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Recap: The Data Science Lifecycle
Data Science Lifecycle

Data/SW 
Engineer

DevOps 
Engineer

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data 
Scientist

Data-centric View:
Application perspective
Workload perspective

System perspective

Exploratory Process 
(experimentation, refinements, ML pipelines)
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Agenda
 Model Selection Techniques
 Model Management & Provenance
 Model Debugging and Explainability
 Model Bias & Fairness Constraints
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Model Selection Techniques
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AutoML Overview
 #1 Model Selection

 Given a dataset and ML task 
(e.g., classification or regression) 

 Select the model (type) that performs best 
(e.g.: LogReg, Naïve Bayes, SVM, Decision Tree, Random Forest, DNN)

 #2 Hyper Parameter Tuning
 Given a model and dataset, 

find best hyper parameter values 
(e.g., learning rate, regularization, kernels, kernel parameters, tree params)

 Validation: Generalization Error
 Goodness of fit to held-out data (e.g., 80-20 train/test)
 Cross validation (e.g., leave one out  k=5 runs w/ 80-20 train/test)

AutoML Systems/Services
 Often providing both model selection and hyper parameter search
 Integrated ML system, often in distributed/cloud environments

Model Selection Techniques

[Chris Thornton, Frank Hutter, Holger H. Hoos, 
Kevin Leyton-Brown: Auto-WEKA: combined 

selection and hyperparameter optimization of 
classification algorithms. KDD 2013]
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Basic Grid Search
 Basic Approach

 Given n hyper parameters λ1, …, λn with domains Λ1, …, Λn
 Enumerate and evaluate parameter space Λ ⊆ Λ1 × … × Λ𝑛𝑛

(often strict subset due to dependency structure of parameters)
 Continuous hyper parameters  discretization

 Equi-width
 Exponential 

(e.g., regularization
0.1, 0.01, 0.001, etc)

 Problem: Only applicable 
with small domains 

 Heuristic: Monte-Carlo
(random search, anytime)

Model Selection Techniques

0

1

1α

β

Non-convex or unknown 
parameter space 

gridSearch()
GridSearchCV()
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Basic Grid Search, cont.
 Example Adult Dataset (train 32,561 x 14)

 Binary classification (>50K), https://archive.ics.uci.edu/ml/datasets/adult
 #1 MLogReg defaults w/ one-hot categoricals Accuracy (%): 82.35
 #2 MLogReg defaults w/ one-hot + binning Accuracy (%): 84.73
 #3 GridSearch MLogReg: Accuracy (%): 90.07

 Example 
SystemDS
gridSearch

Model Selection Techniques

params = list("icpt", "reg", "numBins");
paramRanges = list(seq(0,2), 10^seq(3,-6), 10^seq(1,4));

05 Data- and Task-
Parallel Execution

# Materialize Configs

Presenter
Presentation Notes
Note: shown training loss, but w/ grid search on train/val up to ~87%

https://archive.ics.uci.edu/ml/datasets/adult
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Basic Iterative Algorithms
 Simulated Annealing

 Decaying temperature schedules: Tk+1 = α ∙ Tk

 #1 Generate neighbor in ε-env of old point
 #2 Accept better points and worse points w/

 Recursive Random Search
 Repeated restart
 Sample and evaluate points
 Determine best and shrink 

area if optimum unchanged
 Realign area if new 

optimum found 

Model Selection Techniques

Exploration vs 
exploitation

𝑃𝑃(𝑇𝑇𝑘𝑘) =
1

1 + exp((𝑓𝑓𝑓 − 𝑓𝑓)/𝑇𝑇𝑘𝑘)

Parameter Space

[Tao Ye, Shivkumar Kalyanaraman: A 
recursive random search algorithm for 
large-scale network parameter 
configuration. SIGMETRICS 2003]
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Bayesian Optimization
 Overview BO

 Sequential Model-Based Optimization
 Fit a probabilistic model based on the 

first n-1 evaluated hyper parameters
 Use model to select next candidate
 Gaussian process (GP) models, or

tree-based Bayesian Optimization

 Underlying Foundations
 The posterior probability of a model M given 

evidence E is proportional to the likelihood of 
E given M multiplied by prior probability of M

 Prior knowledge: e.g., smoothness, noise-free 
 Maximize acquisition function:

GP high objective (exploitation) and high prediction uncertainty (exploration) 

Model Selection Techniques

[Chris Thornton, Frank Hutter, Holger H. Hoos, 
Kevin Leyton-Brown: Auto-WEKA: combined 

selection and hyperparameter optimization of 
classification algorithms. KDD 2013]

𝑃𝑃 𝑀𝑀 𝐸𝐸 = 𝑃𝑃 𝐸𝐸 𝑀𝑀 𝑃𝑃(𝑀𝑀)/𝑃𝑃(𝐸𝐸)


