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Motivation and Terminology
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Terminology Optimization Methods
 Problem: Given a continuous, differentiable function 𝒇𝒇(𝑫𝑫,𝜽𝜽), 

find optimal parameters 𝜽𝜽∗ = argmin 𝒇𝒇(𝑫𝑫,𝜽𝜽)

 #1 Gradient Methods (1st order)
 Pick a starting point, compute gradient, descent in 

opposite direction of gradient −𝛾𝛾𝛻𝛻𝒇𝒇(𝑫𝑫,𝜽𝜽)

 #2 Newton’s Method (2nd order)
 Pick a starting point, compute gradient, 

descend to where derivative = 0 (via 2nd derivative)
 Jacobian/Hessian matrices for multi-dimensional

 #3 Quasi-Newton Methods
 Incremental approximation of Hessian
 Algorithms: BFGS, L-BFGS, Conjugate Gradient (CG)
 Example: L-BFGS-B, AR(2), MSE, N=100

EnBW energy-demand time series 

Motivation and Terminology

θ2

θ1

x0x1x2 x3

θ1

Presenter
Presentation Notes
BFGS vs CG: https://pubsonline.informs.org/doi/abs/10.1287/moor.3.3.244



5

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022 

Terminology Batch/Mini-batch
 Batch ML Algorithms

 Iterative ML algorithms, where each iteration
uses the entire dataset to compute gradients ΔW

 For (pseudo-)second-order methods, many features
 Dedicated optimizers for traditional ML algorithms 

 Mini-batch ML Algorithms
 Iterative ML algorithms, where each iteration

only uses a batch of rows to make the 
next model update (in epochs or w/ sampling)

 For large and highly redundant training sets
 Applies to almost all iterative, model-based 

ML algorithms (LDA, reg., class., factor., DNN)
 Stochastic Gradient Descent (SGD)

Motivation and Terminology

Data

Batch 2

Batch 1

Epoch

W’
W’’

Data
W’
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Terminology Parallelism
 Flynn’s Classification

 SISD, SIMD
 (MISD), MIMD

 Example: SIMD Processing
 Streaming SIMD Extensions (SSE)
 Process the same operation on 

multiple elements at a time
(packed vs scalar SSE instructions)

 Data parallelism 
(aka: instruction-level parallelism)

 Example: VFMADD132PD

Motivation and Terminology

SISD
(uni-core)

SIMD
(vector)

MISD
(pipelining)

MIMD
(multi-core)

Single Data Multiple Data

Single 
Instruction

Multiple 
Instruction

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)

2017 Skylake: 512b (8xFP64)

a
b
c

c = _mm512_fmadd_pd(a, b);

[Michael J. Flynn, Kevin W. 
Rudd: Parallel Architectures. 
ACM Comput. Surv. 28(1) 1996]
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Terminology Parallelism, cont.
 Distributed, Data-Parallel 

Computation
 Parallel computation of function foo()  single instruction
 Collection X of data items (key-value pairs) multiple data
 Data parallelism similar to SIMD but more coarse-grained notion of 

“instruction” and “data”  SPMD (single program, multiple data)

 Additional Terminology
 BSP: Bulk Synchronous Parallel (global barriers)
 ASP: Asynchronous Parallel (no barriers, often with accuracy impact)
 SSP: Stale-synchronous parallel (staleness constraint on fastest-slowest)
 Other: Fork&Join, Hogwild!, event-based, decentralized

 Beware: data parallelism used in very different contexts (e.g., Param Server)

Motivation and Terminology

Y = X.map(x -> foo(x))

[Frederica Darema: The SPMD Model : Past, 
Present and Future. PVM/MPI 2001]
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Categories of Execution Strategies
Motivation and Terminology

07a Hybrid Execution and HW Accelerators

05a Data-Parallel 
Execution
[Apr 03]

05b Task-Parallel 
Execution
[Apr 03]

06c Parameter Servers 
(data, model) 

Mini-batchBatch 
SIMD/SPMD

Batch/Mini-batch, 
Independent Tasks 

MIMD

06a Data-Parallel 
Execution

06b Task-Parallel 
Execution

07b Caching, Partitioning, Indexing, and Compression
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Data-Parallel Execution
Batch ML Algorithms
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Hadoop History and Architecture
 Recap: Brief History

 Google’s GFS [SOSP’03] + MapReduce
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

 Hadoop Architecture / Eco System
 Management (Ambari)
 Coordination / workflows

(Zookeeper, Oozie)
 Storage (HDFS)
 Resources (YARN)

[SoCC’13]
 Processing 

(MapReduce)

Data-Parallel Collection Processing

NameNode

Head Node

Worker Node 1

Resource 
Manager Node 

Manager

MR 
AM

MR 
task

MR 
task

MR 
task

Worker Node n

Node 
Manager

MR 
task

MR 
task

MR 
task

MR 
task

MR Client DataNode
1 3 2

DataNode
3 2 9

[Jeffrey Dean, Sanjay 
Ghemawat: MapReduce: 

