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Data Science Lifecycle ﬁ-grlan.

Recap: The Data Science Lifecycle  pata-centric view:

Application perspective
Workload perspective
Data System perspective

Scientist

Data Integration Model Selection Validate & Debug
Data Cleaning Training Deployment
Data Preparation Hyper-parameters Scoring & Feedback

|

Exploratory Process
(experimentation, refinements, ML pipelines)

Data/SW DevOps
Engineer Engineer
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Agenda

= Model Selection Techniques

= Model Management & Provenance
= Model Debugging and Explainability
= Model Bias & Fairness Constraints
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Model Selection Techniques
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Model Selection Techniques ﬁ-lc;lan.

[Chris Thornton, Frank Hutter, Holger H. Hoos,

AUtO M I— Ove rVieW Kevin Leyton-Brown: Auto-WEKA: combined

selection and hyperparameter optimization of

= #1 Model Selection classification algorithms. KDD 2013]

. k
= Given a dataset and ML task 4 e a‘rgminl Zﬁ(A DO D
(e.g., classification or regression) dea k= ) ‘

= Select the model (type) that performs best
(e.g.: LogReg, Naive Bayes, SVM, Decision Tree, Random Forest, DNN)

o k
= #2 Hyper Parameter Tuning Ao € argmin 1 Z LAY DO pl)
G P N

_ train? va.lid) :
= Given a model and dataset, A eAXEN
find best hyper parameter values

(e.g., learning rate, regularization, kernels, kernel parameters, tree params)

= Validation: Generalization Error
= Goodness of fit to held-out data (e.g., 80-20 train/test)
o (e.g., leave one out = k=5 runs w/ 80-20 train/test)

=>» AutoML Systems/Services
= Often providing both
* |ntegrated ML system, often in distributed/cloud environments



Model Selection Techniques
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ﬂ Basic Grid Search

gridsearch() @) learn

= Basic Approach GridSearchCV()
= Given n hyper parameters A1, ..., A\n with domains Al, ..., An
* Enumerate and evaluate parameter space A € A; X ... XA,
(often strict subset due to dependency structure of parameters)
= Continuous hyper parameters = discretization
= Equi-width Non-convex or unknown
= Exponential i parameter space
(e.g., regularization 1 o
0.1, 0.01, 0.001, etc) ® I
= Pr.oblem: Only appllcable B o o
with small domains
S
= Heuristic: Monte-Carlo ° ¢
(random search, anytime) 0 a 1
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Model Selection Techniques

Ty

Basic Grid Sea

= Example Adult Data

rch, cont.

set (train 32,561 x 14)

= Binary classification (>50K), https://archive.ics.uci.edu/ml/datasets/adult

= #1 MLogReg defaults w/ one-hot categoricals Accuracy (%): 82.35
= #2 MLogReg defaults w/ one-hot + binning Accuracy (%): 84.73
= #3 GridSearch MLogReg: Accuracy (%): 90.07

params = list("icpt"”, "reg", "numBins");

paramRanges =

= Example -
SystemDS 47

43

gridSearch

61
62
63

05 Data- and Task- Z‘_';,‘

Parallel Execution 2?

68
69
70

list(seq(0,2), 10~seq(3,-6), 10*seq(1,4));

HP = matrix(®, numConfigs, numParams); .
parfor( i in 1:nrow(HP) ) { L. . _
for( 5 in 1:numparams ) Materialize Configs

HP[i,j] = paramVals[j,as.scalar(((i-1)/cumLens[j,1])%%paramlens[],1]+1)];
¥

parfor( i in 1l:nrow(HP) ) {
# a) replace training arguments
largs = trainArgs;
for( j in 1:numParams )
largs[as.scalar(params[j])}] = as.scalar(HP[i,7]);
# b) core training/scoring and write-back
lbeta = t(eval(train, largs))
Rbeta[i,1:ncol(lbeta)] = lbeta;
Rloss[i,] = eval(predict, list(X, y, t(lbeta})}};


Presenter
Presentation Notes
Note: shown training loss, but w/ grid search on train/val up to ~87%

https://archive.ics.uci.edu/ml/datasets/adult

Model Selection Techniques ﬂ'E,lan.

Basic Iterative Algorithms

= Simulated Annealing Exploration vs
= Decaying temperature schedules: T,,, =a T, exploitation
= #1 Generate neighbor in €-env of old point

= #2 Accept better points and worse points w/ P (Ty) =

1
1+ exp((f' = f)/Tk)

= Recursive Random Search
= Repeated restart
= Sample and evaluate points

= Determine best and shrink
area if optimum unchanged

= Realign area if new *
optimum found

[Tao Ye, Shivkumar Kalyanaraman: A *
recursive random search algorithm for
large-scale network parameter Parameter Space

configuration. SIGMETRICS 2003]

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Model Selection Techniques ﬂ-';g_

BayeS | an O ptl m Izatio N [Chris Thornton, Frank Hutter, Holger H. Hoos, ———

Kevin Leyton-Brown: Auto-WEKA: combined
selection and hyperparameter optimization of
= Overview BO classification algorithms. KDD 2013]

= Sequential Model-Based Optimization

Algorithm 1 SMBO
= Fit a probabilistic model based on the 1: initialise model Mp; H 0

2: while time budget for optimization has not been ex-

first n-1 evaluated hyper parameters hausted do

3: A <+ candidate Conﬁgulfation from M
= Use model to select next candidate 4:  Compute ¢ = L(Ax, Dihi, DIy)
5. H+—HU{(A )}
] models. or 6: Update My given H
i o '. 7: end while . o
tree_based Bayes|an Opt|m|zat|on 8: return A\ from H with minimal ¢

= Underlying Foundations
" The posterior probability of a model M given  P(M|E) = P(E|M)P(M)/P(E)
evidence E is proportional to the likelihood of -
E given M multiplied by prior probability of M P(M|E) < P(E|M)P(M)
= Prior knowledge: e.g., smoothness, noise-free

GP high objective (exploitation) and high prediction uncertainty (exploration)

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Presenter
Presentation Notes
Note: posterior P(M|E) encodes updated beliefs, from prior P(M) and observed samples P(E|M)


Model Selection Techniques
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Bayesian Optimization, cont

= Example 1D Problem
= Gaussian Process
= 4 jterations

[Eric Brochu, Vlad M. Cora, Nando de
Freitas: A Tutorial on Bayesian
Optimization of Expensive Cost
Functions, with Application to Active
User Modeling and Hierarchical
Reinforcement Learning. CoRR 2010]

observation (x)

acquisition function (u(-))

________ —=="____ objective fn (f())

¥ acquisition max

posterior uncertainty

(u(-) £a(-))
\ _/\

posterior mean {u( )

v

_/\__..—
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Model Selection Techniques ﬂ-gg.

