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Motivation and Terminology
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Terminology Optimization Methods
 Problem: Given a continuous, differentiable function 𝒇𝒇(𝑫𝑫,𝜽𝜽), 

find optimal parameters 𝜽𝜽∗ = argmin 𝒇𝒇(𝑫𝑫,𝜽𝜽)

 #1 Gradient Methods (1st order)
 Pick a starting point, compute gradient, descent in 

opposite direction of gradient −𝛾𝛾𝛻𝛻𝒇𝒇(𝑫𝑫,𝜽𝜽)

 #2 Newton’s Method (2nd order)
 Pick a starting point, compute gradient, 

descend to where derivative = 0 (via 2nd derivative)
 Jacobian/Hessian matrices for multi-dimensional

 #3 Quasi-Newton Methods
 Incremental approximation of Hessian
 Algorithms: BFGS, L-BFGS, Conjugate Gradient (CG)
 Example: L-BFGS-B, AR(2), MSE, N=100

EnBW energy-demand time series 

Motivation and Terminology

θ2

θ1

x0x1x2 x3

θ1

Presenter
Presentation Notes
BFGS vs CG: https://pubsonline.informs.org/doi/abs/10.1287/moor.3.3.244
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Terminology Batch/Mini-batch
 Batch ML Algorithms

 Iterative ML algorithms, where each iteration
uses the entire dataset to compute gradients ΔW

 For (pseudo-)second-order methods, many features
 Dedicated optimizers for traditional ML algorithms 

 Mini-batch ML Algorithms
 Iterative ML algorithms, where each iteration

only uses a batch of rows to make the 
next model update (in epochs or w/ sampling)

 For large and highly redundant training sets
 Applies to almost all iterative, model-based 

ML algorithms (LDA, reg., class., factor., DNN)
 Stochastic Gradient Descent (SGD)

Motivation and Terminology

Data

Batch 2

Batch 1

Epoch

W’
W’’

Data
W’
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Terminology Parallelism
 Flynn’s Classification

 SISD, SIMD
 (MISD), MIMD

 Example: SIMD Processing
 Streaming SIMD Extensions (SSE)
 Process the same operation on 

multiple elements at a time
(packed vs scalar SSE instructions)

 Data parallelism 
(aka: instruction-level parallelism)

 Example: VFMADD132PD

Motivation and Terminology

SISD
(uni-core)

SIMD
(vector)

MISD
(pipelining)

MIMD
(multi-core)

Single Data Multiple Data

Single 
Instruction

Multiple 
Instruction

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)

2017 Skylake: 512b (8xFP64)

a
b
c

c = _mm512_fmadd_pd(a, b);

[Michael J. Flynn, Kevin W. 
Rudd: Parallel Architectures. 
ACM Comput. Surv. 28(1) 1996]
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Terminology Parallelism, cont.
 Distributed, Data-Parallel 

Computation
 Parallel computation of function foo()  single instruction
 Collection X of data items (key-value pairs) multiple data
 Data parallelism similar to SIMD but more coarse-grained notion of 

“instruction” and “data”  SPMD (single program, multiple data)

 Additional Terminology
 BSP: Bulk Synchronous Parallel (global barriers)
 ASP: Asynchronous Parallel (no barriers, often with accuracy impact)
 SSP: Stale-synchronous parallel (staleness constraint on fastest-slowest)
 Other: Fork&Join, Hogwild!, event-based, decentralized

 Beware: data parallelism used in very different contexts (e.g., Param Server)

Motivation and Terminology

Y = X.map(x -> foo(x))

[Frederica Darema: The SPMD Model : Past, 
Present and Future. PVM/MPI 2001]
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Categories of Execution Strategies
Motivation and Terminology

07a Hybrid Execution and HW Accelerators

05a Data-Parallel 
Execution
[Apr 03]

05b Task-Parallel 
Execution
[Apr 03]

06c Parameter Servers 
(data, model) 

Mini-batchBatch 
SIMD/SPMD

Batch/Mini-batch, 
Independent Tasks 

MIMD

06a Data-Parallel 
Execution

06b Task-Parallel 
Execution

07b Caching, Partitioning, Indexing, and Compression
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Data-Parallel Execution
Batch ML Algorithms
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Hadoop History and Architecture
 Recap: Brief History

 Google’s GFS [SOSP’03] + MapReduce
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

 Hadoop Architecture / Eco System
 Management (Ambari)
 Coordination / workflows

(Zookeeper, Oozie)
 Storage (HDFS)
 Resources (YARN)

[SoCC’13]
 Processing 

(MapReduce)

Data-Parallel Collection Processing

NameNode

Head Node

Worker Node 1

Resource 
Manager Node 

Manager

MR 
AM

MR 
task

MR 
task

MR 
task

Worker Node n

Node 
Manager

MR 
task

MR 
task

MR 
task

MR 
task

MR Client DataNode
1 3 2

DataNode
3 2 9

[Jeffrey Dean, Sanjay 
Ghemawat: MapReduce: 

Simplified Data Processing on 
Large Clusters. OSDI 2004]
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MapReduce – Programming Model
 Overview Programming Model

