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About Me
 Since 09/2022 TU Berlin, Germany

 University professor for Big Data Engineering (DAMS)
 https://github.com/apache/systemds

 2018-2022 TU Graz, Austria
 BMK endowed chair for data management
 Data management for data science (DAMS)

(ML systems internals, end-to-end data science lifecycle)

 2012-2018 IBM Research – Almaden, USA
 Declarative large-scale machine learning
 Optimizer and runtime of Apache SystemML

 2007-2011 PhD TU Dresden, Germany
 Cost-based optimization of integration flows
 Systems support for time series forecasting
 In-memory indexing and query processing DB group

https://github.com/apache/systemds
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Agenda
 Motivation and Goals
 Course Organization, Outline, Exercise/Projects
 Data Science Lifecycle & ML Systems Stack
 Apache SystemDS and DAPHNE
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Motivation and Goals
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Example ML Applications (Past/Present)
 Transportation / Space

 Lemon car detection and reacquisition (classification, seq. mining)
 Airport passenger flows from WiFi data (time series forecasting)
 Data analysis for assisted driving (various use cases)
 Automotive vehicle development (ML-assisted simulations)
 Satellite senor analytics (regression and correlation)
 Earth observation and local climate zone classification and monitoring

 Finance
 Water cost index based on various influencing factors (regression)
 Insurance claim cost per customer (model selection, regression)
 Financial analysts survey correlation (bivariate stats w/ new tests)

 Health Care
 Breast cancer cell grow from histopathology images (classification)
 Glucose trends and warnings (clustering, classification)
 Emergency room diagnosis / patient similarity (classification, clustering)
 Patient survival analysis and prediction (Cox regression, Kaplan-Meier) 

Motivation and Goals
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A Car Reacquisition Scenario
Motivation and Goals

Warranty 
Claims

Repair 
History

Diagnostic 
Readouts

Predictive 
Models

Features Machine
Learning

Algorithm

Algorithm

Labels

Algorithm

Algorithm

• Class skew
• Low precision

 25x 
improved 
precision

+ custom loss functions
+ hyper-parameter tuning
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Example ML Applications (Past/Present), cont.
 Production/Manufacturing

 Paper and fertilizer production (regression/classification, anomalies)
 Semiconductor manufacturing, and material degradation modeling
 Mixed waste sorting and recycling (composition, alignment, quality)

 Other Domains
 Machine data: errors and correlation (bivariate stats, seq. mining)
 Smart grid: energy demand/RES supply, weather models (forecasting)
 Elastic flattening via sparse linear algebra (spring-mass system)

 Information Extraction
 NLP contracts  rights/obligations (classification, error analysis)
 PDF table recognition and extraction, OCR (NMF clustering, custom)
 Learning explainable linguistic expressions (learned FOL rules, classification)

 Algorithm Research (+ various state-of-the art algorithms)
 User/product recommendations via various forms of NMF
 Localized, supervised metric learning (dim reduction and classification)
 Learning word embeddings via orthogonalized skip-gram

Motivation and Goals
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What is an ML System?

Machine 
Learning 

(ML)
Statistics Data 

Mining

ML Applications 
(entire KDD/DS 

lifecycle)

Classification
Regression

Recommenders
Clustering

Dim Reduction
Neural Networks

ML System

HPC

Prog. 
Language 
Compilers

Compilation 
TechniquesDistributed 

Systems

Operating  
Systems

Data 
Management

Runtime Techniques 
(Execution, Data Access)

HW 
Architecture

Accelerators

Rapidly Evolving

Motivation and Goals
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What is an ML System?, cont.
 ML System

 Narrow focus: SW system that executes ML applications
 Broad focus: Entire system (HW, compiler/runtime, ML application)
Trade-off runtime/resources vs accuracy
Early days: no standardizations (except some exchange formats), lots of 

different languages and system architectures, but many shared concepts

 Course Objectives
 Architecture and internals of modern (large-scale) ML systems

 Macroscopic view of ML pipelines and data science lifecycle 
 Microscopic view of ML system internals  

 #1 Understanding of characteristics  better evaluation / usage
 #2 Understanding of effective techniques  build/extend ML systems

Motivation and Goals
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Course Organization, Outline, and 
Exercise/Projects

Partially based on
[Matthias Boehm, Arun Kumar, Jun Yang: Data Management 
in Machine Learning Systems. Synthesis Lectures on Data 
Management, Morgan & Claypool Publishers 2019]