Simplified Data Processing on 
Large Clusters. OSDI 2004]
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MapReduce – Programming Model
 Overview Programming Model

 Inspired by functional programming languages
 Implicit parallelism (abstracts distributed storage and processing)
 Map function: key/value pair  set of intermediate key/value pairs
 Reduce function: merge all intermediate values by key 

 Example

Data-Parallel Collection Processing

map(Long pos, String line) {
parts ß line.split(“,”)
emit(parts[1], 1)

}

Name Dep

X CS

Y CS

A EE

Z CS

CS 1

CS 1

EE 1

CS 1

SELECT Dep, count(*) FROM csv_files GROUP BY Dep

reduce(String dep, 
Iterator<Long> iter) {

total ß iter.sum();
emit(dep, total)

} CS 3

EE 1
Collection of 

key/value pairs
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MapReduce – Execution Model
Data-Parallel Collection Processing

CSV 
File 1

Input CSV files 
(stored in HDFS)

CSV 
File 2

CSV 
File 3

Output Files 
(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map 
task

map 
task
map 
task

map 
task

map 
task
map 
task
Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce 
task

reduce 
task

reduce 
task

Shuffle, Merge, 
[Combine]

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

w/ #reducers = 3
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Spark History and Architecture 
 High-Level Architecture

 Different language bindings:
Scala, Java, Python, R

 Different libraries:
SQL, ML, Stream, Graph

 Spark core (incl RDDs)
 Different cluster managers:

Standalone, Mesos, 
Yarn, Kubernetes

 Different file systems/
formats, and data sources:
HDFS, S3, SWIFT, DBs, NoSQL

 Focus on a unified platform 
for data-parallel computation (Apache Flink w/ similar goals)

Data-Parallel Collection Processing

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

Presenter
Presentation Notes
Summary MapReduce
Large-scale & fault-tolerant processing w/ UDFs and files  Flexibility
Restricted functional APIs  Implicit parallelism and fault tolerance
Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

Evolution to Spark (and Flink)
Spark [HotCloud’10] + RDDs [NSDI’12]  Apache Spark (2014)
Design: standing executors with in-memory storage, �lazy evaluation, and fault-tolerance via RDD lineage
Performance: In-memory storage and fast job scheduling (100ms vs 10s)
APIs: Richer functional APIs and general computation DAGs, �high-level APIs (e.g., DataFrame/Dataset), unified platform  

 But many shared concepts/infrastructure
Implicit parallelism through dist. collections (data access, fault tolerance) 
Resource negotiators (YARN, Mesos, Kubernetes)
HDFS and object store connectors (e.g., Swift, S3)



https://spark.apache.org/
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Spark Resilient Distributed Datasets (RDDs)
 RDD Abstraction

 Immutable, partitioned 
collections of key-value pairs

 Coarse-grained deterministic operations (transformations/actions) 
 Fault tolerance via lineage-based re-computation 

 Operations
 Transformations: 

define new RDDs
 Actions: return 

result to driver

 Distributed Caching
 Use fraction of worker memory for caching
 Eviction at granularity of individual partitions
 Different storage levels (e.g., mem/disk x serialization x compression)

Data-Parallel Collection Processing

JavaPairRDD<MatrixIndexes,MatrixBlock>

Type Examples

Transformation
(lazy)

map, hadoopFile, textFile, 
flatMap, filter, sample, join, 

groupByKey, cogroup, reduceByKey, 
cross, sortByKey, mapValues

Action reduce, save,
collect, count, lookupKey

Node1 Node2
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Spark Resilient Distributed Datasets (RDDs), cont.
 Lifecycle of an RDD

 Note: can’t broadcast 
an RDD directly

Data-Parallel Collection Processing

File on DFS

Distributed 
Collection

Local Data
(value, collection)

sc.parallelize(lst)

lst = X.collect()
v = X.reduce(foo())

X.filter(foo())
X.mapValues(foo())
X.reduceByKey(foo())
X.cache()/X.persist(…)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

sc.hadoopFile(f)
sc.textFile(f)
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Spark Partitions and Implicit/Explicit Partitioning
 Spark Partitions

 Logical key-value collections are split into physical partitions
 Partitions are granularity of tasks, I/O, shuffling, evictions

 Partitioning via Partitioners
 Implicitly on every data shuffling
 Explicitly via R.repartition(n)

 Partitioning-Preserving
 All operations that are guaranteed to keep keys unchanged 

(e.g. mapValues(), mapPartitions() w/ preservesPart flag)

 Partitioning-Exploiting
 Join: R3 = R1.join(R2)
 Lookups: 
v = C.lookup(k)

