
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of ML Systems*
05 Compilation and Optimization
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Aug 25, 2022

2

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Agenda
 Compilation Overview
 Size Inference and Cost Estimation
 Rewrites (and Operator Selection)
 Runtime Adaptation
 Operator Fusion & JIT Compilation

SystemDS, and several
other ML systems

3

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Compilation Overview

4

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Recap: Linear Algebra Systems
 Comparison Query Optimization

 Rule- and cost-based rewrites and operator ordering
 Physical operator selection and query compilation
 Linear algebra / other ML operators, DAGs,

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)
 Examples: R, PyTorch, Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)
 Examples: RIOT [CIDR’09], TensorFlow [OSDI’16]

Mahout Samsara [MLSystems’16], Dask
 Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]
 #3 Program Compilation (entire program)

 Examples: SystemML [ICDE’11/PVLDB’16], Julia,
Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Compilation Overview

Compilers for
Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001;
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y);
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt)
10: {
11: q = (t(X) %*% X %*% p)+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1;
19: }
20: write(w, $4, format="text");

Optimization Scope

5

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

ML Program Compilation / Graphs
 Script:

 Operator DAG
(today’s lecture)
 a.k.a. “graph”

(data flow graph)
 a.k.a. intermediate

representation (IR)

 Runtime Plan
 Compiled runtime plans

Interpreted plans

Compilation Overview

SPARK mapmmchain X.MATRIX.DOUBLE w.MATRIX.DOUBLE
v.MATRIX.DOUBLE _mVar4.MATRIX.DOUBLE XtwXv

while(...) {
q = t(X) %*% (w * (X %*% v)) ...

}

X v

ba+*

ba+*

b(*)r(t)

w

q

Operation

Data Dependency

[Multiple] Consumers of
Intermediates

[Multiple] DAG roots (outputs)

No cycles

[Multiple] DAG leafs (inputs)

Statement
Block

Hierarchy

6

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

ML Program Compilation / Graphs, cont.
 Example TF TensorBoard

Compilation Overview

(Node) Structure View Device View (CPU, GPU)
Tensor Shapes and

Runtime Statistics (time, mem)

[https://github.com/tensorflow/tensorboard/blob/master/docs/r1/graphs.md]

Same
color,
same

internal
structure

Same
color,
same

device

Edge thickness
 size,

Color intensity
 time

https://github.com/tensorflow/tensorboard/blob/master/docs/r1/graphs.md

7

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Compilation Chain
Compilation Overview

Parsing (syntactic analysis)

Live Variable Analysis

Validate (semantic analysis)

Script

Construct HOP DAGs

Compute Memory Estimates

Construct LOP DAGs
(incl operator selection, hop-lop rewrites)

Generate Runtime Program

[Matthias Boehm et al:
SystemML's Optimizer:

Plan Generation for
Large-Scale Machine

Learning Programs. IEEE
Data Eng. Bull 2014]

Multiple
Rounds

Static/Dynamic Rewrites

Intra-/Inter-Procedural Analysis

Static/Dynamic Rewrites

Execution Plan

Language

HOPs

LOPs

Dynamic
Recompilation

8

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Recap: Basic HOP and LOP DAG Compilation
Compilation Overview

LinregDS (Direct Solve)
X = read($1);
y = read($2);
intercept = $3;
lambda = 0.001;
...
if(intercept == 1) {

ones = matrix(1, nrow(X), 1);
X = append(X, ones);

}
I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:
• driver mem: 20 GB
• exec mem: 60 GB

dg(rand)
(103x1,103)

r(diag)

X
(108x103,1011)

y
(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)
b(solve)

writeScenario:
X: 108 x 103, 1011

y: 108 x 1, 108

 Hybrid Runtime Plans:
• Size propagation / memory estimates
• Integrated CP / Spark runtime
• Dynamic recompilation during runtime
 Distributed Matrices

• Fixed-size (squared) matrix blocks
• Data-parallel operations

800MB

800GB

800GB
8KB

172KB

1.6TB

1.6TB

16MB
8MB

8KB

CP

SP

CP

CP

CP

SP
SP

CP

1.6GB
800MB

16KB

X

y

r’(CP)

mapmm(SP) tsmm(SP)

r’(CP)

(persisted in
MEM_DISK)

X1,1

X2,1

Xm,1

9

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Size Inference and Cost Estimation
Crucial for Generating Valid Execution Plans

& Cost-based Optimization

10

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Constant and Size Propagation
 Size Information

 Dimensions (#rows, #columns)
 Sparsity (#nnz/(#rows * #columns))
memory estimates and costs

 Principle: Worst-case Assumption
 Necessary for guarantees (memory)

 DAG-level Size Propagation
 Input: Size information for leaves
 Output: size information for

all operators, -1 if still unknown
 Propagation based on

operation semantics (single
bottom-up pass over DAG)

Size Inference and Cost Estimation

X = read($1);
y = read($2);
I = matrix(0.001, ncol(X), 1);
A = t(X) %*% X + diag(I);
b = t(X) %*% y;
beta = solve(A, b);

dg(rand)

r(diag)

X
(108x103,1011)

y
(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)
b(solve)

write

(103x103,103)

(103x108,
1011)

(103x103,-1)
(103x1,-1)

(103x1,-1)

(103x103,
-1)

(103x1,
-1)

u(ncol)

(103x1,103)

0.001

11

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Constant and Size Propagation, cont.
 Example SystemDS

 Hop refreshSizeInformation() (exact)
 Hop inferOutputCharacteristics()
 Compiler explicitly differentiates between

exact and other size information
 Note: ops like aggregate, ctable, rmEmpty

challenging but w/ upper bounds

 Example TensorFlow
 Operator registrations
 Shape inference functions

Size Inference and Cost Estimation

Example Relu
(rectified linear unit)

REGISTER_OP(“Relu”)
.Input(“features: T”)
.Output(“activations: T”)
.Attr(“T: {realnumbertype, qint8}”)
.SetShapeFn(
shape_inference::UnchangedShape)

X

b(max)

0
[32 x 1024,
nnz=7645]

[32 x 1024,
𝐧𝐧𝐧𝐧𝐧𝐧=7645]

[Alex Passos: Inside TensorFlow – Eager execution runtime,
https://www.youtube.com/watch?v=qjx65mD6nrc, Dec 2019]

https://www.youtube.com/watch?v=qjx65mD6nrc

12

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Constant and Size Propagation, cont.
 Constant Propagation