Updates in SS2019, SS2020, SS2021, and SS2022
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Basic Course Organization & Logistics
 Staff

 Lecturer: Univ.-Prof. Dr.-Ing. Matthias Boehm, ISDS
 Assistants: M.Sc. Sebastian Baunsgaard, M.Tech. Arnab Phani

 Language
 Lectures and slides: English
 Communication and examination: English/German/Danish

 Course Format
 Block lectures August 29 and 30, 8am-5pm (with informal language)
 5 and 4 sessions per day with 15/30min breaks
 Website: https://mboehm7.github.io/teaching/fs22_amls/index.htm
 Grading: Pass/fail (with mandatory exercise/programming project)

 Prerequisites (preferred)
 Basic courses Data Management/Databases, and
 Basic courses on applied ML / Knowledge Discovery and Data Mining

Course Organization, Outline, Exercise/Projects

https://mboehm7.github.io/teaching/fs22_amls/index.htm
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Course Outline
A: ML Lifecycle Systems (August 29)
 01 Introduction and System Landscape [Aug 29, 8am]
 02 Data Preparation, Cleaning, and Augmentation [Aug 29, 10.15am]
 03 Model Selection, Debugging/Explainability/Fairness [Aug 29, 12.45pm]
 Discussion/Implementation Programming Projects [Aug 29, 3pm]
 04 Model Deployment and Serving [Aug 29, 3.30pm]

B: ML System Internals (August 30)
 05 Compilation and Optimization Techniques [Aug 30, 8am]
 06 Execution and Parallelization Strategies [Aug 30, 10.15am]
 07 HW Accelerators and Data Access Methods [Aug 30, 12.45am]
 Discussion/Implementation Programming Projects [Aug 30, 3pm]

Course Organization, Outline, Exercise/Projects
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Exercise / Projects (due Sep 20)

 #1 Exercise on ML Pipelines 
 https://mboehm7.github.io/teaching/fs22_amls/AMLS_2022_Exercise.pdf
 Data Prep: Setup train/test/validation splits; perform 

data validation, data augmentation, feature engineering
 Modeling: Compare multiple baseline models using an OSS ML system
 Tuning: hyper-parameter tuning and cross validation
 Parallelization: parallelize your ML pipeline (at least the tuning part)
 Debugging: Perform model debugging and investigate explainability

 #2 Apache SystemDS Projects
 https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852

#Filter-Results/12365413
 Features across the stack (built-in scripts, APIs, compiler, runtime)

 #3 DAPHNE Projects
 https://mboehm7.github.io/teaching/ss22_amls/AMLS_DAPHNE_projects.pdf
 OSS since 03/2022; Features at level of runtime, compiler, tools

Course Organization, Outline, Exercise/Projects

https://mboehm7.github.io/teaching/fs22_amls/AMLS_2022_Exercise.pdf
https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852#Filter-Results/12365413
https://mboehm7.github.io/teaching/ss22_amls/AMLS_DAPHNE_projects.pdf


14

Architecture of Machine Learning Systems – 01 Introduction and System Landscape
Matthias Boehm, Graz University of Technology, SS 2022 

Data Science Lifecycle
and System Landscape
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The Data Science Lifecycle
Data Science Lifecycle

Data/SW 
Engineer

DevOps 
Engineer

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data 
Scientist

Data-centric View:
Application perspective
Workload perspective

System perspective

Exploratory Process 
(experimentation, refinements, ML pipelines)
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 Classic KDD Process (Knowledge Discovery in Databases)
 Descriptive (association rules, clustering) and predictive
 1990-2010

Select
Preprocess

Transform
Mining

Evaluate

The Data Science Lifecycle, cont.
Data Science Lifecycle

[Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth: From Data 
Mining to Knowledge Discovery in Databases. AI Magazine 17(3) (1996)]
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The Data Science Lifecycle, cont.
 CRISP-DM

 CRoss-Industry 
Standard Process for 
Data Mining

 Additional focus on
business understanding
and deployment

Data Science Lifecycle

[https://statistik-
dresden.de/archives/1128]

https://statistik-dresden.de/archives/1128
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The 80% Argument
 Data Sourcing Effort

 Data scientists spend 80-90% time on finding 
relevant datasets and data integration/cleaning.

