity. Fur-

thermore, we see that Higgs is the only dataset with an

uncompressed column group, and that co-coding was

applied on all datasets. The datasets Higgs, ImageNet,

Mnist8m, and to some extend Airline78, show a large

number of values, although we excluded the uncom-

pressed group of Higgs. This is because we use local

value dictionaries per column group, which store com-

mon values across groups redundantly. Compared to

previous results [32], the new DDC column encoding

format reduced the number of distinct tuples on Cen-

sus, ImageNet, and Mnist8m.

Compression: Figure 9 shows the times for cre-

ating a single compressed matrix block. Figure 9(a)

shows the absolute compression times in log scale,

where we see reasonable average bandwidth across all

datasets of roughly 100 MB/s (ranging from 67.7 MB/s

to 184.4 MB/s), single-threaded. In comparison, the
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Fig. 9 Compression Time (Gzip single-threaded, CLA single- and multi-threaded (CLA ST/MT), Snappy single-threaded).
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Fig. 10 Matrix-Vector (MV) and Vector-Matrix (VM) Multiplication Time and Bandwidth.

single-threaded compression throughput of the general-

purpose Gzip and Snappy using native libraries,

ranged from 6.9 MB/s to 35.6 MB/s and 156.8 MB/s

to 353 MB/s, respectively. Figure 9(b) further shows
the time breakdown of individual compression steps.

Bar heights below 100% are due to the final extrac-

tion of uncompressed column groups. Depending on the

dataset, any of the three compression steps (classifica-

tion, column grouping, or the actual compression) can

turn into bottlenecks. The classification time is largely

influenced by the time for matrix transposition, espe-

cially for sparse datasets (i.e., Covtype, ImageNet, and

Mnist8m) because sparse transpose is challenging with

regard to its cache-conscious implementation. However,

repeated row-wise extraction easily amortizes the trans-

pose cost compared to column-wise extraction. We also

report multi-threaded compression times, but only for

CLA because Gzip or Snappy would require us to split

the matrix into multiple blocks to allow multi-threaded

compression and deserialization, parallelized over indi-

vidual blocks. The observed speedups are reasonable,

ranging from 2x to 7x which is largely affected by the ra-

tio of compression time spent in column co-coding. Fig-

ure 9(b) shows the time breakdown for multi-threaded

compression, showing that, for example, Census is af-

fected by load imbalance of column grouping because

we parallelize over bins, where the number of bins limits

the maximum degree of parallelism.

Matrix-Vector Multiplication: Figure 10(a) and

10(b) show the single- and multi-threaded matrix-

vector multiplication time. Despite row-wise updates

of the target vector (in favor of uncompressed row-

major layout), CLA shows performance close to or bet-

ter than ULA, with two exceptions of Mnist8m and Air-

line78, where CLA performs significantly worse. This

behavior is mostly caused by (1) a large number of

values in OLE column groups which require multiple

passes over the output vector, and (2) the size of the

output vector. For Mnist8m (8M rows) and Airline67

(14M rows), the output vector does not entirely fit

into the L3 cache (15 MB). Accordingly, we see sub-

stantial improvements by cache-conscious CLA opera-

tions, especially for multi-threaded operations due to

cache thrashing effects. ULA constitutes a competi-

tive baseline because its multi-threaded implementa-

tion achieves peak single-socket or remote memory
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Fig. 11 Matrix-Scalar and Unary Aggregate Operation Time.

bandwidth of ≈ 25 GB/s. Multi-threaded CLA oper-

ations show a speedup similar to ULA due to par-

allelization over logical row partitions, in some cases

even better. For example, Figure 10(c) shows the ef-

fective memory bandwidth of matrix-vector multiplica-

tion on ImageNet. We see that with increasing number

of threads, ULA quickly saturates peak single-socket

or remote QPI memory bandwidth (because without

NUMA-awareness the JVM allocates the matrix locally

on the socket of the current thread). In contrast, CLA

achieves almost a 2x improvement with 24 threads due

to smaller bandwidth requirements and because multi-

threading mitigates any additional overheads.

Vector-Matrix Multiplication: Figures 10(d)
and 10(e) further show the single- and multi-threaded

vector-matrix multiplication time. The column-wise up-

dates favor CLA’s column-wise layout and hence we

see generally better performance. CLA is again slower

for Mnist8m and Airline78, due to large input vec-

tors that exceed the L3 cache size and repeated scat-

tered scans of these vectors for many values. How-

ever, cache-conscious CLA operations overcome this is-

sue and achieve substantial improvements, especially

in case of multi-threaded operations. ULA is again a

strong baseline at peak single-socket or remote memory

bandwidth. It is noteworthy that CLA largely benefits

from our post-scaling technique by avoiding false shar-

ing, which caused slowdowns by more than an order of

magnitude on some of our datasets. As with matrix-

vector products but to an even greater degree, multi-

threaded CLA vector-matrix operations exhibit greater

speedup than ULA because ULA becomes memory-

bandwidth bound, whereas CLA has less bandwidth re-

quirements due to smaller size in compressed form. For

example, Figure 10(f) shows the effective bandwidth on

ImageNet, with varying number of threads, where CLA

exceeds the peak single-socket/remote memory band-

width of 25 GB/s by more than 2.5x.