𝑃𝑃 𝑀𝑀 𝐸𝐸 ∝ 𝑃𝑃 𝐸𝐸 𝑀𝑀 𝑃𝑃(𝑀𝑀)
beforenext after 

Presenter
Presentation Notes
Note: posterior P(M|E) encodes updated beliefs, from prior P(M) and observed samples P(E|M)
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Bayesian Optimization, cont
 Example 1D Problem

 Gaussian Process
 4 iterations

Model Selection Techniques

[Eric Brochu, Vlad M. Cora, Nando de 
Freitas: A Tutorial on Bayesian 
Optimization of Expensive Cost 
Functions, with Application to Active 
User Modeling and Hierarchical 
Reinforcement Learning. CoRR 2010]
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Multi-armed Bandits and Hyperband
 Overview Multi-armed Bandits

 Motivation: model types have different quality
 Select among k model types  k-armed bandit problem
 Running score for each arm  scheduling policy

 Hyperband
 Non-stochastic setting, without parametric assumptions
 Pure exploration algorithm for infinite-armed bandits
 Based on Successive Halving

 Successively discarding the 
worst-performing half of arms

 Extended by doubling budget of arms 
in each iteration (no need to configure k, random search included)

Model Selection Techniques

[Credit:
blogs.mathworks.com]

[Sébastien Bubeck, Nicolò Cesa-Bianchi: Regret Analysis of 
Stochastic and Nonstochastic Multi-armed Bandit Problems. 

Foundations and Trends in Machine Learning 2012]

[Lisha Li, Kevin G. Jamieson, Giulia 
DeSalvo, Afshin Rostamizadeh, Ameet

Talwalkar: Hyperband: A Novel Bandit-
Based Approach to Hyperparameter

Optimization. JMLR 2017]

https://blogs.mathworks.com/
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Selected AutoML Systems
 Auto Weka

 Bayesian optimization with 
28 learners, 11 ensemble/meta methods

 Auto Sklearn
 Bayesian optimization with 

15 classifiers, 14 feature prep, 4 data prep 

 TuPaQ
 Multi-armed bandit and large-scale

 TPOT 
 Genetic programming

 Other Services
 Azure ML, Amazon ML
 Google AutoML, H20 AutoML

Model Selection Techniques

[Hantian Zhang, Luyuan Zeng, Wentao
Wu, Ce Zhang: How Good Are Machine 

Learning Clouds for Binary Classification 
with Good Features? CoRR 2017]

[Chris Thornton et al: Auto-WEKA: combined 
selection and hyperparameter optimization of 

classification algorithms. KDD 2013]

[Lars Kotthoffet al: Auto-WEKA 2.0: 
Automatic model selection and hyper-

parameter optimization in WEKA. JMLR 2017]

[Matthias Feurer et al: Auto-sklearn: 
Efficient and Robust Automated 

Machine Learning. Automated 
Machine Learning 2019]

[Evan R. Sparks, Ameet Talwalkar, Daniel 
Haas, Michael J. Franklin, Michael I. Jordan, 

Tim Kraska: Automating model search for 
large scale machine learning. SoCC 2015]

[Randal S. Olson, Jason H. Moore: TPOT: A Tree-Based 
Pipeline Optimization Tool for Automating Machine 

Learning. Automated Machine Learning 2019]
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Selected AutoML Systems, cont.
 Alpine Meadow

 Logical and physical ML pipelines
 Multi-armed bandit for pipeline selection
 Bayesian optimization for hyper-parameters

 Dabl (Data Analysis Baseline Library)
 Tools for simple data preparation and ML training
 Hyperband (successive halving) for optimization

 BOHB
 Bayesian optimization & hyperband
 Queue-based parallelization of successive halving

 AutoML (https://www.automl.org/)
Paper Collections/Benchmarks
 HPOBench/NASBench

Model Selection Techniques

[https://amueller.github.io/
dabl/dev/user_guide.html]

[Stefan Falkner, Aaron Klein, Frank 
Hutter: BOHB: Robust and Efficient 

Hyper-parameter Optimization at 
Scale. ICML 2018]

[Zeyuan Shang et al: 
Democratizing Data Science 

through Interactive Curation of 
ML Pipelines. SIGMOD 2019]

Presenter
Presentation Notes
BOHB: combine BO and HB to get fast convergence and strong anytime performance

https://www.automl.org/
https://amueller.github.io/dabl/dev/user_guide.html
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Neural Architecture Search
 Motivation

 Design neural networks (type of layers / network) is often trial & error process
 Accuracy vs necessary computation characterizes an architecture
 Automatic neural architecture search

 #1 Search Space of Building Blocks
 Define possible operations

(e.g., identity, 3x3/5x5 separable 
convolution, avg/max pooling)

 Define approach for connecting
operations (pick 2 inputs, apply op, 
and add results) 