 Technical Debts in ML Systems

 Glue code, pipeline jungles, dead code paths
 Plain-old-data types, multiple languages, prototypes
 Abstraction and configuration debts
 Data testing, reproducibility, process management, and cultural debts

Data Science Lifecycle

[Michael Stonebraker, Ihab F. Ilyas: 
Data Integration: The Current 
Status and the Way Forward. 

IEEE Data Eng. Bull. 41(2) (2018)]

[D. Sculley et al.: 
Hidden Technical Debt 

in Machine Learning 
Systems. NIPS 2015]

ML
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Driving Factors for ML
 Improved Algorithms and Models

 Success across data and application domains
(e.g., health care, finance, transport, production) 

 More complex models which leverage large data

 Availability of Large Data Collections
 Increasing automation and monitoring  data

(simplified by cloud computing & services)
 Feedback loops, simulation/data prog./augmentation
 Trend: self-supervised learning

 HW & SW Advancements
 Higher performance of hardware and infrastructure (cloud)
 Open-source large-scale computation frameworks, 

ML systems, and vendor-provides libraries

ML Systems Stack

Data

ModelUsage

Feedback Loop

[Credit: Andrew Ng’14]
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Stack of ML Systems
ML Systems Stack

ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Execution Strategies

Data Representations

HW & Infrastructure

Training

Eager interpretation, lazy 
evaluation, prog. compilation

Approximation, lineage, 
checkpointing, checksums, ECC

Supervised, unsupervised, RL
linear algebra, libs, AutoML

Validation & 
Debugging

Deployment & 
Scoring

Hyper-parameter 
Tuning

Model and Feature 
Selection

Data Preparation 
(e.g., one-hot, binning)

Data Integration & Data 
Cleaning

Data Programming & 
Augmentation

Local, distributed, cloud 
(data, task, parameter server)

Dense & sparse tensor/matrix;
compress, partition, cache

CPUs, NUMA, GPUs, FPGAs, 
ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs. resource requirements
 Specialization & Heterogeneity
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Accelerators (GPUs, FPGAs, ASICs)
 Memory- vs Compute-intensive

 CPU: dense/sparse, large mem, high 
mem-bandwidth, moderate compute

 GPU: dense, small mem, slow PCI, 
very high mem-bandwidth / compute

 Graphics Processing Units (GPUs) 
 Extensively used for deep learning training and scoring
 NVIDIA Volta: “tensor cores” for 4x4 mm  64 2B FMA instruction

 Field-Programmable Gate Arrays (FPGAs)
 Customizable HW accelerators for prefiltering, compression, DL
 Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

 Application-Specific Integrated Circuits (ASIC)
 Spectrum of chips: DL accelerators to computer vision
 Examples: Google TPUs (64K 2B FMA), NVIDIA DLA, Intel NNP, IBM TrueNorth

 Quantum Computers?
 Examples: IBM Q (Qiskit), Google Sycamore (Cirq TensorFlow Quantum)

ML Systems Stack

Apps
Lang

Faults
Exec
Data
HWOps

Operational Intensity

ML

DL

Roofline 
Analysis
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Data Representation
 ML- vs DL-centric Systems

 ML: dense and sparse matrices or tensors, different sparse 
formats (CSR, CSC, COO), frames (heterogeneous)

 DL: mostly dense tensors, relies 
on embeddings for NLP, graphs

 Data-Parallel Operations for ML
 Distributed matrices: RDD<MatrixIndexes,MatrixBlock>
 Data properties: distributed caching, 

partitioning, compression

 Lossy Compression  Acc/Perf-Tradeoff
 Sparsification (reduce non-zero values)
 Quantization (reduce value domain), learned
 Data types: bfloat16, Intel Flexpoint (mantissa, exp)

ML Systems Stack

vec(Berlin) – vec(Germany) 
+ vec(France) ≈ vec(Paris) 

Node1 Node2

[Credit: Song Han’16]

Apps
Lang

Faults
Exec
Data
HW
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Execution Strategies
 Batch Algorithms: Data and Task Parallel

 Data-parallel operations
 Different physical operators

 Mini-Batch Algorithms: Parameter Server 
 Data-parallel and model-parallel PS
 Update strategies (e.g., 

async, sync, backup)
 Data partitioning strategies
 Federated ML (trend 2018)

 Lots of PS Decisions  Acc/Perf-Tradeoff
 Configurations (#workers, batch size/param schedules, update type/freq)
 Transfer optimizations: lossy compression, sparsification, residual accumulation, 

gradient clipping, and momentum corrections

ML Systems Stack

Apps
Lang

Faults
Exec
Data
HW
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Fault Tolerance & Resilience
 Resilience Problem