Matrix-Scalar Operations: We also investigate

sparse-safe and -unsafe matrix-scalar operations, where

the former only processes non-zero values. Figure 11(a)

shows the results for the sparse-safe X^2. CLA performs

X^2 on the distinct value tuples with a shallow (by-

reference) copy of existing offset lists or tuple refer-

ences, whereas ULA has to compute every non-zero en-

try. We see improvements of three to five orders of mag-

nitude, except for Higgs which contains a large uncom-

pressed group with 9 out of 28 columns. Figure 11(d)

shows the results for the sparse-unsafe X+7, where CLA

and ULA perform similarly because CLA has to ma-

terialize modified offset lists that include added and

removed values. The improvements on Higgs and Cen-

sus are due to a large fraction of columns being en-

coded as DDC columns groups. DDC computes sparse-

unsafe operations like X+7 purely over distinct value

tuples because zeros are represented in this dense en-

coding, eliminating the need to add or remove tuples.

Finally, Mnist8m is not applicable here (N/A) because

SystemML’s dense matrix blocks are limited to 16 GB.

Unary Aggregate Operations: Figures 11(b)

and 11(e) compare the single- and multi-threaded ag-

gregation time for sum(X). Due to efficient counting per

value—via scanning of OLE segment lengths and RLE

run lengths, or counting of DDC references—we see im-

provements of up to 1.5 orders of magnitude compared

to ULA, which is at peak memory bandwidth. The

only exception is Higgs due to its large uncompressed

column group. Multi-threaded CLA operations show
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Fig. 12 Decompression Time (Gzip and Snappy single-
threaded, CLA single- and multi-threaded (CLA ST/MT)).

runtime improvements up to an order of magnitude,

slightly worse than ULA. Furthermore, Figures 11(c)

and 11(f) show the single- and multi-threaded aggre-

gation time for rowSums(X), which is more challenging

on compressed column groups as it does not allow for

efficient counting per value and the output is a two col-

umn matrix for row sums and corrections. These cor-

rections are necessary because sum(X) and rowSums(X)

use a numerically stable Kahan addition [86]. However,

we see performance close to ULA operations, due to

pre-aggregation of co-coded tuples as well as cache-

conscious operations (with a modified cache-partition

size of ∆c = ∆s), all of which contributed to speedups

of up to 3x compared to basic CLA operations.

Decompression: In the rare case of unsupported

operations, we decompress and perform ULA opera-

tions. In contrast, Gzip or Snappy need to decompress

block-wise for every operation. Figure 12 shows the

single- and multi-threaded CLA decompression time

compared to single-threaded Gzip and Snappy decom-

pression and deserialization. Multi-threaded general-

purpose decompression would again require paralleliza-
tion over multiple matrix blocks. Overall, we see

passable CLA decompression time similar to heavy-

weight Gzip. Multi-threaded decompression achieves

only moderate speedups because decompression is

bound by allocation and write memory bandwidth. On

sparse datasets, we benefit from multi-threading due to

latency hiding with speedups of up to 2.5x.

5.3 Comparison to CSR-VI

CSR-VI (CSR Value Indexed) [52] is prior work on loss-

less matrix value compression via dictionary encoding.

We compare CSR-VI and a derived dense format that

we call D-VI, both of which use implementations for

1, 2, and 4-byte codes. These formats—especially D-

VI—are very similar to our DDC encoding format with

the differences of a row-major instead of column-major

representation, and a single dictionary for the entire

matrix as opposed to a dictionary per column group.

Table 6 Compression Ratio CSR-VI/D-VI vs. CLA.

Dataset Sparse #Values CSR-VI D-VI CLA

Higgs N 8,083,944 1.04 1.90 2.17
Census N 46 3.62 7.99 35.69

Covtype Y 6,682 3.56 2.48 18.19

ImageNet Y 824 2.07 1.93 7.34
Mnist8m Y 255 2.53 N/A 7.32

Airline78 N 7,795 1.77 3.99 7.44
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Fig. 13 Performance CSR-VI/D-VI (single- and multi-
threaded, i.e., ST/MT) vs. CLA ST/MT.

Compression Ratio: Table 6 shows the compres-

sion ratio of CSR-VI, D-VI, and CLA compared to

uncompressed matrix blocks in Modified-CSR (addi-

tional header per row) or dense format. We see that

CLA achieves substantial size improvements for com-

pressible sparse and dense datasets. The compression

potential for CSR-VI and D-VI is determined by the

given number of distinct values. Due to the single dic-

tionary for the entire CSR-VI or D-VI matrix block,

high-cardinality columns negatively affect the compres-

sion ratios of other low-cardinality columns. At the

same time, however, CSR-VI and D-VI benefit from this

shared dictionary—in terms of faster lookups due to

the smaller dictionary size—on datasets like Mnist8m,

where columns exhibit many common distinct values.

