

Architecture of ML Systems* 05 Compilation and Optimization

Matthias Boehm

Last update: Aug 25, 2022

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

Agenda

- Compilation Overview
- Size Inference and Cost Estimation
- Rewrites (and Operator Selection)
- Runtime Adaptation
- Operator Fusion & JIT Compilation

SystemDS, and several other ML systems

Compilation Overview

Recap: Linear Algebra Systems

- Comparison Query Optimization
 - Rule- and cost-based rewrites and operator ordering
 - Physical operator selection and query compilation
 - Linear algebra / other ML operators, DAGs, control flow, sparse/dense formats

- #1 Interpretation (operation at-a-time)
 - Examples: R, PyTorch, Morpheus [PVLDB'17]
- #2 Lazy Expression Compilation (DAG at-a-time)
 - Examples: RIOT [CIDR'09], TensorFlow [OSDI'16]
 Mahout Samsara [MLSystems'16], Dask
 - Examples w/ control structures: Weld [CIDR'17],
 OptiML [ICML'11], Emma [SIGMOD'15]
- #3 Program Compilation (entire program)
 - Examples: SystemML [ICDE'11/PVLDB'16], Julia,
 Cumulon [SIGMOD'13], Tupleware [PVLDB'15]

Optimization Scope

```
1: X = read($1); # n x m matrix
2: y = read(\$2); # n x 1 vector
3: \max i = 50; lambda = 0.001;
4: intercept = $3;
   r = -(t(X) %*% y);
   norm r2 = sum(r * r); p = -r;
   w = matrix(0, ncol(X), 1); i = 0;
   while(i<maxi & norm r2>norm r2 trgt)
10: {
11:
      q = (t(X) %*% X %*% p)+lambda*p;
12:
       alpha = norm_r2 / sum(p * q);
13:
       w = w + alpha * p;
14:
       old norm r2 = norm r2;
15:
       r = r + alpha * a;
16:
       norm r2 = sum(r * r);
17:
       beta = norm r2 / old norm r2;
       p = -r + beta * p; i = i + 1;
18:
19: }
20: write(w, $4, format="text");
```


ML Program Compilation / Graphs

Script:

Operator DAG

(today's lecture)

- a.k.a. "graph" (data flow graph)
- a.k.a. intermediate representation (IR)

Runtime Plan

Compiled runtime plans Interpreted plans

SPARK mapmmchain X.MATRIX.DOUBLE w.MATRIX.DOUBLE v.MATRIX.DOUBLE _mVar4.MATRIX.DOUBLE XtwXv

ML Program Compilation / Graphs, cont.

Example TF TensorBoard

(Node) Structure View

Device View (CPU, GPU)

Tensor Shapes and Runtime Statistics (time, mem)

[https://github.com/tensorflow/tensorboard/blob/master/docs/r1/graphs.md]

Recap: Basic HOP and LOP DAG Compilation

LinregDS (Direct Solve)

```
X = read(\$1);
                    Scenario:
y = read(\$2);
                   X: 10^8 \times 10^3, 10^{11}
intercept = $3;
                    y: 108 x 1, 108
lambda = 0.001;
if( intercept == 1 ) {
 ones = matrix(1, nrow(X), 1);
  X = append(X, ones);
I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
write(beta, $4);
```

→ Hybrid Runtime Plans:

- Size propagation / memory estimates
- Integrated CP / Spark runtime
- Dynamic recompilation during runtime

→ Distributed Matrices

- Fixed-size (squared) matrix blocks
- Data-parallel operations

Size Inference and Cost Estimation

Crucial for Generating Valid Execution Plans & Cost-based Optimization

Constant and Size Propagation

- Size Information
 - Dimensions (#rows, #columns)
 - Sparsity (#nnz/(#rows * #columns))
 - memory estimates and costs
- Principle: Worst-case Assumption
 - Necessary for guarantees (memory)
- DAG-level Size Propagation
 - Input: Size information for leaves
 - Output: size information for all operators, -1 if still unknown
 - Propagation based on operation semantics (single bottom-up pass over DAG)

```
X = read($1);
y = read($2);
I = matrix(0.001, ncol(X), 1);
A = t(X) %*% X + diag(I);
b = t(X) %*% y;
beta = solve(A, b);
```


Constant and Size Propagation, cont.