 Inspired by functional programming languages
 Implicit parallelism (abstracts distributed storage and processing)
 Map function: key/value pair  set of intermediate key/value pairs
 Reduce function: merge all intermediate values by key 

 Example

Data-Parallel Collection Processing

map(Long pos, String line) {
parts ß line.split(“,”)
emit(parts[1], 1)

}

Name Dep

X CS

Y CS

A EE

Z CS

CS 1

CS 1

EE 1

CS 1

SELECT Dep, count(*) FROM csv_files GROUP BY Dep

reduce(String dep, 
Iterator<Long> iter) {

total ß iter.sum();
emit(dep, total)

} CS 3

EE 1
Collection of 

key/value pairs
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MapReduce – Execution Model
Data-Parallel Collection Processing

CSV 
File 1

Input CSV files 
(stored in HDFS)

CSV 
File 2

CSV 
File 3

Output Files 
(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map 
task

map 
task
map 
task

map 
task

map 
task
map 
task
Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce 
task

reduce 
task

reduce 
task

Shuffle, Merge, 
[Combine]

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

w/ #reducers = 3
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Spark History and Architecture 
 High-Level Architecture

 Different language bindings:
Scala, Java, Python, R

 Different libraries:
SQL, ML, Stream, Graph

 Spark core (incl RDDs)
 Different cluster managers:

Standalone, Mesos, 
Yarn, Kubernetes

 Different file systems/
formats, and data sources:
HDFS, S3, SWIFT, DBs, NoSQL

 Focus on a unified platform 
for data-parallel computation (Apache Flink w/ similar goals)

Data-Parallel Collection Processing

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

Presenter
Presentation Notes
Summary MapReduceLarge-scale & fault-tolerant processing w/ UDFs and files  FlexibilityRestricted functional APIs  Implicit parallelism and fault toleranceCriticism: #1 Performance, #2 Low-level APIs, #3 Many different systemsEvolution to Spark (and Flink)Spark [HotCloud’10] + RDDs [NSDI’12]  Apache Spark (2014)Design: standing executors with in-memory storage, �lazy evaluation, and fault-tolerance via RDD lineagePerformance: In-memory storage and fast job scheduling (100ms vs 10s)APIs: Richer functional APIs and general computation DAGs, �high-level APIs (e.g., DataFrame/Dataset), unified platform   But many shared concepts/infrastructureImplicit parallelism through dist. collections (data access, fault tolerance) Resource negotiators (YARN, Mesos, Kubernetes)HDFS and object store connectors (e.g., Swift, S3)

https://spark.apache.org/
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Spark Resilient Distributed Datasets (RDDs)
 RDD Abstraction

 Immutable, partitioned 
collections of key-value pairs

 Coarse-grained deterministic operations (transformations/actions) 
 Fault tolerance via lineage-based re-computation 

 Operations
 Transformations: 

define new RDDs
 Actions: return 

result to driver

 Distributed Caching
 Use fraction of worker memory for caching
 Eviction at granularity of individual partitions
 Different storage levels (e.g., mem/disk x serialization x compression)

Data-Parallel Collection Processing

JavaPairRDD<MatrixIndexes,MatrixBlock>

Type Examples

Transformation
(lazy)

map, hadoopFile, textFile, 
flatMap, filter, sample, join, 

groupByKey, cogroup, reduceByKey, 
cross, sortByKey, mapValues

Action reduce, save,
collect, count, lookupKey

Node1 Node2
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Spark Resilient Distributed Datasets (RDDs), cont.
 Lifecycle of an RDD

 Note: can’t broadcast 
an RDD directly

Data-Parallel Collection Processing

File on DFS

Distributed 
Collection

Local Data
(value, collection)

sc.parallelize(lst)

lst = X.collect()
v = X.reduce(foo())

X.filter(foo())
X.mapValues(foo())
X.reduceByKey(foo())
X.cache()/X.persist(…)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

sc.hadoopFile(f)
sc.textFile(f)
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Spark Partitions and Implicit/Explicit Partitioning
 Spark Partitions

 Logical key-value collections are split into physical partitions
 Partitions are granularity of tasks, I/O, shuffling, evictions

 Partitioning via Partitioners
 Implicitly on every data shuffling
 Explicitly via R.repartition(n)

 Partitioning-Preserving
 All operations that are guaranteed to keep keys unchanged 

(e.g. mapValues(), mapPartitions() w/ preservesPart flag)

 Partitioning-Exploiting
 Join: R3 = R1.join(R2)
 Lookups: 
v = C.lookup(k)

Data-Parallel Collection Processing

Example Hash Partitioning:
For all (k,v) of R: 
pid = hash(k) % n 

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

% 3
⋈ ⋈

Hash partitioned

~128MB
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Spark Lazy Evaluation, Caching, and Lineage
Data-Parallel Collection Processing

join
union

groupBy

Stage 3

Stage 1

Stage 2

A B

C D F

G

map

partitioning-
aware

E

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy 
McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A 

Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

reduce

cached

Presenter
Presentation Notes
Notes:Dryad-‐like DAGs Pipelines functions within a stage Locality & data reuse aware Partitioning-‐aware to avoid shuffles 
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Background: Matrix Formats
 Matrix Block (m x n)

 A.k.a. tiles/chunks, most operations defined here
 Local matrix: single block, different representations

