

SCIENCE PASSION TECHNOLOGY

Architecture of ML Systems* 01 Introduction and System Landscape

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

About Me

- Since 09/2022 TU Berlin, Germany
 - University professor for Big Data Engineering (DAMS)
 - <u>https://github.com/apache/systemds</u>
- 2018-2022 TU Graz, Austria
 - BMK endowed chair for data management
 - Data management for data science (DAMS) (ML systems internals, end-to-end data science lifecycle)
- 2012-2018 IBM Research Almaden, USA
 - Declarative large-scale machine learning
 - Optimizer and runtime of Apache SystemML
- 2007-2011 PhD TU Dresden, Germany
 - Cost-based optimization of integration flows
 - Systems support for time series forecasting
 - In-memory indexing and query processing

Agenda

- Motivation and Goals
- Course Organization, Outline, Exercise/Projects
- Data Science Lifecycle & ML Systems Stack
- Apache SystemDS and DAPHNE

Motivation and Goals

Example ML Applications (Past/Present)

Transportation / Space

- Lemon car detection and reacquisition (classification, seq. mining)
- Airport passenger flows from WiFi data (time series forecasting)
- Data analysis for assisted driving (various use cases)
- Automotive vehicle development (ML-assisted simulations)
- Satellite senor analytics (regression and correlation)
- Earth observation and local climate zone classification and monitoring

Finance

- Water cost index based on various influencing factors (regression)
- Insurance claim cost per customer (model selection, regression)
- Financial analysts survey correlation (bivariate stats w/ new tests)

Health Care

- Breast cancer cell grow from histopathology images (classification)
- Glucose trends and warnings (clustering, classification)
- Emergency room diagnosis / patient similarity (classification, clustering)
- Patient survival analysis and prediction (Cox regression, Kaplan-Meier)

A Car Reacquisition Scenario

Example ML Applications (Past/Present), cont.

- Production/Manufacturing
 - Paper and fertilizer production (regression/classification, anomalies)
 - Semiconductor manufacturing, and material degradation modeling
 - Mixed waste sorting and recycling (composition, alignment, quality)
- Other Domains
 - Machine data: errors and correlation (bivariate stats, seq. mining)
 - Smart grid: energy demand/RES supply, weather models (forecasting)
 - Elastic flattening via sparse linear algebra (spring-mass system)
- Information Extraction
 - NLP contracts
 rights/obligations (classification, error analysis)
 - PDF table recognition and extraction, OCR (NMF clustering, custom)
 - Learning explainable linguistic expressions (learned FOL rules, classification)
- Algorithm Research (+ various state-of-the art algorithms)
 - User/product recommendations via various forms of NMF
 - Localized, supervised metric learning (dim reduction and classification)
 - Learning word embeddings via orthogonalized skip-gram

Motivation and Goals

8

What is an ML System?

What is an ML System?, cont.

- ML System
 - Narrow focus: SW system that executes ML applications
 - Broad focus: Entire system (HW, compiler/runtime, ML application)
 - → Trade-off runtime/resources vs accuracy
 - → Early days: no standardizations (except some exchange formats), lots of different languages and system architectures, but many shared concepts

Course Objectives

- Architecture and internals of modern (large-scale) ML systems
 - Macroscopic view of ML pipelines and data science lifecycle
 - Microscopic view of ML system internals
- #1 Understanding of characteristics -> better evaluation / usage
- #2 Understanding of effective techniques → build/extend ML systems

Course Organization, Outline, and Exercise/Projects

Partially based on

[Matthias Boehm, Arun Kumar, Jun Yang: Data Management in Machine Learning Systems. Synthesis Lectures on Data Management, Morgan & Claypool Publishers 2019]

Updates in SS2019, SS2020, SS2021, and SS2022

Basic Course Organization & Logistics

- Staff
 - Lecturer: Univ.-Prof. Dr.-Ing. Matthias Boehm, ISDS
 - Assistants: M.Sc. Sebastian Baunsgaard, M.Tech. Arnab Phani

Language

- Lectures and slides: English
- Communication and examination: English/German/Danish

Course Format

- Block lectures August 29 and 30, 8am-5pm (with informal language)
- 5 and 4 sessions per day with 15/30min breaks
- Website: <u>https://mboehm7.github.io/teaching/fs22_amls/index.htm</u>
- Grading: Pass/fail (with mandatory exercise/programming project)
- Prerequisites (preferred)
 - Basic courses Data Management/Databases, and
 - Basic courses on applied ML / Knowledge Discovery and Data Mining