 Increasing error rates at scale
(soft/hard mem/disk/net errors)

 Robustness for preemption
 Need cost-effective resilience

 Fault Tolerance in Large-Scale Computation
 Block replication (min=1, max=3) in distributed file systems
 ECC; checksums for blocks, broadcast, shuffle
 Checkpointing (MapReduce: all task outputs; Spark/DL: on request)
 Lineage-based recomputation for recovery in Spark

 ML-specific Schemes (exploit app characteristics)
 Estimate contribution from lost partition to avoid strugglers
 Example: user-defined “compensation” functions

ML Systems Stack

Apps
Lang

Faults
Exec
Data
HW
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Language Abstractions
 Optimization Scope

 #1 Eager Interpretation (debugging, no opt)
 #2 Lazy expression evaluation

(some opt, avoid materialization)
 #3 Program compilation (full opt, difficult)

 Optimization Objective
 Most common: min time s.t. memory constraints
 Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

 Trend: Fusion and Code Generation
 Custom fused operations
 Examples: SystemML, 

Weld, Taco, Julia, 
TF XLA,TVM, TensorRT

ML Systems Stack

Sparsity-Exploiting Operator

Apps
Lang

Faults
Exec
Data
HW
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Other Language Abstractions
• UDF-based Systems
• Graph-based Systems
• Linear Algebra Systems
• ML Libraries
• DNN Frameworks
• Feature-centric Frameworks

Landscape of ML Systems, cont.
Language Abstractions and System Architectures

#3 Distribution

Local (single node)

HW accelerators 
(GPUs, FPGAs, ASICs)

Distributed

#4 Data Types

Collections

Graphs

Matrices

Tensors

Frames

#1 Language Abstraction

Operator Libraries

Algorithm Libraries

Computation Graphs

Linear Algebra 
Programs

#2 Execution Strategies

Data-Parallel
Operations

Task-Parallel
Constructs

Parameter Server
(Modell-Parallel)
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ML Applications
 ML Algorithms (cost/benefit – time vs acc)

 Unsupervised/supervised; batch/mini-batch; first/second-order ML
 Mini-batch DL: variety of NN architectures and SGD optimizers 

 Specialized Apps: Video Analytics
in NoScope (time vs acc)
 Difference detectors / specialized 

models for “short-circuit evaluation”
 AutoML (time vs acc)

 Not algorithms but tasks (e.g., doClassify(X, y) + search space)
 Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0
 AutoML services at Microsoft Azure, Amazon AWS, Google Cloud

 Data Programming and Augmentation (acc?)
 Generate noisy labels for pre-training
 Exploit expert rules, simulation models,

rotations/shifting, and labeling IDEs (Software 2.0)

ML Systems Stack

Apps
Lang

Faults
Exec
Data
HW

[Credit:
Jonathan 

Tremblay‘18]

[Credit: Daniel Kang‘17]
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Apache SystemDS:
A Declarative ML System for the 

End-to-End Data Science Lifecycle

Background and System Architecture
https://github.com/apache/systemds

https://github.com/apache/systemds
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Landscape of ML Systems
 Existing ML Systems

 #1 Numerical computing frameworks
 #2 ML Algorithm libraries (local, large-scale)
 #3 Linear algebra ML systems (large-scale)
 #4 Deep neural network (DNN) frameworks
 #5 Model management, and deployment

 Exploratory Data-Science Lifecycle
 Open-ended problems w/ underspecified objectives
 Hypotheses, data integration, run analytics 
 Unknown value  lack of system infrastructure
 Redundancy of manual efforts and computation

 Data Preparation Problem
 80% Argument: 80-90% time for finding, integrating, cleaning data
 Diversity of tools  boundary crossing, lack of optimization

“Take these datasets 
and show value or 

competitive advantage” 

[NIPS 2015]
[DEBull 2018]

Overview Apache SystemDS
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The Data Science Lifecycle
aka KDD Process
aka CRISP-DM

Overview Apache SystemDS

Data/SW 
Engineer

DevOps 
Engineer

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data 
Scientist

Data-centric View:
Application perspective
Workload perspective

System perspective

Exploratory Process 
(experimentation, refinements, ML pipelines)

