
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of ML Systems*
06 Execution and Parallelization
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Aug 25, 2022

2

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Agenda
 Motivation and Terminology
 Data-Parallel Execution
 Task-Parallel Execution
 Parameter Servers
 Federated Machine Learning

3

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Motivation and Terminology

4

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Terminology Optimization Methods
 Problem: Given a continuous, differentiable function 𝒇𝒇(𝑫𝑫,𝜽𝜽),

find optimal parameters 𝜽𝜽∗ = argmin 𝒇𝒇(𝑫𝑫,𝜽𝜽)

 #1 Gradient Methods (1st order)
 Pick a starting point, compute gradient, descent in

opposite direction of gradient −𝛾𝛾𝛻𝛻𝒇𝒇(𝑫𝑫,𝜽𝜽)

 #2 Newton’s Method (2nd order)
 Pick a starting point, compute gradient,

descend to where derivative = 0 (via 2nd derivative)
 Jacobian/Hessian matrices for multi-dimensional

 #3 Quasi-Newton Methods
 Incremental approximation of Hessian
 Algorithms: BFGS, L-BFGS, Conjugate Gradient (CG)
 Example: L-BFGS-B, AR(2), MSE, N=100

EnBW energy-demand time series

Motivation and Terminology

θ2

θ1

x0x1x2 x3

θ1

Presenter
Presentation Notes
BFGS vs CG: https://pubsonline.informs.org/doi/abs/10.1287/moor.3.3.244

5

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Terminology Batch/Mini-batch
 Batch ML Algorithms

 Iterative ML algorithms, where each iteration
uses the entire dataset to compute gradients ΔW

 For (pseudo-)second-order methods, many features
 Dedicated optimizers for traditional ML algorithms

 Mini-batch ML Algorithms
 Iterative ML algorithms, where each iteration

only uses a batch of rows to make the
next model update (in epochs or w/ sampling)

 For large and highly redundant training sets
 Applies to almost all iterative, model-based

ML algorithms (LDA, reg., class., factor., DNN)
 Stochastic Gradient Descent (SGD)

Motivation and Terminology

Data

Batch 2

Batch 1

Epoch

W’
W’’

Data
W’

6

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Terminology Parallelism
 Flynn’s Classification

 SISD, SIMD
 (MISD), MIMD

 Example: SIMD Processing
 Streaming SIMD Extensions (SSE)
 Process the same operation on

multiple elements at a time
(packed vs scalar SSE instructions)

 Data parallelism
(aka: instruction-level parallelism)

 Example: VFMADD132PD

Motivation and Terminology

SISD
(uni-core)

SIMD
(vector)

MISD
(pipelining)

MIMD
(multi-core)

Single Data Multiple Data

Single
Instruction

Multiple
Instruction

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)

2017 Skylake: 512b (8xFP64)

a
b
c

c = _mm512_fmadd_pd(a, b);

[Michael J. Flynn, Kevin W.
Rudd: Parallel Architectures.
ACM Comput. Surv. 28(1) 1996]

7

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Terminology Parallelism, cont.
 Distributed, Data-Parallel

Computation
 Parallel computation of function foo()  single instruction
 Collection X of data items (key-value pairs) multiple data
 Data parallelism similar to SIMD but more coarse-grained notion of

“instruction” and “data”  SPMD (single program, multiple data)

 Additional Terminology
 BSP: Bulk Synchronous Parallel (global barriers)
 ASP: Asynchronous Parallel (no barriers, often with accuracy impact)
 SSP: Stale-synchronous parallel (staleness constraint on fastest-slowest)
 Other: Fork&Join, Hogwild!, event-based, decentralized

 Beware: data parallelism used in very different contexts (e.g., Param Server)

Motivation and Terminology

Y = X.map(x -> foo(x))

[Frederica Darema: The SPMD Model : Past,
Present and Future. PVM/MPI 2001]

8

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Categories of Execution Strategies
Motivation and Terminology

07a Hybrid Execution and HW Accelerators

05a Data-Parallel
Execution
[Apr 03]

05b Task-Parallel
Execution
[Apr 03]

06c Parameter Servers
(data, model)

Mini-batchBatch
SIMD/SPMD

Batch/Mini-batch,
Independent Tasks

MIMD

06a Data-Parallel
Execution

06b Task-Parallel
Execution

07b Caching, Partitioning, Indexing, and Compression

9

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Data-Parallel Execution
Batch ML Algorithms

10

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Hadoop History and Architecture
 Recap: Brief History

 Google’s GFS [SOSP’03] + MapReduce
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

 Hadoop Architecture / Eco System
 Management (Ambari)
 Coordination / workflows

(Zookeeper, Oozie)
 Storage (HDFS)
 Resources (YARN)

[SoCC’13]
 Processing

(MapReduce)

Data-Parallel Collection Processing

NameNode

Head Node

Worker Node 1

Resource
Manager Node

Manager

MR
AM

MR
task

MR
task

MR
task

Worker Node n

Node
Manager

MR
task

MR
task

MR
task

MR
task

MR Client DataNode
1 3 2

DataNode
3 2 9

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:

Simplified Data Processing on
Large Clusters. OSDI 2004]