Example SystemDS

- Hop refreshSizeInformation() (exact)
- Hop inferOutputCharacteristics()
- Compiler explicitly differentiates between exact and other size information
- Note: ops like aggregate, ctable, rmEmpty challenging but w/ upper bounds

Example TensorFlow

- Operator registrations
- Shape inference functions


```
REGISTER_OP("Relu")
```

```
.Input("features: T")
.Output("activations: T")
.Attr("T: {realnumbertype, qint8}")
.SetShapeFn(
    shape_inference::UnchangedShape)
```

[Alex Passos: Inside TensorFlow – Eager execution runtime, https://www.youtube.com/watch?v=qjx65mD6nrc, Dec 2019]

Constant and Size Propagation, cont.

Constant Propagation

- Relies on live variable analysis
- Propagate constant literals into read-only statement blocks

Program-level Size Propagation

- Relies on constant propagation and DAG-level size propagation
- Propagate size information across conditional control flow: size in leafs,
 DAG-level prop, extract roots
- if: reconcile if and else branch outputs
- while/for: reconcile pre and post loop, reset if pre/post different

```
X = read(\$1); # n x m matrix
y = read($2); # n x 1 vector
maxi = 50; lambda = 0.001;
if(...){ }
r = -(t(X) %*% y);
r2 = sum(r * r);
                            # m x 1
p = -r;
                            # m x 1
w = matrix(0, ncol(X), 1);
i = 0:
while(i<maxi & r2>r2_trgt) {
   q = (t(X) %*% X %*% p)+lambda*p;
   alpha = norm r2 / sum(p * q);
   w = w + alpha * p;
                            # m x 1
   old norm_r2 = norm_r2;
   r = r + alpha * q;
   r2 = sum(r * r);
   beta = norm_r2 / old_norm_r2;
                            # m x 1
   p = -r + beta * p;
   i = i + 1;
write(w, $4, format="text");
```


Inter-Procedural Analysis

- Intra/Inter-Procedural Analysis (IPA)
 - Integrates all size propagation techniques (DAG+program, size+constants)
 - Intra-function and inter-function size propagation (called once, consistent sizes, consistent literals)

- Additional IPA Passes (selection)
 - Inline functions (single statement block, small)
 - Dead code elimination and simplification rewrites
 - Remove unused functions & flag recompile-once

Sparsity Estimation Overview

Motivation

- Sparse input matrices from NLP, graph analytics, recommender systems, scientific computing
- Sparse intermediates (transform, selection, dropout)
- Selection/permutation matrices

Problem Definition

- Sparsity estimates used for format decisions, output allocation, cost estimates
- Matrix A with sparsity $s_A = nnz(A)/(mn)$ and matrix B with $s_B = nnz(B)/(nl)$
- Estimate sparsity s_C = nnz(C)/(ml) of matrix product C = A B; d=max(m,n,l)
- Assumptions
 - A1: No cancellation errors
 - A2: No not-a-number (NaN)

Common assumptions

→ Boolean matrix product

Sparsity Estimation – Estimators

#1 Naïve Metadata Estimators

 Derive the output sparsity solely from the sparsity of inputs (e.g., SystemDS)

$$\hat{s}_c = 1 - (1 - s_A s_B)^n$$

$$\hat{s}_c = \min(1, s_A n) \cdot \min(1, s_B n)$$

#2 Naïve Bitset Estimator

- Convert inputs to bitsets, perform Boolean mm (per row)
- Examples: SciDB [SSDBM'11], NVIDIA cuSparse, Intel MKL

#3 Sampling

- Take a sample of aligned columns of A and rows of B
- Sparsity estimated via max of count-products
- Examples: MatFast [ICDE'17], improvements in paper

#4 Density Map

- Store sparsity per b x b block (default b = 256)
- MM-like estimator (average case estimator for *, probabilistic propagation $s_A + s_B s_A s_B$ for +)
- Example: SpMacho [EDBT'15], AT Matrix [ICDE'16]

Sparsity Estimation – Estimators, cont.

- #5 Layered Graph [J.Comb.Opt.'98]
 - Nodes: rows/columns in mm chain
 - Edges: non-zeros connecting rows/columns
 - Assign r-vectors ~ exp and propagate via min
 - Estimate over roots (output columns)
- #6 MNC Sketch (Matrix Non-zero Count)
 - Create MNC sketch for inputs A and B
 - Exploitation of structural properties
 (e.g., 1 non-zero per row, row sparsity)
 - Support for matrix expressions (reorganizations, elementwise ops)
 - Sketch propagation and estimation

[Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald, Peter J. Haas: MNC: Structure-Exploiting Sparsity Estimation for Matrix Expressions. **SIGMOD 2019**]

$$s_C = \hat{s}_C = h_A^c h_B^r / (ml)$$

if $\max(h_A^r) \le 1 \vee \max(h_B^c) \le 1$

Memory Estimates and Costing

Memory Estimates

- Matrix memory estimate := based on the dimensions and sparsity, decide the format (sparse, dense) and estimate the size in memory
- Operation memory estimate := input, intermediates, output
- Worst-case sparsity estimates (upper bound)