Key observation: SotA
data integration/cleaning based on ML

Data extraction, schema alignment, entity 
resolution, data validation, data cleaning, outlier 

detection, missing value imputation, semantic type 
detection, data augmentation, feature selection, 

feature engineering, feature transformations 

Data Integration 
Data Cleaning 

Data Preparation
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Example: Linear Regression Conjugate Gradient
Overview Apache SystemDS

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001; 
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y); 
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt) 
10: {
11: q = (t(X) %*% (X %*% p))+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1; 
19: }
20: write(w, $4, format="text");

Compute 
conjugate 
gradient Compute 

step size

Update 
model and 
residuals

Read matrices 
from HDFS/S3

Compute initial 
gradient

Note:
#1 Data Independence
#2 Implementation-
Agnostic Operations

 “Separation 
of Concerns” 
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Apache SystemML/SystemDS
Overview Apache SystemDS

[SIGMOD’15,’17,’19,’21abc,’23]
[PVLDB’14,’16ab,’18,’22]
[ICDE’11,’12,’15]
[CIDR’17,’20]
[VLDBJ’18] 
[CIKM’22]
[DEBull’14]
[PPoPP’15] Hadoop or Spark Cluster 

(scale-out)
In-Memory Single Node 

(scale-up)

Runtime

Compiler

Language

DML Scripts

since 2010/11since 2012 since 2015

APIs: Command line, JMLC,
Spark MLContext, Spark ML, 

(20+ Scalable Algorithms) 

In-Progress:

GPU

since 2014/16

07/2020 Renamed to SystemDS
05/2017 Apache Top-Level Project
11/2015 Apache Incubator Project
08/2015 Open Source Release

Write Once, 
Run Anywhere
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Basic HOP and LOP DAG Compilation
Overview Apache SystemDS

LinregDS (Direct Solve)
X = read($1);
y = read($2);
intercept = $3; 
lambda = 0.001;
...
if( intercept == 1 ) {

ones = matrix(1, nrow(X), 1); 
X = append(X, ones);

}
I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:
• driver mem: 20 GB
• exec mem:   60 GB

dg(rand)
(103x1,103)

r(diag)

X
(108x103,1011)

y
(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)
b(solve)

writeScenario: 
X: 108 x 103, 1011

y: 108 x 1, 108

 Hybrid Runtime Plans:
• Size propagation / memory estimates
• Integrated CP / Spark runtime
• Dynamic recompilation during runtime
 Distributed Matrices

• Fixed-size (squared) matrix blocks
• Data-parallel operations

800MB

800GB

800GB
8KB

172KB

1.6TB

1.6TB

16MB
8MB

8KB

CP

SP

CP

CP

CP

SP
SP

CP

1.6GB
800MB

16KB

X

y

r’(CP)

mapmm(SP) tsmm(SP)

r’(CP)

(persisted in 
MEM_DISK)

X1,1

X2,1

Xm,1
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Static and Dynamic Rewrites
 Example Static Rewrites (size-indep.)

 Common Subexpression Elimination
 Constant Folding / Branch Removal /

Block Sequence Merge
 Static Simplification Rewrites
 Right/Left Indexing Vectorization
 For Loop Vectorization 
 Spark checkpoint/repartition injection

 Example Dynamic Rewrites (size-dep.)
 Dynamic Simplification Rewrites
 Matrix Mult Chain Optimization

Overview Apache SystemDS


t(X)

1kx1k
X

1kx1k
Z
1

2,002  MFLOPs

sum(λ*X)  λ*sum(X)
sum(X+Y)  sum(X)+sum(Y) 

X

Y

X Y ┬*

trace(X%*%Y)  sum(X*t(Y))

O(n3) O(n2)

rowSums(X)  X, iff ncol(X)=1
sum(X^2)  X%*%t(X), iff ncol(X)=1

t(X)
1kx1k

X
1kx1k

p
1

4  MFLOPs

Size propagation 
and sparsity 
estimation
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Apache SystemDS Design
 Objectives

 Effective and efficient data preparation, ML, and model debugging at scale
 High-level abstractions for different lifecycle tasks and users 

 #1 Based on DSL for ML Training/Scoring
 Hierarchy of abstractions for DS tasks
 ML-based SotA, interleaved, performance

 #2 Hybrid Runtime Plans and Optimizing Compiler
 System infrastructure for diversity of algorithm classes
 Different parallelization strategies and new architectures (Federated ML)
 Abstractions  redundancy  automatic optimization  