Operations Performance: Figure 13 further

shows the single- and multi-threaded (ST/MT) matrix-

vector and vector-matrix multiplication performance

of CSR-VI and D-VI, normalized to CLA, where a

speedup > 1 indicates improvements over CLA. We see

that CSR-VI and D-VI achieve performance close to

CLA for matrix-vector because it favors row-major for-

mats, while for vector-matrix CLA performs generally

better. Mnist8m and Airline are exceptions where CSR-

VI and D-VI always perform better because of compact
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Fig. 14 Influence of Sample Fraction.

1- and 2-byte encodings as well as the shared dictionary

of common values which fit into L1 and L2 cache, re-

spectively. In contrast, CLA uses disjoint dictionaries

across column groups and many values as shown in Ta-

ble 5. In comparison to previous results [32], we see

substantial CLA improvements, especially for datasets

like Higgs, Census, and partially Mnist8m.

Overall, CLA shows operations performance simi-

lar or better than CSR-VI/D-VI, at significantly better

compression ratios which is crucial for end-to-end per-

formance improvements of large-scale ML.

5.4 Parameter Influence and Accuracy

We now evaluate the sensitivity of CLA parameters—

with regard to the used sample fraction and bin capac-

ity for co-coding decisions—as well as the size estima-

tion accuracy, where we report the average of 5 runs.

Sample Fraction: Sampling-based compression

planning is crucial for fast compression. Figure 14 shows

the compression time and compressed size (minimum-

normalized) with varying sample fraction. We see large

time improvements of more than an order of magnitude

using small sample fractions. Note that we report total

compression time that includes overheads such as trans-

posing the input matrix, which is not affected by the

sample fraction. However, very small fractions cause—

due to estimation errors—increasing sizes, which also

impact compression time. Sampling is especially impor-

tant for Census and Covtype, where we spend a sub-

stantial fraction of time on column grouping (compare

Figure 9(b)). Furthermore, Higgs is the only dataset

where the best compression time was obtained for the

smallest sample fraction of 10−5 because estimation er-

rors led to a larger uncompressed group, which was

cheaper to extract. By default, we use a very conser-

vative, low-risk sample fraction of 0.05 instead of 0.01

in previously published results [32]. Our new greedy

column grouping algorithm (see Algorithm 2) and var-

ious runtime improvements enabled the larger sample

fraction without sacrificing compression performance.

Table 7 Size Estimation Accuracy (Average ARE), with
sample fractions q = 0.01 and q = 0.05.

Fraction q Dataset Excerpt [25] CLA Est.

Higgs 9.4% 17.4%
Census 171.4% 3.8%

0.01 Covtype 60.6% 11.5%

ImageNet 21.4% 6.7%

Mnist8m 6.7% 1.5%
Airline78 5.3% 10.1%

Higgs 2.1% 13.7%
Census 159.2% 0.5%

0.05 Covtype 35.4% 11.8%
ImageNet 19.3% 1.9%

Mnist8m 1.0% 1.2%
Airline78 3.0% 4.1%

Bin Weights: Our bin-packing-based column

group partitioning reduces the number of candidate

column groups with bin capacity β, which is a tuning

parameter. The larger β, the larger the partitions

on which we apply greedy column grouping. Large

partitions likely lead to more co-coding, i.e., a smaller

number of groups, but also larger compression time,

especially, for datasets with many columns like Im-

ageNet or Mnist8m. We varied β = 3.2x with x ∈
{10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9}
and observed that our default of β = 3.2 · 10−5

achieves a good tradeoff between compression time

and compressed size, yielding compressed sizes within

18.6% (often much less) of the observed minimum.

Estimation Accuracy: We compare our CLA size

estimators (using sample fractions of q = 0.01 and

q = 0.05) with a systematic Excerpt [25] (using the

first 0.01n and 0.05n rows, respectively) that allows us

to observe compression ratios even for challenging for-

mats such as RLE. Table 7 reports the ARE (absolute

ratio error) |Ŝ − S|/S of estimated size Ŝ (before cor-

rections) to actual CLA compressed size S. CLA shows

on average significantly better accuracy due to robust-

ness against skew and effects of value tuples. Further-

more, we see a systematic reduction in ARE with in-

creased sample fraction for both Excerpt and CLA, but

with large variations of relative improvements. Datasets

with DDC2 groups in the final plans—i.e., Higgs, Cov-

type, and Airline78—show generally higher errors be-

cause DDC can be difficult to predict. This is due to

a hard cut-off point between DDC1 and DDC2 at 256

distinct values, which affects compressed size by almost

2x. Finally, Excerpt also resulted in worse plans because

column grouping mistakes could not be corrected.