#1 Costing at Logical vs Physical Level

 Costing at physical level takes physical ops and rewrites into account but is much more costly

#2 Costing Operators/Graphs vs Plans

- Costing plans requires heuristics for # iterations, branches in general
- #3 Analytical vs Trained Cost Models
 - Analytical: estimate I/O and compute workload
 - Training: build regression models for individual ops

A Personal War Story

Physical, Plans, Trained [PVLDB 2014]

Physical, Plans, Analytical [SIGMOD 2015]

Logical, Graphs, Analytical [PVDLB 2018]

Rewrites and Operator Selection

Traditional PL Rewrites

- #1 Common Subexpression Elimination (CSE)
 - Step 1: Collect and replace leaf nodes (variable reads and literals)
 - Step 2: recursively remove CSEs bottom-up starting at the leafs by merging nodes with same inputs (beware non-determinism)
 - Example:

$$R1 = 7 - abs(A * B)$$

 $R2 = abs(A * B) + rand()$

Traditional PL Rewrites, cont.

#2 Constant Folding

- After constant propagation, fold sub-DAGs over literals into a single literal
- Approach: recursively compile and execute runtime instructions with special handling of one-side constants

[A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers – Principles, Techniques, & Tools. Addison-Wesley, 2007]

Example (GLM Binomial probit):

Traditional PL Rewrites, cont.

#3 Branch Removal

- Applied after constant propagation and constant folding
- True predicate: replace if statement block with if-body blocks
- False predicate: replace if statement block with else-body block, or remove

#4 Merge of Statement Blocks

- Merge sequences of unconditional blocks (s1,s2) into a single block
- Connect matching DAG roots of s1 with DAG inputs of s2

LinregDS (Direct Solve)

Static/Dynamic Simplification Rewrites

Examples of Static Rewrites

- trace(X%*%Y) \rightarrow sum(X*t(Y))
- sum(X+Y) $\rightarrow sum(X)+sum(Y)$
- $(X%*%Y)[7,3] \rightarrow X[7,]%*%Y[,3]$
- sum(t(X)) \rightarrow sum(X)
- sum(lambda*X) → lambda * sum(X);

> [Matthias Boehm et al: SystemML's Optimizer: Plan Generation for Large-Scale Machine Learning Programs. IEEE Data Eng. Bull 2014]

Examples of Dynamic Rewrites

- t(X) %*% y \rightarrow t(t(y) %*% X) s.t. costs
- X[a:b,c:d]=Y → X = Y iff dims(X)=dims(Y)
- (...) * X \rightarrow matrix(0, nrow(X), ncol(X)) iff nnz(X)=0
- $sum(X^2)$ $\rightarrow t(X)%*%X; rowSums(X) <math>\rightarrow X iff ncol(X)=1$
- sum(X%*%Y) → sum(t(colSums(X))*rowSums(Y)) iff ncol(X)>t

Static/Dynamic Simplification Rewrites, cont.

TF Constant Push-Down

- Add(c1,Add(x,c2)) \rightarrow Add(x,c1+c2)
- ConvND(c1*x,c2) \rightarrow ConvND(x,c1*c2)

[Rasmus Munk Larsen, Tatiana Shpeisman: TensorFlow Graph Optimizations, Guest Lecture Stanford 2019]

TF Arithmetic Simplifications

- Flattening: $a+b+c+d \rightarrow AddN(a, b, c, d)$
- Hoisting: AddN(x * a, b * x, x * c) \rightarrow x * AddN(a+b+c)
- Reduce Nodes Numeric: $x+x+x \rightarrow 3*x$
- Reduce Nodes Logicial: $!(x > y) \rightarrow x <= y$

TF Broadcast Minimization

■ $(M1+s1) + (M2+s2) \rightarrow (M1+M2) + (s1+s2)$

SystemML/SystemDS

RewriteElementwise-MultChainOptimization (orders and collapses matrix, vector, scalar op chains)

TF Better use of Intrinsics

■ Matmul(Transpose(X), Y) → Matmul(X, Y, transpose_x=True)

Static/Dynamic Simplification Rewrites, cont.

Relaxed DNN Graph Substitutions

Allow substitutions that preserve semantics, no matter if faster/slower

[Zhihao Jia, James J. Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, Alex Aiken: Optimizing DNN Computation with Relaxed Graph Substitutions. MLSys 2019]

Backtracking search

Additional Algorithms

- Partial order of substitutions w/ pruning
- Dynamic programming → substitutions

[Jingzhi Fang, Yanyan Shen, Yue Wang, Lei Chen: Optimizing DNN Computation Graph using Graph Substitutions.