Data-Parallel Collection Processing

Example Hash Partitioning:
For all (k,v) of R: 
pid = hash(k) % n 

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

% 3
⋈ ⋈

Hash partitioned

~128MB
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Spark Lazy Evaluation, Caching, and Lineage
Data-Parallel Collection Processing

join
union

groupBy

Stage 3

Stage 1

Stage 2

A B

C D F

G

map

partitioning-
aware

E

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy 
McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A 

Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

reduce

cached

Presenter
Presentation Notes
Notes:
Dryad-­‐like DAGs 
Pipelines functions within a stage 
Locality & data reuse aware 
Partitioning-­‐aware to avoid shuffles 
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Background: Matrix Formats
 Matrix Block (m x n)

 A.k.a. tiles/chunks, most operations defined here
 Local matrix: single block, different representations

 Common Block Representations
 Dense (linearized arrays)
 MCSR (modified CSR)
 CSR (compressed sparse rows), CSC
 COO (Coordinate matrix)

Data-Parallel Execution

.7 .1

.2 .4
.3

Example 
3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0
Dense (row-major)

.7

.1

.2

.4

.3

0
2
0
1
1

0
2
4
5

CSR

.7

.1

.2

.4

.3

0
2
0
1
1

COO

0
0
1
1
2

.7 .1
2

MCSR

0

.2 .4
10

.3
1O(mn)

O(m + nnz(X)) O(nnz(X))
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Distributed Matrix Representations
 Collection of “Matrix Blocks” (and keys)

 Bag semantics (duplicates, unordered)
 Logical (Fixed-Size) Blocking 

+ join processing / independence
- (sparsity skew)

 E.g., SystemML on Spark:
JavaPairRDD<MatrixIndexes,MatrixBlock>

 Blocks encoded independently (dense/sparse)

 Partitioning
 Logical Partitioning 

(e.g., row-/column-wise)
 Physical Partitioning

(e.g., hash / grid)

Data-Parallel Execution

Logical Blocking 
3,400x2,700 Matrix 

(w/ Bc=1,000)

Physical 
Blocking and 
Partitioning 
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Distributed Matrix Representations, cont.
 #1 Block-partitioned Matrices

 Fixed-size, square or rectangular blocks
 Pros: Input/output alignment, block-local transpose, 

amortize block overheads, bounded mem, cache-conscious
 Cons: Converting row-wise inputs (e.g., text) requires shuffle
 Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon, 

Distributed R, DMac, Spark Mllib, Gilbert, MatFast, and SimSQL
 #2 Row/Column-partitioned Matrices

 Collection of row indexes and rows (or columns respectively)
 Pros: Seamless data conversion and access to entire rows
 Cons: Storage overhead in Java, and cache unfriendly operations
 Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL

 #3 Algorithm-specific Partitioning
 Operation and algorithm-centric data representations
 Examples: matrix inverse, matrix factorization

Data-Parallel Execution
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Distributed Matrix Operations
Data-Parallel Execution

Elementwise Multiplication
(Hadamard Product) Transposition

Matrix
Multiplication

Note: also with 
row/column vector rhs

Note: 1:N join
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 Examples  Distributed MM Operators

Physical MM Operator Selection, cont.
Data-Parallel Execution

X1,1

X2,1

X3,1

X1,2

X2,2

X3,2

X4,1 X4,2

Y
1,1

Y
2,1

Y1,1

Y2,1

Y3,1

Y1,2

Y2,2

Y3,2

Y4,1 Y4,2

X1,1

X2,1

X1,3X1,2

X2,2

X1,4

X2,3 X2,4

Broadcast-based
MM (mapmm)

Shuffle-based
MM (cpmm)
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Partitioning-Preserving Operations
 Shuffle is major bottleneck for ML on Spark
 Preserve Partitioning 

 Op is partitioning-preserving if keys unchanged (guaranteed)
 Implicit: Use restrictive APIs (mapValues() vs mapToPair())
 Explicit: Partition computation w/ declaration of partitioning-preserving

 Exploit Partitioning
 Implicit: Operations based on join, cogroup, etc
 Explicit: Custom operators (e.g., zipmm)

 Example: 
Multiclass SVM
 Vectors fit 

neither into 
driver nor 
broadcast

 ncol(X) ≤ Bc

Data-Parallel Execution

parfor(iter_class in 1:num_classes) {
Y_local = 2 * (Y == iter_class) - 1
g_old = t(X) %*% Y_local
...
while( continue ) {

Xd = X %*% s
... inner while loop (compute step_sz)
Xw = Xw + step_sz * Xd;
out = 1 - Y_local * Xw;
out = (out > 0) * out;
g_new = t(X) %*% (out * Y_local) ...

repart, chkpt X MEM_DISK

chkpt y_local MEM_DISK

zipmm

chkpt Xd, Xw MEM_DISK
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Dask
 Overview Dask