 Relies on live variable analysis
 Propagate constant literals into

read-only statement blocks

 Program-level Size Propagation
 Relies on constant propagation

and DAG-level size propagation
 Propagate size information across

conditional control flow: size in leafs,
DAG-level prop, extract roots

 if: reconcile if and else branch outputs
 while/for: reconcile pre and post loop,

reset if pre/post different

Size Inference and Cost Estimation

X = read($1); # n x m matrix
y = read($2); # n x 1 vector
maxi = 50; lambda = 0.001;
if(...){ }
r = -(t(X) %*% y);
r2 = sum(r * r);
p = -r;
w = matrix(0, ncol(X), 1);
i = 0;
while(i<maxi & r2>r2_trgt) {

q = (t(X) %*% X %*% p)+lambda*p;
alpha = norm_r2 / sum(p * q);
w = w + alpha * p;
old_norm_r2 = norm_r2;
r = r + alpha * q;
r2 = sum(r * r);
beta = norm_r2 / old_norm_r2;
p = -r + beta * p;
i = i + 1;

}
write(w, $4, format="text");

m x 1
m x 1

m x 1

m x 1

13

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Inter-Procedural Analysis
 Intra/Inter-Procedural Analysis (IPA)

 Integrates all size propagation techniques (DAG+program, size+constants)
 Intra-function and inter-function size propagation

(called once, consistent sizes, consistent literals)

 Additional IPA Passes (selection)
 Inline functions (single statement block, small)
 Dead code elimination and simplification rewrites
 Remove unused functions & flag recompile-once

Size Inference and Cost Estimation

X = read($X1)
X = foo(X);
if($X2 != “ ”) {
X2 = cbind(X,
matrix(1,n,1));

X2 = foo(X2);
}...
eval(“foo”, X)

foo = function (Matrix[Double] A)
return (Matrix[Double] B)

{
B = A – colSums(A);
if(sum(B!=B)>0)
print(“NaNs encountered.”);

}

1M x 1

1M x 2

? x ?

14

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Sparsity Estimation Overview
 Motivation

 Sparse input matrices from NLP,
graph analytics, recommender
systems, scientific computing

 Sparse intermediates
(transform, selection, dropout)

 Selection/permutation matrices

 Problem Definition
 Sparsity estimates used for format decisions, output allocation, cost estimates
 Matrix A with sparsity sA = nnz(A)/(mn) and matrix B with sB = nnz(B)/(nl)
 Estimate sparsity sC = nnz(C)/(ml) of matrix product C = A B; d=max(m,n,l)
 Assumptions

 A1: No cancellation errors
 A2: No not-a-number (NaN)

Size Inference and Cost Estimation

NLP Example
(SentenceCNN)

Common assumptions
 Boolean matrix product

15

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Sparsity Estimation – Estimators
 #1 Naïve Metadata Estimators

 Derive the output sparsity solely
from the sparsity of inputs (e.g., SystemDS)

 #2 Naïve Bitset Estimator
 Convert inputs to bitsets, perform Boolean mm (per row)
 Examples: SciDB [SSDBM’11], NVIDIA cuSparse, Intel MKL

 #3 Sampling
 Take a sample of aligned columns of A and rows of B
 Sparsity estimated via max of count-products
 Examples: MatFast [ICDE’17], improvements in paper

 #4 Density Map
 Store sparsity per b x b block (default b = 256)
 MM-like estimator (average case estimator for *,

probabilistic propagation 𝑠𝑠𝐴𝐴 + 𝑠𝑠𝐵𝐵 − 𝑠𝑠𝐴𝐴𝑠𝑠𝐵𝐵 for +)
 Example: SpMacho [EDBT’15], AT Matrix [ICDE’16]

Size Inference and Cost Estimation

𝑠̂𝑠𝑐𝑐 = 1 − (1 − 𝑠𝑠𝐴𝐴𝑠𝑠𝐵𝐵)𝑛𝑛
𝑠̂𝑠𝑐𝑐 = min 1, 𝑠𝑠𝐴𝐴𝑛𝑛 ⋅ min(1, 𝑠𝑠𝐵𝐵𝑛𝑛)

Tradeoffs

16

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Sparsity Estimation – Estimators, cont.
 #5 Layered Graph [J.Comb.Opt.’98]

 Nodes: rows/columns in mm chain
 Edges: non-zeros connecting rows/columns
 Assign r-vectors ~ exp and propagate via min
 Estimate over roots (output columns)

 #6 MNC Sketch (Matrix Non-zero Count)
 Create MNC sketch for inputs A and B
 Exploitation of structural properties

(e.g., 1 non-zero per row, row sparsity)
 Support for matrix expressions

(reorganizations, elementwise ops)
 Sketch propagation and estimation

Size Inference and Cost Estimation

𝑠𝑠𝐶𝐶 = 𝑠̂𝑠𝐶𝐶 = ℎ𝐴𝐴𝑐𝑐ℎ𝐵𝐵𝑟𝑟 /(𝑚𝑚𝑚𝑚)
if max ℎ𝐴𝐴𝑟𝑟 ≤ 1 ∨ max ℎ𝐵𝐵𝑐𝑐 ≤ 1

[Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski,
Berthold Reinwald, Peter J. Haas: MNC: Structure-Exploiting
Sparsity Estimation for Matrix Expressions. SIGMOD 2019]

17

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Memory Estimates and Costing
 Memory Estimates

 Matrix memory estimate := based on the dimensions and sparsity, decide the
format (sparse, dense) and estimate the size in memory

 Operation memory estimate := input, intermediates, output
 Worst-case sparsity estimates (upper bound)

 #1 Costing at Logical vs Physical Level
 Costing at physical level takes physical ops

and rewrites into account but is much more costly

 #2 Costing Operators/Graphs vs Plans
 Costing plans requires heuristics for

iterations, branches in general

 #3 Analytical vs Trained Cost Models
 Analytical: estimate I/O and compute workload
 Training: build regression models for individual ops

Size Inference and Cost Estimation

Physical, Plans,
Trained

[PVLDB 2014]

Physical, Plans,
Analytical

[SIGMOD 2015]

A Personal War Story

Logical, Graphs,
Analytical

[PVDLB 2018]

18

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Rewrites and Operator Selection

19

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Traditional PL Rewrites
 #1 Common Subexpression Elimination (CSE)