11

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

MapReduce – Programming Model
 Overview Programming Model

 Inspired by functional programming languages
 Implicit parallelism (abstracts distributed storage and processing)
 Map function: key/value pair  set of intermediate key/value pairs
 Reduce function: merge all intermediate values by key

 Example

Data-Parallel Collection Processing

map(Long pos, String line) {
parts ß line.split(“,”)
emit(parts[1], 1)

}

Name Dep

X CS

Y CS

A EE

Z CS

CS 1

CS 1

EE 1

CS 1

SELECT Dep, count(*) FROM csv_files GROUP BY Dep

reduce(String dep,
Iterator<Long> iter) {

total ß iter.sum();
emit(dep, total)

} CS 3

EE 1
Collection of

key/value pairs

12

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

MapReduce – Execution Model
Data-Parallel Collection Processing

CSV
File 1

Input CSV files
(stored in HDFS)

CSV
File 2

CSV
File 3

Output Files
(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map
task

map
task
map
task

map
task

map
task
map
task
Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce
task

reduce
task

reduce
task

Shuffle, Merge,
[Combine]

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

w/ #reducers = 3

13

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Spark History and Architecture
 High-Level Architecture

 Different language bindings:
Scala, Java, Python, R

 Different libraries:
SQL, ML, Stream, Graph

 Spark core (incl RDDs)
 Different cluster managers:

Standalone, Mesos,
Yarn, Kubernetes

 Different file systems/
formats, and data sources:
HDFS, S3, SWIFT, DBs, NoSQL

 Focus on a unified platform
for data-parallel computation (Apache Flink w/ similar goals)

Data-Parallel Collection Processing

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

Presenter
Presentation Notes
Summary MapReduce
Large-scale & fault-tolerant processing w/ UDFs and files  Flexibility
Restricted functional APIs  Implicit parallelism and fault tolerance
Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

Evolution to Spark (and Flink)
Spark [HotCloud’10] + RDDs [NSDI’12]  Apache Spark (2014)
Design: standing executors with in-memory storage, �lazy evaluation, and fault-tolerance via RDD lineage
Performance: In-memory storage and fast job scheduling (100ms vs 10s)
APIs: Richer functional APIs and general computation DAGs, �high-level APIs (e.g., DataFrame/Dataset), unified platform

 But many shared concepts/infrastructure
Implicit parallelism through dist. collections (data access, fault tolerance)
Resource negotiators (YARN, Mesos, Kubernetes)
HDFS and object store connectors (e.g., Swift, S3)

https://spark.apache.org/

14

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Spark Resilient Distributed Datasets (RDDs)
 RDD Abstraction

 Immutable, partitioned
collections of key-value pairs

 Coarse-grained deterministic operations (transformations/actions)
 Fault tolerance via lineage-based re-computation

 Operations
 Transformations:

define new RDDs
 Actions: return

result to driver

 Distributed Caching
 Use fraction of worker memory for caching
 Eviction at granularity of individual partitions
 Different storage levels (e.g., mem/disk x serialization x compression)

Data-Parallel Collection Processing

JavaPairRDD<MatrixIndexes,MatrixBlock>

Type Examples

Transformation
(lazy)

map, hadoopFile, textFile,
flatMap, filter, sample, join,

groupByKey, cogroup, reduceByKey,
cross, sortByKey, mapValues

Action reduce, save,
collect, count, lookupKey

Node1 Node2

15

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Spark Resilient Distributed Datasets (RDDs), cont.
 Lifecycle of an RDD

 Note: can’t broadcast
an RDD directly

Data-Parallel Collection Processing

File on DFS

Distributed
Collection

Local Data
(value, collection)

sc.parallelize(lst)

lst = X.collect()
v = X.reduce(foo())

X.filter(foo())
X.mapValues(foo())
X.reduceByKey(foo())
X.cache()/X.persist(…)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

sc.hadoopFile(f)
sc.textFile(f)

16

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Spark Partitions and Implicit/Explicit Partitioning
 Spark Partitions

 Logical key-value collections are split into physical partitions
 Partitions are granularity of tasks, I/O, shuffling, evictions

 Partitioning via Partitioners
 Implicitly on every data shuffling
 Explicitly via R.repartition(n)

 Partitioning-Preserving
 All operations that are guaranteed to keep keys unchanged

(e.g. mapValues(), mapPartitions() w/ preservesPart flag)

 Partitioning-Exploiting
 Join: R3 = R1.join(R2)
 Lookups:
v = C.lookup(k)

Data-Parallel Collection Processing

Example Hash Partitioning:
For all (k,v) of R:
pid = hash(k) % n

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

% 3
⋈ ⋈

Hash partitioned

~128MB

17

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Spark Lazy Evaluation, Caching, and Lineage
Data-Parallel Collection Processing

join
union

groupBy

Stage 3

Stage 1

Stage 2

A B

C D F

G

map

partitioning-
aware

E

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A

Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

reduce

cached

Presenter
Presentation Notes
Notes:
Dryad-­‐like DAGs
Pipelines functions within a stage
Locality & data reuse aware
Partitioning-­‐aware to avoid shuffles

18

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Background: Matrix Formats
 Matrix Block (m x n)