 Multi-threaded and distributed operations for arrays, bags, and dataframes
 dask.array:

list of numpy n-dim arrays
 dask.dataframe:

list of pandas data frames
 dask.bag:unordered list of tuples (second order functions)
 Local and distributed schedulers:

threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

 Execution
 Lazy evaluation
 Limitation: requires 

static size inference
 Triggered via
compute()

Data-Parallel Execution

[Matthew Rocklin: Dask: Parallel Computation with Blocked 
algorithms and Task Scheduling, Python in Science 2015]
[Dask Development Team: Dask: Library for dynamic task 

scheduling, 2016, https://dask.org]

import dask.array as da

x = da.random.random(
(10000,10000), chunks=(1000,1000))

y = x + x.T
y.persist() # cache in memory
z = y[::2, 5000:].mean(axis=1) # colMeans
ret = z.compute() # returns NumPy array

Presenter
Presentation Notes
Note: somewhat in competition w/ PySpark (but not out-of-core), scalable ML algorithms via https://ml.dask.org/ (partnering with scikit-learn, XGBoost)

https://dask.org/
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Task-Parallel Execution
Parallel Computation of Independent Tasks,

Emulation of Data-Parallel Operations/Programs
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Overview Task-Parallelism 
 Historic Perspective 

 Since 1980s: various parallel Fortran extensions, especially in HPC
 DOALL parallel loops (independent iterations)
 OpenMP (since 1997,

Open Multi-Processing)

 Motivation: Independent Tasks in ML Workloads
 Use cases: Ensemble learning, cross validation, hyper-parameter tuning, 

complex models with disjoint/overlapping/all data per task
 Challenge #1: Adaptation to data and cluster characteristics
 Challenge #2: Combination with data-parallelism

Task-Parallel Execution

#pragma omp parallel for reduction(+: nnz)
for (int i = 0; i < N; i++) {
int threadID = omp_get_thread_num();
R[i] = foo(A[i]);
nnz += (R[i]!=0) ? 1 : 0;    

}
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Parallel For Loops (ParFor) 
 Hybrid Parallelization Strategies

 Combination of data- and task-parallel ops
 Combination of local and distributed computation

 Key Aspects
 Dependency Analysis
 Task partitioning
 Data partitioning, scan

sharing, various rewrites
 Execution strategies
 Result agg strategies
 ParFor optimizer 

Task-Parallel Execution

reg = 10^(seq(-1,-10))
B_all = matrix(0, nrow(reg), n)

parfor( i in 1:nrow(reg) ) {
B = lm(X, y, reg[i,1]);
B_all[i,] = t(B);

}

Local ParFor
(multi-threaded),

w/ local ops

Remote ParFor
(distributed 
Spark job)

Local ParFor,
w/ concurrent 
distributed ops

[M. Boehm et al.: Hybrid Parallelization 
Strategies for Large-Scale Machine Learning 

in SystemML. PVLDB 2014]

Presenter
Presentation Notes
NOTE: dependency analysis (constant, greatest common denominator if dependency possible, Banerjee if dependencies in loop bounds)
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Additional ParFor Examples
 Pairwise Pearson Correlation 

 In practice: uni/bivariate stats
 Pearson‘s R, Anova F, Chi-squared, 

Degree of freedom, P-value, 
Cramers V, Spearman, etc)

 Batch-wise CNN Scoring 
 Emulate data-parallelism

for complex functions

 Conceptual Design: 
Coordinator/worker (task: group of parfor iterations)

Task-Parallel Execution

D = read("./input/D");
R = matrix(0, ncol(D), ncol(D));
parfor(i in 1:(ncol(D)-1)) {

X = D[ ,i];
sX = sd(X);
parfor(j in (i+1):ncol(D)) {

Y = D[ ,j];
sY = sd(Y);
R[i,j] = cov(X,Y)/(sX*sY);

}  }
write(R, "./output/R");

prob = matrix(0, Ni, Nc)
parfor( i in 1:ceil(Ni/B) ) {

Xb = X[((i-1)*B+1):min(i*B,Ni),];
prob[((i-1)*B+1):min(i*B,Ni),] =

... # CNN scoring
}
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parfor(i in 1:(ncol(D)-1)) {
X = D[ ,i];
sX = sd(X);
parfor(j in (i+1):ncol(D)) {

Y = D[ ,j];

ParFor Execution Strategies
 #1 Task Partitioning

 Fixed-size schemes: 
naive (1) , static (n/k), fixed (m)

 Self-scheduling: e.g.,  
guided self scheduling, factoring

 #2 Data Partitioning
 Local or remote row/column 

partitioning (incl locality)

 #3 Task Execution
 Local (multi-core) execution
 Remote (MR/Spark) execution 

 #4 Result Aggregation
 With and without compare (non-empty output variable)
 Local in-memory / remote MR/Spark result aggregation

Task-Parallel Execution

Local 
ParWorker k

ParFOR (local)

Local 
ParWorker 1

 while(wßdeq())
  foreach pi ∈ w
   execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

Task Queue

...