Model Selection Techniques

[Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. 
Le, Jeff Dean: Efficient Neural Architecture Search 
via Parameter Sharing. ICML 2018]

Exploration of cell 
designs
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Neural Architecture Search, cont.
 #2 Search Strategy

 Classical evolutionary algorithms
 Recurrent neural networks (e.g., LSTM)
 Bayesian optimization (with 

special distance metric)

 #3 Optimization Objective
 Max accuracy (min error)
 Multi-objective (accuracy and runtime)

 Excursus: Model Scaling
 Automatically scale-up small

model for better accuracy
 EfficientNet

Model Selection Techniques

[Barret Zoph, Quoc V. Le: Neural 
Architecture Search with 

Reinforcement Learning. ICLR 2017]

[Kirthevasan Kandasamy, Willie Neiswanger, Jeff 
Schneider, Barnabás Póczos, Eric P. Xing: Neural 
Architecture Search with Bayesian Optimisation

and Optimal Transport. NeurIPS 2018]

[Mingxing Tan, Quoc V. Le: EfficientNet: 
Rethinking Model Scaling for Convolutional 
Neural Networks. ICML 2019]

Presenter
Presentation Notes
NASNet (1800GPU days, 5 years GPU utilization)
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Neural Architecture Search, cont.
 Problem: Computational Resources

 Huge computational requirements for NAS (even on small datasets)
 #1 Difficult to reproduce, and #2 barrier-to-entry

 Excursus: NAS-Bench-101
 423K unique convolutional architectures
 Training and evaluated ALL architectures, 

multiple times on CIFAR-10
 Shared dataset: 5M trained models

Model Selection Techniques

[Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, 
Kevin Murphy, Frank Hutter: NAS-Bench-101: Towards 
Reproducible Neural Architecture Search. ICML 2019]

Outer Skeleton
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Model Management & Provenance
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Overview Model Management
 Motivation

 Exploratory data science process  trial and error
(preparation, feature engineering, model selection)

 Different personas (data engineer, ML expert, devops)

 Problems
 No record of experiments, insights lost along the way
 Difficult to reproduce results
 Cannot search for or query models 
 Difficult to collaborate

 Overview
 Experiment tracking and visualization
 Coarse-grained ML pipeline provenance and versioning
 Fine-grained data provenance (data-/ops-oriented)

Model Management & Provenance

How did you create 
that model?

Did you consider X?

[Manasi Vartak: ModelDB: A system 
to manage machine learning models, 

Spark Summit 2017]
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Model Management Systems (MLOps)
 ModelHub

 Versioning system for DNN models, 
including provenance tracking

 DSL for model exploration and enumeration 
queries (model selection + hyper parameters)

 Model versions stored as deltas

 ModelDB Verta.ai
 Model and provenance logging for ML 

pipelines via programmatic APIs
 Support for different ML systems 

(e.g., spark.ml, scikit-learn, others)
 GUIs for capturing meta data and 

metric visualization 

Model Management & Provenance

[Hui Miao, Ang Li, Larry S. Davis, 
Amol Deshpande: ModelHub: 

Deep Learning Lifecycle 
Management. ICDE 2017]

[Manasi Vartak, Samuel Madden: 
MODELDB: Opportunities and Challenges 

in Managing Machine Learning Models. 
IEEE Data Eng. Bull. 2018]

[Verta Enterprise 
MLOps Platform 

https://www.verta.ai/
platform/ ]

https://www.verta.ai/platform/
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Model Management Systems (MLOps), cont.
 MLflow

 An open source platform for 
the machine learning lifecycle

 Use of existing ML systems 
and various language bindings

 MLflow Tracking: logging and querying experiments
 MLflow Projects: packaging/reproduction of ML pipeline results 
 MLflow Models: deployment of models in various services/tools
 MLflow Model Registry: cataloging models and managing deployment

Model Management & Provenance

[Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Konwinski, 
Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, Fen Xie, Corey Zumar: 
Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data Eng. Bull. 41(4) 2018]

[Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi, Sue Ann Hong, Andy 
Konwinski, Clemens Mewald, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, 
Avesh Singh, Fen Xie, Matei Zaharia, Richard Zang, Juntai Zheng, Corey Zumar: Developments in 
MLflow: A System to Accelerate the Machine Learning Lifecycle. DEEM@SIGMOD 2020]
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Experiment Tracking
 TensorFlow: TensorBoard

 Suite of visualization tools
 Explicitly track and write 

summary statistics 
 Visualize behavior over

time and across experiments
 Different folders for 

model versioning? 