 Step 1: Collect and replace leaf nodes (variable reads and literals)
 Step 2: recursively remove CSEs bottom-up starting at the leafs

by merging nodes with same inputs (beware non-determinism)
 Example:

Rewrites and Operator Selection

R1 = 7 – abs(A * B)
R2 = abs(A * B) + rand()

7

-

R1

A B

abs

*

A B

+

rand

R2

abs

*

7

-

R1

abs

*

A B

+

rand

R2

abs

*

7

-

R1

+

rand

R2

A B

abs

*

20

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Traditional PL Rewrites, cont.
 #2 Constant Folding

 After constant propagation, fold sub-DAGs over literals into a single literal
 Approach: recursively compile and

execute runtime instructions with
special handling of one-side constants

 Example (GLM
Binomial probit):

Rewrites and Operator Selection

ncol_y == 2 & dist_type == 2
& link_type >= 1 & link_type <= 5

2 == 2 & 2 == 2 & 3 >= 1 & 3 <= 5

2 2

==

&

2 2

== 3 1

>=
3 5

<=&

&

TRUE

&

TRUE

TRUE

TRUE&

& TRUE

[A. V. Aho, M. S. Lam, R. Sethi, and J. D.
Ullman. Compilers – Principles, Techniques,

& Tools. Addison-Wesley, 2007]

Turing Award ‘20

21

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Traditional PL Rewrites, cont.
 #3 Branch Removal

 Applied after constant propagation
and constant folding

 True predicate: replace if statement
block with if-body blocks

 False predicate: replace if statement
block with else-body block, or remove

 #4 Merge of Statement Blocks
 Merge sequences of unconditional

blocks (s1,s2) into a single block
 Connect matching DAG roots of s1

with DAG inputs of s2

Rewrites and Operator Selection

LinregDS (Direct Solve)
X = read($1);
y = read($2);
intercept = 0;
lambda = 0.001;
...
if(intercept == 1) {

ones = matrix(1, nrow(X), 1);
X = cbind(X, ones);

}
I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);

FALSE

22

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Static/Dynamic Simplification Rewrites
 Examples of Static Rewrites

 trace(X%*%Y)  sum(X*t(Y))
 sum(X+Y)  sum(X)+sum(Y)
 (X%*%Y)[7,3]  X[7,]%*%Y[,3]
 sum(t(X))  sum(X)
 rand()*7  rand(,min=0,max=7)
 sum(lambda*X)  lambda * sum(X);

 Examples of Dynamic Rewrites
 t(X) %*% y  t(t(y) %*% X) s.t. costs
 X[a:b,c:d]=Y  X = Y iff dims(X)=dims(Y)
 (...) * X  matrix(0, nrow(X), ncol(X)) iff nnz(X)=0
 sum(X^2)  t(X)%*%X; rowSums(X)  X iff ncol(X)=1
 sum(X%*%Y)  sum(t(colSums(X))*rowSums(Y)) iff ncol(X)>t

Rewrites and Operator Selection

X

Y

X Y ┬*

O(n3) O(n2)

[Matthias Boehm et al:
SystemML's Optimizer: Plan

Generation for Large-Scale
Machine Learning Programs.

IEEE Data Eng. Bull 2014]

23

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Static/Dynamic Simplification Rewrites, cont.
 TF Constant Push-Down

 Add(c1,Add(x,c2))  Add(x,c1+c2)
 ConvND(c1*x,c2)  ConvND(x,c1*c2)

 TF Arithmetic Simplifications
 Flattening: a+b+c+d  AddN(a, b, c, d)
 Hoisting: AddN(x * a, b * x, x * c)  x * AddN(a+b+c)
 Reduce Nodes Numeric: x+x+x  3*x
 Reduce Nodes Logicial: !(x > y)  x <= y

 TF Broadcast Minimization
 (M1+s1) + (M2+s2)  (M1+M2) + (s1+s2)

 TF Better use of Intrinsics
 Matmul(Transpose(X), Y)  Matmul(X, Y, transpose_x=True)

Rewrites and Operator Selection

SystemML/SystemDS
RewriteElementwise-
MultChainOptimization
(orders and collapses matrix,

vector, scalar op chains)

[Rasmus Munk Larsen, Tatiana Shpeisman:
TensorFlow Graph Optimizations,

Guest Lecture Stanford 2019]

24

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Static/Dynamic Simplification Rewrites, cont.
 Relaxed DNN Graph Substitutions

 Allow substitutions that preserve
semantics, no matter if faster/slower

 Backtracking search

 Additional Algorithms
 Partial order of substitutions w/ pruning
 Dynamic programming  substitutions

Rewrites and Operator Selection

ResNet
module

Increased
conv2d

kernel size
via padding

1.3x faster on
V100 GPUs

[Zhihao Jia, James J. Thomas, Todd Warszawski,
Mingyu Gao, Matei Zaharia, Alex Aiken:

Optimizing DNN Computation with Relaxed
Graph Substitutions. MLSys 2019]

[Jingzhi Fang, Yanyan Shen, Yue Wang,
Lei Chen: Optimizing DNN Computation

Graph using Graph Substitutions.
PVLDB 13(11) 2020]

Presenter
Presentation Notes
Note: MetaFlow w/ backtracking search

25

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Static/Dynamic Simplification Rewrites, cont.
 Rewrites in PyTorch (Torch Script JIT)

 Misc: Canonicalization,
erase number types and no-ops

 Fuse linear, fuse relu, fuse graph pipeline
 Peephole simplifications

(e.g., for dtype management)
 Inlining and loop unrolling
 Concatenation and fusion

rewrites:

Rewrites and Operator Selection

[https://github.com/pytorch/pytorch/blob/master
/torch/csrc/jit/passes/subgraph_rewrite.cpp]

subgraph_rewrite.cpp
(extracted Mar 17, 2022)

https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/passes/subgraph_rewrite.cpp

26

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Vectorization and Incremental Computation
 Loop Transformations

(e.g., OptiML, SystemML)
 Loop vectorization
 Loop hoisting

 Incremental Computations
 Delta update rules (e.g., LINVIEW, factorized)
 Incremental iterations (e.g., Flink)

 Update In-Place
 SystemDS: via rewrites (guaranteed applicability)
 R: via reference counting
 Julia: by default, otherwise explicit B = copy(A) necessary