 Common Block Representations
 Dense (linearized arrays)
 MCSR (modified CSR)
 CSR (compressed sparse rows), CSC
 COO (Coordinate matrix)

Data-Parallel Execution

.7 .1

.2 .4
.3

Example 
3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0
Dense (row-major)

.7

.1

.2

.4

.3

0
2
0
1
1

0
2
4
5

CSR

.7

.1

.2

.4

.3

0
2
0
1
1

COO

0
0
1
1
2

.7 .1
2

MCSR

0

.2 .4
10

.3
1O(mn)

O(m + nnz(X)) O(nnz(X))
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Distributed Matrix Representations
 Collection of “Matrix Blocks” (and keys)

 Bag semantics (duplicates, unordered)
 Logical (Fixed-Size) Blocking 

+ join processing / independence
- (sparsity skew)

 E.g., SystemML on Spark:
JavaPairRDD<MatrixIndexes,MatrixBlock>

 Blocks encoded independently (dense/sparse)

 Partitioning
 Logical Partitioning 

(e.g., row-/column-wise)
 Physical Partitioning

(e.g., hash / grid)

Data-Parallel Execution

Logical Blocking 
3,400x2,700 Matrix 

(w/ Bc=1,000)

Physical 
Blocking and 
Partitioning 
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Distributed Matrix Representations, cont.
 #1 Block-partitioned Matrices

 Fixed-size, square or rectangular blocks
 Pros: Input/output alignment, block-local transpose, 

amortize block overheads, bounded mem, cache-conscious
 Cons: Converting row-wise inputs (e.g., text) requires shuffle
 Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon, 

Distributed R, DMac, Spark Mllib, Gilbert, MatFast, and SimSQL
 #2 Row/Column-partitioned Matrices

 Collection of row indexes and rows (or columns respectively)
 Pros: Seamless data conversion and access to entire rows
 Cons: Storage overhead in Java, and cache unfriendly operations
 Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL

 #3 Algorithm-specific Partitioning
 Operation and algorithm-centric data representations
 Examples: matrix inverse, matrix factorization

Data-Parallel Execution



21

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022 

Distributed Matrix Operations
Data-Parallel Execution

Elementwise Multiplication
(Hadamard Product) Transposition

Matrix
Multiplication

Note: also with 
row/column vector rhs

Note: 1:N join
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 Examples  Distributed MM Operators

Physical MM Operator Selection, cont.
Data-Parallel Execution

X1,1

X2,1

X3,1

X1,2

X2,2

X3,2

X4,1 X4,2

Y
1,1

Y
2,1

Y1,1

Y2,1

Y3,1

Y1,2

Y2,2

Y3,2

Y4,1 Y4,2

X1,1

X2,1

X1,3X1,2

X2,2

X1,4

X2,3 X2,4

Broadcast-based
MM (mapmm)

Shuffle-based
MM (cpmm)
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Partitioning-Preserving Operations
 Shuffle is major bottleneck for ML on Spark
 Preserve Partitioning 

 Op is partitioning-preserving if keys unchanged (guaranteed)
 Implicit: Use restrictive APIs (mapValues() vs mapToPair())
 Explicit: Partition computation w/ declaration of partitioning-preserving

 Exploit Partitioning
 Implicit: Operations based on join, cogroup, etc
 Explicit: Custom operators (e.g., zipmm)

 Example: 
Multiclass SVM
 Vectors fit 

neither into 
driver nor 
broadcast

 ncol(X) ≤ Bc

Data-Parallel Execution

parfor(iter_class in 1:num_classes) {
Y_local = 2 * (Y == iter_class) - 1
g_old = t(X) %*% Y_local
...
while( continue ) {

Xd = X %*% s
... inner while loop (compute step_sz)
Xw = Xw + step_sz * Xd;
out = 1 - Y_local * Xw;
out = (out > 0) * out;
g_new = t(X) %*% (out * Y_local) ...

repart, chkpt X MEM_DISK

chkpt y_local MEM_DISK

zipmm

chkpt Xd, Xw MEM_DISK
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Dask
 Overview Dask

 Multi-threaded and distributed operations for arrays, bags, and dataframes
 dask.array:

list of numpy n-dim arrays
 dask.dataframe:

list of pandas data frames
 dask.bag:unordered list of tuples (second order functions)
 Local and distributed schedulers:

threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

 Execution
 Lazy evaluation
 Limitation: requires 

static size inference
 Triggered via
compute()

Data-Parallel Execution

[Matthew Rocklin: Dask: Parallel Computation with Blocked 
algorithms and Task Scheduling, Python in Science 2015]
[Dask Development Team: Dask: Library for dynamic task 

scheduling, 2016, https://dask.org]

import dask.array as da

x = da.random.random(
(10000,10000), chunks=(1000,1000))

y = x + x.T
y.persist() # cache in memory
z = y[::2, 5000:].mean(axis=1) # colMeans
ret = z.compute() # returns NumPy array

Presenter
Presentation Notes
Note: somewhat in competition w/ PySpark (but not out-of-core), scalable ML algorithms via https://ml.dask.org/ (partnering with scikit-learn, XGBoost)

https://dask.org/
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Task-Parallel Execution
Parallel Computation of Independent Tasks,