 Other Tools:
 Integration w/ TensorBoard
 Lots of custom logging

and plotting tools

Model Management & Provenance

[Credit: https://www.tensorflow.org/guide/ 
summaries_and_tensorboard]

https://www.tensorflow.org/guide/summaries_and_tensorboard
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ML Lifecycle Management
 Databricks Machine Learning

 MLOps, Feature Store, AutoML

Model Management & Provenance

[Clemens Mewald: Announcing Databricks
Machine Learning, Feature Store, AutoML, 

Keynote Data+ AI Summit 2021]

MLOps = DataOps + DevOps + ModelOps
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Configuration Management
 #1 ML Collections

 Dictionary-like data structures for 
configurations of experiments and models
(hyper-parameters, loss, optimizer)

 ConfigDict and FrozenConfigDict

 #2 Fiddle
 Configurations for model training

with build() for creating training instances
 Auto-config for creating a config object

from a (control-flow-free) function
 Explain and visualization

Model Management & Provenance

https://github.com/
google/ml_collections

https://github.com/
google/fiddle

https://github.com/google/ml_collections
https://github.com/google/fiddle
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Provenance for ML Pipelines (fine-grained)

 DEX: Dataset Versioning
 Versioning of datasets, stored with delta encoding
 Checkout, intersection, union queries over deltas
 Query optimization for finding efficient plans

 MISTIQUE: Intermediates of ML Pipelines
 Capturing, storage, querying of intermediates
 Lossy deduplication and compression
 Adaptive querying/materialization for finding efficient plans

 Linear Algebra Provenance
 Provenance propagation by decomposition
 Annotate parts w/ provenance polynomials

(identifiers of contributing inputs + impact)

Model Management & Provenance

𝐴𝐴 = 𝑆𝑆𝑥𝑥𝐵𝐵𝑇𝑇𝑢𝑢 + 𝑆𝑆𝑥𝑥𝐶𝐶𝑇𝑇𝑣𝑣 + 𝑆𝑆𝑦𝑦𝐷𝐷𝑇𝑇𝑢𝑢 + 𝑆𝑆𝑦𝑦𝐸𝐸𝑇𝑇𝑣𝑣

B C

D E

A

Sx Sy

Tu

Tv

[Zhepeng Yan, Val Tannen, Zachary G. 
Ives: Fine-grained Provenance for Linear 
Algebra Operators. TaPP 2016]

[Amit Chavan, Amol
Deshpande: DEX: Query 

Execution in a Delta-
based Storage System. 

SIGMOD 2017]

[Manasi Vartak et al: MISTIQUE: 
A System to Store and Query 

Model Intermediates for Model 
Diagnosis. SIGMOD 2018]
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Provenance for ML Pipelines (coarse-grained)

 MLflow
 Programmatic API for

tracking parameters, 
experiments, and results

 autolog() for specific params

 Flor (on Ground)
 DSL embedded in python for managing the 

workflow development phase of the ML lifecycle
 DAGs of actions, artifacts, and literals
 Data context generated by activities in Ground 

 Dataset Relationship Management
 Reuse, reveal, revise, retarget, reward
 Code-to-data relationships (data provenance)
 Data-to-code relationships (potential transforms)

Model Management & Provenance

import mlflow
mlflow.log_param("num_dimensions", 8)
mlflow.log_param("regularization", 0.1)
mlflow.log_metric("accuracy", 0.1)
mlflow.log_artifact("roc.png")

[Credit: https://databricks.com/
blog/2018/06/05 ]

[Credit: https://rise.cs.berkeley.edu/
projects/jarvis/ ]

[Joseph M. Hellerstein et al: 
Ground: A Data Context 

Service. CIDR 2017]

[Zachary G. Ives, Yi Zhang, 
Soonbo Han, Nan Zheng,: 

Dataset Relationship 
Management. CIDR 2019]

https://databricks.com/blog/2018/06/05
https://rise.cs.berkeley.edu/projects/jarvis/
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recompute

load

Provenance for ML Pipelines (coarse-grained), cont.

 HELIX
 Goal: focus on iterative development 

w/ small modifications (trial & error)
 Caching, reuse, and recomputation
 Reuse as Max-Flow problem NP-hard heuristics
 Materialization to disk 

for future reuse

 Collaborative 
Optimizer

Model Management & Provenance

[Doris Xin, Stephen Macke, Litian Ma, 
Jialin Liu, Shuchen Song, Aditya G. 