Multi-armed Bandits and Hyperband

[Credit:
blogs.mathworks.com]

V"

= Overview Multi-armed Bandits
= Motivation: model types have different quality
= Select among k model types =

= Running score for each arm -

[Sébastien Bubeck, Nicolo Cesa-Bianchi: Regret Analysis of | . .
Stochastic and Nonstochastic Multi-armed Bandit Problems.
Foundations and Trends in Machine Learning 2012]

= Hyperband
= Non-stochastic setting, without parametric assumptions
= Pure exploration algorithm for

= Based on Successive Halving [Lisha Li, Kevin G. Jamieson, Giulia

= Successivelv discardine the DeSalvo, Afshin Rostamizadeh, Ameet
y g Talwalkar: Hyperband: A Novel Bandit-

worst-performing half of arms Based Approach to Hyperparameter

= Extended by doubling budget of arms Optimization. JMLR 2017]
in each iteration (no need to configure k, random search included)

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
Matthias Boehm, Graz University of Technology, SS 2022
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Model Selection Techniques ﬁ-gg.

Selected AutoML Systems

[Chris Thornton et al: Auto-WEKA: combined | ~——

= Auto Weka selection and hyperparameter optimization of
] classification algorithms. KDD 2013]
= with
28 learners, 11 ensemble/meta methods [Lars Kotthoffet al: Auto-WEKA 2.0:
Automatic model selection and hyper-
parameter optimization in WEKA. JMLR 2017]
= Auto Sklearn
) [Matthias Feurer et al: Auto-sklearn:
" with Efficient and Robust Automated
15 classifiers, 14 feature prep, 4 data prep Machine Learning. Automated
Machine Learning 2019]
= TuPaQ [Evan R. Sparks, Ameet Talwalkar, Daniel
. . Haas, Michael J. Franklin, Michael I. Jordan,
" Multi-armed bandit and large-scale Tim Kraska: Automating model search for
large scale machine learning. SoCC 2015]
= TPOT
. . [Randal S. Olson, Jason H. Moore: TPOT: A Tree-Based | == -
" Genetic programming Pipeline Optimization Tool for Automating Machine
Learning. Automated Machine Learning 2019]
= Other Services

[Hantian Zhang, Luyuan Zeng, Wentao
" Azure ML, Amazon ML Wu, Ce Zhang: How Good Are Machine

= Google AutoML, H20 AutoML Learning Clouds for Binary Classification
with Good Features? CoRR 2017]

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
Matthias Boehm, Graz University of Technology, SS 2022



Model Selection Techniques ﬁ-lc;lan.

Selected AutoML Systems, cont.

Alpine Meadow

. . T [Zeyuan Shang et al:
= Logical and physical ML pipelines Democratizing Data Science

» Multi-armed bandit for pipeline selection through Interactive Curation of
ML Pipelines. SIGMOD 2019]
= for hyper-parameters

Dabl (Data Analysis Baseline Library)
[https://amueller.github.io/
dabl/dev/user guide.html]

= Tools for simple data preparation and ML training

= Hyperband (successive halving) for optimization

[Stefan Falkner, Aaron Klein, Frank

[ ]

BOHB Hutter: BOHB: Robust and Efficient
u & hyperband Hyper-parameter Optimization at

. . Scale. ICML 2018
= Queue-based of successive halving ]

AutoML (https://www.automl.org/)
Paper Collections/Benchmarks

= HPOBench/NASBench

s‘AUtOML-Org

BIFreiburg-Hannover

L vy =

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Presentation Notes
BOHB: combine BO and HB to get fast convergence and strong anytime performance

https://www.automl.org/
https://amueller.github.io/dabl/dev/user_guide.html

Model Selection Techniques ﬁ-gg.

Neural Architecture Search

= Motivation
= Design neural networks (type of layers / network) is often trial & error process
= Accuracy vs necessary computation characterizes an architecture

>

= #1 Search Space of Building Blocks Ijj R s ool o S i ﬁ
. Define pOSSibIe Operations ‘y‘l;lrickfor n;(;e3 ‘ynB‘Irickfor n;;e4 s
(e.g., identity, 3x3/5x5 separable Layer o1
convolution, avg/max pooling) Exploration of cell  jui
= Define approach for connecting designs |
OperatiOnS (pICk 2 inputs, apply op, e oo BN
and add results) @ -

[Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V.
Le, Jeff Dean: Efficient Neural Architecture Search
via Parameter Sharing. ICML 2018]



Model Selection Techniques
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Neural Architecture Search, cont.

= #2 Search Strategy
= (Classical evolutionary algorithms
= Recurrent neural networks (e.g., LSTM)

= Bayesian optimization (with
special distance metric)

= #3 Optimization Objective
= Max accuracy (min error)
= Multi-objective (accuracy and runtime)

= Excursus: Model Scaling

= Automatically scale-up small
model for better accuracy

= EfficientNet

[Mingxing Tan, Quoc V. Le: EfficientNet:
Rethinking Model Scaling for Convolutional
Neural Networks. ICML 2019]

[Kirthevasan Kandasamy, Willie Neiswanger, Jeff
Schneider, Barnabds Pdczos, Eric P. Xing: Neural
Architecture Search with Bayesian Optimisation

Imagenet Top 1 Accuracy (%)
1 G

[Barret Zoph, Quoc V. Le: Neural
Architecture Search with
Reinforcement Learning. ICLR 2017]

and Optimal Transport. NeurlPS 2018]

84 EfficientNet-B6 Amoeba_l‘\let—C
AmeobaNet-A _ mm====""""
,r'f' T )
»#° NASNet-A .. SENg
821 27 e
P .

%
.