PYTORCH

Static/Dynamic Simplification Rewrites, cont.

Rewrites in PyTorch (Torch Script JIT)

- [https://github.com/pytorch/pytorch/blob/master
 /torch/csrc/jit/passes/subgraph_rewrite.cpp]
- Misc: Canonicalization, erase number types and no-ops
- Fuse linear, fuse relu, fuse graph pipeline
- Peephole simplifications (e.g., for dtype management)
- Inlining and loop unrolling
- Concatenation and fusion rewrites:

```
void SubgraphRewriter::RegisterDefaultPatterns() {
36
      // TODO: Add actual patterns (like Conv-Relu).
37
      RegisterRewritePattern(
38
          R"IR(
39
    graph(%x, %w, %b):
40
      %c = aten::conv(%x, %w, %b)
41
      %r = aten::relu(%c)
42
      return (%r))IR",
43
          R"IR(
44
    graph(%x, %w, %b):
45
      %r = aten::convrelu(%x, %w, %b)
46
      return (%r))IR",
                            subgraph rewrite.cpp
          {{"r", "c"}});
48
                             (extracted Mar 17, 2022)
49
```


Vectorization and Incremental Computation

Loop Transformations

- Loop vectorization
- Loop hoisting

$$X[a:b,1] = Y[a:b,2] + Z[a:b,1]$$

Incremental Computations

- **Delta update rules (e.g., LINVIEW, factorized)**
- Incremental iterations (e.g., Flink)

$$A = t(X) \%*\% X + t(\Delta X) \%*\% \Delta X$$

 $b = t(X) \%*\% y + t(\Delta X) \%*\% \Delta y$

t(X)

X

Update In-Place

- SystemDS: via rewrites (guaranteed applicability)
- R: via reference counting
- Julia: by default, otherwise explicit B = copy(A) necessary

Excursus: Automatic Rewrite Generation

- SPOOF/SPORES (Sum-Product Optim.)
 - Break up LA ops into basic ops (RA)
 - Elementary sum-product/RA rewrites
 - Example: sum(W%*%H)

Large Scale Linear Algebra. PVLDB 13(11) 2020] $\Gamma_{sum(v)} \qquad \qquad \Gamma_{sum(v)} \qquad \qquad \Gamma_$

 $\mathbf{H}_{\mathrm{klh}}$

- TASO (Super Optimization)
 - List of operator specifications and properties
 - Automatic generation/verification of graph
 substitutions and data layouts via cost-based backtracking search

[Zhihao Jia et al: TASO: optimizing deep learning computation with

[Tarek Elgamal et al: SPOOF: Sum-Product Optimization and Operator Fusion for

Large-Scale Machine Learning. CIDR 2017

[Yisu Remy Wang et al: SPORES: Sum-Product Optimization via Relational Equality Saturation for

automatic generation of graph substitutions. **SOSP 2019**]

 W_{iiw}

 $\mathbf{H}_{\mathrm{klh}}$

Matrix Multiplication Chain Optimization

Optimization Problem

- Matrix multiplication chain of n matrices M₁, M₂, ...M_n (associative)
- Optimal parenthesization of the product M₁M₂ ... M_n

Size propagation and sparsity estimation

Search Space Characteristics

- Naïve exhaustive: Catalan numbers $\rightarrow \Omega(4^n / n^{3/2})$
- DP applies: (1) optimal substructure,(2) overlapping subproblems
- Textbook DP algorithm: Θ(n³) time, Θ(n²) space
 - Examples: SystemML '14,RIOT ('09 I/O costs), SpMachO ('15 sparsity)

•	Best	known:	O(n	log nj)
---	------	--------	-----	--------	---

n C_{n-1}
5 14
10 4,862
15 2,674,440
20 1,767,263,190
25 1,289,904,147,324

[T. C. Hu, M. T. Shing: Computation of Matrix Chain Products. Part II. **SIAM J. Comput.** 13(2): 228-251, 1984]

Matrix Multiplication Chain Optimization, cont.

M1	M2	М3	M4	M5
10x7	7x5	5x1	1x3	3x9

$$m[1,3] = min($$
 $m[1,1] + m[2,3] + p1p2p4,$
 $m[1,2] + m[3,3] + p1p3p4)$
 $= min($
 $0 + 35 + 10*7*1,$
 $350 + 0 + 10*5*1)$
 $= min($

[T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms, Third Edition, **The MIT Press**, pages 370-377, 2009]

Matrix Multiplication Chain Optimization, cont.