Parameswaran: Helix: Holistic 
Optimization for Accelerating Iterative 

Machine Learning. PVLDB 2018]

[Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Ziawasch Abedjan, 
Tilmann Rabl, Volker Markl: Optimizing Machine Learning 
Workloads in Collaborative Environments. SIGMOD 2020]

Presenter
Presentation Notes
Note: reuse poly, but materialization opt NP-hard
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Lineage Tracing & Reuse in SystemDS
 Problem

 Exploratory data science (data preprocessing, model configurations)
 Reproducibility and explainability of trained models (data, parameters, prep)
 Lineage/Provenance as Key Enabling Technique:

Model versioning, reuse of intermediates, incremental maintenance,
auto differentiation, and debugging (query processing over lineage)

 Efficient Lineage Tracing
 Tracing of inputs, literals, 

and non-determinism
 Trace lineage of 

logical operations
 Deduplication for loops/functions
 Program/output reconstruction

 Lineage-Based Reuse

Model Management & Provenance

[Arnab Phani, Benjamin Rath, 
Matthias Boehm: LIMA: Fine-grained 

Lineage Tracing and Reuse in Machine 
Learning Systems, SIGMOD 2021]



28

Architecture of Machine Learning Systems – 03 Model Selection and Debugging
Matthias Boehm, Graz University of Technology, SS 2022 

Model Debugging and Explainability
Similar to Software Testing 

Focus on Benchmarks, Assessment, Monitoring, 
Model Improvements, Model Understanding
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Overview Model Debugging
 #1 Understanding via Visualization

 Plotting of predictions / interactions
 Combination with dimensionality 

reduction into 2D:
 Autoencoder
 PCA (principal component analysis)
 t-SNE (T-distributed Stochastic Neighbor Embedding)

 Input, intermediate, and output layers of DNNs

 #2 Validation, Explainability, Fairness via Constraints
 Establish assertions and thresholds for automatic validation and alerts 

w.r.t. accuracy, bias, and other metrics  
 Generate succinct representations (e.g., rules) as explanation
 Impose constraints like monotonicity for ensuring fairness

Model Debugging and Explainability

[Credit: twitter.com/tim_kraska]

[Andrew Crotty et al: Vizdom: 
Interactive Analytics through 
Pen and Touch. PVLDB 2015]

[Credit: nlml.github.io/in-raw-
numpy/in-raw-numpy-t-sne/]

https://twitter.com/tim_kraska
https://nlml.github.io/in-raw-numpy/in-raw-numpy-t-sne/
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Basic Model-Specific Statistics
 Regression Statistics

 Average response and stddev, average residuals stddev residuals
 R2 (coeff of determination) with and without bias, etc

 Classification Statistics
 Classical: recall, precision, F1-score
 Visual: confusion matrix

(correct vs predicated classes)
 understand performance
wrt individual classes / 
bins of continuous vars

 Example Mnist
 Mispredictions might

also be visualized via
dimensionality reduction

Model Debugging and Explainability

0 1 2 3 4 5 6 7 8 9
21

25
15

76
23 12

36
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31 37
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8 11 53

0
1
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9

correct 
label

predicted label
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Excursus: DLR Earth Observation Use Case
 Data and ML Pipelines

 ESA Sentinel-1/2 datasets  4PB/year
 Training of local climate zone classifiers on 

So2Sat LCZ42 (15 experts, 400K instances,
10 labels each, 85% confidence, ~55GB H5)

 ML pipeline: preprocessing, ResNet18,
climate models

 Label Creation/ Validation
 Team learning
 Labeling w/ checks
 Label validation
 Quantitative 

validation w/ 10 
expert votes on correctness

Model Debugging and Explainability

[So2Sat LC42 Dataset 
https://mediatum.ub.tum.de/1454690] 

[Xiao Xiang Zhu et al: So2Sat LCZ42: A 
Benchmark Dataset for the Classification of 

Global Local Climate Zones. GRSM 2020]

Presenter
Presentation Notes
Notes: Confusion matrices (values in %) of the original labels the final labels (refined by majority voting) vs. the votes cast bythe label validation crew for the polygons of the evaluation cities selected in Tables II and III: (a) original labels polygon-wise assessment, (b) original labels pixel-wise, (c) final labels polygon-wise, and (d) final labels pixel-wise 

Unfortunately, not many European cities contain LCZ class 7 (light-weight low-rise), which mostly describes informal settlements (e.g., slums). Therefore, we included the polygons of class 7 for an additional 9 cities that are representative of the 9 major non-European geographical regions of the world

https://mediatum.ub.tum.de/1454690
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Confusion Matrices, cont. 
Model Debugging and Explainability

 Generalized Confusion Matrices
 Hierarchical, Multi-label Data

 Transform multi-label data:
conditioning, marginalization (aggregation), and nesting

[Jochen Görtler et al: Neo: Generalizing Confusion 
Matrix Visualization to Hierarchical and Multi-

Output Labels. CHI 2022 (1/25 best papers)]

Presenter
Presentation Notes
Neo by Apple
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Excursus: dabl.plot
Model Debugging and Explainability

# adult dataset (>50K vs <=50K income)
data = pd.read_csv("adult.csv")
plot(data, "income")

(mosaic plots)[https://amueller.github.io/dabl/dev/auto_examples/
plot/plot_adult.html]