 A.k.a. tiles/chunks, most operations defined here
 Local matrix: single block, different representations

 Common Block Representations
 Dense (linearized arrays)
 MCSR (modified CSR)
 CSR (compressed sparse rows), CSC
 COO (Coordinate matrix)

Data-Parallel Execution

.7 .1

.2 .4
.3

Example
3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0
Dense (row-major)

.7

.1

.2

.4

.3

0
2
0
1
1

0
2
4
5

CSR

.7

.1

.2

.4

.3

0
2
0
1
1

COO

0
0
1
1
2

.7 .1
2

MCSR

0

.2 .4
10

.3
1O(mn)

O(m + nnz(X)) O(nnz(X))

19

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Distributed Matrix Representations
 Collection of “Matrix Blocks” (and keys)

 Bag semantics (duplicates, unordered)
 Logical (Fixed-Size) Blocking

+ join processing / independence
- (sparsity skew)

 E.g., SystemML on Spark:
JavaPairRDD<MatrixIndexes,MatrixBlock>

 Blocks encoded independently (dense/sparse)

 Partitioning
 Logical Partitioning

(e.g., row-/column-wise)
 Physical Partitioning

(e.g., hash / grid)

Data-Parallel Execution

Logical Blocking
3,400x2,700 Matrix

(w/ Bc=1,000)

Physical
Blocking and
Partitioning

20

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Distributed Matrix Representations, cont.
 #1 Block-partitioned Matrices

 Fixed-size, square or rectangular blocks
 Pros: Input/output alignment, block-local transpose,

amortize block overheads, bounded mem, cache-conscious
 Cons: Converting row-wise inputs (e.g., text) requires shuffle
 Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon,

Distributed R, DMac, Spark Mllib, Gilbert, MatFast, and SimSQL
 #2 Row/Column-partitioned Matrices

 Collection of row indexes and rows (or columns respectively)
 Pros: Seamless data conversion and access to entire rows
 Cons: Storage overhead in Java, and cache unfriendly operations
 Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL

 #3 Algorithm-specific Partitioning
 Operation and algorithm-centric data representations
 Examples: matrix inverse, matrix factorization

Data-Parallel Execution

21

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Distributed Matrix Operations
Data-Parallel Execution

Elementwise Multiplication
(Hadamard Product) Transposition

Matrix
Multiplication

Note: also with
row/column vector rhs

Note: 1:N join

22

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

 Examples Distributed MM Operators

Physical MM Operator Selection, cont.
Data-Parallel Execution

X1,1

X2,1

X3,1

X1,2

X2,2

X3,2

X4,1 X4,2

Y
1,1

Y
2,1

Y1,1

Y2,1

Y3,1

Y1,2

Y2,2

Y3,2

Y4,1 Y4,2

X1,1

X2,1

X1,3X1,2

X2,2

X1,4

X2,3 X2,4

Broadcast-based
MM (mapmm)

Shuffle-based
MM (cpmm)

23

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Partitioning-Preserving Operations
 Shuffle is major bottleneck for ML on Spark
 Preserve Partitioning

 Op is partitioning-preserving if keys unchanged (guaranteed)
 Implicit: Use restrictive APIs (mapValues() vs mapToPair())
 Explicit: Partition computation w/ declaration of partitioning-preserving

 Exploit Partitioning
 Implicit: Operations based on join, cogroup, etc
 Explicit: Custom operators (e.g., zipmm)

 Example:
Multiclass SVM
 Vectors fit

neither into
driver nor
broadcast

 ncol(X) ≤ Bc

Data-Parallel Execution

parfor(iter_class in 1:num_classes) {
Y_local = 2 * (Y == iter_class) - 1
g_old = t(X) %*% Y_local
...
while(continue) {

Xd = X %*% s
... inner while loop (compute step_sz)
Xw = Xw + step_sz * Xd;
out = 1 - Y_local * Xw;
out = (out > 0) * out;
g_new = t(X) %*% (out * Y_local) ...

repart, chkpt X MEM_DISK

chkpt y_local MEM_DISK

zipmm

chkpt Xd, Xw MEM_DISK

24

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Dask
 Overview Dask

 Multi-threaded and distributed operations for arrays, bags, and dataframes
 dask.array:

list of numpy n-dim arrays
 dask.dataframe:

list of pandas data frames
 dask.bag:unordered list of tuples (second order functions)
 Local and distributed schedulers:

threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

 Execution
 Lazy evaluation
 Limitation: requires

static size inference
 Triggered via
compute()

Data-Parallel Execution

[Matthew Rocklin: Dask: Parallel Computation with Blocked
algorithms and Task Scheduling, Python in Science 2015]
[Dask Development Team: Dask: Library for dynamic task

scheduling, 2016, https://dask.org]

import dask.array as da

x = da.random.random(
(10000,10000), chunks=(1000,1000))

y = x + x.T
y.persist() # cache in memory
z = y[::2, 5000:].mean(axis=1) # colMeans
ret = z.compute() # returns NumPy array

Presenter
Presentation Notes
Note: somewhat in competition w/ PySpark (but not out-of-core), scalable ML algorithms via https://ml.dask.org/ (partnering with scikit-learn, XGBoost)

https://dask.org/

25

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Task-Parallel Execution
Parallel Computation of Independent Tasks,