Rewrites and Operator Selection

for(i in a:b)
X[i,1] = Y[i,2] + Z[i,1]

X[a:b,1] = Y[a:b,2] + Z[a:b,1]

A = t(X) %*% X + t(∆X) %*% ∆X
b = t(X) %*% y + t(∆X) %*% ∆y

X

t(X)

y

Presenter
Presentation Notes
Note: “HedgeCut is a variation of the well-established “Extremely Randomised Trees” (ERT) approach [17], which learns an ensemble of randomized decision trees where attributes and cut-off points to split the data are chosen at random.” ref bottom-right

“It essentially consists of randomizing strongly both attribute and cut-point choice while splitting a tree node. In the extreme case, it builds totally randomized trees whose structures are independent of the output values of the learning sample. The strength of the randomization can be tuned to problem specifics by the appropriate choice of a parameter.”
https://orbi.uliege.be/bitstream/2268/9357/1/geurts-mlj-advance.pdf

27

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Excursus: Automatic Rewrite Generation
 SPOOF/SPORES (Sum-Product Optim.)

 Break up LA ops into basic ops (RA)
 Elementary sum-product/RA rewrites
 Example:
sum(W%*%H)

 TASO (Super Optimization)
 List of operator specifications and properties
 Automatic generation/verification of graph

substitutions and data layouts via cost-based backtracking search

Rewrites and Operator Selection

[Tarek Elgamal et al: SPOOF: Sum-Product
Optimization and Operator Fusion for

Large-Scale Machine Learning. CIDR 2017]

[Yisu Remy Wang et al: SPORES: Sum-Product
Optimization via Relational Equality Saturation for

Large Scale Linear Algebra. PVLDB 13(11) 2020]

[Zhihao Jia et al: TASO: optimizing
deep learning computation with

automatic generation of graph
substitutions. SOSP 2019]

28

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Matrix Multiplication Chain Optimization
 Optimization Problem

 Matrix multiplication chain of n matrices M1, M2, …Mn (associative)
 Optimal parenthesization of the product M1M2 … Mn

 Search Space Characteristics
 Naïve exhaustive: Catalan numbers  Ω(4n / n3/2))
 DP applies: (1) optimal substructure,

(2) overlapping subproblems
 Textbook DP algorithm: Θ(n3) time, Θ(n2) space

 Examples: SystemML ‘14,
RIOT (‘09 I/O costs), SpMachO (‘15 sparsity)

 Best known: O(n log n)

Rewrites and Operator Selection


t(X)

1kx1k
X

1kx1k
Z
1

2,002 MFLOPs

t(X)
1kx1k

X
1kx1k

p
1

4 MFLOPs

Size propagation
and sparsity
estimation

n Cn-1

5 14

10 4,862

15 2,674,440

20 1,767,263,190

25 1,289,904,147,324

[T. C. Hu, M. T. Shing: Computation of Matrix Chain
Products. Part II. SIAM J. Comput. 13(2): 228-251, 1984]

Presenter
Presentation Notes
Ω .. Lower bound, Θ tight bound, O upper bound

29

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Matrix Multiplication Chain Optimization, cont.
Rewrites and Operator Selection

M1 M2 M3 M4 M5

10x7 7x5 5x1 1x3 3x9

M1 M2 M3 M4 M5

Cost matrix
m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

m[1,3] = min(
m[1,1] + m[2,3] + p1p2p4,
m[1,2] + m[3,3] + p1p3p4)

= min(
0 + 35 + 10*7*1,
350 + 0 + 10*5*1)

= min(
105,
400)

[T. H. Cormen, C. E. Leiserson, R. L. Rivest, C.
Stein: Introduction to Algorithms, Third Edition,
The MIT Press, pages 370-377, 2009]

30

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Matrix Multiplication Chain Optimization, cont.
Rewrites and Operator Selection

Optimal split
matrix s

1 2 3 4
2 41 3 3

3 3

3

M1 M2 M3 M4 M5

10x7 7x5 5x1 1x3 3x9

M1 M2 M3 M4 M5

Cost matrix
m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

(M1 M2 M3 M4 M5)
((M1 M2 M3) (M4 M5))

((M1 (M2 M3)) (M4 M5))

 ((M1 (M2 M3)) (M4 M5))

getOpt(s,1,5)
getOpt(s,1,3)
getOpt(s,4,5)

 Open questions: DAGs; other operations, sparsity
joint opt w/ rewrites, CSE, fusion, and physical operators

31

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Matrix Multiplication Chain Optimization, cont.
 Sparsity-aware

mmchain Opt
 Additional n x n

sketch matrix e

 Sketch propagation for optimal subchains (currently for all chains)
 Modified cost computation via MNC sketches

(number FLOPs for sparse instead of dense mm)

Rewrites and Operator Selection

Optimal split
matrix S

Cost matrix
M

Sketch matrix E

𝐶𝐶𝑖𝑖,𝑗𝑗 = min
𝑘𝑘∈ 𝑖𝑖,𝑗𝑗−1

(𝐶𝐶𝑖𝑖,𝑘𝑘 + 𝐶𝐶𝑘𝑘+1,𝑗𝑗
+𝑬𝑬𝒊𝒊,𝒌𝒌.𝒉𝒉𝒄𝒄𝑬𝑬𝒌𝒌+𝟏𝟏,𝒋𝒋.𝒉𝒉𝒓𝒓)

[Johanna Sommer, Matthias Boehm, Alexandre
V. Evfimievski, Berthold Reinwald, Peter J. Haas:
MNC: Structure-Exploiting Sparsity Estimation
for Matrix Expressions. SIGMOD 2019]

Example: n=20 matrices

32

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Physical Operator Selection
 Common Selection Criteria

 Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
 Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
 Data flow properties (e.g., co-partitioning, co-location, data locality)

 #0 Local Operators
 SystemML mm, tsmm, mmchain; Samsara/Mllib local

 #1 Special Operators (special patterns/sparsity)
 SystemML tsmm, mapmmchain; Samsara AtA

 #2 Broadcast-Based Operators (aka broadcast join)
 SystemML mapmm, mapmmchain

 #3 Co-Partitioning-Based Operators (aka improved repartition join)
 SystemML zipmm; Emma, Samsara OpAtB

 #4 Shuffle-Based Operators (aka repartition join)
 SystemML cpmm, rmm; Samsara OpAB

Rewrites and Operator Selection

X

v

X

1st

pass 2nd

pass

q┬

t(X) %*% (X%*%v)