[Andreas Mueller: dabl – Taking the edge off 
of data science with dabl, Data Umbrella 2022, 

https://www.youtube.com/watch?v=h92RMJi4mRM]

https://amueller.github.io/dabl/dev/auto_examples/plot/plot_adult.html
https://www.youtube.com/watch?v=h92RMJi4mRM
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Occlusion-Based Explanations 
 Occlusion Explanations

 Slide gray square over inputs
 Measure how feature maps

and classifier output changes

 Incremental Computation
of Occlusion Explanations
 View CNN as white-box operator 

graph and operators as views
 Materialize intermediate tensors 

and apply incremental view maintenance

Model Debugging and Explainability

[Matthew D. Zeiler, Rob Fergus: 
Visualizing and Understanding 
Convolutional Networks. ECCV 2014]

[Supun Nakandala, Arun Kumar, and Yannis
Papakonstantinou: Incremental and Approximate 

Inference forFaster Occlusion-based Deep CNN 
Explanations, SIGMOD 2019]

SIGMOD 2020 Research Highlight

Presenter
Presentation Notes
Deconvolutional network (deconvnet): map feature activity in intermediate layers back to the input pixel space;
Reveals: that text in care more important, owner faces dominate dog bread classification
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Example Model Anomalies
 #1 Wolf Detection based on snow cover

 #2 Horse Detection 
based on image watermarks
 Layer-wise relevance propagation

 #3 Race-biased Jail 
Risk Assessment

Model Debugging and Explainability

“silent but severe problems”

[Sebastian Lapuschkin et al.: Analyzing 
Classifiers: Fisher Vectors and Deep 
Neural Networks, CVPR 2016]

[Julia Angwin et al: Machine Bias – There’s software used 
across the country to predict future criminals. And it’s biased 
against blacks, 2016, https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing]

[Marco Túlio Ribeiro, Sameer Singh, and Carlos 
Guestrin: Why Should I Trust You?: Explaining the 
Predictions of Any Classifier, KDD 2016]

12/27


25/27

Presenter
Presentation Notes
Husky classification: # persons believing ‘snow as a potential feature’
FV: fisher vectors, user study with and without explanation by occlusion
Racial bias; white 86$ Home Depot before armed robbery and attempted armed robbery (low risk) vs similar price range, but black (high risk); example person 3x arrests

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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SliceFinder
 Problem Formulation

 Data slice: SDG :=  D=PhD AND G=female (subsets of features)
 Find top-k data slices where model performs worse than average
 Ordering by

 Increasing number of literals, 
 Decreasing slice size, and decreasing effect size (difference 𝑆𝑆 vs ¬𝑆𝑆)

 Subject to: minimum effect size threshold 𝑇𝑇, statistical significance (Welch’s t-
test), a dominance constraint (no coarser slice satisfies 1 and 2) via

 Existing Algorithms
 Preparation: Binning + One-Hot Encoding
 #1 Clustering  slices
 #2 Decision tree training
 #3 Lattice search with 

heuristic, level-wise termination

Model Debugging and Explainability

“find largest error vs find large slices”

[Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun 
Tae, Steven Euijong Whang: Automated Data Slicing for 
Model Validation: A Big Data - AI Integration Approach. 

ICDE2019/TKDE2020]

Presenter
Presentation Notes
Note: As SliceFinder searches through a large number of slices, some slices might appear problematic by chance (i.e., multiple comparisons problem [20]). SliceFinder controls such a risk by applying a marginal false discovery rate (mFDR) controlling procedure called \alpha-investing
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SliceLine for Model Debugging
 Problem Formulation

 Intuitive slice
scoring function

 Exact top-k slice finding
 𝑆𝑆 ≥ 𝜎𝜎 ∧ 𝑠𝑠𝑠𝑠 𝑆𝑆 > 0
 𝛼𝛼 ∈ (0,1]

 Properties & Pruning
 Monotonicity of slice sizes, errors 
 Upper bound sizes/errors/scores 
 pruning & termination

 Linear-Algebra-based Slice Finding
 Recoded matrix X, error vector e
 Vectorized implementation in linear algebra

(join & eval via sparse-sparse matrix multiply)
 Local and distributed task/data-parallel execution

Model Debugging and Explainability

[Credit: sliceline, 
Silicon Valley, HBO]

𝑠𝑠𝑐𝑐 = 𝛼𝛼
𝑒̅𝑒(𝑆𝑆)
𝑒̅𝑒(𝑋𝑋)

− 1 − 1 − 𝛼𝛼
𝑋𝑋
𝑆𝑆
− 1

= 𝛼𝛼
𝑋𝑋
𝑆𝑆
⋅
∑𝑖𝑖=1

|𝑆𝑆| 𝑒𝑒𝑠𝑠𝑖𝑖
∑𝑖𝑖=1

|𝑋𝑋| 𝑒𝑒𝑖𝑖
− 1 − 1 − 𝛼𝛼

𝑋𝑋
𝑆𝑆
− 1

slice error slice size

Presenter
Presentation Notes
Compelling properties:
The components are balanced under α = 0.5. 
The score of the original X is always sc = 0. 
For α = 0 (all weight on size), the maximum feasible score is 0, and no slice smaller than X can reach it. 
All components of Equation (1) are either constants, or slice errors and sizes, which makes this function amenable to pruning.
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SliceLine – Experiments 
 Salaries 2x2