Emulation of Data-Parallel Operations/Programs

26

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Overview Task-Parallelism
 Historic Perspective

 Since 1980s: various parallel Fortran extensions, especially in HPC
 DOALL parallel loops (independent iterations)
 OpenMP (since 1997,

Open Multi-Processing)

 Motivation: Independent Tasks in ML Workloads
 Use cases: Ensemble learning, cross validation, hyper-parameter tuning,

complex models with disjoint/overlapping/all data per task
 Challenge #1: Adaptation to data and cluster characteristics
 Challenge #2: Combination with data-parallelism

Task-Parallel Execution

#pragma omp parallel for reduction(+: nnz)
for (int i = 0; i < N; i++) {
int threadID = omp_get_thread_num();
R[i] = foo(A[i]);
nnz += (R[i]!=0) ? 1 : 0;

}

27

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Parallel For Loops (ParFor)
 Hybrid Parallelization Strategies

 Combination of data- and task-parallel ops
 Combination of local and distributed computation

 Key Aspects
 Dependency Analysis
 Task partitioning
 Data partitioning, scan

sharing, various rewrites
 Execution strategies
 Result agg strategies
 ParFor optimizer

Task-Parallel Execution

reg = 10^(seq(-1,-10))
B_all = matrix(0, nrow(reg), n)

parfor(i in 1:nrow(reg)) {
B = lm(X, y, reg[i,1]);
B_all[i,] = t(B);

}

Local ParFor
(multi-threaded),

w/ local ops

Remote ParFor
(distributed
Spark job)

Local ParFor,
w/ concurrent
distributed ops

[M. Boehm et al.: Hybrid Parallelization
Strategies for Large-Scale Machine Learning

in SystemML. PVLDB 2014]

Presenter
Presentation Notes
NOTE: dependency analysis (constant, greatest common denominator if dependency possible, Banerjee if dependencies in loop bounds)

28

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Additional ParFor Examples
 Pairwise Pearson Correlation

 In practice: uni/bivariate stats
 Pearson‘s R, Anova F, Chi-squared,

Degree of freedom, P-value,
Cramers V, Spearman, etc)

 Batch-wise CNN Scoring
 Emulate data-parallelism

for complex functions

 Conceptual Design:
Coordinator/worker (task: group of parfor iterations)

Task-Parallel Execution

D = read("./input/D");
R = matrix(0, ncol(D), ncol(D));
parfor(i in 1:(ncol(D)-1)) {

X = D[,i];
sX = sd(X);
parfor(j in (i+1):ncol(D)) {

Y = D[,j];
sY = sd(Y);
R[i,j] = cov(X,Y)/(sX*sY);

} }
write(R, "./output/R");

prob = matrix(0, Ni, Nc)
parfor(i in 1:ceil(Ni/B)) {

Xb = X[((i-1)*B+1):min(i*B,Ni),];
prob[((i-1)*B+1):min(i*B,Ni),] =

... # CNN scoring
}

29

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

parfor(i in 1:(ncol(D)-1)) {
X = D[,i];
sX = sd(X);
parfor(j in (i+1):ncol(D)) {

Y = D[,j];

ParFor Execution Strategies
 #1 Task Partitioning

 Fixed-size schemes:
naive (1) , static (n/k), fixed (m)

 Self-scheduling: e.g.,
guided self scheduling, factoring

 #2 Data Partitioning
 Local or remote row/column

partitioning (incl locality)

 #3 Task Execution
 Local (multi-core) execution
 Remote (MR/Spark) execution

 #4 Result Aggregation
 With and without compare (non-empty output variable)
 Local in-memory / remote MR/Spark result aggregation

Task-Parallel Execution

Local
ParWorker k

ParFOR (local)

Local
ParWorker 1

 while(wßdeq())
 foreach pi ∈ w
 execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

Task Queue

...

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Hadoop
ParWorker
Mapper k

ParFOR (remote)

 ParWorker
Mapper 1

 map(key,value)
 wßparse(value)
 foreach pi ∈ w
 execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

...

…
A|MATRIX|./out/A7tmp

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Factoring (n=101, k=4)

(13,13,13,13, 7,7,7,7, 3,3,3,3, 2,2,2,2, 1)

30

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Task-Parallelism in R
 Multi-Threading

 doMC as multi-threaded
foreach backend

 Foreach w/ parallel (%dopar%)
or sequential (%do%) execution

 Distribution
 doSNOW as distributed

foreach backend
 MPI/SOCK as comm methods

Task-Parallel Execution

library(doMC)
registerDoMC(32)
R <- foreach(i=1:(ncol(D)-1),

.combine=rbind) %dopar% {
X = D[,i]; sX = sd(X);
Ri = matrix(0, 1, ncol(D))
for(j in (i+1):ncol(D)) {

Y = D[,j]; sY = sd(Y)
Ri[1,j] = cov(X,Y)/(sX*sY);

}
return(Ri);

}

[https://cran.r-project.org/web/packages/
doMC/vignettes/gettingstartedMC.pdf]