Conservative, well-balanced default parameters to-

gether with compression corrections and fallbacks for

incompressible columns led to a robust design without

the need for tuning per dataset.
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Table 8 Mnist8m Deserialized RDD Storage Size.

Block Size ULA Snappy LZ4 CLA

1,024 18 GB 7.4 GB 7.1 GB 7.9 GB
2,048 ′′ ′′ ′′ 5.6 GB
4,096 ′′ ′′ ′′ 4.8 GB
8,192 ′′ ′′ ′′ 3.8 GB
16,384 18GB 7.4GB 7.1GB 3.2GB

Table 9 ImageNet Deserialized RDD Storage Size.

Block Size ULA Snappy LZ4 CLA

1,024 3.9 GB 1.2 GB 1.3 GB 0.9 GB
2,048 ′′ ′′ ′′ 0.8 GB
4,096 ′′ ′′ ′′ 0.7 GB
8,192 ′′ ′′ ′′ 0.6 GB
16,384 3.9GB 1.2GB 1.3GB 0.6GB

5.5 End-to-End Experiments

To study the end-to-end CLA benefits, we ran sev-

eral algorithms over subsets of Mnist480m and scaled

versions of ImageNet. We report the end-to-end run-

times as the average of 3 runs, including read from

HDFS, Spark context creation, and on-the-fly compres-

sion. The baselines are ULA and Spark’s RDD compres-

sion with Snappy and LZ4, respectively.

RDD Storage: ULA and CLA use the deserial-

ized storage level MEM AND DISK, while Snappy and LZ4

use MEM AND DISK SER because RDD compression re-

quires serialized data. ULA further uses a compact

CSR format instead of our default Modified-CSR for-

mat for sparse matrix blocks that are cached in ag-

gregated memory [16]. However, both sparse block for-

mats have the same serialized representation. Tables 8

and 9 show the RDD storage size of Mnist8m and Im-

ageNet with varying SystemML block size. For 16K,

we observe compression ratios of 2.4x and 3.3x for

Snappy but 5.6x and 6.5x for CLA, which is a moder-

ate improvement over previous results [32]. LZ4 shows

compression ratios similar to Snappy. In contrast to

these general-purpose schemes, CLA’s compression ad-

vantage increases with larger block sizes because the

common header—including the dictionaries—is stored

only once per column group per block. For these image

datasets, CLA would further benefit from a shared dic-

tionary across column groups, which we do not apply

for the sake of simple compression and serialization. We

obtained similar ratios for larger subsets of Mnist480m

and scaled versions of ImageNet.

L2SVM on Mnist: We first investigate L2SVM

as a common classification algorithm. Given the de-

scribed setup, we have a maximum aggregated memory

of 6 · 60 GB · 0.6 = 216 GB, which might be reduced to

6·60 GB·0.5 = 180 GB depending on required execution

memory. SystemML uses hybrid runtime plans, where

only operations that exceed the driver memory are exe-
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Fig. 15 L2SVM End-to-End Performance Mnist.

cuted as distributed Spark instructions; all other vector

operations are executed—similarly for all baselines—

as single-node operations at the driver. For L2SVM,

we have two scans of X per outer iteration (matrix-

vector and vector-matrix), whereas all inner-loop op-

erations are purely single-node for the data at hand.

Figure 15 shows the results. In comparison to our goals

from Figure 1, Spark spills data to disk at granular-

ity of partitions (128 MB as read from HDFS), leading

to a graceful performance degradation. As long as the

data fits in aggregated memory (Mnist80m, 180 GB),

all runtimes are almost identical, with Snappy and CLA

showing overheads of up to 30% and 4%, respectively.

However, if the ULA format no longer fits in aggre-

gated memory (Mnist160m, 360 GB), we see significant

improvements from compression because the size reduc-

tion avoids spilling, i.e., reads per iteration. The larger

compression ratio of CLA allows us to fit larger datasets

into memory (e.g., Mnist240m). Once even the CLA for-

mat no longer fits in memory, the runtime differences

converge to the differences in compression ratios.

Comparison to Previous Results: In compar-

ison to previously published results [32], ULA and

Snappy show significantly better runtimes. This is pri-

marily due to improvements in Spark 2.1 and Sys-

temML 0.14. Specifically, this includes Spark’s unified

memory management [67] (since Spark 1.6), which re-

duces spilling and garbage collection, as well as im-

provements for memory efficiency in SystemML. Both

aspects primarily affect out-of-core scenarios and thus,

only ULA and Snappy. In contrast, the improvements

of CLA are mostly due to the extensions described in

this paper, which has been validated with Spark 1.5.

Other ML Algorithms on Mnist: We further

study a range of algorithms, including algorithms with

RDD operations in nested loops (e.g., GLM, Mlogreg)

and non-iterative algorithms (e.g., LinregDS and PCA).