?
s r eResNet-152
[ — Topl Acc. FLOPS
I DenseNet-201 ResNet-152 (Xie et al., 2017) 77.8% T1B
Bl]' : EfficientNet-B1 78.8% 0.7B
64 - ResNeXt-101 (Xie et al., 2017) 80.9% 32B
- ResNet-50 EfficientNet-B3 81.1% 1.8B
J SENet (Hu et al., 2018) 82.7% 12B
". ] NASNet-A (Zoph et al., 2018) 80.7% 24B
Inception-v2 EfficientNet-B4 82.6% 4.2B
744 d AmeobaNet-C (Cubuk et al., 2019)[ 83.5% 41B
NASNet-A EfficientNet-B3 833%  9.9B
ResNet-34 ‘ ‘ ‘ i i i
0 5 10 15 20 25 30 35 40

FLOPS (Billions)

45


Presenter
Presentation Notes
NASNet (1800GPU days, 5 years GPU utilization)


Model Selection Techniques ﬂ-gg.

Neural Architecture Search, cont.

= Problem: Computational Resources
= Huge computational requirements for NAS (even on small datasets)
=» #1 Difficult to reproduce, and #2 barrier-to-entry

= Excursus: NAS-Bench-101 Outer Skeleton
. . . dense
. unique convolutional architectures [ giobal avg pool |
= Training and evaluated architectures, stack 3 cel
e 2-3
on CIFAR-10 | downsample || L=
stack 2 [ zel
= Shared dataset: ~ 2.2
| downsample ] cell
stack 1 2-1
[Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, | t | —t
Kevin Murphy, Frank Hutter: NAS-Bench-101: Towards COHVF il

Reproducible Neural Architecture Search. ICML 2019]
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Model Management & Provenance ﬁ-lc;lan.

Overview Model Management

How did you create

= Motivation that model?

= Exploratory data science process = trial and error Did you consider X?

(preparation, feature engineering, model selection) 9
= Different personas (data engineer, ML expert, devops) Q
" Problems
= No record of experiments, insights lost along the way

ModelDB: A system 08
fo manage machine

= Difficult to reproduce results o o

DBge==t....

[Manasi Vartak: ModelDB: A system
= Difficult to collaborate to manage machine learning models,
Spark Summit 2017]

= Cannot search for or query models

= Overview
= Experiment tracking and visualization
= Coarse-grained ML pipeline provenance and versioning
» Fine-grained data provenance (data-/ops-oriented)

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
Matthias Boehm, Graz University of Technology, SS 2022



Model Management & Provenance ﬁ-gg.

Model Management Systems (MLOps)

= ModelHub [Hui Miao, Ang Li, Larry S. Davis,

. Amol Deshpande: ModelHub:
= Versioning system for DNN models, Deep Learning Lifecycle

including provenance tracking Management. ICDE 2017]

= DSL for model exploration and enumeration
queries (model selection + hyper parameters)

= Model versions stored as deltas

[Manasi Vartak, Samuel Madden:
]
ModelDB 9 MODELDB: Opportunities and Challenges
* Model and provenance logging for ML in Managing Machine Learning Models.
pipelines via programmatic APIs EEE Data Eng. Bull. 2018]

= Support for different ML systems a— —r=n
(e.g., spark.ml, scikit-learn, others) - —

= GUIs for capturing meta data and [Verta Enterprise N = oy o

metric visualization MLOps Platform S
https://www.verta.ai/ i
platform/ ]
Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
Matthias Boehm, Graz University of Technology, SS 2022
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Model Management & Provenance ﬁ-lc;lan.

Model Management Systems (MLOps), cont.

* Miflow

= An open source platform for

¢

O PyTorch Keras

TensorFlow
the machine learning lifecycle
= Use of existing ML systems Spor‘l‘(\z O learn HaBe)
and various language bindings
u logging and querying experiments
= packaging/reproduction of ML pipeline results
= deployment of models in various services/tools

MLflow Model Registry: cataloging models and managing deployment

[Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Konwinski,
Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, Fen Xie, Corey Zumar:
Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data Eng. Bull. 41(4) 2018]

[Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi, Sue Ann Hong, Andy
Konwinski, Clemens Mewald, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
Avesh Singh, Fen Xie, Matei Zaharia, Richard Zang, Juntai Zheng, Corey Zumar: Developments in
MLflow: A System to Accelerate the Machine Learning Lifecycle. DEEM@SIGMOD 2020]

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Model Management & Provenance
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Experiment Tracking

= TensorFlow: TensorBoard
= Suite of visualization tools

= Explicitly track and write
summary statistics

= Visualize behavior over
time and across experiments

= Different folders for
model versioning?

= Other Tools:

= |ntegration w/ TensorBoard

= Lots of custom logging
and plotting tools

Architecture of Machine Learning Systems — 03 Model Selection and Debugging
Matthias Boehm, Graz University of Technology, SS 2022

TensorBoard SCALARS IMAGES GRAPHS >

INACTVE ~ G & @

Show data download links Q, Filter tags (regular expressions supported)

Ignore outliers in chart scaling

accuracy

Tooltip sorting default ~

method: - cross entropy

Smoothing cross entropy
— 0.6 0.0550

0.0450

_ _ 0.0350
Horizontal Axis

0.0250
S RELATIVE  WALL 0.0150

5.000e-3

Runs -5.000e-3

: 0.000 3000 6000 900.0
Write a regex to filter runs

: ] E D run to download  w C3V JS0N
() train
Name Smoothed Value Step Time Relative
O el 0.0 on S
TOGGLE ALL RUNS 6.0 Mon S

/tmp/mnist-logs

mean

[Credit: https://www.tensorflow.org/guide/
summaries and tensorboard]

“ISDS
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Model Management & Provenance ﬁ-grlan.