[https://cran.r-project.org/web/packages/
doSNOW/doSNOW.pdf]

library(doSNOW)
clust = makeCluster(

c(“192.168.0.1”, “192.168.0.2”,
“192.168.0.3”), type=“SOCK”);

registerDoSNOW(clust);
... %dopar% ...
stopCluster(clust);

https://cran.r-project.org/web/packages/doMC/vignettes/gettingstartedMC.pdf
https://cran.r-project.org/web/packages/doSNOW/doSNOW.pdf

31

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Task-Parallelism in Other Systems
 MATLAB

 Parfor loops for
multi-process &
distributed loops

 Use-defined par

 Julia
 Dedicated macros:
@threads
@distributed

 TensorFlow
 User-defined parallel iterations, responsible for

correct results or acceptable approximate results

Task-Parallel Execution

tf.while_loop(cond, body, loop_vars, parallel_iterations=10,
swap_memory=False, maximum_iterations=None, ...)

[Gaurav Sharma, Jos Martin:
MATLAB®: A Language for

Parallel Computing. Int. Journal
on Parallel Prog. 2009]

matlabpool 32
c = pi; z = 0;
r = rand(1,10)
parfor i = 1 : 10
z = z+1; # reduction
b(i) = r(i); # sliced

end

a = zeros(1000)
@threads for i in 1:1000
a[i] = rand(r[threadid()])

end

[https://docs.julialang.
org/en/v1/manual/

parallel-computing/]

[https://www.tensorflow.org/
api_docs/python/tf/while_loop]

https://docs.julialang.org/en/v1/manual/parallel-computing/
https://www.tensorflow.org/api_docs/python/tf/while_loop

32

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Task-Parallelism in Other Systems, cont.
 sk-dist [https://pypi.org/project/sk-dist/]

 Distributed training of local scikit-learn models (via PySpark)
 Grid Search / Cross Validation (hyper-parameter optimization)
 Multi-class Training (one-against the rest)
 Tree Ensembles (many decision trees)

 Model Hopper Parallelism (MOP)
 Given a dataset D, p workers, and

several NN configurations S
 Partition D into worker-local partitions Dp

 Schedule tasks for sub-epochs of 𝑆𝑆′ ⊆ 𝑆𝑆 on p
without moving the partitioned data

 Checkpointing of models between tasks

 Reinforcement Learning Frameworks
 Future-based Task Graphs (Ray, Pathways, UPLIFT)

Task-Parallel Execution

[Supun Nakandala, Yuhao Zhang, Arun
Kumar: Cerebro: Efficient and Reproducible
Model Selection on Deep Learning Systems.

DEEM@SIGMOD 2019]

[Supun Nakandala, Yuhao
Zhang, Arun Kumar: Cerebro:
A Data System for Optimized

Deep Learning Model
Selection. PVLDB 2020]

Part of
Next Lecture

Presenter
Presentation Notes
Pathways paper: https://arxiv.org/pdf/2203.12533.pdf

https://pypi.org/project/sk-dist/

33

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Data-Parallel Parameter Servers

34

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Initialize W1-W4, b1-b4
Initialize SGD w/ Nesterov momentum optimizer
iters = ceil(N / batch_size)

for(e in 1:epochs) {
for(i in 1:iters) {

X_batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]
y_batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]

layer 1: conv1 -> relu1 -> pool1
layer 2: conv2 -> relu2 -> pool2
layer 3: affine3 -> relu3 -> dropout
layer 4: affine4 -> softmax
outa4 = affine::forward(outd3, W4, b4)
probs = softmax::forward(outa4)

layer 4: affine4 <- softmax
douta4 = softmax::backward(dprobs, outa4)
[doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
layer 3: affine3 <- relu3 <- dropout
layer 2: conv2 <- relu2 <- pool2
layer 1: conv1 <- relu1 <- pool1

Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
[W4, vW4] = sgd_nesterov::update(W4, dW4, lr, mu, vW4)
[b4, vb4] = sgd_nesterov::update(b4, db4, lr, mu, vb4)

}
}

Background: Mini-batch DNN Training (LeNet)
Data-Parallel Parameter Servers

NN Forward
Pass

NN Backward
Pass

 Gradients

Model
Updates

[Yann LeCun, Leon Bottou, Yoshua
Bengio, and Patrick Haffner: Gradient-

Based Learning Applied to Document
Recognition, Proc of the IEEE 1998]

Presenter
Presentation Notes
Note: number of layers = layer ops w/ weights

35

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Overview Parameter Servers
 System

Architecture
 M Parameter

Servers
 N Workers
 Optional

Coordinator

 Key Techniques
 Data partitioning D  workers Di (e.g., disjoint, reshuffling)
 Updated strategies (e.g., synchronous, asynchronous)
 Batch size strategies (small/large batches, hybrid methods)

Data-Parallel Parameter Servers

M

N

W .. Model
ΔW .. Gradient

Presenter
Presentation Notes
Note: Nabla vs Delta operators

36

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

History of Parameter Servers
 1st Gen: Key/Value

 Distributed key-value store for
parameter exchange and synchronization

 Relatively high overhead

 2nd Gen: Classic Parameter Servers
 Parameters as dense/sparse matrices
 Different update/consistency strategies
 Flexible configuration and fault tolerance

 3rd Gen: Parameter Servers w/
improved data communication
 Prefetching and range-based pull/push
 Lossy or lossless compression w/ compensations

 Examples
 TensorFlow, MXNet, PyTorch, CNTK, Petuum

Data-Parallel Parameter Servers

[Alexander J. Smola, Shravan
M. Narayanamurthy: An

Architecture for Parallel Topic
Models. PVLDB 2010]

[Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.