Table 10 shows the results for the interesting points of

Mnist40m (90 GB), where all datasets fit in memory, as

well as Mnist240m (540 GB) and Mnist480m (1.1 TB),
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Table 10 ML Algorithms End-to-End Performance Mnist40m/240m/480m.

Algorithm Mnist40m (90 GB) Mnist240m (540 GB) Mnist480m (1.1 TB)
ULA Snappy CLA ULA Snappy CLA ULA Snappy CLA

L2SVM 296 s 386 s 308 s 7,483 s 2,575 s 1,861 s 17,950 s 9,510 s 5,973 s

Mlogreg 490 s 665 s 463 s 18,146 s 5,975 s 3,240 s 71,140 s 26,998 s 12,653 s

GLM 346 s 546 s 340 s 17,244 s 4,148 s 2,183 s 61,425 s 20,317 s 10,418 s
LinregCG 87 s 135 s 93 s 3,496 s 765 s 463 s 6,511 s 2,598 s 986 s

LinregDS 79 s 148 s 145 s 1,080 s 798 s 763 s 2,586 s 1,954 s 1,712 s

PCA 76 s 140 s 146 s 711 s 760 s 730 s 1,551 s 1,464 s 1,412 s

Table 11 ML Algorithms End-to-End Performance ImageNet15/150.

Algorithm ImageNet15 (65 GB) ImageNet150 (650 GB)
ULA Snappy CLA ULA Snappy CLA

L2SVM 191 s 241 s 188 s 8,631 s 2,719 s 1,794 s
Mlogreg 283 s 420 s 266 s 25,361 s 5,257 s 2,994 s

GLM 207 s 293 s 195 s 21,272 s 4,324 s 2,307 s

LinregCG 78 s 110 s 82 s 3,012 s 1,013 s 683 s
LinregDS 71 s 167 s 132 s 1,530 s 1,491 s 1,181 s

PCA 80 s 172 s 131 s 1,337 s 1,451 s 1,148 s

where uncompressed datasets no longer fit in memory

and Snappy- and CLA-compressed datasets reach their

respective in-memory limits. For Mnist40m and itera-

tive algorithms, we see similar ULA/CLA performance

but a slowdown of up to 57% with Snappy. This is be-

cause RDD compression incurs decompression overhead

per iteration, whereas CLA’s initial compression cost

is amortized over multiple iterations. For non-iterative

algorithms, CLA and Snappy show overheads of up to

92% and 87%, respectively. Beside the initial compres-

sion overhead, CLA also shows less efficient TSMM

performance, while the RDD decompression overhead,

is mitigated by initial read costs. For Mnist240m and

Mnist480, we see significant performance improvements

by CLA—of up to 7.9x and 2.6x—compared to ULA

and RDD compression for Mlogreg, GLM, and Lin-

regCG. This is due to many inner iterations with RDD

operations in the outer and inner loops. Note that all

three algorithms use one RDD operation for a matrix-

vector chain per inner iteration. Finally, for LinregDS

and PCA, CLA shows again inferior TSMM perfor-

mance but slight improvements over ULA and Snappy.

ML Algorithms on ImageNet: To validate the

end-to-end results, we study the same algorithms over

replicated ImageNet datasets. Due to block-wise com-

pression, replication did not affect the compression

ratios reported in Table 9. To summarize, Table 11

shows the results for ImageNet15 (65 GB), where all

datasets fit in memory, and ImageNet150 (650 GB).

For LinregDS and PCA, CLA performs slightly better

than on Mnist due to better matrix-vector and vector-

matrix and thus TSMM performance (see Figures 10(c)

and 10(f)). Overall, we see similar results with improve-

ments of up to 9.2x and 1.8x, respectively.

Table 12 L2SVM End-to-End Performance Mnist (with code
generation for operator fusion of cell-wise operations).

Dataset Codegen disabled Codegen enabled
ULA CLA ULA CLA

Mnist40m 296 s 308 s 173 s 181 s
Mnist240m 7,483 s 1,861 s 6,695 s 1,068 s

Mnist480m 17,950 s 5,973 s 14,381 s 3,565 s

Effect of Code Generation: Given the improve-

ments of ULA and Snappy induced by Spark 2.1 and

SystemML 0.14 compared to previous results, it is im-

portant to understand the remaining bottlenecks. We

recently added code generation as an experimental fea-

ture in SystemML 0.14 [31], which has the potential to

reduce materialized intermediates, reduce scans of ma-

trices, and exploit sparsity across operations. Table 12
compares the L2SVM end-to-end performance on Mnist

for ULA and CLA with and without code generation5.