Emulation of Data-Parallel Operations/Programs
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Overview Task-Parallelism 
 Historic Perspective 

 Since 1980s: various parallel Fortran extensions, especially in HPC
 DOALL parallel loops (independent iterations)
 OpenMP (since 1997,

Open Multi-Processing)

 Motivation: Independent Tasks in ML Workloads
 Use cases: Ensemble learning, cross validation, hyper-parameter tuning, 

complex models with disjoint/overlapping/all data per task
 Challenge #1: Adaptation to data and cluster characteristics
 Challenge #2: Combination with data-parallelism

Task-Parallel Execution

#pragma omp parallel for reduction(+: nnz)
for (int i = 0; i < N; i++) {
int threadID = omp_get_thread_num();
R[i] = foo(A[i]);
nnz += (R[i]!=0) ? 1 : 0;    

}
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Parallel For Loops (ParFor) 
 Hybrid Parallelization Strategies

 Combination of data- and task-parallel ops
 Combination of local and distributed computation

 Key Aspects
 Dependency Analysis
 Task partitioning
 Data partitioning, scan

sharing, various rewrites
 Execution strategies
 Result agg strategies
 ParFor optimizer 

Task-Parallel Execution

reg = 10^(seq(-1,-10))
B_all = matrix(0, nrow(reg), n)

parfor( i in 1:nrow(reg) ) {
B = lm(X, y, reg[i,1]);
B_all[i,] = t(B);

}

Local ParFor
(multi-threaded),

w/ local ops

Remote ParFor
(distributed 
Spark job)

Local ParFor,
w/ concurrent 
distributed ops

[M. Boehm et al.: Hybrid Parallelization 
Strategies for Large-Scale Machine Learning 

in SystemML. PVLDB 2014]

Presenter
Presentation Notes
NOTE: dependency analysis (constant, greatest common denominator if dependency possible, Banerjee if dependencies in loop bounds)
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Additional ParFor Examples
 Pairwise Pearson Correlation 

 In practice: uni/bivariate stats
 Pearson‘s R, Anova F, Chi-squared, 

Degree of freedom, P-value, 
Cramers V, Spearman, etc)

 Batch-wise CNN Scoring 
 Emulate data-parallelism

for complex functions

 Conceptual Design: 
Coordinator/worker (task: group of parfor iterations)

Task-Parallel Execution

D = read("./input/D");
R = matrix(0, ncol(D), ncol(D));
parfor(i in 1:(ncol(D)-1)) {

X = D[ ,i];
sX = sd(X);
parfor(j in (i+1):ncol(D)) {

Y = D[ ,j];
sY = sd(Y);
R[i,j] = cov(X,Y)/(sX*sY);

}  }
write(R, "./output/R");

prob = matrix(0, Ni, Nc)
parfor( i in 1:ceil(Ni/B) ) {

Xb = X[((i-1)*B+1):min(i*B,Ni),];
prob[((i-1)*B+1):min(i*B,Ni),] =

... # CNN scoring
}
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parfor(i in 1:(ncol(D)-1)) {
X = D[ ,i];
sX = sd(X);
parfor(j in (i+1):ncol(D)) {

Y = D[ ,j];

ParFor Execution Strategies
 #1 Task Partitioning

 Fixed-size schemes: 
naive (1) , static (n/k), fixed (m)

 Self-scheduling: e.g.,  
guided self scheduling, factoring

 #2 Data Partitioning
 Local or remote row/column 

partitioning (incl locality)

 #3 Task Execution
 Local (multi-core) execution
 Remote (MR/Spark) execution 

 #4 Result Aggregation
 With and without compare (non-empty output variable)
 Local in-memory / remote MR/Spark result aggregation

Task-Parallel Execution

Local 
ParWorker k

ParFOR (local)

Local 
ParWorker 1

 while(wßdeq())
  foreach pi ∈ w
   execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

Task Queue

...

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Hadoop
ParWorker 
Mapper k

ParFOR (remote)

 ParWorker 
Mapper 1

 map(key,value)
  wßparse(value)
  foreach pi ∈ w
   execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

...

…
A|MATRIX|./out/A7tmp

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Factoring (n=101, k=4)

(13,13,13,13, 7,7,7,7, 3,3,3,3, 2,2,2,2, 1)
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Task-Parallelism in R
 Multi-Threading

 doMC as multi-threaded
foreach backend

 Foreach w/ parallel (%dopar%) 
or sequential (%do%) execution

 Distribution
 doSNOW as distributed 

foreach backend
 MPI/SOCK as comm methods

Task-Parallel Execution

library(doMC)
registerDoMC(32)
R <- foreach(i=1:(ncol(D)-1), 

.combine=rbind) %dopar% {
X = D[,i]; sX = sd(X);
Ri = matrix(0, 1, ncol(D))
for(j in (i+1):ncol(D)) {

Y = D[,j]; sY = sd(Y)
Ri[1,j] = cov(X,Y)/(sX*sY);

}  
return(Ri);

}

[https://cran.r-project.org/web/packages/
doMC/vignettes/gettingstartedMC.pdf]