NIPS 2012]

[Mu Li et al: Scaling Distributed
Machine Learning with the

Parameter Server. OSDI 2014]

[Jiawei Jiang, Bin Cui, Ce Zhang,
Lele Yu: Heterogeneity-aware

Distributed Parameter Servers.
SIGMOD 2017]

[Jiawei Jiang et al: SketchML:
Accelerating Distributed Machine

Learning with Data Sketches.
SIGMOD 2018]

37

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Basic Worker Algorithm (batch)

Data-Parallel Parameter Servers

[Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.

NIPS 2012]

for(i in 1:epochs) {
for(j in 1:iterations) {

params = pullModel(); # W1-W4, b1-b4 lr, mu
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
pushGradients(gradient);

}
}

38

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Extended Worker Algorithm (nfetch batches)

gradientAcc = matrix(0,...);
for(i in 1:epochs) {

for(j in 1:iterations) {
if(step mod nfetch = 0)

params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
gradientAcc += gradient;
params = updateModel(params, gradients);
if(step mod nfetch = 0) {

pushGradients(gradientAcc); step = 0;
gradientAcc = matrix(0, ...);

}
step++;

} }

Data-Parallel Parameter Servers

nfetch batches require
local gradient accrual and

local model update

[Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.

NIPS 2012]

39

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Update Strategies
 Bulk Synchronous

Parallel (BSP)
 Update model w/

accrued gradients
 Barrier for N workers

 Asynchronous
Parallel (ASP)
 Update model

for each gradient
 No barrier

 Synchronous w/
Backup Workers
 Update model w/

accrued gradients
 Barrier for N of

N+b workers

Data-Parallel Parameter Servers

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3 but, stale

model
updates

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

[Martín Abadi et al: TensorFlow: A System for
Large-Scale Machine Learning. OSDI 2016]

40

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Selected Optimizers (updateModel)

 Stochastic Gradient Descent (SGD)
 Vanilla SGD, basis for many other optimizers
 See 05 Data/Task-Parallel: −𝛾𝛾𝛻𝛻𝒇𝒇(𝑫𝑫,𝜽𝜽)

 SGD w/ Momentum
 Incorporates parameter velocity w/ momentum

 SGD w/ Nesterov Momentum
 Incorporates parameter velocity w/ momentum,

but update from position after momentum

 AdaGrad
 Adaptive learning rate w/ regret guarantees

 RMSprop
 Adaptive learning rate, extended AdaGrad

Data-Parallel Parameter Servers

X = X – lr*dX

v = mu*v – lr*dX
X = X + v

v0 = v
v = mu*v – lr*dX

X = X – mu*v0 + (1+mu)*v

[John C. Duchi et al: Adaptive
Subgradient Methods for

Online Learning and Stochastic
Optimization. JMLR 2011]

c = dr*c+(1-dr)*dX^2
X = X-(lr*dX/(sqrt(c)+eps))

Presenter
Presentation Notes
Regret: loss incurred during learning, loss difference to loss w/ optimal weights (applicability to exercise?)

41

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Selected Optimizers (updateModel), cont.
 Adam

 Individual adaptive learning rates for
different parameters

 Shampoo
 Preconditioned gradient method

(Newton’s method, Quasi-Newton)
 Retains gradients tensor structure by

maintaining a preconditioner per dim
 O(m2n2)  O(m2 + n2)

Data-Parallel Parameter Servers

[Diederik P. Kingma, Jimmy Ba:
Adam: A Method for Stochastic

Optimization. ICLR 2015]

t = t + 1
m = beta1*m + (1-beta1)*dX # update biased 1st moment est
v = beta2*v + (1-beta2)*dX^2 # update biased 2nd raw moment est
mhat = m / (1-beta1^t) # bias-corrected 1st moment est
vhat = v / (1-beta2^t) # bias-corrected 2nd raw moment est
X = X - (lr * mhat/(sqrt(vhat)+epsilon)) # param update

[Vineet Gupta, Tomer Koren, Yoram Singer:
Shampoo: Preconditioned Stochastic

Tensor Optimization. ICML 2018]

L = L + dX %*% t(dX)
R = R + t(dX) %*% dX
X = X – lr * pow(L,1/4)

%*% dX %*% pow(R,1/4))

Presenter
Presentation Notes
Note: Newton’s method employs the local Hessian as a preconditioner
“Shampoo maintains an m×m matrix L1/4t to precondition the rows of Gt and R1/4t for its columns. The ¼ exponent arises from our analysis; intuitively, it is a sensible choice as it induces an overall step-size decay rate of O(1/√t), which is common in stochastic optimization methods.”

42

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Batch Size Configuration
 What is the right batch size for my data?