We observe that code generation yields constant ab-

solute improvements for both ULA and CLA, which

increase with increasing data size. This is due to O(n)

vector intermediates. For example, on Mnist480m, each

of these vectors is already 3.8 GB large, leading to un-

necessary overhead, which includes writes to and reads

from main memory as well as bufferpool evictions. Code

generation significantly reduces the number of these

vector intermediates (for example, for L2SVM’s inner

loop from four to zero). Similar to Amdahl’s law, this

overhead constitutes the “serial fraction” which lim-

its the speedup of compression. Accordingly, with code

generation enabled, the speedup increased from 4x to

6.2x for Mnist240m. We leave a deeper analysis of these

5 We enabled code generation for cell-wise operations only
because SystemML 0.14 does not yet support operator fusion,
i.e., code generation, for compressed matrices.
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effects and operator fusion for compressed matrices as

an interesting direction for future work.

Overall, CLA shows positive results with signif-

icant improvements for iterative algorithms due to

smaller memory bandwidth requirements and reduced

I/O. Note, however, that the achieved speedups are di-

rectly influenced by the obtained compression ratios

and hence, strongly depend on the given dataset.

6 Discussion of Open Issues

Compressed linear algebra shows very promising re-

sults. In this section, we further discuss current limi-

tations and aspects that are beyond the scope of this

paper, some of which are directions for future work.

Toward Global Planning: So far, we applied

local—i.e., per matrix block—compression planning.

The advantages are simplicity and efficiency because

blocks can be processed independently. However, there

are various opportunities for global planning. First, the

global block size affects compression ratios but also

memory requirements per block operation and the de-

gree of parallelism. Second, we could exploit the knowl-

edge of program-wide operations to decide upon com-

pression schemes. For example, value-based operations

such as max(X, 0) motivate formats with value-row

mapping such as OLE and RLE, whereas other op-

erations such as indexing motivate schemes with row-

value mapping such as DDC. Both decisions require the

extraction of pertinent global summary statistics and

their inclusion into compilation decisions. We leave this

as an interesting direction for future work.

Design Space of Compression Schemes: The

design space of alternative compression schemes is

large, with tradeoffs between compression ratio, com-

pression overhead, and operation performance. We

aimed at good compression ratios with operation per-

formance close to, or better than, the uncompressed

case. Specifically, we used compressed offset lists in-

spired by sparse matrix representations, bitmap com-

pression, and dictionary coding, inspired by dictionary

coding in column stores. A systematic evaluation of this

design space with regard to alternative compression

techniques is interesting future work. In the presence

of integer data—for example, originating from encoded

categorical or binned data—we could even apply very

lightweight compression techniques [27] such as null-

suppression or patched frame-of-reference.

Operations beyond Matrix-Vector: So far, we

mostly discussed quasi-unary operations of a single

compressed matrix block with uncompressed vectors

which covers a large class of ML algorithms. The ad-

vantage is simplicity because operations can be com-

posed of independent column group operations. How-

ever, unsupported operations require decompression.

An interesting research question—beyond the scope of

this paper—is how to realize efficient matrix-matrix op-

erations in the face of a heterogeneous collection of

uncompressed sparse or dense matrix blocks, together

with compressed blocks having heterogeneous encod-

ings. As shown in Section 3.3, the opportunity is a

potential reduction in the number of floating point

operations—especially in the presence of co-coded col-

umn groups—which might make compression also at-

tractive for compute-intensive algorithm classes such as

deep learning [57,88]. For example, the NoScope sys-

tem [47] selects difference and model filters to prune

frames from video streams feeding into expensive con-

volutional neural networks. By representing frames as

matrix rows, column-wise run-length encoding with col-

umn co-coding has a compression potential similar to

such a difference detection.

Automatic Operator Fusion: Fused operators

are increasingly used to avoid unnecessary material-

ized intermediates, to avoid unnecessary scans of input

matrices, as well as to exploit sparsity across chains

of operations. Spurred by a large development effort,

recent work aims at the automatic generation of such

fused operations [31]. So far, our CLA framework does

not support operator fusion. However, as with query

compilation for compressed data [55], operator fusion

over compressed data is generally feasible and would

significantly simplify the joint compiler integration of

both compression and operation fusion. The challenges

are the extension of existing templates for heteroge-
neous compression schemes, the cost model extension

by compression statistics, and the fine-grained exploita-

tion of sum-product optimization for techniques like

pre-aggregation and post-scaling.

Special Value Handling: Furthermore, our CLA

framework does not yet support special values such

as NaN and ±INF, either in compressed matrices or

uncompressed inputs to binary operations. Similar to

sparse linear algebra operations, zero-suppressing offset

lists ignore, for example, potential NaN outputs because

0 · NaN = NaN. The challenge is to efficiently support

these special values without sacrificing performance—

especially of sparse matrix operations—for the common

case without NaNs. From an engineering perspective,

all value-based operations require awareness of these

special values because even simple assumptions such as

self equivalence are violated (NaN 6= NaN).

Lossy Compression: Given the context of declara-

tive ML algorithms, we aim at lossless matrix compres-

sion and exact linear algebra operations over these com-
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pressed representations. However, existing systems like

TensorFlow [2] and PStore [14] also apply lossy com-

pression, specifically mantissa truncation, for network

and disk I/O reduction, respectively. There are indeed

good use cases for lossy compression and significant

compression potential especially with regard to noise.