Course Outline

- A: ML Lifecycle Systems (August 29)
- 01 Introduction and System Landscape [Aug 29, 8am]
- 02 Data Preparation, Cleaning, and Augmentation [Aug 29, 10.15am]
- 03 Model Selection, Debugging/Explainability/Fairness [Aug 29, 12.45pm]
- Discussion/Implementation Programming Projects [Aug 29, 3pm]
- 04 Model Deployment and Serving [Aug 29, 3.30pm]
- B: ML System Internals (August 30)
- 05 Compilation and Optimization Techniques [Aug 30, 8am]
- 06 Execution and Parallelization Strategies [Aug 30, 10.15am]
- 07 HW Accelerators and Data Access Methods [Aug 30, 12.45am]
- Discussion/Implementation Programming Projects [Aug 30, 3pm]

DAPHNE

Exercise / Projects (due Sep 20)

#1 Exercise on ML Pipelines

13

- https://mboehm7.github.io/teaching/fs22_amls/AMLS_2022_Exercise.pdf
- Data Prep: Setup train/test/validation splits; perform data validation, data augmentation, feature engineering
- Modeling: Compare multiple baseline models using an OSS ML system
- Tuning: hyper-parameter tuning and cross validation
- Parallelization: parallelize your ML pipeline (at least the tuning part)
- Debugging: Perform model debugging and investigate explainability

#2 Apache SystemDS Projects

- https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852 #Filter-Results/12365413
- Features across the stack (built-in scripts, APIs, compiler, runtime)

#3 DAPHNE Projects

- https://mboehm7.github.io/teaching/ss22_amls/AMLS_DAPHNE_projects.pdf
- OSS since 03/2022; Features at level of runtime, compiler, tools

Data Science Lifecycle and System Landscape

Data Science Lifecycle

The Data Science Lifecycle, cont.

- Classic KDD Process (Knowledge Discovery in Databases)
 - Descriptive (association rules, clustering) and predictive

[Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth: From Data Mining to Knowledge Discovery in Databases. **Al Magazine 17(3) (1996)**]

The Data Science Lifecycle, cont.

CRISP-DM

- CRoss-Industry
 Standard Process for
 Data Mining
- Additional focus on business understanding and deployment

[https://statistikdresden.de/archives/1128]

The 80% Argument

- Data Sourcing Effort
 - Data scientists spend 80-90% time on finding relevant datasets and data integration/cleaning.

[Michael Stonebraker, Ihab F. Ilyas: Data Integration: The Current Status and the Way Forward. IEEE Data Eng. Bull. 41(2) (2018)]

- Glue code, pipeline jungles, dead code paths
- Plain-old-data types, multiple languages, prototypes
- Abstraction and configuration debts
- Data testing, reproducibility, process management, and cultural debts

Driving Factors for ML

- Improved Algorithms and Models
 - Success across data and application domains (e.g., health care, finance, transport, production)
 - More complex models which leverage large data
- Availability of Large Data Collections
 - Increasing automation and monitoring → data (simplified by cloud computing & services)
 - Feedback loops, simulation/data prog./augmentation
 → Trend: self-supervised learning

HW & SW Advancements

- Higher performance of hardware and infrastructure (cloud)
- Open-source large-scale computation frameworks, ML systems, and vendor-provides libraries

ISDS

ML Systems Stack

Stack of ML Systems			ation &	Deployment &
Hyper-parameter	Training	Debugging		Scoring
Tuning Model and Feature Selection	ML Apps & Algorithms	S li	Supervised, unsupervised, RL linear algebra, libs, AutoML	
	Language Abstractions	Ea er	Eager interpretation, lazy evaluation, prog. compilation	
Data Programming & Augmentation	Fault Tolerance	A cl	pproximation, I heckpointing, cl	ineage, hecksums, ECC
Hyper-parameter TuningModel and Feature SelectionData Programming & AugmentationData Preparation (e.g., one-hot, binning)Data Integration & Data	Execution Strategies	La (a	Local, distributed, cloud (data, task, parameter server)	
	Data Representations	D	ense & sparse t ompress, partiti	ensor/matrix; ion, cache
Data Integration & Data Cleaning	HW & Infrastructure	C A	PUs, NUMA, GP SICs, RDMA, SS	PUs, FPGAs, D/NVM