33

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Sparsity-Exploiting Operators
 Goal: Avoid dense intermediates and unnecessary computation

 #1 Fused Physical Operators
 E.g., SystemML [PVLDB’16]

wsloss, wcemm, wdivmm
 Selective computation

over non-zeros of
“sparse driver”

 #2 Masked Physical Operators
 E.g., Cumulon MaskMult [SIGMOD’13]
 Create mask of “sparse driver”
 Pass mask to single masked

matrix multiply operator

Rewrites and Operator Selection

U V┬W –sum X

^2

*

sum(W * (X – U %*% t(V))^2)

O / (C %*% E %*% t(B))
/

O E t(B)

mm

mm

C

M

34

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Runtime Adaptation
ML Systems w/ Optimizing Compiler

35

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Terminology Ahead-of-Time / Just-in-Time
 Ahead-of-Time Compilation

 Originating from compiled languages like C, C++
 #1 Program compilation at different abstraction levels
 #2 Inference program compilation & packaging

 Just-In-Time Compilation (at runtime for specific data/HW)
 Originating from JIT-compiled languages like Java, C#
 #1 Lazy expression evaluation + optimization
 #2 Program/function compilation with recompilation

 Excursus: Java JIT
 #1 Start w/ Java bytecode interpretation by JVM  fast startup
 #2 Tiered JIT compile (cold, warm, hot, very hot, scorching)  performance
 Trace statistics (frequency, time) at method granularity
 Note: -XX:+PrintCompilation

Runtime Adaptation

PL

(LLVM)

36

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Issues of Unknown or Changing Sizes
 Problem of unknown/changing sizes

 Unknown or changing sizes and sparsity of intermediates
These unknowns lead to very conservative fallback plans (distributed ops)

 #1 Control Flow
 Branches and loops
 Complex function call graphs
 User-Defined Functions

 #2 Data-Dependencies
 Data-dependent operators

(e.g., table, rmEmpty, aggregate)
 Computed size expressions

Runtime Adaptation

1
3
4
2
2
3

1

1
1

1

1

1

X = read(‘/tmp/X.csv’);
if(intercept)
X = cbind(X, matrix(1,nrow(X),1));

Z = foo(X) + X; # size of + and Z?

Y = table(seq(1,nrow(X)), y);
grad = t(X) %*% (P - Y);

yY

Ex.: Multinomial
Logistic Regression

d = dout[,(t-2)*M+1:(t-1)*M];

cur_Q = matrix (0, 1, 2*ncur);
cur_S = matrix (0, 1, ncur*dist);

37

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Issues of Unknown or Changing Sizes, cont.
 #3 Changing Dims and Sparsity

 Iterative feature selection workloads
 Changing dimensions or sparsity
 Same code with different data

 #4 API Limitations
 Precompiled scripts/programs

(inputs unavailable)

 (#5 Compiler Limitations)

 Dynamic recompilation techniques as robust fallback strategy
 Shares goals and challenges with adaptive query processing
 However, ML domain-specific techniques and rewrites

Runtime Adaptation

Ex: Stepwise LinReg
while(continue) {

parfor(i in 1:n) {
if(!fixed[1,i]) {

Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi,y)

}
}
add best to Xg (AIC)

}

Presenter
Presentation Notes
AIC .. Akaike Information Criterion

38

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Recompilation
Runtime Adaptation

Parsing (syntactic analysis)

Live Variable Analysis

Validate (semantic analysis)

Script

Construct HOP DAGs

Compute Memory Estimates

Construct LOP DAGs
(incl operator selection, hop-lop rewrites)

Generate Runtime Program

[Matthias Boehm et al:
SystemML's Optimizer:

Plan Generation for
Large-Scale Machine

Learning Programs. IEEE
Data Eng. Bull 2014]

Multiple
Rounds

Static/Dynamic Rewrites

Intra-/Inter-Procedural Analysis

Static/Dynamic Rewrites

Execution Plan

Language

HOPs

LOPs

Dynamic
Recompilation

Other systems
w/ recompile:

SciDB, MatFast

~100
ms

~10
ms

~1
ms

Construct LOP DAGs
(incl operator selection, hop-lop rewrites)

Generate Runtime Program

Compute Memory Estimates

Static/Dynamic Rewrites

39

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Dynamic Recompilation
 Compile-time Decisions

 Split HOP DAGs for recompilation: prevent unknowns but keep DAGs as large
as possible; split after reads w/ unknown sizes and specific operators

 Mark HOP DAGs for recompilation: Spark due to unknown sizes / sparsity

Runtime Adaptation

+

C

R1

A

abs rm

B

*

rm

R3

rms

R2

abs

A

rm

R4 tmp2

*

tmp1

R3

rm

s

R2

abs

tmp3

R4

+

C

R1

A

abs rm

B

rm tmp2 tmp3

A

rm

tmp1(recursive
rewrite)

Control flow  statement blocks
 initial recompilation granularity

rm .. removeEmpty(X, [margin=“rows”,select=I])

40

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Dynamic Recompilation, cont.
 Dynamic Recompilation at Runtime on recompilation hooks

(last level program blocks, predicates, recompile once functions)
 Deep Copy DAG
 Replace Literals
 Update DAG Statistics
 Dynamic Rewrites
 Recompute Memory

Estimates
 [Codegen]
 Generate

Runtime Instructions

Runtime Adaptation

X

r(t)

ba(+*)

P

CP

SP

b(-)

Y

SP[100x1M,-1]

[100x-1,-1]

[1Mx100,-1] [1Mx-1,-1] [1Mx-1,-1]

[1Mx-1,-1]

X 1Mx100,99M

P 1Mx7,7M

Y 1Mx7,7M

[1Mx100,99M] [1Mx7,7M] [1Mx7,7M]

[1Mx7,-1][100x1M,99M]

[100x7,-1]

CP

CP

Symbol Table

41

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Dynamic Recompilation, cont.
 Recompile Once Functions

 Unknowns due to inconsistent or
unknown call size information

 IPA marks functions as “recompile
once”, if it contains loops

 Recompile the entire function on entry
+ disable unnecessary recompile

 Recompile parfor Loops
 Unknown sizes and iterations
 Recompile parfor loop on entry

+ disable unnecessary recompile
 Create independent DAGs for

individual parfor workers

Runtime Adaptation

foo = function(Matrix[Double] A)
recompiled w/ size of A
return (Matrix[Double] C)

{
C = rand(nrow(A),1) + A;
while(...)