The key challenge is to automatically identify oppor-

tunities where lossy compression is acceptable—such

as the computation of gradients in early iterations—

which bears similarities to approximate gradient de-

cent via online aggregation [70]. Furthermore, there

are also comprehensive algorithm-specific lossy com-

pression techniques. For example, matrix factoriza-

tion via random projections [38,85] identifies a rele-

vant subspace—i.e., a subset of columns of the input

matrix—via random sampling, maps the matrix into

this subspace, and finally computes the factorization

on the compressed representation.

7 Related Work

We generalize sparse matrix representations via com-

pression and accordingly review related work of

database compression, learning over compressed data,

factorized learning, sparse linear algebra, graph com-

pression, and compression planning.

Compressed Databases: The notion of compress-

ing databases appears in the literature back in the early

1980s [9,26], although most early work focuses on the

use of general-purpose techniques like Huffman coding.

An important exception is the Model 204 database sys-

tem, which used compressed bitmap indexes to speed

up query processing [66]. More recent systems that use

bitmap-based compression include FastBit [92], Oracle

[68], and Sybase IQ [83]. Graefe and Shapiro’s 1991 pa-

per “Data Compression and Database Performance”

more broadly introduced the idea of compression to

improve query performance by evaluating queries in

the compressed domain [36], primarily with dictionary-

based compression. Westmann et al. explored stor-

age, query processing and optimization with regard to

lightweight compression techniques [89]. Later, Raman

and Swart investigated query processing over heavy-

weight Huffman coding schemes [71], where they have

also shown the benefit of column co-coding. Recent ex-

amples of relational database systems that use multi-

ple types of compression to speed up query processing

include C-Store/Vertica [81], SAP HANA [15,90], IBM

DB2 with BLU Acceleration [72], Microsoft SQL Server

[56], and HyPer [55]. Further, Kimura et al. made a case

for compression-aware physical design tuning to over-

come suboptimal design choices [51], which requires es-

timating sizes of compressed indexes. Existing estima-

tors focus on compression schemes such as null sup-

pression and dictionary encoding [43], where the latter

is again related to estimating the number of distinct

values. Other estimators focus on index layouts such as

RID list and prefix key compression [13].

Learning over Compressed Data: SciDB [82]—

as an array database—and the TileDB array storage

manager [69] also use compression but both decom-

press arrays block-wise for each operation. Similarly,

machine learning libraries on top of data-parallel frame-

works such as MapReduce [29], Spark [95], or Flink [4]

can leverage compression but need to decompress block-

wise at the granularity of partitions. In contrast, there

are algorithm-specific compressed data structures such

as the CFP-tree and -array for frequent-itemset mining

[79], as well as grammar-compressed matrices for par-

tial least squares regression [84], which allow operations

over the compressed representation. Very recently, Li et

al. introduced tuple-oriented coding (TOC) [58], which

extends the heavyweight LZW compression scheme for

learning over compressed data, exemplified for Kmeans

and GLM. This scheme uses a prefix tree as global dic-

tionary while maintaining tuple boundaries and column

indexes. Similar to our co-coding with pre-aggregation

and post-scaling, partial results for distinct prefixes are

computed only once, which reduces the number of float-

ing point operations. In contrast, CLA focuses on the

general case of linear algebra, heterogeneous encoding

formats, and automatic compression planning.

Factorized Learning: Data originating from nor-

malized relations requires join queries to construct the

“flat”, i.e., denormalized, input feature matrix. Denor-

malization can significantly increase the size and thus
severely affect the performance of ML algorithms. Re-

cent work on factorized learning [54,80], avoids this

materialization by learning directly over normalized

relations. Kumar et al. introduced factorized learn-

ing over primary-key/foreign-key joins—i.e., decompos-

ing required computations and pushing them through

joins—for GLM, Näıve Bayes and decision trees [53,54].

Further, Schleich et al. describes the learning of linear

regression models over factorized joins for arbitrary join

queries [65,80]. Similarly, Rendle discussed the learning

of linear regression and factorization machines over a

block structure, which is directly derived from the re-

lational schema as part of feature engineering [74]. Be-

yond joins, other work manually overcomes unnecessary

redundancy by preventing the subtraction of means

from a large matrix which would turn it from sparse to

dense [30]. For example, SystemML’s algorithms for lin-

ear regression or GLM avoid shifting via special factor

matrices that are then included into repeated gradient

computations. In contrast to these algorithm-specific
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approaches, TensorDB [50] pushes general tensor de-

compositions through joins and unions, and Morpheus

[22] generalizes factorized learning by automatically

rewriting linear algebra scripts into scripts over a logical

data type for normalized data. In contrast to factorized

learning, CLA requires us to compute such join queries,

but immediately compresses the denormalized repre-

sentations, potentially without materialization due to

lazy evaluation in Spark. Overall, CLA and factorized

learning share common principles but they are orthogo-

nal. CLA applies to arbitrary datasets beyond the spe-

cial case of denormalized data, while factorized learning

avoids denormalization altogether.