M1	M2	М3	M4	M5
10x7	7x5	5x1	1x3	3x9

→ Open questions: DAGs; other operations, sparsity joint opt w/ rewrites, CSE, fusion, and physical operators

Matrix Multiplication Chain Optimization, cont.

- **Sparsity-aware** mmchain Opt
 - Additional n x n sketch matrix e

Optimal split matrix S

Sketch matrix E

- Sketch propagation for optimal subchains (currently for all chains)
- Modified cost computation via MNC sketches (number FLOPs for sparse instead of dense mm)

$$C_{i,j} = \min_{k \in [i,j-1]} \frac{(C_{i,k} + C_{k+1,j})}{(C_{i,k} + C_{k+1,j})} + \frac{(C_{i,k} + C_{k+$$

[Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald, Peter J. Haas: MNC: Structure-Exploiting Sparsity Estimation for Matrix Expressions. **SIGMOD 2019**]

Physical Operator Selection

- Common Selection Criteria
 - Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
 - Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
 - Data flow properties (e.g., co-partitioning, co-location, data locality)
- #0 Local Operators
 - SystemML mm, tsmm, mmchain; Samsara/Mllib local
- #1 Special Operators (special patterns/sparsity)
 - SystemML tsmm, mapmmchain; Samsara AtA
- #2 Broadcast-Based Operators (aka broadcast join)
 - SystemML mapmm, mapmmchain
- #3 Co-Partitioning-Based Operators (aka improved repartition join)
 - SystemML zipmm; Emma, Samsara OpAtB
- #4 Shuffle-Based Operators (aka repartition join)
 - SystemML cpmm, rmm; Samsara OpAB

Sparsity-Exploiting Operators

Goal: Avoid dense intermediates and unnecessary computation

sum

- #1 Fused Physical Operators
 - E.g., SystemML [PVLDB'16] wsloss, wcemm, wdivmm
 - Selective computation over non-zeros of "sparse driver"

sum(W * (X - U %*% t(V))^2)

- #2 Masked Physical Operators
 - E.g., Cumulon MaskMult [SIGMOD'13]
 - Create mask of "sparse driver"
 - Pass mask to single masked matrix multiply operator

Runtime Adaptation

ML Systems w/ Optimizing Compiler

PL

Terminology Ahead-of-Time / Just-in-Time

Ahead-of-Time Compilation

- Originating from compiled languages like C, C++
- #1 Program compilation at different abstraction levels
- #2 Inference program compilation & packaging

- Just-In-Time Compilation (at runtime for specific data/HW)
 - Originating from JIT-compiled languages like Java, C#
 - #1 Lazy expression evaluation + optimization
 - #2 Program/function compilation with recompilation

Excursus: Java JIT

- #1 Start w/ Java bytecode interpretation by JVM → fast startup
- #2 Tiered JIT compile (cold, warm, hot, very hot, scorching) → performance
- Trace statistics (frequency, time) at method granularity
- Note: -XX:+PrintCompilation

Issues of Unknown or Changing Sizes

Problem of unknown/changing sizes

Unknown or changing sizes and sparsity of intermediates
 These unknowns lead to very conservative fallback plans (distributed ops)

#1 Control Flow

- Branches and loops
- Complex function call graphs
- User-Defined Functions

#2 Data-Dependencies

- Data-dependent operators (e.g., table, rmEmpty, aggregate)
- Computed size expressions

```
d = dout[,(t-2)*M+1:(t-1)*M];
cur_Q = matrix (0, 1, 2*ncur);
cur_S = matrix (0, 1, ncur*dist);
```

```
X = read('/tmp/X.csv');
if( intercept )
  X = cbind(X, matrix(1,nrow(X),1));
Z = foo(X) + X; # size of + and Z?

Y = table(seq(1,nrow(X)), y);
grad = t(X) %*% (P - Y);

Ex.: Multinomial Logistic Regression
```


Issues of Unknown or Changing Sizes, cont.

#3 Changing Dims and Sparsity

- Iterative feature selection workloads
- Changing dimensions or sparsity
- → Same code with different data

#4 API Limitations

Precompiled scripts/programs (inputs unavailable)

(#5 Compiler Limitations)

→ Dynamic recompilation techniques as robust fallback strategy

- Shares goals and challenges with adaptive query processing
- However, ML domain-specific techniques and rewrites

Ex: Stepwise LinReg

```
while( continue ) {
   parfor( i in 1:n ) {
      if(!fixed[1,i]) {
         Xi = cbind(Xg, X[,i])
         B[,i] = lm(Xi,y)
   # add best to Xg (AIC)
```


38

[Matthias Boehm et al: SystemML's Optimizer: Plan Generation for Large-Scale Machine Learning Programs. IEEE Data Eng. Bull 2014]

Dynamic Recompilation

Other systems w/ recompile: SciDB, MatFast

Dynamic Recompilation

Compile-time Decisions

- Split HOP DAGs for recompilation: prevent unknowns but keep DAGs as large as possible; split after reads w/ unknown sizes and specific operators
- Mark HOP DAGs for recompilation: Spark due to unknown sizes / sparsity

Control flow → statement blocks

→ initial recompilation granularity

rm .. removeEmpty(X, [margin="rows", select=I])

Dynamic Recompilation, cont.