 #3 Data Model: Heterogeneous Tensors
 Data integration/prep requires generic data model

Overview Apache SystemDS

Apache SystemML (since 2010)
 SystemDS (09/2018) 
 Apache SystemDS (07/2020)
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Language Abstractions and APIs, cont.
 Example: Stepwise Linear Regression

Overview Apache SystemDS

X = read(‘features.csv’)
Y = read(‘labels.csv’)
[B,S] = steplm(X, Y,

icpt=0, reg=0.001)
write(B, ‘model.txt’)

User Script
m_steplm = function(...) {

while( continue ) {
parfor( i in 1:n ) {

if( !fixed[1,i] ) {
Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi, y, ...)

} }
# add best to Xg
# (AIC)

} }

Built-in Functions

m_lm = function(...) {
if( ncol(X) > 1024 )

B = lmCG(X, y, ...)
else

B = lmDS(X, y, ...)
}

m_lmCG = function(...) {
while( i<maxi&nr2>tgt ) {

q = (t(X) %*% (X %*% p))
+ lambda * p

beta = ... }
}

m_lmDS = function(...) {
l = matrix(reg,ncol(X),1)
A = t(X) %*% X + diag(l)
b = t(X) %*% y
beta = solve(A, b) ...}

Linear 
Algebra 

Programs

ML 
Algorithms

Feature 
Selection

Facilitates optimization 
across data science 

lifecycle tasks
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Apache SystemDS Architecture
Overview Apache SystemDS

Command 
Line JMLC ML Context Python, R, and Java 

Language BindingsAPIs1

Optimizations
(e.g., IPA, rewrites, 
operator ordering, 
operator selection, 

codegen)

Command 
Line JMLC ML Context Python, R, and Java 

Language Bindings

Parser/Language (syntactic/semantic)

High-Level Operators (HOPs)

Low-Level Operators (LOPs)

Built-in 
Functions for 
entire Lifecycle

APIs

Compiler2

1

Optimizations
(e.g., IPA, rewrites, 
operator ordering, 
operator selection, 

codegen)

Command 
Line JMLC ML Context Python, R, and Java 

Language Bindings

Parser/Language (syntactic/semantic)

High-Level Operators (HOPs)

Low-Level Operators (LOPs)

Control Program

Recompiler Runtime 
Program

Lineage & Reuse Cache

Buffer Pool

Mem/FS 
I/O

Built-in 
Functions for 
entire Lifecycle

Codegen 
I/O

DFS 
I/O

APIs

Compiler2

1

3

Optimizations
(e.g., IPA, rewrites, 
operator ordering, 
operator selection, 

codegen)

Command 
Line JMLC ML Context Python, R, and Java 

Language Bindings

Parser/Language (syntactic/semantic)

High-Level Operators (HOPs)

Low-Level Operators (LOPs)

Control Program

Recompiler Runtime 
Program

Lineage & Reuse Cache

Buffer Pool

Mem/FS 
I/O

ParFor 
Optimizer/Runtime

Parameter 
Server

TensorBlock Library
(single/multi-threaded, different value types, 

homogeneous/heterogeneous tensors)

CP 
Inst.

GPU 
Inst.

Spark 
Inst.

Feder-
ated
Inst.

Built-in 
Functions for 
entire Lifecycle

Codegen 
I/O

DFS 
I/O

APIs

Compiler2

1

3 4

[M. Boehm, I. Antonov, S. Baunsgaard, M. Dokter, R. Ginthör, K. Innerebner, F. Klezin, S. N. Lindstaedt, 
A. Phani, B. Rath, B. Reinwald, S. Siddiqui, S. Benjamin Wrede: SystemDS: A Declarative Machine Learning 
System for the End-to-End Data Science Lifecycle. CIDR 2020]

> 83,400 tests
> 8,500 DSL tests
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Data Cleaning Pipelines
 Automatic Generation of Cleaning Pipelines

 Library of robust, parameterized data cleaning primitives
 Enumeration of DAGs of primitives & hyper-parameter optimization (HB, BO)

Apache SystemDS: Selected Features and Research

P1:  gmm  imputeFDmergeDup delML Pn:  outlierBySdmice  delDup voting

LPn

PP1

LP2LP1

PPn PPnPPnPP1

O

PP1

…

…

……

Outlier Detection MVI  Deduplication  Resolve Mislabels

Debugging

University Country
TU Graz Austria
TU Graz Austria
TU Graz Germany
IIT India
IIT IIT
IIT Pakistan
IIT India
SIBA Pakistan
SIBA null
SIBA null