Sparse Matrix Representations: Sparse matrix

formats have been studied intensively in the litera-

ture. Common formats include CSR (compressed sparse

rows), CSC (compressed sparse columns), COO (co-

ordinate), DIA (diagonal), ELL (ellpack-itpack gen-

eralized diagonal), and BSR (block sparse row) [76].

These formats share the characteristic of encoding non-

zero values along with their positions. Examples of

hybrid formats—that try to combine advantages—are

HYB (hybrid format) [10] that splits a matrix into

ELL and COO areas to mitigate irregular structures,

and SLACID [49] that represents matrices in CSR

format with COO deltas for a seamless integration

with SAP HANA’s delta architecture. Especially for

sparse matrix-vector multiplication on GPUs, there are

also operation and architecture-aware formats like BRC

(blocked row-column format) [6] that apply rearrange-

ment of rows by number of non-zeros and padding.

Williams et al. studied various optimizations and stor-

age formats for sparse matrix-vector multiplications on

multi-core systems [91]. Finally, Kourtis et al. previ-

ously introduced compression techniques for sparse ma-

trix formats, where they applied run-length encoding

of column index deltas [48,52] and dictionary encoding

[52]. In contrast to existing work, we aim at sparse and

dense column value compression with heterogeneous en-

coding formats and column co-coding.

Graph Compression: A basic graph of nodes and

edges is often represented either as a dense adjacency

matrix, i.e., a squared boolean matrix indicating edges

between nodes, or as sparse adjacency lists, i.e., a list

of neighbors per node. In this context, various lossless

and lossy compression schemes have been proposed in

the literature [62]. In general, graph compression can be

viewed as a special case of matrix compression that fo-

cuses on boolean matrices and specific operations such

as reachability queries and graph pattern queries [33]

or graph clustering and PageRank [8,77]. Interestingly,

existing lossless schemes use (1) so-called compressor

nodes [61], virtual nodes [20], or hyper nodes [33] to

compress common edges to neighboring sub-graphs as

well as (2) delta encoding of adjacency lists over refer-

ence nodes [3]. Both techniques are similar to our co-

coding approach as they exploit correlation in terms of

overlapping adjacency lists. However, we focus on the

general case of compressing floating point matrices with

co-coding and heterogeneous encoding schemes.

Compression Planning: The literature for com-

pression and deduplication planning is relatively sparse

and focuses on a priori estimation of compression ratios

for heavyweight algorithms on generic data. A common

strategy [25] is to experimentally compress a small seg-

ment of the data (excerpt) and observe the compression

ratio. The drawbacks to this approach [40] are that (1)

the segment may not be representative of the whole

dataset and (2) the compression step can be very ex-

pensive because the runtime of many algorithms varies

inversely with the achieved compression. The authors

in [39] propose a procedure for estimating deduplica-

tion compression ratios in large datasets, but the algo-

rithm requires a complete pass over the data. The first

purely sampling-based approach to compression esti-

mation is presented in [40] in the context of Huffman

coding of generic data. The idea is to sample different

locations in the data file and compute “local” compres-

sion ratios. These local estimates are treated as inde-

pendent and averaged to yield an overall estimate to-

gether with probabilistic error bounds. This technique

does not readily extend to our setting because our OLE,

RLE, and DDC encoding formats do not have the re-

quired “bounded locality” properties, which assert that

the compressibility of a given byte depends on a small

number of nearby bytes. Overall, in contrast to prior

work, we propose a method for estimating the com-

pressed size when several specific lightweight methods

are applied to numeric matrices.

8 Conclusions

We have initiated work on value-based compressed lin-

ear algebra (CLA), in which matrices are compressed

with lightweight techniques, and linear algebra opera-

tions are performed directly over the compressed rep-

resentation. We introduced effective column encoding

schemes, efficient operations over compressed matrices,

and an efficient sampling-based compression algorithm.

Our experiments show operations performance close to

the uncompressed case as well as compression ratios

similar or better compared to heavyweight formats like

Gzip, and substantially better than lightweight formats

like Snappy, providing significant performance benefits

when data does not fit into memory. Thus, we have

demonstrated the general feasibility of CLA, enabled
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by declarative ML that hides the underlying physical

data representation. CLA generalizes sparse matrix rep-

resentations, encoding both dense and sparse matrices

in a universal compressed form. CLA is also broadly

applicable to any system that provides blocked matrix

representations, linear algebra, and physical data in-

dependence. Note that we made the original version

of CLA [32], as well as the extensions described in

this paper, available open source in Apache SystemML

0.11 and SystemML 0.14, respectively. Finally, interest-

ing future work includes (1) full optimizer integration,

(2) global planning and physical design tuning, (3) al-

ternative compression schemes, (4) operations beyond

matrix-vector, and (5) automatic operator fusion.
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