Improve accuracy vs. performance vs. resource requirements
Specialization & Heterogeneity

Memory- vs Compute-intensive

- CPU: dense/sparse, large mem, high mem-bandwidth, moderate compute
- GPU: dense, small mem, slow PCI, very high mem-bandwidth / compute
- Graphics Processing Units (GPUs)
 - Extensively used for deep learning training and scoring
 - NVIDIA Volta: "tensor cores" for 4x4 mm → 64 2B FMA instruction
- Field-Programmable Gate Arrays (FPGAs)
 - Customizable HW accelerators for prefiltering, compression, DL
 - Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)
- Application-Specific Integrated Circuits (ASIC)
 - Spectrum of chips: DL accelerators to computer vision
 - Examples: Google TPUs (64K 2B FMA), NVIDIA DLA, Intel NNP, IBM TrueNorth
- Quantum Computers?
 - Examples: IBM Q (Qiskit), Google Sycamore (Cirq → TensorFlow Quantum)

DL

vec(Berlin) - vec(Germany)

+ vec(France) ≈ vec(Paris)

Data Representation

- ML- vs DL-centric Systems
 - ML: dense and sparse matrices or tensors, different sparse formats (CSR, CSC, COO), frames (heterogeneous)
 - DL: mostly dense tensors, relies on embeddings for NLP, graphs

Data-Parallel Operations for ML

- Distributed matrices: RDD<MatrixIndexes,MatrixBlock>
- Data properties: distributed caching, partitioning, compression
- Lossy Compression Acc/Perf-Tradeoff
 - Sparsification (reduce non-zero values)
 - Quantization (reduce value domain), learned
 - Data types: bfloat16, Intel Flexpoint (mantissa, exp)

Apps

Lang

Faults

Exec

Data

HW

Execution Strategies

- Batch Algorithms: Data and Task Parallel
 - Data-parallel operations
 - Different physical operators

Mini-Batch Algorithms: Parameter Server

- Data-parallel and model-parallel PS
- Update strategies (e.g., async, sync, backup)
- Data partitioning strategies
- Federated ML (trend 2018)
- Lots of PS Decisions Acc/Perf-Tradeoff
 - Configurations (#workers, batch size/param schedules, update type/freq)

TensorFlow

 Transfer optimizations: lossy compression, sparsification, residual accumulation, gradient clipping, and momentum corrections

MAHOUT

DASK

Apache

SvstemML[™]

Workers

Apps

Lang

Faults

Exec

Data

HW

Fault Tolerance & Resilience

- Resilience Problem
 - Increasing error rates at scale (soft/hard mem/disk/net errors)
 - Robustness for preemption
 - Need cost-effective resilience

- Block replication (min=1, max=3) in distributed file systems
- ECC; checksums for blocks, broadcast, shuffle
- Checkpointing (MapReduce: all task outputs; Spark/DL: on request)

1.0

0.8

P(Job Failure) 9.0 9.0 9.0

0.2

0.0

P(err)=0.01

P(err)=0.001

10

100

Tasks

1000

10000

P(err) = 0.0001

- Lineage-based recomputation for recovery in Spark
- ML-specific Schemes (exploit app characteristics)
 - Estimate contribution from lost partition to avoid strugglers
 - Example: user-defined "compensation" functions

ML Systems Stack

Language Abstractions

- Optimization Scope
 - #1 Eager Interpretation (debugging, no opt)
 - #2 Lazy expression evaluation (some opt, avoid materialization)
 - #3 Program compilation (full opt, difficult)
- Optimization Objective
 - Most common: min time s.t. memory constraints
 - Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

 \mathbf{sum}

 $\Theta \mid Z$

Trend: Fusion and Code Generation

- Custom fused operations
- Examples: SystemML, Weld, Taco, Julia, TF XLA,TVM, TensorRT

 $\mathbf{X} \mid \mathbf{0} \mid \mathbf{Y}$

Sparsity-Exploiting Operator

Apps

ISDS

Landscape of ML Systems, cont.