[https://cran.r-project.org/web/packages/
doSNOW/doSNOW.pdf]

library(doSNOW)
clust = makeCluster(

c(“192.168.0.1”, “192.168.0.2”, 
“192.168.0.3”), type=“SOCK”);

registerDoSNOW(clust);
... %dopar% ...
stopCluster(clust);

https://cran.r-project.org/web/packages/doMC/vignettes/gettingstartedMC.pdf
https://cran.r-project.org/web/packages/doSNOW/doSNOW.pdf
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Task-Parallelism in Other Systems
 MATLAB

 Parfor loops for 
multi-process &
distributed loops

 Use-defined par

 Julia
 Dedicated macros:
@threads
@distributed

 TensorFlow
 User-defined parallel iterations, responsible for 

correct results or acceptable approximate results

Task-Parallel Execution

tf.while_loop(cond, body, loop_vars, parallel_iterations=10,
swap_memory=False, maximum_iterations=None, ...)

[Gaurav Sharma, Jos Martin: 
MATLAB®: A Language for 

Parallel Computing. Int. Journal 
on Parallel Prog. 2009]

matlabpool 32
c = pi; z = 0;
r = rand(1,10)
parfor i = 1 : 10
z = z+1;  # reduction
b(i) = r(i); # sliced

end

a = zeros(1000)
@threads for i in 1:1000
a[i] = rand(r[threadid()])

end

[https://docs.julialang.
org/en/v1/manual/

parallel-computing/]

[https://www.tensorflow.org/
api_docs/python/tf/while_loop]

https://docs.julialang.org/en/v1/manual/parallel-computing/
https://www.tensorflow.org/api_docs/python/tf/while_loop
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Task-Parallelism in Other Systems, cont.
 sk-dist [https://pypi.org/project/sk-dist/]

 Distributed training of local scikit-learn models (via PySpark)
 Grid Search / Cross Validation (hyper-parameter optimization)
 Multi-class Training (one-against the rest)
 Tree Ensembles (many decision trees)

 Model Hopper Parallelism (MOP)
 Given a dataset D, p workers, and 

several NN configurations S 
 Partition D into worker-local partitions Dp

 Schedule tasks for sub-epochs of 𝑆𝑆′ ⊆ 𝑆𝑆 on p
without moving the partitioned data

 Checkpointing of models between tasks

 Reinforcement Learning Frameworks
 Future-based Task Graphs (Ray, Pathways, UPLIFT) 

Task-Parallel Execution

[Supun Nakandala, Yuhao Zhang, Arun
Kumar: Cerebro: Efficient and Reproducible 
Model Selection on Deep Learning Systems. 

DEEM@SIGMOD 2019]

[Supun Nakandala, Yuhao
Zhang, Arun Kumar: Cerebro: 
A Data System for Optimized 

Deep Learning Model 
Selection. PVLDB 2020]

Part of 
Next Lecture

Presenter
Presentation Notes
Pathways paper: https://arxiv.org/pdf/2203.12533.pdf

https://pypi.org/project/sk-dist/
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Data-Parallel Parameter Servers
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# Initialize W1-W4, b1-b4
# Initialize SGD w/ Nesterov momentum optimizer
iters = ceil(N / batch_size)

for( e in 1:epochs ) {
for( i in 1:iters ) {

X_batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),] 
y_batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]

## layer 1: conv1 -> relu1 -> pool1
## layer 2: conv2 -> relu2 -> pool2
## layer 3: affine3 -> relu3 -> dropout
## layer 4: affine4 -> softmax
outa4 = affine::forward(outd3, W4, b4)
probs = softmax::forward(outa4)

## layer 4:  affine4 <- softmax
douta4 = softmax::backward(dprobs, outa4)
[doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
## layer 3: affine3 <- relu3 <- dropout
## layer 2: conv2 <- relu2 <- pool2
## layer 1: conv1 <- relu1 <- pool1

# Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
[W4, vW4] = sgd_nesterov::update(W4, dW4, lr, mu, vW4)
[b4, vb4] = sgd_nesterov::update(b4, db4, lr, mu, vb4)

}
}

Background: Mini-batch DNN Training (LeNet)
Data-Parallel Parameter Servers

NN Forward 
Pass

NN Backward
Pass

 Gradients

Model 
Updates

[Yann LeCun, Leon Bottou, Yoshua
Bengio, and Patrick Haffner:  Gradient-

Based Learning Applied to Document 
Recognition, Proc of the IEEE 1998]

Presenter
Presentation Notes
Note: number of layers = layer ops w/ weights
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Overview Parameter Servers
 System 

Architecture
 M Parameter

Servers
 N Workers
 Optional

Coordinator

 Key Techniques
 Data partitioning D  workers Di (e.g., disjoint, reshuffling)
 Updated strategies (e.g., synchronous, asynchronous)
 Batch size strategies (small/large batches, hybrid methods)

Data-Parallel Parameter Servers

M

N

W .. Model
ΔW .. Gradient

Presenter
Presentation Notes
Note: Nabla vs Delta operators
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History of Parameter Servers
 1st Gen: Key/Value 

 Distributed key-value store for 
parameter exchange and synchronization

 Relatively high overhead

 2nd Gen: Classic Parameter Servers
 Parameters as dense/sparse matrices
 Different update/consistency strategies
 Flexible configuration and fault tolerance