- Dynamic Recompilation at Runtime on recompilation hooks (last level program blocks, predicates, recompile once functions)
 - Deep Copy DAG
 - Replace Literals
 - Update DAG Statistics
 - Dynamic Rewrites
 - Recompute Memory Estimates
 - [Codegen]
 - GenerateRuntime Instructions

Dynamic Recompilation, cont.

Recompile Once Functions

- Unknowns due to inconsistent or unknown call size information
- IPA marks functions as "recompile once", if it contains loops
- Recompile the entire function on entry
 + disable unnecessary recompile

Recompile parfor Loops

- Unknown sizes and iterations
- Recompile parfor loop on entry
 + disable unnecessary recompile
- Create independent DAGs for individual parfor workers

```
foo = function(Matrix[Double] A)
    # recompiled w/ size of A
    return (Matrix[Double] C)
{
    C = rand(nrow(A),1) + A;
    while(...)
        C = C / rowSums(C) * s
}
```

```
while( continue ) {
    parfor( i in 1:n ) {
        if( !fixed[1,i] ) {
            Xi = cbind(Xg, X[,i])
            B[,i] = lm(Xi,y)
        }
    }
    # add best to Xg (AIC)
}
```


Operator Fusion & JIT Compilation (aka Code Generation)

Many State-of-the-Art ML Systems, especially for DNNs and numerical computation

Motivation: Fusion

[Matthias Boehm et al.: On Optimizing Operator Fusion Plans for Large-Scale ML in SystemML. **PVLDB 2018**]

- Data Flow Graphs (better data access)
 - DAGs of linear algebra (LA) operations and statistical functions
 - Materialized intermediates → ubiquitous fusion opportunities

Motivation: Fusion, cont.

Beware: SystemML 1.0, Julia 0.6.2, TensorFlow 1.5

Row: t(X)%*%(w*(X%*%v))

Outer: sum(X*log(U%*%t(V)+1e-15))

Motivation: Just-In-Time Compilation

- **Operator Kernels (better code)**
 - Specialization opportunities: data types, shapes, and operator graphs
 - Heterogeneous hardware: CPUs, GPUs, FPGAs, ASICs x architectures

#1 CPU Architecture

- Specialize to available instructions sets
- Register allocation and assignment, etc

Examples: x86-64, sparc, amd64, arm, ppc

#2 Heterogeneous Hardware

- JIT compilation for custom-build ASICs with HW support for ML ops
- Different architectures of devices

#3 Custom ML Program

Operator graphs and sizes

Operator Fusion Overview

Related Research Areas

DB: query compilation

HPC: loop fusion, tiling, and distribution (NP complete)

ML: operator fusion (dependencies given by data flow graph)

Example Operator Fusion


```
for( i in 1:n )
   tmp1[i,1] = s * B[i,1];
for( i in 1:n )
   tmp2[i,1] = A[i,1] + tmp1[i,1];
for( i in 1:n )
   R[i,1] = tmp2[i,1] * C[i,1];
```

Memory Bandwidth:

L1 core: 1TB/s L3 socket: 400GB/s Mem: 100 GB/s

[https://software.intel.com/ en-us/articles/memoryperformance-in-a-nutshell]

Automatic Operator Fusion System Landscape

System	Year	Approach	Sparse	Distr.	Optimization
вто	2009	Loop Fusion	No	No	k-Greedy, cost-based
Tupleware	2015	Loop Fusion	No	Yes	Heuristic
Kasen	2016	Templates	(Yes)	Yes	Greedy, cost-based
SystemML	2017	Templates	Yes	Yes	Exact, cost-based
Weld	2017	Templates	(Yes)	Yes	Heuristic
Taco	2017	Loop Fusion	Yes	No	Manuel
Julia	2017	Loop Fusion	Yes	No	Manuel
Tensorflow XLA	2017	Loop Fusion	No	No	Manuel/Heuristic
Tensor Comprehensions	2018	Loop Fusion	No	No	Evolutionary, cost-based
TVM	2018	Loop Fusion	No	No	ML/cost-based
PyTorch	2019	Loop Fusion	No	No	Manual/Heuristic
JAX	2019	N/A	No	No	See TF XLA