ML Lifecycle Management

= Databricks Machine Learning [Clemens Mewald: Announcing Databricks
Machine Learning, Feature Store, AutoML,
" MLOps, Feature Store, AutoML Keynote Data+ Al Summit 2021]

MLOps = DataOps + DevOps + ModelOps

Workspace Experiment Tracking Model Registry Model Serving

E:EF Notebooks and Git {;*;I _2!0, @_—J‘ @% ; e
= iy il b A
\‘:_' l é:' C|u5ters Metrics atarsnsla ACLS odels m = _—__:‘—_——_> = %

- A —> {37 a
2—-;31'\: - = - 7a\ U_L.. ey m ! Sk e
_»__igoj Runtime and Libraries ‘Z_x;_\/ o 6 ﬂ @

- Data Versioning ey Gy Do -

@ MLOps / Governance
Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Model Management & Provenance ﬁ'l;lan_

Configuration Management

= #1 ML Collections

https://github.com/
= Dictionary-like data structures for google/ml collections
configurations of experiments and models
(hyper-parameters, loss, optimizer)

= ConfigDict and FrozenConfigDict

’
I | fdl.Config(
. | singleTaskTrainer)

= #2 Fiddle

= Configurations for model training

fdl.Config name="snli

tfds.load) split="train"
fdl.Config( : o

BertEncoder) hidden_size=768

i de.Cnnf!g( from_logits=True
! CategoricalCrossentropy)
with build () for creating training instances 3 acot e
= Auto-config for creating a config object | T
. fd1.build()
from a (control-flow-free) function

= Explain and visualization

SingleTaskTrainer

name="snli"

tfds.load

split="train"
https://github.com/ o sze-70
gO Og I e/fl d d | e CategoricalCrossentropy ——

from_logits=True

learning_rate=0.01

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Model Management & Provenance ﬁ-grlaJZI

Provenance for ML Pipelines (fine-grained)

= DEX: Dataset Versioning [Amit Chavan, Amol

Deshpande: DEX: Query

= Versioning of datasets, stored with delta encoding Execution in a Delta-

= Checkout, intersection, union queries over deltas based Storage System.
o L - SIGMOD 2017

= Query optimization for finding efficient plans ]

= MISTIQUE: Intermediates of ML Pipelines [Manasi Vartak et al: MISTIQUE:

A System to Store and Query
Model Intermediates for Model

= Lossy deduplication and compression Diagnosis. SIGMOD 2018]

= Capturing, storage, querying of intermediates

= Adaptive querying/materialization for finding efficient plans

= Linear Algebra Provenance

A
= Provenance propagation by decomposition

= Annotate parts w/ provenance polynomials

(identifiers of contributing inputs + impact)
A = S8,BT,, + 5,CT, + S, DT, + S,ET,

[Zhepeng Yan, Val Tannen, Zachary G.

Ives: Fine-grained Provenance for Linear T
Algebra Operators. TaPP 2016] v




Model Management & Provenance ﬁ-lc;lan.

Provenance for ML Pipelines (coarse-grained)

[Credit: https://databricks.com/

= MLflow
_ import mlflow blog/2018/06/05 ]
" Programmatic API for mlflow.log param("num_dimensions", 8)
tracking parameters, mlflow.log param("regularization", 0.1)
experiments, and results mlflow.log metric("accuracy", 0.1)

. mlflow.log artifact("roc.png")
» autolog() for specific params

= Flor (on Ground) [Credit: https://rise.cs.berkeley.edu/
projects/jarvis/ ]

= DSL embedded in python for managing the

workflow development phase of the ML lifecycle  [Joseph M. Hellerstein et al:
. ) . Ground: A Data Context
= DAGs of actions, artifacts, and literals Service. CIDR 2017]

= Data context generated by activities in Ground

= Dataset Relationship Management

. [Zachary G. lves, Yi Zhang,
! ! _ ! _ ! Soonbo Han, Nan Zheng,:
= Code-to-data relationships (data provenance) Dataset Relationship

= Data-to-code relationships (potential transforms) ~ Management. CIDR 2019]

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Model Management & Provenance ﬁ-lc;lan.

Provenance for ML Pipelines (coarse-grained), cont.

= HELIX [Doris Xin, Stephen Macke, Litian Ma,
Jialin Liu, Shuchen Song, Aditya G. | ——

= Goal: focus on iterative development Parameswaran: Helix: Holistic

w/ small modifications (trial & error) Optimization for Accelerating Iterative

. . Machine Learning. PVLDB 2018

= Caching, reuse, and recomputation & ]
= Reuse as - NP-hard = heuristics

load
= Materialization to disk Sp

for future reuse é\ i @ recompute
S @ S @ © p
e B
O--
5.
()

= Collaborative ) e
Optimizer S Si

O-O—C-

[Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Ziawasch Abedjan,
Tilmann Rabl, Volker Markl: Optimizing Machine Learning
Workloads in Collaborative Environments. SIGMOD 2020]

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Model Management & Provenance ﬁ'l;lan_

Lineage Tracing & Reuse in SystemDS gt 2 \
= Exploratory data science (data preprocessing, model configurations)

= Reproducibility and explainability of trained models (data, parameters, prep)

=» Lineage/Provenance as Key Enabling Technique:
Model versioning, reuse of intermediates, incremental maintenance,
auto differentiation, and debugging (query processing over lineage)

= Problem

= Efficient Lineage Tracing Runtime trace _ Lineage __serialize _ yineage

: : . Program ~ truct  Graph £ =~ Jeseriali Log
= Tracing of inputs, literals, reconstruc eserialize

S
and non-determinism _T r
. ome compare
* Trace lineage of P L
logical operations

[Arnab Phani, Benjamin Rath,
Matthias Boehm: LIMA: Fine-grained
= Program/output reconstruction Lineage Tracing and Reuse in Machine

. Learning Systems, SIGMOD 2021]
= Lineage-Based Reuse

= Deduplication for loops/functions

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Model Debugging and Explainability

Similar to Software Testing

Focus on Benchmarks, Assessment, Monitoring,
Model Improvements, Model Understanding

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
Matthias Boehm, Graz University of Technology, SS 2022



Model Debugging and Explainability ﬂ'E,lan.