 3rd Gen: Parameter Servers w/ 
improved data communication
 Prefetching and range-based pull/push
 Lossy or lossless compression w/ compensations

 Examples 
 TensorFlow, MXNet, PyTorch, CNTK, Petuum

Data-Parallel Parameter Servers

[Alexander J. Smola, Shravan 
M. Narayanamurthy: An 

Architecture for Parallel Topic 
Models. PVLDB 2010]

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]

[Mu Li et al: Scaling Distributed 
Machine Learning with the 

Parameter Server. OSDI 2014]

[Jiawei Jiang, Bin Cui, Ce Zhang, 
Lele Yu: Heterogeneity-aware 

Distributed Parameter Servers. 
SIGMOD 2017]

[Jiawei Jiang et al: SketchML: 
Accelerating Distributed Machine 

Learning with Data Sketches. 
SIGMOD 2018]
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Basic Worker Algorithm (batch)

Data-Parallel Parameter Servers

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]

for( i in 1:epochs ) {
for( j in 1:iterations ) {

params = pullModel(); # W1-W4, b1-b4 lr, mu
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
pushGradients(gradient);

}  
}
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Extended Worker Algorithm (nfetch batches)

gradientAcc = matrix(0,...);
for( i in 1:epochs ) {

for( j in 1:iterations ) {
if( step mod nfetch = 0 )

params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
gradientAcc += gradient;
params = updateModel(params, gradients);
if( step mod nfetch = 0 ) {

pushGradients(gradientAcc); step = 0; 
gradientAcc = matrix(0, ...);   

}
step++;

}  }

Data-Parallel Parameter Servers

nfetch batches require 
local gradient accrual and 

local model update

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]
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Update Strategies
 Bulk Synchronous

Parallel (BSP)
 Update model w/ 

accrued gradients
 Barrier for N workers

 Asynchronous
Parallel (ASP)
 Update model

for each gradient
 No barrier

 Synchronous w/ 
Backup Workers
 Update model w/

accrued gradients
 Barrier for N of 

N+b workers

Data-Parallel Parameter Servers

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3 but, stale 

model 
updates

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

[Martín Abadi et al: TensorFlow: A System for 
Large-Scale Machine Learning. OSDI 2016]
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Selected Optimizers (updateModel)

 Stochastic Gradient Descent (SGD)
 Vanilla SGD, basis for many other optimizers
 See 05 Data/Task-Parallel: −𝛾𝛾𝛻𝛻𝒇𝒇(𝑫𝑫,𝜽𝜽)

 SGD w/ Momentum
 Incorporates parameter velocity w/ momentum 

 SGD w/ Nesterov Momentum
 Incorporates parameter velocity w/ momentum,

but update from position after momentum

 AdaGrad
 Adaptive learning rate w/ regret guarantees

 RMSprop
 Adaptive learning rate, extended AdaGrad

Data-Parallel Parameter Servers

X = X – lr*dX

v = mu*v – lr*dX
X = X + v

v0 = v
v = mu*v – lr*dX

X = X – mu*v0 + (1+mu)*v

[John C. Duchi et al: Adaptive 
Subgradient Methods for 

Online Learning and Stochastic 
Optimization. JMLR 2011]

c = dr*c+(1-dr)*dX^2
X = X-(lr*dX/(sqrt(c)+eps))

Presenter
Presentation Notes
Regret: loss incurred during learning, loss difference to loss w/ optimal weights (applicability to exercise?)
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Selected Optimizers (updateModel), cont.
 Adam

 Individual adaptive learning rates for 
different parameters

 Shampoo
 Preconditioned gradient method

(Newton’s method, Quasi-Newton)
 Retains gradients tensor structure by

maintaining a preconditioner per dim
 O(m2n2)  O(m2 + n2)

Data-Parallel Parameter Servers

[Diederik P. Kingma, Jimmy Ba: 
Adam:  A Method for Stochastic 

Optimization. ICLR 2015]

t = t + 1
m = beta1*m + (1-beta1)*dX # update biased 1st moment est
v = beta2*v + (1-beta2)*dX^2 # update biased 2nd raw moment est
mhat = m / (1-beta1^t)       # bias-corrected 1st moment est
vhat = v / (1-beta2^t)       # bias-corrected 2nd raw moment est
X = X - (lr * mhat/(sqrt(vhat)+epsilon)) # param update

[Vineet Gupta, Tomer Koren, Yoram Singer: 
Shampoo: Preconditioned Stochastic 

Tensor Optimization. ICML 2018]

L = L + dX %*% t(dX)
R = R + t(dX) %*% dX
X = X – lr * pow(L,1/4) 

%*% dX %*% pow(R,1/4)) 

Presenter
Presentation Notes
Note: Newton’s method employs the local Hessian as a preconditioner“Shampoo maintains an m×m matrix L1/4t to precondition the rows of Gt and R1/4t for its columns. The ¼ exponent arises from our analysis; intuitively, it is a sensible choice as it induces an overall step-size decay rate of O(1/√t), which is common in stochastic optimization methods.”
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Batch Size Configuration
 What is the right batch size for my data?