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Hadoop
ParWorker 
Mapper k

ParFOR (remote)

 ParWorker 
Mapper 1

 map(key,value)
  wßparse(value)
  foreach pi ∈ w
   execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

...

…
A|MATRIX|./out/A7tmp

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Factoring (n=101, k=4)

(13,13,13,13, 7,7,7,7, 3,3,3,3, 2,2,2,2, 1)
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Task-Parallelism in R
 Multi-Threading

 doMC as multi-threaded
foreach backend

 Foreach w/ parallel (%dopar%) 
or sequential (%do%) execution

 Distribution
 doSNOW as distributed 

foreach backend
 MPI/SOCK as comm methods

Task-Parallel Execution

library(doMC)
registerDoMC(32)
R <- foreach(i=1:(ncol(D)-1), 

.combine=rbind) %dopar% {
X = D[,i]; sX = sd(X);
Ri = matrix(0, 1, ncol(D))
for(j in (i+1):ncol(D)) {

Y = D[,j]; sY = sd(Y)
Ri[1,j] = cov(X,Y)/(sX*sY);

}  
return(Ri);

}

[https://cran.r-project.org/web/packages/
doMC/vignettes/gettingstartedMC.pdf]

[https://cran.r-project.org/web/packages/
doSNOW/doSNOW.pdf]

library(doSNOW)
clust = makeCluster(

c(“192.168.0.1”, “192.168.0.2”, 
“192.168.0.3”), type=“SOCK”);

registerDoSNOW(clust);
... %dopar% ...
stopCluster(clust);

https://cran.r-project.org/web/packages/doMC/vignettes/gettingstartedMC.pdf
https://cran.r-project.org/web/packages/doSNOW/doSNOW.pdf
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Task-Parallelism in Other Systems
 MATLAB

 Parfor loops for 
multi-process &
distributed loops

 Use-defined par

 Julia
 Dedicated macros:
@threads
@distributed

 TensorFlow
 User-defined parallel iterations, responsible for 

correct results or acceptable approximate results

Task-Parallel Execution

tf.while_loop(cond, body, loop_vars, parallel_iterations=10,
swap_memory=False, maximum_iterations=None, ...)

[Gaurav Sharma, Jos Martin: 
MATLAB®: A Language for 

Parallel Computing. Int. Journal 
on Parallel Prog. 2009]

matlabpool 32
c = pi; z = 0;
r = rand(1,10)
parfor i = 1 : 10
z = z+1;  # reduction
b(i) = r(i); # sliced

end

a = zeros(1000)
@threads for i in 1:1000
a[i] = rand(r[threadid()])

end

[https://docs.julialang.
org/en/v1/manual/

parallel-computing/]

[https://www.tensorflow.org/
api_docs/python/tf/while_loop]

https://docs.julialang.org/en/v1/manual/parallel-computing/
https://www.tensorflow.org/api_docs/python/tf/while_loop
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Task-Parallelism in Other Systems, cont.
 sk-dist [https://pypi.org/project/sk-dist/]

 Distributed training of local scikit-learn models (via PySpark)
 Grid Search / Cross Validation (hyper-parameter optimization)
 Multi-class Training (one-against the rest)
 Tree Ensembles (many decision trees)

 Model Hopper Parallelism (MOP)
 Given a dataset D, p workers, and 

several NN configurations S 
 Partition D into worker-local partitions Dp

 Schedule tasks for sub-epochs of 𝑆𝑆′ ⊆ 𝑆𝑆 on p
without moving the partitioned data

 Checkpointing of models between tasks

 Reinforcement Learning Frameworks
 Future-based Task Graphs (Ray, Pathways, UPLIFT) 

Task-Parallel Execution

[Supun Nakandala, Yuhao Zhang, Arun
Kumar: Cerebro: Efficient and Reproducible 
Model Selection on Deep Learning Systems. 