 Adult

Model Debugging and Explainability

Effective Pruning 
(#evaluated 

close to #valid)

Practical Performance
(39s until termination 

at level 12)

[Svetlana Sagadeeva, Matthias Boehm: 
SliceLine: Fast, Linear-Algebra-based 

Slice Finding for ML Model Debugging, 
SIGMOD 2021]
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Minimize total loss of slices Penalize underperforming slices

Budget of acquisition costs

Slice Tuner
 Motivation

 Root cause of unfairness: bias in training data
 Selective Data Acquisition for 

model accuracy and fairness
 Different slices w/ different learning curves
 Learning curve fitting

 Problem Formulation

Model Debugging and Explainability

[Ki Hyun Tae, Steven Euijong Whang: Slice Tuner: A 
Selective Data Acquisition Framework for Accurate 
and Fair Machine Learning Models, SIGMOD 2021]

Convex 
optimization 

problem

Presenter
Presentation Notes
Note: experiments with Fashion-MNIST, UTKFace  Mechanical Turk



40

Architecture of Machine Learning Systems – 03 Model Selection and Debugging
Matthias Boehm, Graz University of Technology, SS 2022 

Continuous Integration
 System Architecture

ease.ml/ci

Model Debugging and Explainability

[Cedric Renggli, Bojan Karlaš, Bolin Ding, Feng Liu, Kevin 
Schawinski, Wentao Wu, Ce Zhang: Continuous Integration 

of Machine Learning Models with ease.ml/ci: Towards a 
Rigorous Yet Practical Treatment, SysML 2019]

Presenter
Presentation Notes
Others: model assertions



41

Architecture of Machine Learning Systems – 03 Model Selection and Debugging
Matthias Boehm, Graz University of Technology, SS 2022 

Explainability
 Motivation

 Explain predictions via inputs for model understanding & transparency
 Utilize model debugging and other tools

 #1 Interpretable Models
 Linear models, tree-based models, 

rule-based models
 Weights and decision rules

 #2 Post-hoc Explanations
 Complex deep neural networks or very large models  black box models
 Build simple models for explaining any complex models

 Types of Explanations
 Model parameters, example predictions, summarization
 Most important features/data, how to flip model predictions 

Model Debugging and Explainability

[Hima Lakkaraju, Julius Adebayo, Sameer Singh: 
Explaining Machine Learning Predictions: State-of-the-art, 

Challenges, and Opportunities, NeurIPS 2020 Tutorial, 
https://explainml-tutorial.github.io/neurips20]

Prefer simpler models 
if accuracy sufficient!

Interpretability Accuracy

Multi-modal 
Interpretability: 

https://captum.ai/

https://explainml-tutorial.github.io/neurips20
https://captum.ai/
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LIME: Sparse, Linear Explanations
 LIME Overview

 Model agnostic explanations
 Identify important dimension and 

present their relative importance
 Sample perturbations of prediction input

(e.g., hide parts of image, attribute values)
 Locally weighted regression

 LIME Objective
 Various hyper-parameters
 Heuristics / 

HP optimization

Model Debugging and Explainability

[Marco Túlio Ribeiro, Sameer Singh, and Carlos 
Guestrin: Why Should I Trust You?: Explaining the 

Predictions of Any Classifier, KDD 2016]

Loss Function

Local KernelLinear Models

Regularizer
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SHAP: Shapley Additive Explanations
 SHAP Overview

 Additive feature importance (local accuracy)
 Unification of LIME, Shapley sampling/regression values, QII, 

DeepLIFT, layer-wise relevance propagation, tree interpreter
 Estimate Shapley values using linear regression 

 SHAP Tooling 

Model Debugging and Explainability

[Scott M. Lundberg, Su-In Lee: A 
Unified Approach to Interpreting 

Model Predictions. NIPS 2017]

[Scott M. Lundberg: Explainable 
AI for Science and Medicine,

https://www.youtube.com/watch
?v=B-c8tIgchu0]

[https://shap.readthedocs.io/en/latest/index.html]

(Avg Output)

Marginal contributions

Presenter
Presentation Notes
Note: core contribution: new weighting kernel to estimate shapely values using dense/sparse linear regression (LIME parameters forced to one valid solution by Shapley axioms local accuracy / consistency)

https://www.youtube.com/watch?v=B-c8tIgchu0
https://shap.readthedocs.io/en/latest/index.html
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Model Bias & Fairness
Focus on Applications, Fairness, Ethics, Responsibility 