- -
OVG rVIEW MOdeI Debuggl ng [Credit: twitter.com/tim_kraska]

M [Andrew Crotty et al: Vizdom:
e : Interactive Analytics through
[ Bl Pen and Touch. PVLDB 2015]

= #1 Understanding via Visualization
= Plotting of predictions / interactions

= Combination with dimensionality
reduction into 2D:

= Autoencoder
= PCA (principal component analysis) %
= t-SNE (T-distributed Stochastic Neighbor Embedding) X

= |nput, intermediate, and output layers of DNNs [Credit: niml.github.io/in-raw-
numpy/in-raw-numpy-t-sne/]

= #2 Validation, Explainability, Fairness via Constraints

= Establish assertions and thresholds for automatic validation and alerts
w.r.t. accuracy, bias, and other metrics

= Generate succinct representations (e.g., rules) as explanation
= |mpose constraints like monotonicity for ensuring fairness

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Model Debugging and Explainability ﬂ'E,lan.

Basic Model-Specific Statistics

= Regression Statistics
= Average response and stddev, average residuals stddev residuals
= R2 (coeff of determination) with and without bias, etc

= Classification Statistics predicted label

= Classical: recall, precision, F1-score 1 0/1]/2]3/4/5(6/7[8|9
21

= Visual: confusion matrix E 5c
(correct vs predicated classes) n 15
=» understand performance n 76
wrt individual classes / n 23 1
bins of continuous vars correct H 36
= Example Mnist label ﬂ 24
= Mispredictions might 31 37
also be visualized via 8 | 42
dimensionality reduction 9 | S i1 53
Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Use Case

IoN

DLR Earth Observati

Model Debugging and Explainability

Excursus

()

A

So2Sat LCZ42:

[Xiao Xiang Zhu et al
Benchmark Dataset for the Classification of

ipelines
= ESA Sentinel-1/2 datasets = 4PB/year

= Dataand MLP

Global Local Climate Zones. GRSM 2020]

[So2Sat LC42 Dataset
//mediatum.ub.tum.de/1454690]

9. Sparsely
built

G. water

7. Lightweight
low-rise
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middle-rise
D. Low plants
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3. Compact
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2. Compact
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o
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= Training of local climate zone classifiers on
= Team learning

= ML pipeline
= Label Creation/ Validation
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= Labeling w/ checks
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= |abel validation

140

0 2348 23

000000000 O

000000001000 o0fJooo
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validation w/ 10

Label Validation Votes

Label Validation Votes

Label Validation Votes

Label Validation Votes

expert votes on correctness
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Notes: Confusion matrices (values in %) of the original labels the final labels (refined by majority voting) vs. the votes cast bythe label validation crew for the polygons of the evaluation cities selected in Tables II and III: (a) original labels polygon-wise assessment, (b) original labels pixel-wise, (c) final labels polygon-wise, and (d) final labels pixel-wise 

Unfortunately, not many European cities contain LCZ class 7 (light-weight low-rise), which mostly describes informal settlements (e.g., slums). Therefore, we included the polygons of class 7 for an additional 9 cities that are representative of the 9 major non-European geographical regions of the world

https://mediatum.ub.tum.de/1454690
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Actual
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= Generalized Confusion Matrices

Counts

10k 20k 30Kk 40k

Checkbox (selected)
Checkbox (unselected)
Container

Dialog

Icon

PageControl

Picture
SegmentedControl
Slider

Text

TextField

Toggle (selected)
Toggle (unselected)

Normalize confusions and
display performance metrics

Confusion Matrices, cont.

= Hijerarchical, Multi-label Data

Observed Observed

Row Probabilities

0 02040608 1

cabbage-chou:head cab
summer squash
winter squash

Checkbox (unselected)

Container

Dialog
Icon
cruciferous veg -

Checkbox (selected)
SegmentedControl
Toggle (unselected)

|.0|.0|.0|.0|.0|.0|.0|.0|.o -

0 o o o [© jJo jJo I& o o

Rl G BN 8 G [SE SN SR =) g

Slider

Text
Toggle (selected)

PageControl
Picture
TextField
vegetable-veggie
root vegetable:potato
broccoli
cauliflower
squash 4
solanaceous veg:pepper
cardoon

cucumber
artichoke

vegetable-veggie X
root vegetable:potato

cruciferous veg j-
cabbage-chou:head cab .
broccoli .
cauliflower .
squash 4
summer squash .
winter squash .
1.00 cucumber .
artichoke .
solanaceous veg:pepper .

Actual

= S
o Jo o fo
o o @ Jo

mushroom

Interactively traverse and
compare hierarchical labels -

L

= Transform multi-label data:

[Jochen Gortler et al: Neo: Generalizing Confusion
Matrix Visualization to Hierarchical and Multi-
Output Labels. CHI 2022 (1/25 best papers)]

mushroom

cardoon .
|

Observed

Counts

toxic_mild
obscene ;-
obscene
none
obscene 4
none
obscene

none

20 40 60 80 100 120

toxic_mild
obscene ,-

obscene ..

none

none

Actual

obscene ,-
none
obscene

toxic_mild QD> activate gg:gle%?fafg:glftnd

dimensions of the data.
The order of dimension

activate activate . .
defines the nesting level.

Where Condition the
Pl (identity_hateiidentity_hate v]  confusion matrix on the

value of a given label.

Transform and visualize high-
dimensional multi-output labels -

conditioning, marginalization (aggregation), and nesting
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33

EXCU rsus: d a bI . p I ot [Andreas Mueller: dabl — Taking the edge off

of data science with dabl, Data Umbrella 2022,
https://www.youtube.com/watch?v=h92RMJi4dmRM|]

Target distribution

# adult dataset (>50K vs <=50K income)
data = pd.read csv("adult.csv")
plot(data, "income"

<=50K

>50K

0 5000 10000 15000 20000 25000
count

<=50K
>50K

20000+
15000 4 ——
10000 1 il
—
i I R — 1
B

odEa i -

~5000 1~

20 40 60 80 0 25000 50000 75000100000
age capital-gain

capital-gain

Discrimina ting PCA directions
0.582 Scree plot (PCA explained variance! )

. . e
[https://amueller.github.io/dabl/dev/auto_examples/ (mosaic plots) X
plot/plot_adult.html]
Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
Matthias Boehm, Graz University of Technology, SS 2022 :


https://amueller.github.io/dabl/dev/auto_examples/plot/plot_adult.html
https://www.youtube.com/watch?v=h92RMJi4mRM

Model Debugging and Explainability ﬁ-grlaJZI

Occlusion-Based Explanations

(c) Layer 5, strongest (d) Classifier, probability

(a) Input Image (b) Layer 5, strongest feature map feature map projections of correct class

= QOcclusion Explanations
= Slide gray square over inputs S u..