 Maximum useful batch size is dependent on 
data redundancy and model complexity

 Additional Heuristics/Hybrid Methods
 #1 Increase the batch size instead 

of decaying the learning rate

 #2 Combine batch and mini-batch 
algorithms (full batch + n online updates)

Data-Parallel Parameter Servers

ResNet-50 
on 

ImageNet

Simple CNN 
on 

MNIST
vs

[Christopher J. Shallue et al.: 
Measuring the Effects of Data 

Parallelism on Neural Network 
Training. CoRR 2018]

[Samuel L. Smith, Pieter-Jan 
Kindermans, Chris Ying, Quoc V. Le: 

Don't Decay the Learning Rate, 
Increase the Batch Size. ICLR 2018]

[Ashok Cutkosky, Róbert Busa-Fekete: 
Distributed Stochastic Optimization 

via Adaptive SGD. NeurIPS 2018]
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Reducing Communication Overhead
 Large Batch Sizes

 Larger batch sizes reduce the 
relative communication overhead

 Overlapping Computation/Communication
 For deep NN w/ many weight/bias matrices, 

compute and comm. can be overlapped
 Collective operations: all-Reduce / ring all-reduce / hierarchical all-reduce

 Sparse and Compressed Communication 
 Mini-batches of sparse data  sparse dW
 Lossy (mantissa truncation, quantization), and 

lossless (delta, bitpacking)  for W and dW
 Gradient sparsification/clipping (send gradients larger than a threshold)

 In-Network Aggregation (SwitchML)
 Aggregate worker updates in prog. switches
 32b fix-point, coordinated updates

Data-Parallel Parameter Servers

[Frank Seide et al: 1-bit 
stochastic gradient descent and 

its application to data-parallel 
distributed training of speech 

DNNs. INTERSPEECH 2014]

[Priya Goyal et al: Accurate, Large 
Minibatch SGD: Training ImageNet in 1 

Hour. CoRR 2017 (kn=8K, 256 GPUs)]

tf.distribute:
MirroredStrategy

MultiWorkerMirroredStrategy

[Amedeo Sapio et al: Scaling 
Distributed Machine Learning with 

In-Network Aggregation, NSDI 2021]

Presenter
Presentation Notes
Large-batches: synchronous SGD with k=256 workers * n=32 per-worker batch size = 8K
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Federated Machine Learning
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Problem Setting and Overview
 Motivation Federated ML

 Learn model w/o central data consolidation
 Privacy + data/power caps vs personalization and sharing
 Applications Characteristics

 #1 On-device data more relevant than server-side data
 #2 On-device data is privacy-sensitive or large
 #3 Labels can be inferred naturally from user interaction

 Example: Language modeling for mobile keyboards and voice recognition 

 Challenges
 Massively distributed (data stored across many devices)
 Limited and unreliable communication 
 Unbalanced data (skew in data size, non-IID )
 Unreliable compute nodes / data availability

Federated Machine Learning

W ΔW

[Jakub Konečný: Federated Learning -
Privacy-Preserving Collaborative 

Machine Learning without Centralized 
Training Data, UW Seminar 2018]
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Excursus: Spectrum of Data Sharing
 Fine-grained Spectrum

 Spectrum of technologies with performance/privacy/utility tradeoffs
 Different applications with different requirements 
 Potential: New markets for data-driven services in this spectrum

Federated Machine Learning

Private Data 
(no sharing)

Public Data 
(full sharing, 
sharing w/ 
partners)

Privacy-
enhancing 

Technologies 
(FHE, MPC, 

Differential Privacy)

Aggregates 
(Federated ML, 
Federated w/ 

secure comm.)

Surrogate 
Data 

(char-preserving 
synthetic data, 

dataset distillation)

Increasing 
Privacy

Increasing 
Utility/Perf

Anonymized 
Data 

(k-anonymity, 
pseudonyms)

Key Property: no reconstruction of private raw data
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A Federated ML Training Algorithm
while( !converged ) {

1. Select random subset (e.g. 1000) 
of the (online) clients

2. In parallel, send current parameters θt
to those clients

2a. Receive parameters θt from server [pull]
2b. Run some number of minibatch SGD steps,

producing θ’
2c. Return θ’-θt (model averaging) [push]

3. θt+1 = θt + data-weighted average of client updates
}

Federated Machine Learning

At each client

[Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, 
Blaise Agüera y Arcas: Communication-Efficient Learning of Deep 

Networks from Decentralized Data. AISTATS 2017]
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Algorithmic PS Extensions
 #1 Client Sampling (FedAvg w/ model averaging)

 #2 Decentralized, Fault-tolerant Aggregation  

 #3 Peer-to-peer Gradient and Model Exchange

 #4 Meta-learning for Private Models 

 #5 Handling Statistical Heterogeneity (non-IID data)
 Reducing variance
 Selecting relevant subsets of data
 Tolerating partial client work
 Partitioning clients into congruent groups
 Adaptive Optimization (FedOpt, FedAvgM)

Federated Machine Learning

[Sashank J. Reddi et al: 
Adaptive Federated 

Optimization. CoRR 2020]

[Peter Kairouz, Brendan McMahan, 
Virginia Smith: Federated Learning

Tutorial. NeurIPS 2020, 
https://slideslive.com/38935813/

federated-learningtutorial]

https://slideslive.com/38935813/federated-learningtutorial
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Federated Learning Protocol
 Recommended Reading