University Country
TU Graz Austria
TU Graz Austria
TU Graz Austria
IIT India
IIT India
IIT India
IIT India
SIBA Pakistan
SIBA Pakistan
SIBA Pakistan

A B C D
0.77 0.80 1 1
0.96 0.12 1 1
0.66 0.09 null 1
0.23 0.04 17 1
0.91 0.02 17 null
0.21 0.38 17 1
0.31 null 17 1
0.75 0.21 20 1
null null 20 1
0.19 0.61 20 1
0.64 0.31 20 1

A B C D
0.77 0.80 1 1
0.96 0.12 1 1
0.66 0.09 17 1
0.23 0.04 17 1
0.91 0.02 17 1
0.21 0.38 17 1
0.31 0.29 17 1
0.75 0.21 20 1
0.41 0.24 20 1
0.19 0.61 20 1
0.64 0.31 20 1

Dirty Data After imputeFD(0.5) After MICE

Data 
Samples

Target 
App

Dirty Data

Rules/Objectives

Top-k 
Pipelines

Data- and Task-parallel 
Computation

Logical

Physical

[WIP] WashHouse: 
Data Cleaning Benchmark[under submission]
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SliceLine for Model Debugging
 Problem Formulation

 Intuitive slice
scoring function

 Exact top-k slice finding
 𝑆𝑆 ≥ 𝜎𝜎 ∧ 𝑠𝑠𝑠𝑠 𝑆𝑆 > 0
 𝛼𝛼 ∈ (0,1]

 Properties & Pruning
 Monotonicity of slice sizes, errors 
 Upper bound sizes/errors/scores 
 pruning & termination

 Linear-Algebra-based Slice Finding
 Recoded matrix X, error vector e
 Vectorized implementation in linear algebra

(join & eval via sparse-sparse matrix multiply)
 Local and distributed task/data-parallel execution

Apache SystemDS: Selected Features and Research

[Credit: sliceline, 
Silicon Valley, HBO]

𝑠𝑠𝑐𝑐 = 𝛼𝛼
𝑒̅𝑒(𝑆𝑆)
𝑒̅𝑒(𝑋𝑋)

− 1 − 1 − 𝛼𝛼
𝑋𝑋
𝑆𝑆
− 1

= 𝛼𝛼
𝑋𝑋
𝑆𝑆
⋅
∑𝑖𝑖=1

|𝑆𝑆| 𝑒𝑒𝑠𝑠𝑖𝑖
∑𝑖𝑖=1

|𝑋𝑋| 𝑒𝑒𝑖𝑖
− 1 − 1 − 𝛼𝛼

𝑋𝑋
𝑆𝑆
− 1

slice error slice size

[SIGMOD’21c]



40

Architecture of Machine Learning Systems – 01 Introduction and System Landscape
Matthias Boehm, Graz University of Technology, SS 2022 

Multi-Level Lineage Tracing & Reuse
 Lineage as Key Enabling Technique

 Trace lineage of operations (incl. non-determinism), dedup for loops/functions
 Model versioning, data reuse, incremental maintenance,  autodiff, debugging

 Full Reuse of Intermediates
 Before executing instruction, 

probe output lineage in cache 
Map<Lineage, MatrixBlock>

 Cost-based/heuristic caching 
and eviction decisions (compiler-assisted)

 Partial Reuse of Intermediates
 Problem: Often partial result overlap
 Reuse partial results via dedicated 

rewrites (compensation plans)
 Example: steplm

Apache SystemDS: Selected Features and Research

for( i in 1:numModels ) 
R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
l = matrix(reg,ncol(X),1)
A = t(X) %*% X + diag(l)
b = t(X) %*% y
beta = solve(A, b) ...}

m_steplm = function(...) {
while( continue ) {

parfor( i in 1:n ) {
if( !fixed[1,i] ) {

Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi, y, ...)