= Measure how feature maps
and classifier output changes

[Matthew D. Zeiler, Rob Fergus:
Visualizing and Understanding

[
RP .
Al ﬁ i M -
JAL i
g [
A &

Convolutional Networks. ECCV 2014]  Ferce el

AN 26\
NCEE «gwm\\

* Incremental Computation
of Occlusion Explanations

True Label: Afghan Hound
L T W i

= View CNN as white-box operator [Supun Nakandala, Arun Kumar, and Yannis [—_—
graph and operators as views Papakonstantinou: Incremen.tal and Approximate B
Inference forFaster Occlusion-based Deep CNN
= Materialize intermediate tensors Explanations, SIGMOD 2019]
and apply incremental view maintenance SIGMOD 2020 Research Highlight
Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
Matthias Boehm, Graz University of Technology, SS 2022
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Deconvolutional network (deconvnet): map feature activity in intermediate layers back to the input pixel space;
Reveals: that text in care more important, owner faces dominate dog bread classification
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Exam ple \Y Odel Anoma I ies “silent but severe problems”

= #1 Wolf Detection based on snow cover

=== | [Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin: Why Should | Trust You?: Explaining the
Predictions of Any Classifier, KDD 2016]

(a) Husky classified as wolf
Image

= #2 Horse Detection
based on image watermarks

= Layer-wise relevance propagation

[Sebastian Lapuschkin et al.: Analyzing
Classifiers: Fisher Vectors and Deep
Neural Networks, CVPR 2016]

= #3 Race-biased Jail
Risk Assessment

[Julia Angwin et al: Machine Bias — There’s software used
across the country to predict future criminals. And it’s biased
against blacks, 2016, https://www.propublica.org/article/

#BlackLivesMatter %

BERNARD, [ZY4]

machine-bias-risk-assessments-in-criminal-sentencing] : W — M

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Racial bias; white 86$ Home Depot before armed robbery and attempted armed robbery (low risk) vs similar price range, but black (high risk); example person 3x arrests

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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SliceFinder

[Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun
Tae, Steven Euijong Whang: Automated Data Slicing for

Model Validation: A Big Data - Al Integration Approach.
ICDE2019/TKDE2020]

= Problem Formulation

= Data slice: SP¢ := D=PhD AND G=female (subsets of features)
than average

" Ordering by “find largest error vs find large slices”

= |ncreasing number of literals,

= Decreasing slice size, and decreasing effect size (difference S vs -5)

= Subject to: minimum effect size threshold T, statistical significance (Welch’s t-
test), a dominance constraint (no coarser slice satisfies 1 and 2) via

= Existing Algorithms

. L ) .
Preparation: Binning + One-Hot Encoding
= #1 Clustering = slices L N
- #2 D . . t t . . | Sex=rMale | | Sex=Female | |Edu=Bachelors| | Edu=Doctorate | .en
ecision tree training — — —

T —

o

. #3 W|th Sex=Male f\_

Sex=Male A
Edu=Doctorate

Sex=Female A
Edu=Bachelors

Sex=Female A
Edu=Doctorate

heuristic, level-wise termination Edw—Bachelors

Architecture of Machine Learning Systems — 03 Model Selection and Debugging
Matthias Boehm, Graz University of Technology, SS 2022
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Note: As SliceFinder searches through a large number of slices, some slices might appear problematic by chance (i.e., multiple comparisons problem [20]). SliceFinder controls such a risk by applying a marginal false discovery rate (mFDR) controlling procedure called \alpha-investing
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SliceLine for Model Debugging ﬂ @&eline
g e

= Problem Formulation

= |ntuitive slice

. . SC =
scoring function
= Exact top-k slice finding
= |S|=0Asc(S)>0

= a € (0,1]

= Properties & Pruning
= Monotonicity of slice sizes, errors

= Upper bound sizes/errors/scores
=> pruning & termination

= Linear-Algebra-based Slice Finding
= Recoded matrix X, error vector e

= Vectorized implementation in linear algebra
(join & eval via sparse-sparse matrix multiply)

= |ocal and distributed task/data-parallel execution

[Credit: sliceline,
Silicon Valley, HBO]

e(s) X
a(é(X) — 1>—(1—a)<m—1>

x| 2 es; <|X| )
e 1| -1 - -1
a<|5| Zi)fllei ( C() |S|

slice error slice size

X (|S|=n, se=e)

Level 1:
(11in, 3 out)
Level 2:
(2 in, 2 out)
Level 3:
(3 in, 1 out)
|S| = min(|S| parents)

Level m: se < min(se parents)

Candidate
Slices

Data

== Level

MEONDO|O0 =P O
DN ® N O OO
HHEF® || @F @

DO Rr ORLRE
P EORLROD
PO RrR O
o= 0000

DO R O
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Compelling properties:
The components are balanced under α = 0.5. 
The score of the original X is always sc = 0. 
For α = 0 (all weight on size), the maximum feasible score is 0, and no slice smaller than X can reach it. 
All components of Equation (1) are either constants, or slice errors and sizes, which makes this function amenable to pruning.
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[Svetlana Sagadeeva, Matthias Boehm:

Sllce LI ne - Expe riments SlicelLine: Fast, Linear-Algebra-based

Slice Finding for ML Model Debugging,
SIGMOD 2021]