#1 Language Abstraction

#4 Data Types

#2 Execution Strategies

- ML Algorithms (cost/benefit time vs acc)
 - Unsupervised/supervised; batch/mini-batch; first/second-order ML
 - Mini-batch DL: variety of NN architectures and SGD optimizers
- Specialized Apps: Video Analytics in NoScope (time vs acc)
 - Difference detectors / specialized models for "short-circuit evaluation"
- AutoML (time vs acc)
 - Not algorithms but tasks (e.g., doClassify(X, y) + search space)
 - Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0
 - AutoML services at Microsoft Azure, Amazon AWS, Google Cloud
- Data Programming and Augmentation (acc?)
 - Generate noisy labels for pre-training
 - Exploit expert rules, simulation models, rotations/shifting, and labeling IDEs (Software 2.0)

[Credit: Daniel Kang'17]

Apps

Lang

Faults

Exec

Data

HW

ISDS

27

Jonathan Tremblay'18

[Credit:

Apache SystemDS: A Declarative ML System for the End-to-End Data Science Lifecycle

Background and System Architecture https://github.com/apache/systemds

TensorFl

Landscape of ML Systems

- **Existing ML Systems**
 - #1 Numerical computing frameworks
 - #2 ML Algorithm libraries (local, large-scale)
 - #3 Linear algebra ML systems (large-scale)
 - #4 Deep neural network (DNN) frameworks
 - #5 Model management, and deployment
- Exploratory Data-Science Lifecycle
 - **Open-ended problems** w/ underspecified objectives
 - Hypotheses, data integration, run analytics
 - Unknown value \rightarrow lack of system infrastructure \rightarrow Redundancy of manual efforts and computation
- **Data Preparation Problem**
 - **80% Argument:** 80-90% time for finding, integrating, cleaning data
 - Diversity of tools \rightarrow boundary crossing, lack of optimization

learn

PYTÖRCH

"Take these datasets and show value or competitive advantage"

K Keras

IUI

DASK

mxne

NumPv

🛞 МАНОИТ

mlflow

[DEBull 201	8]	
data	Hence in the same of the fraction of the same of the s	

ISDS

[NIPS 2015]

Architecture of Machine Learning Systems – 01 Introduction and System Landscape Matthias Boehm, Graz University of Technology, SS 2022

Data-centric View:

Example: Linear Regression Conjugate Gradient

Note: #1 Data Independence #2 Implementation- Agnostic Operations	1: 2: 3: 4:	<pre>X = read(\$1); # n x m matrix y = read(\$2); # n x 1 vector maxi = 50; lambda = 0.001; intercept = \$3;</pre>	Read matrices from HDFS/S3
0	5: 6: 7:	<pre> r = -(t(X) %*% y); norm_r2 = sum(r * r); p = -r;</pre>	Compute initial gradient
Compute conjugate gradient	8: 9: 10: 11: 12:	<pre>w = matrix(0, ncol(X), 1); i = 0; while(i<maxi &="" norm_r2="">norm_r2_trgt) { q = (t(X) %*% (X %*% p))+lambda*p alpha = norm_r2 / sum(p * q);</maxi></pre>	; Compute
Update model and residuals	13: 14: 15: 16: 17: 18:	<pre>w = w + alpha * p; old_norm_r2 = norm_r2; r = r + alpha * q; norm_r2 = sum(r * r); beta = norm_r2 / old_norm_r2; p = -r + beta * p; i = i + 1;</pre>	step size
	19: 20:	<pre>} write(w, \$4, format="text");</pre>	of Concerns"

Apache SystemML/SystemDS

Cluster Config:

Basic HOP and LOP DAG Compilation

LinregDS (Direct Solve)

HOP DAG driver mem: 20 GB CP write (after rewrites) 8MB • exec mem: 60 GB 16MB CP b(solve) CP b(+) 172KB 1.6TB CP ba(+*) 800GB r(diag) ba(+*) SP SP 1.6TE r(t) SP **8KB** x 800GB **v** 800MB **CP** dg(rand) $(10^8 \times 10^3, 10^{11})$ $(10^8 \times 1, 10^8)$ $(10^3 \times 1, 10^3)$ **16KB** LOP DAG r'(CP) (after rewrites) tsmm(SP) mapmm(SP) 800MB 1.6GB Х r'(CP) X_{1,1} (persisted in **MEM_DISK)** X_{2,1} У (X_{m,1}

8KB

Hybrid Runtime Plans:

- Size propagation / memory estimates
- Integrated CP / Spark runtime
- Dynamic recompilation during runtime

Distributed Matrices

- Fixed-size (squared) matrix blocks
- Data-parallel operations

Static and Dynamic Rewrites

- Example Static Rewrites (size-indep.)
 - Common Subexpression Elimination
 - Constant Folding / Branch Removal / Block Sequence Merge
 - Static Simplification Rewrites
 - Right/Left Indexing Vectorization
 - For Loop Vectorization
 - Spark checkpoint/repartition injection