Fairness Metrics and Constraints
Employs Model Debugging & Explainability

Techniques
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Sources of Bias
 Environment

 Selection Bias: Differences in study participation, data availability, and 
measurement effort

 Test environment, project team, cultural context  different context

 Data Collection
 Sample Bias: collected data not representative of application
 Observer Bias / Confirmation Bias: subjective judgment leaks 

into measurement and analysis  transparency and critical feedback

 Training Dataset
 Data Bias: e.g., not missing at random (NMAR) values
 Feature Selection Bias: manual or automatic during data preparation

Model Bias & Fairness

 Design ML Systems & applications w/ awareness of potential bias
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Excursus: DLR Earth Observation Use Case, cont. 
Model Bias & Fairness

[Xiao Xiang Zhu et al: So2Sat 
LCZ42: A Benchmark Dataset for 
the Classification of Global Local 

Climate Zones. GRSM 2020]

Environment / Context
 Biased Data Collection

 Awareness and 
Conscious Bias Mitigation
 Remaining Bias?
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Debugging Bias and Fairness
 Fairness

 Validate and ensure fairness with regard to sensitive features (unbiased)
 Use occlusion and saliency maps to characterize and compare groups

 Enforcing Fairness
 Use constraints to enforce certain properties (e.g., monotonicity, smoothness)
 Example: late payment  credit score

Model Bias & Fairness

[Maya Gupta: How 
Do We Make AI 
Fair? SysML 2019]
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Group Fairness Constraints
 #1 Statistical Parity

 Independence of model from groups
 Equal probability outcome across groups 

 #2 False Positive Rate Parity
 Independence of model from groups
 Conditioned on true label y=0

 #3 False Negative Rate Parity
 Independence of model from groups
 Conditioned on true label y=1

 #4 False Omission Rate Parity
 Independence of true labels from groups
 Conditioned on negative prediction h=0

Model Bias & Fairness

∀𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗 ∈ 𝐺𝐺:
𝑃𝑃 ℎ = 1 𝑔𝑔𝑖𝑖 ≈ 𝑃𝑃(ℎ = 1|𝑔𝑔𝑗𝑗)

∀𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗 ∈ 𝐺𝐺:
𝑃𝑃 ℎ = 1 𝑔𝑔𝑖𝑖 , 𝑦𝑦 = 0
≈ 𝑃𝑃(ℎ = 1|𝑔𝑔𝑗𝑗,𝑦𝑦 = 0)

[H. Zhang et al: OmniFair: A Declarative 
System for Model-Agnostic Group Fairness 

in Machine Learning, SIGMOD 2021]

∀𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗 ∈ 𝐺𝐺:
𝑃𝑃 𝑦𝑦 = 1 𝑔𝑔𝑖𝑖 , ℎ = 0
≈ 𝑃𝑃(𝑦𝑦 = 1|𝑔𝑔𝑗𝑗, ℎ = 0)

∀𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗 ∈ 𝐺𝐺:
𝑃𝑃 ℎ = 0 𝑔𝑔𝑖𝑖 , 𝑦𝑦 = 1
≈ 𝑃𝑃(ℎ = 0|𝑔𝑔𝑗𝑗,𝑦𝑦 = 1)

#2+#3 
Equalized 

Odds
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Ensuring Fairness
 Problem Formulation

 A fairness specification is given by a triplet (g, f, 𝜀𝜀) and induces 
(|g(D)|choose 2) fairness constraints on pairs of groups

 A fairness specification is satisfied by a classifier ℎ on 𝐷𝐷 iff all 
induced fairness constraints are satisfied, i.e., ∀gi,gj ∈ g(D), |f(h,gi)−f(h,gj)| ≤ 𝜀𝜀

 Unconstrained 
optimization problem

 Results 
 Adult dataset
 Model-

agnostic
 Similar

Accuracy

Model Bias & Fairness

[H. Zhang et al: OmniFair: A Declarative 
System for Model-Agnostic Group Fairness 

in Machine Learning, SIGMOD 2021]

max accuracy 
s.t. fairness

max accuracy 
+ fairness
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Excursus: EU Policy
Model Bias & Fairness

 “The preferred option is option 3+, a regulatory framework for high-risk AI systems 
only, with the possibility for […] non-high-risk AI systems to follow a code of conduct.” 

[European Commission: LAYING DOWN 
HARMONISED RULES ON ARTIFICIAL INTELLIGENCE

(ARTIFICIAL INTELLIGENCE ACT) AND AMENDING 
CERTAIN UNION LEGISLATIVE ACTS, 04/2021]

Presenter
Presentation Notes
Resources on Responsible Data Science:
https://dataresponsibly.github.io/courses/spring20/  
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Summary and Q&A
 Model Selection Techniques
 Model Management & Provenance
 Model Debugging and Explainability
 Model Bias & Fairness Constraints
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