= Salaries 2x2

200
g 1e6 j / —=—  No dedup = 100 — @ No dedup
£, Jbes, —hes o norRetpeiens, | © 5o | B No parents, sc, ss
S led / E B No parents, sc
B 1000 o _/'/‘)'/—V:—v\‘\:\‘\v\ = ?8 —| B No parents
& g= -1l All
oA = = \.191_1 v T M tRotparcun 2
® 1o A All =2
| | | | | I =
6 8 10 2 4 Deduplication and Pruning
alavel Loy, o T attic Configurations
= Adult ., 12000 Effective Prunin
Q B Evaluated &
= 10000 — m Valid (o) (#evaluated
= 8000 — close to #valid)
£ 6000 —
£ 4000 — Practical Performance
S 2000 — (39s until termination
H
0 — at level 12)

1 3 5 7 9 11 13
Lattice Level L
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S I | Ce Tu n e r [Ki Hyun Tae, Steven Euijong Whang: Slice Tuner: A

Selective Data Acquisition Framework for Accurate
and Fair Machine Learning Models, SIGMOD 2021]

= Motivation

. .. . . 1.31 —+— Slice: White-Mal
= Root cause of unfairness: bias in training data Lo S oo
o s ege I —e— Slice: Black-Female
= Selective Data Acquisition for g1y  y=3115¢-028
. < 1.0
model accuracy and fairness S
. . . . S 09
= Different slices w/ different learning curves Sos)
- Learning curve fitting 0.7
0.61 . i . . : .
50 100 15Q . 200 250 300
- Problem FormUIation Number of training examples
Minimize total loss of slices Penalize underperforming slices
| )

\

Convex — o A
optimization n
problem subject to Z C(sj) xd; =B

=1

n n .
bi(|si| + i)~
miani(si|+di)_“f+AZmax{0, i{lsil +di) —1}

Budget of acquisition costs
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Continuous Integration

. [Cedric Renggli, Bojan Karlas, Bolin Ding, Feng Liu, Kevin
= System Architecture Schawinski, Wentao Wu, Ce Zhang: Continuous Integration
ease.ml/ci of Machine Learning Models with ease.ml/ci: Towards a

Rigorous Yet Practical Treatment, SysML 2019]

Test Conditionand Reliability Guarantees

Github Repository - script : ./test_model.py

/

1 1
1 1
1 1
I i
@ Define test script .~~~ ! - condition :n -o0>0.02 +/- 0.01 ;
o o/ iravis. yml- | - reliability: ©.9999 |
o I - mode : fp-free :
| ® /testset ' - adaptivity : full '
. . [ ] _ . l
© Provide N test examples , - steps 32 |
l ./ml_codes i
FomTToTmTTommmeoo ! or it
1 Technical Contribution : Example Test :
| Provide guidelines on 1 ; X Condition '
. guldeline . @ Commit | ondition !
! howlarge Nisina ! a new ML 1 New model has at :
! declarative, rigorous, ! del/cod ml/ci ‘passed IR EIERY | [east 2% higher :
I but still practical way, ! model/code | accuracy, estimated :
! enabled by novel ! i within 1% error, !
| system optimization ! e / or i with probability :
: techniques. ! A < — i 0.9999. :
SR ! . O Get pass/fail signal b mmmmmm e .
Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
Matthias Boehm, Graz University of Technology, SS 2022


Presenter
Presentation Notes
Others: model assertions


Model Debugging and Explainability ﬁ-grlan.

EX Ia | n a bl | It [Hima Lakkaraju, Julius Adebayo, Sameer Singh:
p y Explaining Machine Learning Predictions: State-of-the-art,
Challenges, and Opportunities, NeurlPS 2020 Tutorial,

https://explainml-tutorial.github.io/neurips20]

= Motivation
= Explain predictions via inputs for model understanding & transparency
= Utilize model debugging and other tools

= #1 |nterpretab|e Models Interpretability L Sl 2 Accuracy

= Linear models, tree-based models,

Prefer simpler models
rule-based models

if accuracy sufficient!

= Weights and decision rules

= #2 Post-hoc Explanations
= Complex deep neural networks or very large models = black box models

= Build simple models for explaining any complex models
Multi-modal

= Types of Explanations Interpretability:
https://captum.ai/

= Model parameters, example predictions, summarization
= Most important features/data, how to flip model predictions

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
Matthias Boehm, Graz University of Technology, SS 2022
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LIME: Sparse, Linear Explanations

. [Marco Tulio Ribeiro, Sameer Singh, and Carlos | ===
|

LIME Overview Guestrin: Why Should | Trust You?: Explaining the
= Model agnostic explanations Predictions of Any Classifier, KDD 2016]

= |dentify important dimension and
present their relative importance

= Sample perturbations of prediction input
(e.g., hide parts of image, attribute values)

= Locally weighted regression

(a) Husky classified as wolf (b) Explanation

= LIME Objective

= Various hyper-parameters Loss Function Regularizer
= Heuristics / ) b
HP optimization f(ﬂl’) — argimiin [:(f, g, 77:1:) =+ Q(Q)
geG }
Linear Models Local Kernel
Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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SHAP: Shapley Additive Explanations

: [Scott M. Lundberg, Su-In Lee: A | =——
" SHAP Overview Unified Approach to Interpreting '

= Additive feature importance (local accuracy) Model Predictions. NIPS 2017]

= of LIME, Shapley sampling/regression values, Qll,
DeepLIFT, layer-wise relevance propagation, tree interpreter

= Estimate Shapley values using [Scott M. Lundberg: Explainable
Al for Science and Medicine,

https://www.youtube.com/watch

m SHAP Tooling ?v=B-c8tlgchu0]

Output=0.4

Output=04

%
[ —

Age=65 — +04 — Age =65
Sex=F — 0. —
Explanation — Sex=F
BP =180 —» e— BP =180
BMI = 40 —»| «— BMI =40
T
Baserate=0.1 (Avg Output) Base rate = 0.1
[https://shap.readthedocs.io/en/latest/index.html] Marginal contributions
Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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https://www.youtube.com/watch?v=B-c8tIgchu0
https://shap.readthedocs.io/en/latest/index.html

Model Bias & Fairness

Focus on Applications, Fairness, Ethics, Responsibility
Fairness Metrics and Constraints

Employs Model Debugging & Explainability
Techniques

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Sources of Bias

= Environment

= Selection Bias: Differences in study participation, data availability, and
measurement effort

= Test environment, project team, cultural context = different context

= Data Collection
= Sample Bias: collected data not representative of application

= Observer Bias / Confirmation Bias: subjective judgment leaks
into measurement and analysis = transparency and critical feedback

®= Training Dataset
= Data Bias: e.g., not missing at random (NMAR) values
= Feature Selection Bias: manual or automatic during data preparation

= Design ML Systems & applications w/ awareness of potential bias

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
Matthias Boehm, Graz University of Technology, SS 2022
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Excursus: DLR Earth Observation Use Case, cont.