- Dynamic Simplification Rewrites
- Matrix Mult Chain Optimization

rowSums(X) \rightarrow X, iff ncol(X)=1 sum(X^2) \rightarrow X%*%t(X), iff ncol(X)=1

 $sum(\lambda^*X) \rightarrow \lambda^*sum(X)$ $sum(X+Y) \rightarrow sum(X)+sum(Y)$

Apache SystemDS Design

- Objectives
 - Effective and efficient data preparation, ML, and model debugging at scale
 - High-level abstractions for different lifecycle tasks and users
- #1 Based on DSL for ML Training/Scoring
 - Hierarchy of abstractions for DS tasks
 - ML-based SotA, interleaved, performance

- System infrastructure for diversity of algorithm classes
- Different parallelization strategies and new architectures (Federated ML)
- Abstractions → redundancy → automatic optimization
- #3 Data Model: Heterogeneous Tensors
 - Data integration/prep requires generic data model

Data Science Lifecycle tasks

Apache SystemML (since 2010)

→ Apache SystemDS (07/2020)

→ SystemDS (09/2018)

Language Abstractions and APIs, cont.

Example: Stepwise Linear Regression

> 83,400 tests

> 8,500 DSL tests

Apache SystemDS Architecture

[M. Boehm, I. Antonov, S. Baunsgaard, M. Dokter, R. Ginthör, K. Innerebner, F. Klezin, S. N. Lindstaedt, A. Phani, B. Rath, B. Reinwald, S. Siddiqui, S. Benjamin Wrede: SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle. **CIDR 2020**]

Data Cleaning Pipelines

[under submission]

- Automatic Generation of Cleaning Pipelines
 - Library of robust, parameterized data cleaning primitives
 - Enumeration of DAGs of primitives & hyper-parameter optimization (HB, BO)

Jniversity	Country		University
TU Graz	Austria	1	TU Graz
TU Graz	Austria	1	TU Graz
TU Graz	Germany	1	TU Graz
IIT	India		IIT
IIT	IIT		IIT
IIT	Pakistan		IIT
IIT	India	1	IIT
SIBA	Pakistan	1	SIBA
SIBA	null	1	SIBA
SIBA	null	1	SIBA
		-	-

Dirty Data

	IIT	India			
	IIT	India			
	IIT	India			
	SIBA	Pakistan			
	SIBA	Pakistan			
	SIBA	Pakistan			
After imputeFD(0.					

Country

Austria

Austria

Austria

India

А	В	с	D	
0.77	0.80	1	1	
0.96	0.12	1	1	
0.66	0.09	null	1	
0.23	0.04	17	1	
0.91	0.02	17	null	
0.21	0.38	17	1	
0.31	null	17	1	
0.75	0.21	20	1	
null	null	20	1	
0.19	0.61	20	1	
0.64	0.31	20	1	

Dirty Data

line

SliceLine for Model Debugging

- Problem Formulation
 - Intuitive slice scoring function
 - Exact top-k slice finding
 - $|S| \ge \sigma \land sc(S) > 0$
 - $\alpha \in (0,1]$

Properties & Pruning

- Monotonicity of slice sizes, errors
- Upper bound sizes/errors/scores
 → pruning & termination

Linear-Algebra-based Slice Finding

- Recoded matrix X, error vector e
- Vectorized implementation in linear algebra (join & eval via sparse-sparse matrix multiply)
- Local and distributed task/data-parallel execution

slice error

slice size

Multi-Level Lineage Tracing & Reuse

- Lineage as Key Enabling Technique
 - Trace lineage of operations (incl. non-determinism), dedup for loops/functions

Х

t(X)

- Model versioning, data reuse, incremental maintenance, autodiff, debugging
- Full Reuse of Intermediates
 - Before executing instruction, probe output lineage in cache Map<Lineage, MatrixBlock>
 - Cost-based/heuristic caching and eviction decisions (compiler-assisted)

Partial Reuse of Intermediates

- Problem: Often partial result overlap
- Reuse partial results via dedicated rewrites (compensation plans)
- Example: steplm

for(i in 1:numModels)
R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
 l = matrix(reg,ncol(X),1)
 A = t(X) %*% X + diag(1)
 b = t(X) %*% y
 beta = solve(A, b) ...}