JIT

A Case for Optimizing Fusion Plans

- Problem: Fusion heuristics → poor plans for complex DAGs (cost/structure), sparsity exploitation, and local/distributed operations
- Goal: Principled approach for optimizing fusion plans

$$C = A + s * B$$
 $D = (C/2)^{(C-1)}$
 $E = exp(C-1)$

#1 Materialization Points
 (e.g., for multiple consumers)

#2 Sparsity Exploitation
 (and ordering of sparse inputs)

- #3 Decisions on Fusion Patterns (e.g., template types)
- #4 Constraints
 (e.g., memory budget and block sizes)

→ Search Space that requires optimization

sparse-safe over X

System Architecture (Compiler & Codegen Architecture)

Practical, exact, cost-based optimizer

 CPlan representation/construction and codegen similar in TF XLA (HLO primitives, pre-clustering of nodes, caching, LLVM codegen)

Templates: Cell, Row, MAgg, Outer w/ different data bindings

Codegen Example L2SVM (Cell/MAgg)

L2SVM Inner Loop

```
1: while(continueOuter & iter < maxi) {
2
    #...
    while(continueInner) {
4:
      out = 1-Y^* (Xw+step sz*Xd);
    sv = (out > 0);
5:
   out = out * sv;
7:
   g = wd + step sz*dd
        - sum(out * Y * Xd);
8:
   h = dd + sum(Xd * sv * Xd);
9:
    step sz = step sz - g/h;
10: }} ...
```

of Vector Intermediates

- Base (w/o fused ops): 10
- Fused (w/ fused ops): 4

Codegen Example L2SVM, cont. (Cell/MAgg)

Template Skeleton

- Data access, blocking
- Multi-threading
- Final aggregation

of Vector Intermediates

Gen (codegen ops): 0

```
public final class TMP25 extends SpoofMAgg {
  public TMP25() {
    super(false, AggOp.SUM, AggOp.SUM);
 protected void genexec(double a, SideInput[] b.
   double[] scalars, double[] c, ...) {
    double TMP11 = getValue(b[0], rowIndex);
    double TMP12 = getValue(b[1], rowIndex);
    double TMP13 = a * scalars[0];
    double TMP14 = TMP12 + TMP13;
    double TMP15 = TMP11 * TMP14;
    double TMP16 = 1 - TMP15;
    double TMP17 = (TMP16 > 0) ? 1 : 0;
    double TMP18 = a * TMP17;
    double TMP19 = TMP18 * a;
    double TMP20 = TMP16 * TMP17;
    double TMP21 = TMP20 * TMP11;
    double TMP22 = TMP21 * a;
    c[0] += TMP19;
    c[1] += TMP22;
```


Codegen Example MLogreg (Row)

MLogreg Inner Loop

```
H
   (main expression on feature matrix X)
                                                                    11 ba(+*)
 1: Q = P[, 1:k] * (X %*% v)
 2: H = t(X) %*% (Q - P[, 1:k] * rowSums(Q))
                                                                             9 b(-)
public final class TMP25 extends SpoofRow {
  public TMP25() {
                                                                                 8 b(*)
    super(RowType.COL AGG B1 T, true, 5);
  protected void genexecDense(double[] a, int ai,
                                                             10 \ {\bf r}(t)
                                                                           7 \text{ ua}(R+)
   SideInput[] b, double[] c,..., int len) {
    double[] TMP11 = getVector(b[1].vals(rix),...);
    double[] TMP12 = vectMatMult(a, b[0].vals(rix),...);
                                                                        6 b(*)
    double[] TMP13 = vectMult(TMP11, TMP12, 0, 0,...);
    double TMP14 = vectSum(TMP13, 0, TMP13.length);
    double[] TMP15 = vectMult(TMP11, TMP14, 0,...);
                                                                   4 ba(+*)
                                                                             5 rix
    double[] TMP16 = vectMinus(TMP13, TMP15, 0, 0,...);
    vectOuterMultAdd(a, TMP16, c, ai, 0, 0,...); }
  protected void genexecSparse(double[] avals, int[] aix,
                                                                 X
                                                                              P
   int ai, SideInput[] b, ..., int len) {...}
```


Ahead-of-Time Compilation

TensorFlow tf.compile

- Input: Graph, config (feeds+fetches w/ fixes shape sizes)
- Output: x86 binary and C++ header (e.g., inference)
- Specialization for frozen model and sizes