C = C / rowSums(C) * s
}

while(continue) {
parfor(i in 1:n) {

if(!fixed[1,i]) {
Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi,y)

}
}
add best to Xg (AIC)

}

42

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Operator Fusion & JIT Compilation
(aka Code Generation)

Many State-of-the-Art ML Systems,
especially for DNNs and numerical computation

43

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Motivation: Fusion
 Data Flow Graphs (better data access)

 DAGs of linear algebra (LA) operations and statistical functions
 Materialized intermediates  ubiquitous fusion opportunities

Operator Fusion & JIT Compilation

sum(X*Y*Z)

a) Intermediates b) Single-Pass
t(X)%*%(X%*%v)
t(t(X%*%v)%*%X)

c) Multi-Aggregates

d) Sparsity
Exploitation

[Matthias Boehm et al.: On Optimizing
Operator Fusion Plans for Large-Scale

ML in SystemML. PVLDB 2018]

44

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

TF w/ manual rewrite
 t(t(w*(X%*%v))%*%X):
9.2 s to 1.6 s (compared to Gen 283ms)

Motivation: Fusion, cont.
Operator Fusion & JIT Compilation

Cell Template: sum(X*Y*Z)dense sparse (0.1)

Row: t(X)%*%(w*(X%*%v))

dense

Outer: sum(X*log(U%*%t(V)+1e-15))

20K x 20K,
rank 100

Beware: SystemML 1.0,
Julia 0.6.2, TensorFlow 1.5

45

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Motivation: Just-In-Time Compilation
 Operator Kernels (better code)

 Specialization opportunities: data types, shapes, and operator graphs
 Heterogeneous hardware: CPUs, GPUs, FPGAs, ASICs x architectures

 #1 CPU Architecture
 Specialize to available instructions sets
 Register allocation and assignment, etc

 #2 Heterogeneous Hardware
 JIT compilation for custom-build

ASICs with HW support for ML ops
 Different architectures of devices

 #3 Custom ML Program
 Operator graphs and sizes

Operator Fusion & JIT Compilation

Examples: x86-64,
sparc, amd64, arm, ppc

Example: NVIDIA
TensorRT

GPU Platforms

[https://docs.nvidia.com/
deeplearning/sdk/tensorrt-

developer-guide/index.html]

Presenter
Presentation Notes
Notes: tesla (P4 inference, V100 training) -> datacenter, drive -> automotive; jetson -> embedded (e.g., robotics)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

46

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Operator Fusion Overview
 Related Research Areas

 DB: query compilation
 HPC: loop fusion, tiling, and distribution (NP complete)
 ML: operator fusion (dependencies given by data flow graph)

 Example Operator Fusion

Operator Fusion & JIT Compilation

A

+

s B

*

R

C

*

for(i in 1:n)
tmp1[i,1] = s * B[i,1];

for(i in 1:n)
tmp2[i,1] = A[i,1] + tmp1[i,1];

for(i in 1:n)
R[i,1] = tmp2[i,1] * C[i,1];

for(i in 1:n)
R[i,1] = (A[i,1] + s*B[i,1]) * C[i,1];

Memory Bandwidth:
L1 core: 1TB/s

L3 socket: 400GB/s
Mem: 100 GB/s

[https://software.intel.com/
en-us/articles/memory-

performance-in-a-nutshell]

https://software.intel.com/en-us/articles/memory-performance-in-a-nutshell

47

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Automatic Operator Fusion System Landscape
Operator Fusion & JIT Compilation

System Year Approach Sparse Distr. Optimization

BTO 2009 Loop Fusion No No k-Greedy, cost-based

Tupleware 2015 Loop Fusion No Yes Heuristic

Kasen 2016 Templates (Yes) Yes Greedy, cost-based

SystemML 2017 Templates Yes Yes Exact, cost-based

Weld 2017 Templates (Yes) Yes Heuristic

Taco 2017 Loop Fusion Yes No Manuel

Julia 2017 Loop Fusion Yes No Manuel

Tensorflow XLA 2017 Loop Fusion No No Manuel/Heuristic

Tensor
Comprehensions

2018 Loop Fusion No No Evolutionary,
cost-based

TVM 2018 Loop Fusion No No ML/cost-based

PyTorch 2019 Loop Fusion No No Manual/Heuristic

JAX 2019 N/A No No See TF XLA

JIT

Presenter
Presentation Notes
#1 Micro Optimizations
Hybrid tile-at-a-time loop fusion, predication, and result allocation
Examples: Tupleware
#2 Cross-Library Optimization
Generic IR based on parallel loops and builders
Examples: Weld
#3 Sparsity Exploitation
Exploit sparsity over chains of operations (compute, size of intermediates)
Examples: SystemML
#4 Iteration Schedules
Decisions on loop ordering (e.g., tensor storage formats, join ordering)
Examples: Taco, TVM, Mateev et al
#5 Optimizing Fusion Plans
Example: SystemML
#6 Autodifferentiation Native Python Code
	Example: JAX (Autograd + XLA JIT)

48

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

A Case for Optimizing Fusion Plans
 Problem: Fusion heuristics  poor plans for complex DAGs

(cost/structure), sparsity exploitation, and local/distributed operations
 Goal: Principled approach for optimizing fusion plans

 #1 Materialization Points
(e.g., for multiple consumers)

 #2 Sparsity Exploitation
(and ordering of sparse inputs)

 #3 Decisions on Fusion Patterns
(e.g., template types)

 #4 Constraints
(e.g., memory budget and block sizes)

Operator Fusion & JIT Compilation

Y + X * (U %*% t(V))

sparse-safe over X

 Search Space that
requires optimization

49

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

System Architecture (Compiler & Codegen Architecture)

Operator Fusion & JIT Compilation

[CIDR’17] (w/ fuse-all heuristic)
- Lacked maintainability

- Poor plans for complex DAGs
and local/distributed operations

Practical, exact, cost-based optimizer

 CPlan representation/construction and codegen similar in TF XLA
(HLO primitives, pre-clustering of nodes, caching, LLVM codegen)

 Templates: Cell, Row, MAgg, Outer w/ different data bindings

50

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Codegen Example L2SVM (Cell/MAgg)