 Maximum useful batch size is dependent on
data redundancy and model complexity

 Additional Heuristics/Hybrid Methods
 #1 Increase the batch size instead

of decaying the learning rate

 #2 Combine batch and mini-batch
algorithms (full batch + n online updates)

Data-Parallel Parameter Servers

ResNet-50
on

ImageNet

Simple CNN
on

MNIST
vs

[Christopher J. Shallue et al.:
Measuring the Effects of Data

Parallelism on Neural Network
Training. CoRR 2018]

[Samuel L. Smith, Pieter-Jan
Kindermans, Chris Ying, Quoc V. Le:

Don't Decay the Learning Rate,
Increase the Batch Size. ICLR 2018]

[Ashok Cutkosky, Róbert Busa-Fekete:
Distributed Stochastic Optimization

via Adaptive SGD. NeurIPS 2018]

43

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Reducing Communication Overhead
 Large Batch Sizes

 Larger batch sizes reduce the
relative communication overhead

 Overlapping Computation/Communication
 For deep NN w/ many weight/bias matrices,

compute and comm. can be overlapped
 Collective operations: all-Reduce / ring all-reduce / hierarchical all-reduce

 Sparse and Compressed Communication
 Mini-batches of sparse data  sparse dW
 Lossy (mantissa truncation, quantization), and

lossless (delta, bitpacking) for W and dW
 Gradient sparsification/clipping (send gradients larger than a threshold)

 In-Network Aggregation (SwitchML)
 Aggregate worker updates in prog. switches
 32b fix-point, coordinated updates

Data-Parallel Parameter Servers

[Frank Seide et al: 1-bit
stochastic gradient descent and

its application to data-parallel
distributed training of speech

DNNs. INTERSPEECH 2014]

[Priya Goyal et al: Accurate, Large
Minibatch SGD: Training ImageNet in 1

Hour. CoRR 2017 (kn=8K, 256 GPUs)]

tf.distribute:
MirroredStrategy

MultiWorkerMirroredStrategy

[Amedeo Sapio et al: Scaling
Distributed Machine Learning with

In-Network Aggregation, NSDI 2021]

Presenter
Presentation Notes
Large-batches: synchronous SGD with k=256 workers * n=32 per-worker batch size = 8K

44

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Federated Machine Learning

45

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Problem Setting and Overview
 Motivation Federated ML

 Learn model w/o central data consolidation
 Privacy + data/power caps vs personalization and sharing
 Applications Characteristics

 #1 On-device data more relevant than server-side data
 #2 On-device data is privacy-sensitive or large
 #3 Labels can be inferred naturally from user interaction

 Example: Language modeling for mobile keyboards and voice recognition

 Challenges
 Massively distributed (data stored across many devices)
 Limited and unreliable communication
 Unbalanced data (skew in data size, non-IID)
 Unreliable compute nodes / data availability

Federated Machine Learning

W ΔW

[Jakub Konečný: Federated Learning -
Privacy-Preserving Collaborative

Machine Learning without Centralized
Training Data, UW Seminar 2018]

46

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Excursus: Spectrum of Data Sharing
 Fine-grained Spectrum

 Spectrum of technologies with performance/privacy/utility tradeoffs
 Different applications with different requirements
 Potential: New markets for data-driven services in this spectrum

Federated Machine Learning

Private Data
(no sharing)

Public Data
(full sharing,
sharing w/
partners)

Privacy-
enhancing

Technologies
(FHE, MPC,

Differential Privacy)

Aggregates
(Federated ML,
Federated w/

secure comm.)

Surrogate
Data

(char-preserving
synthetic data,

dataset distillation)

Increasing
Privacy

Increasing
Utility/Perf

Anonymized
Data

(k-anonymity,
pseudonyms)

Key Property: no reconstruction of private raw data

47

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

A Federated ML Training Algorithm
while(!converged) {

1. Select random subset (e.g. 1000)
of the (online) clients

2. In parallel, send current parameters θt
to those clients

2a. Receive parameters θt from server [pull]
2b. Run some number of minibatch SGD steps,

producing θ’
2c. Return θ’-θt (model averaging) [push]

3. θt+1 = θt + data-weighted average of client updates
}

Federated Machine Learning

At each client

[Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
Blaise Agüera y Arcas: Communication-Efficient Learning of Deep

Networks from Decentralized Data. AISTATS 2017]

48

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Algorithmic PS Extensions
 #1 Client Sampling (FedAvg w/ model averaging)

 #2 Decentralized, Fault-tolerant Aggregation

 #3 Peer-to-peer Gradient and Model Exchange

 #4 Meta-learning for Private Models

 #5 Handling Statistical Heterogeneity (non-IID data)
 Reducing variance
 Selecting relevant subsets of data
 Tolerating partial client work
 Partitioning clients into congruent groups
 Adaptive Optimization (FedOpt, FedAvgM)

Federated Machine Learning

[Sashank J. Reddi et al:
Adaptive Federated

Optimization. CoRR 2020]

[Peter Kairouz, Brendan McMahan,
Virginia Smith: Federated Learning

Tutorial. NeurIPS 2020,
https://slideslive.com/38935813/

federated-learningtutorial]

https://slideslive.com/38935813/federated-learningtutorial

49

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Federated Learning Protocol
 Recommended Reading