[Chris Leary, Todd Wang: XLA – TensorFlow, Compiled!,

TF Dev Summit 2017

PyTorch Compile

- Compile Python functions into ScriptModule/ScriptFunction
- Lazily collect operations, optimize, and JIT compile
- Explicit jit.script call or @torch.jit.script

[Vincent Quenneville-Bélair: How PyTorch Optimizes Deep Learning Computations, Guest Lecture Stanford 2020]

```
a = torch.rand(5)
def func(x):
    for i in range(10):
        x = x * x # unrolled into graph
    return x

jitfunc = torch.jit.script(func) # JIT
jitfunc.save("func.pt")
```


Excursus: MLIR

[Rasmus Munk Larsen, Tatiana Shpeisman: TensorFlow Graph Optimizations, **Guest Lecture Stanford 2019**

Motivation TF Compiler Ecosystem

- Different IRs and compilation chains for runtime backends
- **Duplication of infrastructure** and fragile error handling
- Adoption: PYT ORCH [https://github.com/llvm/torch-mlir]

MLIR (Multi-level, Machine Learning IR)

- SSA-based IR, similar to LLVM
- Hierarchy of modules, functions, regions, blocks, and operations
- Dialects for different backends (defined ops, customization)
- **Systematic lowering**

[Chris Lattner et al.: MLIR: Scaling Compiler Infrastructure for Domain Specific Computation. **CGO 2021,** https://arxiv.org/pdf/2002.11054.pdf]

Excursus: MLIR, cont.

(DAPHNE pre-project prototype)

```
while(i < max_iter) { # PageRank
  p = alpha*(G%*%p) + (1-alpha)*(e%*%u%*%p);
  i += 1;
}</pre>
```

```
module {
  func @main() {
                                                                After Several Optimization Passes
   %0 = daphne.constant 5.000000e-01 : f64
   %1 = daphne.constant 0 : i64
   %2 = daphne.constant 1.000000e+00 : f64
   %3 = daphne.constant 1 : i64
   %4 = daphne.constant 10 : i64
   \%5 = daphne.rand {cols = 50 : i64, rows = 50 : i64, seed = -1 : i64, sparsity = 7.000000e-02 : f64} : () -> ...
   %6, %7, %8 = ...
                                                 3) Code motion outside loop
   %9 = daphne.sub %2, %0 : (f64, f64) -> f64
    %10:2 = daphne.while (%arg0 = %6, %arg1 = %1) : (!daphne.matrix<50x1xf64>, i64) -> (same) condition: {
     %11 = cmpi "ult", %arg1, %4 : i64
      daphne.yield %11 : i1
                                                             1) Shape inference of dimensions
    } body: {
     %11 = daphne.mat mul %5, %arg0 : (!daphne.matrix<50x50xf64>, !daphne.matrix<50x1xf64>) -> !daphne.matrix<50x1xf64>
     %12 = daphne.mul %11, %0 : (!daphne.matrix<50x1xf64>, f64) -> !daphne.matrix<50x1xf64>
     %13 = daphne.mat_mul %8, %arg0 : (!daphne.matrix<1x50xf64>, !daphne.matrix<50x1xf64>) -> !daphne.matrix<1x1xf64>
     %14 = daphne.mat_mul %7, %13 : (!daphne.matrix<50x1xf64>, !daphne.matrix<1x1xf64>) -> !daphne.matrix<50x1xf64>
     %15 = daphne.mul %9, %14 : (f64, !daphne.matrix<50x1xf64>) -> !daphne.matrix<50x1xf64>
     %16 = daphne.add %12, %15 : (!daphne.matrix<50x1xf64>, !daphne.matrix<50x1xf64>) -> !daphne.matrix<50x1xf64>
     %17 = daphne.add %arg1, %3 : (i64, i64) -> i64
      daphne.yield %16, %17 : !daphne.matrix<50x1xf64>, i64
                                                              2) Matrix multiplication chain reordered
    daphne.print %10#0 : !daphne.matrix<50x1xf64>
    daphne.return
```


Summary and Q&A

- Compilation Overview
- Size Inference and Cost Estimation
- Rewrites (and Operator Selection)
- Runtime Adaptation
- Operator Fusion & JIT Compilation

Recommended Reading

[Chris Leary, Todd Wang: XLA – Tensor TensorFlow, Compiled!, **TF Dev Summit 2017**,

https://www.youtube.com/watch?v=kAOanJczHA0]

- **→** Impact of Size Inference and Costs
 - Advanced optimization of LA programs requires size inference for cost estimation and validity constraints
- Ubiquitous Rewrite Fusion, and Codegen/JIT Opportunities
 - Linear algebra programs have plenty of room for optimization
 - Potential for changed asymptotic behavior