Compressed Linear Algebra Extended

8.5

8.5

9 6

3 0 4

Lossless Matrix Compression

- Improved general applicability (compression time, new compression schemes, new kernels, intermediates, workload-aware)
 Uncompressed Input Matrix
 Compressed Matrix M
- Sparsity → Redundancy exploitation (data redundancy, structural redundancy)

Workload-aware Compression

- Workload summary → compression
- Compression → execution planning

DDC{1,3} RLE{2} (OLE{4}) 2.58.5} {9 {2.5} {3} 3 2 6 0 2 4 5 4 3 7 2.5 8 10 0 3 0 2.5 3 (sparse) || (dense) 2 (sparse)

Apache SystemDS

ex_dra

DDAI

42

Federated Learning [SIGMOD 2021b, CIKM 2022]

- Federated Backend
 - Federated data (matrices/frames) as meta data objects
 - Federated linear algebra, (and federated parameter server)
 - X = federated(addresses=list(node1, node2, node3), ranges=list(list(0,0), list(40K,70), ..., list(80K,0), list(100K,70)));

Federated Requests: READ, PUT, GET, EXEC INST, EXEC UDF, CLEAR

Integrated Data Analysis Pipelines for Large-scale Data Management, HPC, and Machine Learning; DAPHNE daughter of river god Peneus (fountains, streams), chased by Apollo [Louvre, Paris]

The DAPHNE project is funded by the European Union's Horizon 2020 research and innovation program under grant agreement number 957407 for the time period from Dec/2020 through Nov/2024.

An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines

https://daphne-eu.eu/

DAPHNE Project

DAPHNE Overall Objective: Open and extensible system infrastructure

Motivation

- Integrated Data Analysis Pipelines
 - Open data formats, query processing
 - Data preprocessing and cleaning
 - ML model training and scoring
 - HPC, custom codes, and simulations

Hardware Challenges

- DM+ML+HPC share compilation and runtime techniques / converging cluster hardware
- End of Dennard scaling:
 P = α CFV² (power density 1)
- End of Moore's law
- Amdahl's law: sp = 1/s
- ➔ Increasing Specialization

Deployment Challenges

DAPHNE Use Cases

- DLR Earth Observation
 - ESA Sentinel-1/2 datasets → 4PB/year
 - Training of local climate zone classifiers on So2Sat LCZ42 (15 experts, 400K instances, 10 labels each, 85% confidence, ~55GB H5)
 - ML pipeline: preprocessing, ResNet18, climate models

[Xiao Xiang Zhu et al: So2Sat LCZ42: A Benchmark Dataset for the Classification of Global Local Climate Zones. **GRSM 2020**]

AVL ob

[So2Sat LC42 Dataset https://mediatum.ub.tum.de/1454690]

infineon

- IFAT Semiconductor Ion Beam Tuning
- KAI Semiconductor Material Degradation
- AVL Vehicle Dev Process (ejector geometries, KPIs)
- ML-assisted simulations, data cleaning, augmentation

DAPHNE System Architecture

[Patrick Damme et al.: DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines, CIDR 2022]

DAPHNE Project

47

Vectorized (Tiled) Execution

Default Parallelization Frame & Matrix Ops Locality-aware, Multi-device Scheduling Fused Operator Pipelines on Tiles/Scalars + Codegen

DAPHNE Project

Vectorized (Tiled) Execution, cont.

#1 Zero-copy Input Slicing

- Create view on sliced input (no-op)
- All kernels work on views
- #2 Sparse Intermediates
 - Reuse dense/sparse kernels
 - Sparse pipeline intermediates for free

#3 Fine-grained Control

- Task sizes (dequeue, data access) vs data binding (cache-conscious ops)
- Scheduling for load balance (e.g., sparse operations)

#4 Computational Storage

 Task queues connect eBPF programs, async I/O into buffers, and op pipelines

(%9, %10) = fusedPipeline1(%X, %y, %colmu, %colsd) {

Summary and Q&A

- Motivation and Goals
- Course Organization, Outline, Exercise/Projects
- Data Science Lifecycle & ML Systems Stack
- Apache SystemDS and DAPHNE
- Recommended Reading (a critical perspective on a broad sense of ML systems)
 - [M. Jordan: SysML: Perspectives and Challenges. Keynote at SysML 2018]
 - "ML [...] is far from being a solid engineering discipline that can yield robust, scalable solutions to modern data-analytic problems"
 - https://www.youtube.com/watch?v=4inIBmY8dQI