} }
# add best to Xg
# (AIC)

} }

X

t(X)

m>>n

[SIGMOD’21a]
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Compressed Linear Algebra Extended
 Lossless Matrix Compression

 Improved general applicability (compression time, new compression schemes, 
new kernels, intermediates, workload-aware)

 Sparsity  Redundancy exploitation
(data redundancy, structural redundancy)

 Workload-aware Compression
 Workload summary  compression
 Compression  execution planning

Apache SystemDS: Selected Features and Research

[SIGMOD 2023]
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Federated Learning 
 Federated Backend

 Federated data (matrices/frames) as meta data objects
 Federated linear algebra, (and federated parameter server)

 Federated Requests: READ, PUT, GET, EXEC_INST, EXEC_UDF, CLEAR

Apache SystemDS

X = federated(addresses=list(node1, node2, node3),
ranges=list(list(0,0), list(40K,70), ..., list(80K,0), list(100K,70)));

[SIGMOD 2021b, CIKM 2022]
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An Open and Extensible System Infrastructure 
for Integrated Data Analysis Pipelines

https://daphne-eu.eu/

Integrated Data Analysis Pipelines
for Large-scale Data Management,

HPC, and Machine Learning;
DAPHNE daughter of river god Peneus
(fountains, streams), chased by Apollo

The DAPHNE project is funded by the 
European Union's Horizon 2020 research 
and innovation program under grant 
agreement number 957407 for the time 
period from Dec/2020 through Nov/2024. [Louvre, Paris]

https://daphne-eu.eu/
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Motivation
 Integrated Data Analysis Pipelines

 Open data formats, query processing
 Data preprocessing and cleaning
 ML model training and scoring
 HPC, custom codes, and simulations

 Hardware Challenges
 DM+ML+HPC share compilation

and runtime techniques / 
converging cluster hardware

 End of Dennard scaling:
P = α CFV2 (power density 1)

 End of Moore’s law
 Amdahl’s law: sp = 1/s
 Increasing Specialization

DAPHNE Project  DAPHNE Overall Objective:
Open and extensible system infrastructure
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DAPHNE Use Cases
 DLR Earth Observation

 ESA Sentinel-1/2 datasets  4PB/year
 Training of local climate zone classifiers on 

So2Sat LCZ42 (15 experts, 400K instances,
10 labels each, 85% confidence, ~55GB H5)

 ML pipeline: preprocessing, ResNet18,
climate models

 IFAT Semiconductor Ion Beam Tuning
 KAI Semiconductor Material Degradation
 AVL Vehicle Dev Process (ejector geometries, KPIs)

 ML-assisted simulations, data cleaning, augmentation

DAPHNE Project

[So2Sat LC42 Dataset 
https://mediatum.ub.tum.de/1454690] 

[Xiao Xiang Zhu et al: So2Sat LCZ42: A 
Benchmark Dataset for the Classification of 

Global Local Climate Zones. GRSM 2020]

https://mediatum.ub.tum.de/1454690
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DAPHNE System Architecture
DAPHNE Project

[Patrick Damme et al.: DAPHNE: 
An Open  and Extensible System 

Infrastructure for Integrated Data 
Analysis Pipelines, CIDR 2022]
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AH
AK

Vectorized (Tiled) Execution
DAPHNE Project

Default Parallelization
Frame & Matrix Ops

Fused Operator Pipelines 
on Tiles/Scalars + Codegen

Locality-aware, 
Multi-device Scheduling
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Vectorized (Tiled) Execution, cont.
 #1 Zero-copy Input Slicing

 Create view on sliced input (no-op)
 All kernels work on views

 #2 Sparse Intermediates
 Reuse dense/sparse kernels
 Sparse pipeline intermediates for free

 #3 Fine-grained Control
 Task sizes (dequeue, data access) vs data binding (cache-conscious ops)
 Scheduling for load balance (e.g., sparse operations)

 #4 Computational Storage
 Task queues connect eBPF programs, 

async I/O into buffers, and op pipelines

DAPHNE Project

Presenter
Presentation Notes
eBPF … Extended Berkeley Packet Filter
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Summary and Q&A
 Motivation and Goals
 Course Organization, Outline, Exercise/Projects
 Data Science Lifecycle & ML Systems Stack
 Apache SystemDS and DAPHNE

 Recommended Reading (a critical perspective 
on a broad sense of ML systems)
 [M. Jordan:  SysML: Perspectives and 

Challenges. Keynote at SysML 2018]
 “ML […] is far from being a solid engineering 

discipline that can yield robust, scalable solutions 
to modern data-analytic problems” 

 https://www.youtube.com/watch?v=4inIBmY8dQI

Thanks

https://www.youtube.com/watch?v=4inIBmY8dQI
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