 [Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi, H. Brendan
McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, Jason Roselander:
Towards Federated Learning at Scale: System Design. MLSys 2019]

Federated Machine Learning

Android
Phones

50

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Federated Learning
 Federated Backend

 Federated data (matrices/frames) as meta data objects
 Federated linear algebra, (and federated parameter server)

 Federated Requests: READ, PUT, GET, EXEC_INST, EXEC_UDF, CLEAR

Federated Machine Learning in SystemDS

X = federated(addresses=list(node1, node2, node3),
ranges=list(list(0,0),list(40K,70), ..., list(80K,0),list(100K,70)));

[SIGMOD 2021b]

51

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Example Federated Operations
 Matrix-Vector Multiplication

 o = X %*% v, local v
 Row-partitioned, federated X
 Row-partitioned, federated o

 Vector-Matrix Multiplication
 o = v %*% X, local v
 Row-partitioned,

federated X, local o
 New broadcast handling

 Data Preparation
 [X,M] = transformencode(F,spec)
 Recoding, feature hashing, binning,

one-hot encoding

Federated Machine Learning in SystemDS

X1

X2

a) broadcast v
(PUT(v, 2))

b) Local MV (EXEC_INST, 3)

X1

X2

a) broadcast sliced v
(PUT(v, 4))

b) Local MV
(EXEC_INST, 5)

c) Aggregate
(GET, 5) +

d) Clean 4,5 (EXEC_INST)

X1: D B C D C

X2: A B B C C

1) Build local
record maps
(EXEC_UDF)

2) Aggregate,
broadcast, recode

c) Clean 2
(EXEC_INST)

52

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Federated Data Preparation,
Learning, and Debugging

 Federated Feature Transformations
 Federated Linear-algebra-based Data Cleaning,

Data Preparation, and Model Debugging (e.g., federated quantiles)

 Multi-tenant
Federated Learning
 Tenant Isolation

Federated Machine Learning in SystemDS

Lineage-based
Reuse

Asynchronous
Compression

53

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

TensorFlow Federated
 Overview TFF

 Federated PS algorithms and federated second order functions
 Primarily for simulating federated training, no OSS federated runtime

 #1 Federated PS

 #2 Federated Analytics
 r = t(y) %*% X
 User-level composition

of federated algorithms
 PET primitives

Federated Machine Learning

[https://www.tensorflow.org/federated/]

iterative_process = tff.learning.build_federated_averaging_process(
model_fn, # function for created federated models
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),
server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))

X = ... # tff.type_at_clients(tf.float32)
by = tff.federated_broadcast(y)
R = tff.federated_sum(

tff.federated_map(X, by, foo_mm), foo_s)
note: tff.federated_secure_sum

https://www.tensorflow.org/federated/

54

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022

Summary and Q&A
 Data-Parallel Parameter Servers
 Model-Parallel Parameter Servers
 Distributed Reinforcement Learning
 Federated Machine Learning

 #1 Different strategies (and systems) for different ML workloads
 Specialization and abstraction

 #2 Awareness of underlying execution frameworks
 #3 Awareness of effective compilation and runtime techniques

	Architecture of ML Systems*�06 Execution and Parallelization
	Agenda
	Motivation and Terminology
	Terminology Optimization Methods
	Terminology Batch/Mini-batch
	Terminology Parallelism
	Terminology Parallelism, cont.
	Categories of Execution Strategies
	Data-Parallel Execution
	Hadoop History and Architecture
	MapReduce – Programming Model
	MapReduce – Execution Model
	Spark History and Architecture
	Spark Resilient Distributed Datasets (RDDs)
	Spark Resilient Distributed Datasets (RDDs), cont.
	Spark Partitions and Implicit/Explicit Partitioning
	Spark Lazy Evaluation, Caching, and Lineage
	Background: Matrix Formats
	Distributed Matrix Representations
	Distributed Matrix Representations, cont.
	Distributed Matrix Operations
	Physical MM Operator Selection, cont.
	Partitioning-Preserving Operations
	Dask
	Task-Parallel Execution
	Overview Task-Parallelism
	Parallel For Loops (ParFor)
	Additional ParFor Examples
	ParFor Execution Strategies
	Task-Parallelism in R
	Task-Parallelism in Other Systems
	Task-Parallelism in Other Systems, cont.
	Data-Parallel Parameter Servers
	Background: Mini-batch DNN Training (LeNet)
	Overview Parameter Servers
	History of Parameter Servers
	Basic Worker Algorithm (batch)
	Extended Worker Algorithm (nfetch batches)
	Update Strategies
	Selected Optimizers (updateModel)
	Selected Optimizers (updateModel), cont.
	Batch Size Configuration
	Reducing Communication Overhead
	Federated Machine Learning
	Problem Setting and Overview
	Excursus: Spectrum of Data Sharing
	A Federated ML Training Algorithm
	Algorithmic PS Extensions
	Federated Learning Protocol
	Federated Learning
	Example Federated Operations
	Federated Data Preparation,�Learning, and Debugging
	TensorFlow Federated
	Summary and Q&A