DEEM@SIGMOD 2019]

[Supun Nakandala, Yuhao
Zhang, Arun Kumar: Cerebro: 
A Data System for Optimized 

Deep Learning Model 
Selection. PVLDB 2020]

Part of 
Next Lecture

Presenter
Presentation Notes
Pathways paper: https://arxiv.org/pdf/2203.12533.pdf

https://pypi.org/project/sk-dist/
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Data-Parallel Parameter Servers
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# Initialize W1-W4, b1-b4
# Initialize SGD w/ Nesterov momentum optimizer
iters = ceil(N / batch_size)

for( e in 1:epochs ) {
for( i in 1:iters ) {

X_batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),] 
y_batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]

## layer 1: conv1 -> relu1 -> pool1
## layer 2: conv2 -> relu2 -> pool2
## layer 3: affine3 -> relu3 -> dropout
## layer 4: affine4 -> softmax
outa4 = affine::forward(outd3, W4, b4)
probs = softmax::forward(outa4)

## layer 4:  affine4 <- softmax
douta4 = softmax::backward(dprobs, outa4)
[doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
## layer 3: affine3 <- relu3 <- dropout
## layer 2: conv2 <- relu2 <- pool2
## layer 1: conv1 <- relu1 <- pool1

# Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
[W4, vW4] = sgd_nesterov::update(W4, dW4, lr, mu, vW4)
[b4, vb4] = sgd_nesterov::update(b4, db4, lr, mu, vb4)

}
}

Background: Mini-batch DNN Training (LeNet)
Data-Parallel Parameter Servers

NN Forward 
Pass

NN Backward
Pass

 Gradients

Model 
Updates

[Yann LeCun, Leon Bottou, Yoshua
Bengio, and Patrick Haffner:  Gradient-

Based Learning Applied to Document 
Recognition, Proc of the IEEE 1998]

Presenter
Presentation Notes
Note: number of layers = layer ops w/ weights
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Overview Parameter Servers
 System 

Architecture
 M Parameter

Servers
 N Workers
 Optional

Coordinator

 Key Techniques
 Data partitioning D  workers Di (e.g., disjoint, reshuffling)
 Updated strategies (e.g., synchronous, asynchronous)
 Batch size strategies (small/large batches, hybrid methods)

Data-Parallel Parameter Servers

M

N

W .. Model
ΔW .. Gradient

Presenter
Presentation Notes
Note: Nabla vs Delta operators
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History of Parameter Servers
 1st Gen: Key/Value 

 Distributed key-value store for 
parameter exchange and synchronization

 Relatively high overhead

 2nd Gen: Classic Parameter Servers
 Parameters as dense/sparse matrices
 Different update/consistency strategies
 Flexible configuration and fault tolerance

 3rd Gen: Parameter Servers w/ 
improved data communication
 Prefetching and range-based pull/push
 Lossy or lossless compression w/ compensations

 Examples 
 TensorFlow, MXNet, PyTorch, CNTK, Petuum

Data-Parallel Parameter Servers

[Alexander J. Smola, Shravan 
M. Narayanamurthy: An 

Architecture for Parallel Topic 
Models. PVLDB 2010]

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]

[Mu Li et al: Scaling Distributed 
Machine Learning with the 

Parameter Server. OSDI 2014]

[Jiawei Jiang, Bin Cui, Ce Zhang, 
Lele Yu: Heterogeneity-aware 

Distributed Parameter Servers. 
SIGMOD 2017]

[Jiawei Jiang et al: SketchML: 
Accelerating Distributed Machine 

Learning with Data Sketches. 
SIGMOD 2018]
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Basic Worker Algorithm (batch)

Data-Parallel Parameter Servers

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]

for( i in 1:epochs ) {
for( j in 1:iterations ) {

params = pullModel(); # W1-W4, b1-b4 lr, mu
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
pushGradients(gradient);

}  
}
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Extended Worker Algorithm (nfetch batches)

gradientAcc = matrix(0,...);
for( i in 1:epochs ) {

for( j in 1:iterations ) {
if( step mod nfetch = 0 )

params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
gradientAcc += gradient;
params = updateModel(params, gradients);
if( step mod nfetch = 0 ) {

pushGradients(gradientAcc); step = 0; 
gradientAcc = matrix(0, ...);   

}
step++;

}  }

Data-Parallel Parameter Servers

nfetch batches require 
local gradient accrual and 

local model update

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]
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Update Strategies
 Bulk Synchronous

Parallel (BSP)
 Update model w/ 

accrued gradients
 Barrier for N workers

 Asynchronous
Parallel (ASP)
 Update model

for each gradient
 No barrier

 Synchronous w/ 
Backup Workers
 Update model w/

accrued gradients
 Barrier for N of 

N+b workers

Data-Parallel Parameter Servers

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3 but, stale 

model 
updates

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

[Martín Abadi et al: TensorFlow: A System for 
Large-Scale Machine Learning. OSDI 2016]
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Selected Optimizers (updateModel)

 Stochastic Gradient Descent (SGD)
 Vanilla SGD, basis for many other optimizers
 See 05 Data/Task-Parallel: −𝛾𝛾𝛻𝛻𝒇𝒇(𝑫𝑫,𝜽𝜽)