For the evaluation, we have chosen a subset of] 10 European

cities (shown in Table II) from the group of cities we labeled.
The choice was based on the following three rationales:

« All our labeling experts have lived in Europe for a significant
number of years. This ensures familiarity with the general
morphological appearance of European cities.

e Google Earth provides detailed 3D models for the 10 cities,
which is of great help in determining the approximate height
of urban objects. This is necessary to be able to distinguish
between low-rise, mid-rise, and high-rise classes.

e As previously mentioned, LCZ labeling is very labor-
intensive. Reducing the evaluation set to 10 cities allowed
us to generate more individual votes per polygon for better
statistics.

Unfortunately, not many European cities contain LCZ class
7 (light-weight low-rise), which mostly describes informal
settlements (e.g., slums). Therefore, we included the polygons
of class 7 for an additional 9 cities that are representative of

the 9 major non-European geographical regions of the world
(see Table III).

[Xiao Xiang Zhu et al: So2Sat ===
LCZ42: A Benchmark Dataset for
the Classification of Global Local

Climate Zones. GRSM 2020]

Environment / Context
- Biased Data Collection

- Awareness and
Conscious Bias Mitigation
- Remaining Bias?

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Debugging Bias and Fairness

= Fairness
= Validate and ensure fairness with regard to sensitive features (unbiased)

= Use occlusion and saliency maps to characterize and compare groups

= Enforcing Fairness
= Use constraints to enforce certain properties (e.g., monotonicity, smoothness)

= Example: late payment = credit score

Impose monotonicity constraint
on # months overdue

1.0OH B Single
A Married

1.0H @ Single A
& Married -
0.8 Q

0.8

0.6 0.6 - a A @ @ @ @ B

04 0.4} B

[Maya Gupta: How e L T 20 m

Do We Make Al nos 0 2 g 6 8 2 2 B
Fair? SysML 2019] # Months Since You Paid Your Bills # Months Since You Paid Your Bills

Default Rate
——
Predicted Default Rate

00 1 1 1 1 1
-2 0 2 1 6 8

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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Group Fairness Constraints i zhangetai: omnirair: A beclarative [

System for Model-Agnostic Group Fairness
in Machine Learning, SIGMOD 2021]

#1 Statistical Parity

* |ndependence of model from groups Vgi,9; € G:

s across groups P(h = 1lg;) = P(h = 1]g))
= #2 False Positive Rate Parity Vg, 9 € G:

= |[ndependence of model from groups P(h=1|g;,y =0)

- wrz P =1lgjy =0)

Equalized

= #3 False Negative Rate Parity Odds Vg, g € G:

= |[ndependence of model from groups P(h=0|g;,y=1)

o ~P(h=0|g;,y=1)
= #4 False Omission Rate Parity Vg, g; € G:

» |Independence of true labels from groups P(y =1|g;,h =0)

o ~P(y =1lg;,h =0)

Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS

Matthias Boehm, Graz University of Technology, SS 2022



Model Bias & Fairness ﬁ'l;lan_

E n S u ri ng Fa i rn ESS [H. Zhang et al: OmniFair: A Declarative

System for Model-Agnostic Group Fairness
in Machine Learning, SIGMOD 2021]

= Problem Formulation

= A fairness specification is given by a triplet (g, f, €) and induces
(|g(D)|choose 2) fairness constraints on pairs of groups

= A fairness specification is satisfied by a classifier h on D iff all
induced fairness constraints are satisfied, i.e., Vgi,gj € g(D), |f(h,gi)-f(h,gj)| < ¢

= Unconstrained

e max accuracy max accuracy
optimization problem »

s.t. fairness + fairness

= Results (a) Logistic Regression (b) Random Forest
0.82 0.82
= Adult dataset
0.8 o 0.8 =
. = - ; # Original
agnostlc = 0.78 # Original & Kaml_rat} 0.78 ag s p—
% / 3 Calmon @ OmniFair \/““"\’\. s Calmon
= Slmlla r 0.76 ¢ Celis ¥—Zafar 0.76 ® OmniFair
Agarwal
Agarwal
Accuracy 0.74 0.74
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2
Statistical Parity Difference Statistical Parity Difference
Architecture of Machine Learning Systems — 03 Model Selection and Debugging .ISDS
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EXC u rS u S . E U PO | icy HARMONISED RULES ON ARTIFICIAL INTELLIGENCE

[European Commission: LAYING DOWN

(ARTIFICIAL INTELLIGENCE ACT) AND AMENDING
CERTAIN UNION LEGISLATIVE ACTS, 04/2021]

The Commission examined different policy options to achieve the general objective of the
proposal, which is to ensure the proper functioning of the single market by creating the
conditions for the development and use of trustworthy Al in the Union.

Four policy options of different degrees of regulatory intervention were assessed:

Option 1: EU legislative instrument setting up a voluntary labelling scheme;
Option 2: a sectoral, “ad-hoc” approach;

Option 3: Horizontal EU legislative instrument following a proportionate risk-
based approach;

Option 3+: Horizontal EU legislative instrument following a proportionate risk-
based approach + codes of conduct for non-high-risk Al systems;

Option 4: Horizontal EU legislative instrument establishing mandatory
requirements for all Al systems, irrespective of the risk they pose.

=» “The preferred option is option 3+, a regulatory framework for high-risk Al systems
only, with the possibility for [...] non-high-risk Al systems to follow a code of conduct.”
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