 [Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, 
Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi, H. Brendan 
McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, Jason Roselander:  
Towards Federated Learning at Scale: System Design. MLSys 2019]

Federated Machine Learning

Android 
Phones
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Federated Learning 
 Federated Backend

 Federated data (matrices/frames) as meta data objects
 Federated linear algebra, (and federated parameter server)

 Federated Requests: READ, PUT, GET, EXEC_INST, EXEC_UDF, CLEAR

Federated Machine Learning in SystemDS

X = federated(addresses=list(node1, node2, node3),
ranges=list(list(0,0),list(40K,70), ..., list(80K,0),list(100K,70)));

[SIGMOD 2021b]
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Example Federated Operations
 Matrix-Vector Multiplication

 o = X %*% v, local v
 Row-partitioned, federated X
 Row-partitioned, federated o

 Vector-Matrix Multiplication
 o = v %*% X, local v
 Row-partitioned, 

federated X, local o
 New broadcast handling

 Data Preparation
 [X,M] = transformencode(F,spec)
 Recoding, feature hashing, binning,

one-hot encoding

Federated Machine Learning in SystemDS

X1

X2

a) broadcast v
(PUT(v, 2))

b) Local MV (EXEC_INST, 3)

X1

X2

a) broadcast sliced v
(PUT(v, 4))

b) Local MV
(EXEC_INST, 5)

c) Aggregate 
(GET, 5) +

d) Clean 4,5 (EXEC_INST)

X1: D B C D C 

X2: A B B C C

1) Build local 
record maps
(EXEC_UDF)

2) Aggregate, 
broadcast, recode

c) Clean 2 
(EXEC_INST)
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Federated Data Preparation,
Learning, and Debugging

 Federated Feature Transformations
 Federated Linear-algebra-based Data Cleaning,

Data Preparation, and Model Debugging (e.g., federated quantiles)

 Multi-tenant 
Federated Learning
 Tenant Isolation

Federated Machine Learning in SystemDS

Lineage-based 
Reuse

Asynchronous 
Compression
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TensorFlow Federated
 Overview TFF

 Federated PS algorithms and federated second order functions
 Primarily for simulating federated training, no OSS federated runtime

 #1 Federated PS

 #2 Federated Analytics
 r = t(y) %*% X 
 User-level composition

of federated algorithms
 PET primitives

Federated Machine Learning

[https://www.tensorflow.org/federated/]

iterative_process = tff.learning.build_federated_averaging_process(
model_fn, # function for created federated models
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),
server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))

X = ... # tff.type_at_clients(tf.float32)
by = tff.federated_broadcast(y)
R  = tff.federated_sum(

tff.federated_map(X, by, foo_mm), foo_s)
# note: tff.federated_secure_sum

https://www.tensorflow.org/federated/
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Summary and Q&A
 Data-Parallel Parameter Servers
 Model-Parallel Parameter Servers
 Distributed Reinforcement Learning
 Federated Machine Learning

 #1 Different strategies (and systems) for different ML workloads
 Specialization and abstraction

 #2 Awareness of underlying execution frameworks
 #3 Awareness of effective compilation and runtime techniques


	Architecture of ML Systems*�06 Execution and Parallelization
	Agenda
	Motivation and Terminology
	Terminology Optimization Methods
	Terminology Batch/Mini-batch
	Terminology Parallelism
	Terminology Parallelism, cont.
	Categories of Execution Strategies
	Data-Parallel Execution
	Hadoop History and Architecture
	MapReduce – Programming Model
	MapReduce – Execution Model
	Spark History and Architecture 
	Spark Resilient Distributed Datasets (RDDs)
	Spark Resilient Distributed Datasets (RDDs), cont.
	Spark Partitions and Implicit/Explicit Partitioning
	Spark Lazy Evaluation, Caching, and Lineage
	Background: Matrix Formats
	Distributed Matrix Representations
	Distributed Matrix Representations, cont.
	Distributed Matrix Operations
	Physical MM Operator Selection, cont.
	Partitioning-Preserving Operations
	Dask 
	Task-Parallel Execution
	Overview Task-Parallelism 
	Parallel For Loops (ParFor) 
	Additional ParFor Examples
	ParFor Execution Strategies
	Task-Parallelism in R
	Task-Parallelism in Other Systems
	Task-Parallelism in Other Systems, cont.
	Data-Parallel Parameter Servers
	Background: Mini-batch DNN Training (LeNet)
	Overview Parameter Servers
	History of Parameter Servers
	Basic Worker Algorithm (batch)
	Extended Worker Algorithm (nfetch batches)
	Update Strategies
	Selected Optimizers (updateModel)
	Selected Optimizers (updateModel), cont.
	Batch Size Configuration
	Reducing Communication Overhead
	Federated Machine Learning
	Problem Setting and Overview
	Excursus: Spectrum of Data Sharing
	A Federated ML Training Algorithm
	Algorithmic PS Extensions
	Federated Learning Protocol
	Federated Learning 
	Example Federated Operations
	Federated Data Preparation,�Learning, and Debugging
	TensorFlow Federated
	Summary and Q&A