 L2SVM Inner Loop

 # of Vector Intermediates
 Base (w/o fused ops): 10
 Fused (w/ fused ops): 4

Operator Fusion & JIT Compilation

1: while(continueOuter & iter < maxi) {
2 #...
3: while(continueInner) {
4: out = 1-Y* (Xw+step_sz*Xd);
5: sv = (out > 0);
6: out = out * sv;
7: g = wd + step_sz*dd

- sum(out * Y * Xd);
8: h = dd + sum(Xd * sv * Xd);
9: step_sz = step_sz - g/h;
10: }} ...

b(*)

Xd Xwstep_sz

b(+)

b(*)

b(-)

1

b(>)

0

b(*)

Y

b(*)

b(*)

ua(RC,+)

b(-)

write g...

b(+)

b(+)

dd

wd

b(*)

b(*)

ua(RC,+)

b(+)

write h

51

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Codegen Example L2SVM, cont. (Cell/MAgg)

 Template Skeleton
 Data access, blocking
 Multi-threading
 Final aggregation

 # of Vector Intermediates
 Gen (codegen ops): 0

Operator Fusion & JIT Compilation

public final class TMP25 extends SpoofMAgg {
public TMP25() {

super(false, AggOp.SUM, AggOp.SUM);
}
protected void genexec(double a, SideInput[] b,
double[] scalars, double[] c, ...) {
double TMP11 = getValue(b[0], rowIndex);
double TMP12 = getValue(b[1], rowIndex);
double TMP13 = a * scalars[0];
double TMP14 = TMP12 + TMP13;
double TMP15 = TMP11 * TMP14;
double TMP16 = 1 - TMP15;
double TMP17 = (TMP16 > 0) ? 1 : 0;
double TMP18 = a * TMP17;
double TMP19 = TMP18 * a;
double TMP20 = TMP16 * TMP17;
double TMP21 = TMP20 * TMP11;
double TMP22 = TMP21 * a;
c[0] += TMP19;
c[1] += TMP22;

}
}

52

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Codegen Example MLogreg (Row)

 MLogreg Inner Loop
(main expression on feature matrix X)

Operator Fusion & JIT Compilation

1: Q = P[, 1:k] * (X %*% v)
2: H = t(X) %*% (Q - P[, 1:k] * rowSums(Q))

public final class TMP25 extends SpoofRow {
public TMP25() {

super(RowType.COL_AGG_B1_T, true, 5);
}
protected void genexecDense(double[] a, int ai,
SideInput[] b, double[] c,..., int len) {
double[] TMP11 = getVector(b[1].vals(rix),...);
double[] TMP12 = vectMatMult(a, b[0].vals(rix),...);
double[] TMP13 = vectMult(TMP11, TMP12, 0, 0,...);
double TMP14 = vectSum(TMP13, 0, TMP13.length);
double[] TMP15 = vectMult(TMP11, TMP14, 0,...);
double[] TMP16 = vectMinus(TMP13, TMP15, 0, 0,...);
vectOuterMultAdd(a, TMP16, c, ai, 0, 0,...); }

protected void genexecSparse(double[] avals, int[] aix,
int ai, SideInput[] b, ..., int len) {...}

}

53

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Ahead-of-Time Compilation
 TensorFlow tf.compile

 Compile entire TF graph into binary function w/ low footprint
 Input: Graph, config (feeds+fetches w/ fixes shape sizes)
 Output: x86 binary and C++ header (e.g., inference)
 Specialization for frozen model and sizes

 PyTorch Compile
 Compile Python functions into ScriptModule/ScriptFunction
 Lazily collect operations,

optimize, and JIT compile
 Explicit jit.script call

or @torch.jit.script

Operator Fusion & JIT Compilation

a = torch.rand(5)
def func(x):
for i in range(10):
x = x * x # unrolled into graph

return x

jitfunc = torch.jit.script(func) # JIT
jitfunc.save("func.pt")

[Vincent Quenneville-Bélair:
How PyTorch Optimizes
Deep Learning Computations,
Guest Lecture Stanford 2020]

[Chris Leary, Todd Wang:
XLA – TensorFlow, Compiled!,

TF Dev Summit 2017]

54

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Excursus: MLIR
 Motivation TF Compiler Ecosystem

 Different IRs and compilation
chains for runtime backends

 Duplication of infrastructure
and fragile error handling

 Adoption:

 MLIR (Multi-level, Machine Learning IR)
 SSA-based IR, similar to LLVM
 Hierarchy of modules, functions,

regions, blocks, and operations
 Dialects for different backends

(defined ops, customization)
 Systematic lowering

Operator Fusion & JIT Compilation

[Rasmus Munk Larsen, Tatiana Shpeisman:
TensorFlow Graph Optimizations,

Guest Lecture Stanford 2019]

func @testFunction(%arg0: i32) {
%x = call @thingToCall(%arg0)
: (i32) -> i32

br ^bb1
^bb1:
%y = addi %x, %x : i32
return %y : i32

}

[Chris Lattner et al.: MLIR: Scaling Compiler
Infrastructure for Domain Specific Computation.

CGO 2021, https://arxiv.org/pdf/2002.11054.pdf]

[https://github.com/llvm/torch-mlir]

Presenter
Presentation Notes
Note: Regions consist of a CFG of blocks with arguments, blocks contain list of operations, ops can contain nested regions.

https://arxiv.org/pdf/2002.11054.pdf
https://github.com/llvm/torch-mlir

55

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

func @main() {
%G = daphne.rand {rows=50, cols=50, seed=-1, sparsity=0.07} : ...
%initP = daphne.rand {rows=50, cols=1, seed=-1, sparsity=1.0} : ...
%e, %u ...
%alpha = daphne.constant 0.5 : f64
%initI = daphne.constant 0 : i64
%loop:2 = daphne.while(%p = %initP, %i = %initI) :
(!daphne.matrix<?x?xf64>, i64) -> (!daphne.matrix<?x?xf64>, i64) condition: {
%max_iteration = daphne.constant 10 : i64
%c = cmpi "ult", %i, %max_iteration : i64
daphne.yield %c : i1