 SGD w/ Momentum
 Incorporates parameter velocity w/ momentum 

 SGD w/ Nesterov Momentum
 Incorporates parameter velocity w/ momentum,

but update from position after momentum

 AdaGrad
 Adaptive learning rate w/ regret guarantees

 RMSprop
 Adaptive learning rate, extended AdaGrad

Data-Parallel Parameter Servers

X = X – lr*dX

v = mu*v – lr*dX
X = X + v

v0 = v
v = mu*v – lr*dX

X = X – mu*v0 + (1+mu)*v

[John C. Duchi et al: Adaptive 
Subgradient Methods for 

Online Learning and Stochastic 
Optimization. JMLR 2011]

c = dr*c+(1-dr)*dX^2
X = X-(lr*dX/(sqrt(c)+eps))

Presenter
Presentation Notes
Regret: loss incurred during learning, loss difference to loss w/ optimal weights (applicability to exercise?)
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Selected Optimizers (updateModel), cont.
 Adam

 Individual adaptive learning rates for 
different parameters

 Shampoo
 Preconditioned gradient method

(Newton’s method, Quasi-Newton)
 Retains gradients tensor structure by

maintaining a preconditioner per dim
 O(m2n2)  O(m2 + n2)

Data-Parallel Parameter Servers

[Diederik P. Kingma, Jimmy Ba: 
Adam:  A Method for Stochastic 

Optimization. ICLR 2015]

t = t + 1
m = beta1*m + (1-beta1)*dX # update biased 1st moment est
v = beta2*v + (1-beta2)*dX^2 # update biased 2nd raw moment est
mhat = m / (1-beta1^t)       # bias-corrected 1st moment est
vhat = v / (1-beta2^t)       # bias-corrected 2nd raw moment est
X = X - (lr * mhat/(sqrt(vhat)+epsilon)) # param update

[Vineet Gupta, Tomer Koren, Yoram Singer: 
Shampoo: Preconditioned Stochastic 

Tensor Optimization. ICML 2018]

L = L + dX %*% t(dX)
R = R + t(dX) %*% dX
X = X – lr * pow(L,1/4) 

%*% dX %*% pow(R,1/4)) 

Presenter
Presentation Notes
Note: Newton’s method employs the local Hessian as a preconditioner
“Shampoo maintains an m×m matrix L1/4t to precondition the rows of Gt and R1/4t for its columns. The ¼ exponent arises from our analysis; intuitively, it is a sensible choice as it induces an overall step-size decay rate of O(1/√t), which is common in stochastic optimization methods.”
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Batch Size Configuration
 What is the right batch size for my data?

 Maximum useful batch size is dependent on 
data redundancy and model complexity

 Additional Heuristics/Hybrid Methods
 #1 Increase the batch size instead 

of decaying the learning rate

 #2 Combine batch and mini-batch 
algorithms (full batch + n online updates)

Data-Parallel Parameter Servers

ResNet-50 
on 

ImageNet

Simple CNN 
on 

MNIST
vs

[Christopher J. Shallue et al.: 
Measuring the Effects of Data 

Parallelism on Neural Network 
Training. CoRR 2018]

[Samuel L. Smith, Pieter-Jan 
Kindermans, Chris Ying, Quoc V. Le: 

Don't Decay the Learning Rate, 
Increase the Batch Size. ICLR 2018]

[Ashok Cutkosky, Róbert Busa-Fekete: 
Distributed Stochastic Optimization 

via Adaptive SGD. NeurIPS 2018]
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Reducing Communication Overhead
 Large Batch Sizes

 Larger batch sizes reduce the 
relative communication overhead

 Overlapping Computation/Communication
 For deep NN w/ many weight/bias matrices, 

compute and comm. can be overlapped
 Collective operations: all-Reduce / ring all-reduce / hierarchical all-reduce

 Sparse and Compressed Communication 
 Mini-batches of sparse data  sparse dW
 Lossy (mantissa truncation, quantization), and 

lossless (delta, bitpacking)  for W and dW
 Gradient sparsification/clipping (send gradients larger than a threshold)

 In-Network Aggregation (SwitchML)
 Aggregate worker updates in prog. switches
 32b fix-point, coordinated updates

Data-Parallel Parameter Servers

[Frank Seide et al: 1-bit 
stochastic gradient descent and 

its application to data-parallel 
distributed training of speech 

DNNs. INTERSPEECH 2014]

[Priya Goyal et al: Accurate, Large 
Minibatch SGD: Training ImageNet in 1 

Hour. CoRR 2017 (kn=8K, 256 GPUs)]

tf.distribute:
MirroredStrategy

MultiWorkerMirroredStrategy

[Amedeo Sapio et al: Scaling 
Distributed Machine Learning with 

In-Network Aggregation, NSDI 2021]

Presenter
Presentation Notes
Large-batches: synchronous SGD with k=256 workers * n=32 per-worker batch size = 8K
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Federated Machine Learning
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Problem Setting and Overview
 Motivation Federated ML

 Learn model w/o central data consolidation
 Privacy + data/power caps vs personalization and sharing
 Applications Characteristics