} body: {
%1 = daphne.mat_mul %G, %p : (!daphne.matrix<?x?xf64>, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%2 = daphne.mul %alpha, %1 : (f64, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%3 = daphne.mat_mul %e, %u : (!daphne.matrix<?x?xf64>, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%4 = daphne.mat_mul %3, %p : (!daphne.matrix<?x?xf64>, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%cst1f = daphne.constant 1.0 : f64
%5 = daphne.sub %cst1f, %alpha : (f64, f64) -> f64
%6 = daphne.mul %5, %4 : (f64, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%newP = daphne.add %2, %6 : (!daphne.matrix<?x?xf64>, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%cst1 = daphne.constant 1 : i64
%nextI = daphne.add %i, %cst1 : (i64, i64) -> i64
daphne.yield %newP, %nextI : !daphne.matrix<?x?xf64>, i64

}
daphne.print %loop#0 : !daphne.matrix<?x?xf64>
daphne.return

}

Excursus: MLIR, cont.
(DAPHNE pre-project prototype)

Operator Fusion & JIT Compilation

while(i < max_iter) { # PageRank
p = alpha*(G%*%p) + (1-alpha)*(e%*%u%*%p);
i += 1;

}

Initial translation w/o
much optimization

module {
func @main() {
%0 = daphne.constant 5.000000e-01 : f64
%1 = daphne.constant 0 : i64
%2 = daphne.constant 1.000000e+00 : f64
%3 = daphne.constant 1 : i64
%4 = daphne.constant 10 : i64
%5 = daphne.rand {cols = 50 : i64, rows = 50 : i64, seed = -1 : i64, sparsity = 7.000000e-02 : f64} : () -> ...
%6, %7, %8 = ...
%9 = daphne.sub %2, %0 : (f64, f64) -> f64
%10:2 = daphne.while (%arg0 = %6, %arg1 = %1) : (!daphne.matrix<50x1xf64>, i64) -> (same) condition: {
%11 = cmpi "ult", %arg1, %4 : i64
daphne.yield %11 : i1

} body: {
%11 = daphne.mat_mul %5, %arg0 : (!daphne.matrix<50x50xf64>, !daphne.matrix<50x1xf64>) -> !daphne.matrix<50x1xf64>
%12 = daphne.mul %11, %0 : (!daphne.matrix<50x1xf64>, f64) -> !daphne.matrix<50x1xf64>
%13 = daphne.mat_mul %8, %arg0 : (!daphne.matrix<1x50xf64>, !daphne.matrix<50x1xf64>) -> !daphne.matrix<1x1xf64>
%14 = daphne.mat_mul %7, %13 : (!daphne.matrix<50x1xf64>, !daphne.matrix<1x1xf64>) -> !daphne.matrix<50x1xf64>
%15 = daphne.mul %9, %14 : (f64, !daphne.matrix<50x1xf64>) -> !daphne.matrix<50x1xf64>
%16 = daphne.add %12, %15 : (!daphne.matrix<50x1xf64>, !daphne.matrix<50x1xf64>) -> !daphne.matrix<50x1xf64>
%17 = daphne.add %arg1, %3 : (i64, i64) -> i64
daphne.yield %16, %17 : !daphne.matrix<50x1xf64>, i64

}
daphne.print %10#0 : !daphne.matrix<50x1xf64>
daphne.return

}
}

3) Code motion outside loop

2) Matrix multiplication chain reordered

1) Shape inference of dimensions

After Several Optimization Passes

56

Architecture of Machine Learning Systems – 05 Compilation and Optimization
Matthias Boehm, Graz University of Technology, SS 2022

Summary and Q&A
 Compilation Overview
 Size Inference and Cost Estimation
 Rewrites (and Operator Selection)
 Runtime Adaptation
 Operator Fusion & JIT Compilation

 Impact of Size Inference and Costs
 Advanced optimization of LA programs requires size inference

for cost estimation and validity constraints
 Ubiquitous Rewrite Fusion, and Codegen/JIT Opportunities

 Linear algebra programs have plenty of room for optimization
 Potential for changed asymptotic behavior

Recommended Reading
[Chris Leary, Todd Wang: XLA –
TensorFlow, Compiled!, TF Dev Summit 2017,
https://www.youtube.com/watch?v=kAOanJczHA0]

https://www.youtube.com/watch?v=kAOanJczHA0

	Architecture of ML Systems*�05 Compilation and Optimization
	Agenda
	Compilation Overview
	Recap: Linear Algebra Systems
	ML Program Compilation / Graphs
	ML Program Compilation / Graphs, cont.
	Compilation Chain
	Recap: Basic HOP and LOP DAG Compilation
	Size Inference and Cost Estimation
	Constant and Size Propagation
	Constant and Size Propagation, cont.
	Constant and Size Propagation, cont.
	Inter-Procedural Analysis
	Sparsity Estimation Overview
	Sparsity Estimation – Estimators
	Sparsity Estimation – Estimators, cont.
	Memory Estimates and Costing
	Rewrites and Operator Selection
	Traditional PL Rewrites
	Traditional PL Rewrites, cont.
	Traditional PL Rewrites, cont.
	Static/Dynamic Simplification Rewrites
	Static/Dynamic Simplification Rewrites, cont.
	Static/Dynamic Simplification Rewrites, cont.
	Static/Dynamic Simplification Rewrites, cont.
	Vectorization and Incremental Computation
	Excursus: Automatic Rewrite Generation
	Matrix Multiplication Chain Optimization
	Matrix Multiplication Chain Optimization, cont.
	Matrix Multiplication Chain Optimization, cont.
	Matrix Multiplication Chain Optimization, cont.
	Physical Operator Selection
	Sparsity-Exploiting Operators
	Runtime Adaptation
	Terminology Ahead-of-Time / Just-in-Time
	Issues of Unknown or Changing Sizes
	Issues of Unknown or Changing Sizes, cont.
	Recompilation
	Dynamic Recompilation
	Dynamic Recompilation, cont.
	Dynamic Recompilation, cont.
	Operator Fusion & JIT Compilation �(aka Code Generation)
	Motivation: Fusion
	Motivation: Fusion, cont.
	Motivation: Just-In-Time Compilation
	Operator Fusion Overview
	Automatic Operator Fusion System Landscape
	A Case for Optimizing Fusion Plans
	System Architecture (Compiler & Codegen Architecture)
	Codegen Example L2SVM (Cell/MAgg)
	Codegen Example L2SVM, cont. (Cell/MAgg)
	Codegen Example MLogreg (Row)
	Ahead-of-Time Compilation
	Excursus: MLIR
	Excursus: MLIR, cont.�(DAPHNE pre-project prototype)
	Summary and Q&A