 #1 On-device data more relevant than server-side data
 #2 On-device data is privacy-sensitive or large
 #3 Labels can be inferred naturally from user interaction

 Example: Language modeling for mobile keyboards and voice recognition 

 Challenges
 Massively distributed (data stored across many devices)
 Limited and unreliable communication 
 Unbalanced data (skew in data size, non-IID )
 Unreliable compute nodes / data availability

Federated Machine Learning

W ΔW

[Jakub Konečný: Federated Learning -
Privacy-Preserving Collaborative 

Machine Learning without Centralized 
Training Data, UW Seminar 2018]
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Excursus: Spectrum of Data Sharing
 Fine-grained Spectrum

 Spectrum of technologies with performance/privacy/utility tradeoffs
 Different applications with different requirements 
 Potential: New markets for data-driven services in this spectrum

Federated Machine Learning

Private Data 
(no sharing)

Public Data 
(full sharing, 
sharing w/ 
partners)

Privacy-
enhancing 

Technologies 
(FHE, MPC, 

Differential Privacy)

Aggregates 
(Federated ML, 
Federated w/ 

secure comm.)

Surrogate 
Data 

(char-preserving 
synthetic data, 

dataset distillation)

Increasing 
Privacy

Increasing 
Utility/Perf

Anonymized 
Data 

(k-anonymity, 
pseudonyms)

Key Property: no reconstruction of private raw data
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A Federated ML Training Algorithm
while( !converged ) {

1. Select random subset (e.g. 1000) 
of the (online) clients

2. In parallel, send current parameters θt
to those clients

2a. Receive parameters θt from server [pull]
2b. Run some number of minibatch SGD steps,

producing θ’
2c. Return θ’-θt (model averaging) [push]

3. θt+1 = θt + data-weighted average of client updates
}

Federated Machine Learning

At each client

[Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, 
Blaise Agüera y Arcas: Communication-Efficient Learning of Deep 

Networks from Decentralized Data. AISTATS 2017]
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Algorithmic PS Extensions
 #1 Client Sampling (FedAvg w/ model averaging)

 #2 Decentralized, Fault-tolerant Aggregation  

 #3 Peer-to-peer Gradient and Model Exchange

 #4 Meta-learning for Private Models 

 #5 Handling Statistical Heterogeneity (non-IID data)
 Reducing variance
 Selecting relevant subsets of data
 Tolerating partial client work
 Partitioning clients into congruent groups
 Adaptive Optimization (FedOpt, FedAvgM)

Federated Machine Learning

[Sashank J. Reddi et al: 
Adaptive Federated 

Optimization. CoRR 2020]

[Peter Kairouz, Brendan McMahan, 
Virginia Smith: Federated Learning

Tutorial. NeurIPS 2020, 
https://slideslive.com/38935813/

federated-learningtutorial]

https://slideslive.com/38935813/federated-learningtutorial


49

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies
Matthias Boehm, Graz University of Technology, SS 2022 

Federated Learning Protocol
 Recommended Reading

 [Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, 
Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi, H. Brendan 
McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, Jason Roselander:  
Towards Federated Learning at Scale: System Design. MLSys 2019]

Federated Machine Learning

Android 
Phones
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Federated Learning 
 Federated Backend

 Federated data (matrices/frames) as meta data objects
 Federated linear algebra, (and federated parameter server)

 Federated Requests: READ, PUT, GET, EXEC_INST, EXEC_UDF, CLEAR

Federated Machine Learning in SystemDS

X = federated(addresses=list(node1, node2, node3),
ranges=list(list(0,0),list(40K,70), ..., list(80K,0),list(100K,70)));

[SIGMOD 2021b]
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Example Federated Operations
 Matrix-Vector Multiplication

 o = X %*% v, local v
 Row-partitioned, federated X
 Row-partitioned, federated o

 Vector-Matrix Multiplication
 o = v %*% X, local v
 Row-partitioned, 

federated X, local o
 New broadcast handling

 Data Preparation
 [X,M] = transformencode(F,spec)
 Recoding, feature hashing, binning,

one-hot encoding

Federated Machine Learning in SystemDS

X1

X2

a) broadcast v
(PUT(v, 2))

b) Local MV (EXEC_INST, 3)

X1

X2

a) broadcast sliced v
(PUT(v, 4))

b) Local MV
(EXEC_INST, 5)

c) Aggregate 
(GET, 5) +

d) Clean 4,5 (EXEC_INST)

X1: D B C D C 

X2: A B B C C

1) Build local 
record maps
(EXEC_UDF)

2) Aggregate, 
broadcast, recode

c) Clean 2 
(EXEC_INST)
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Federated Data Preparation,
Learning, and Debugging

 Federated Feature Transformations
 Federated Linear-algebra-based Data Cleaning,

Data Preparation, and Model Debugging (e.g., federated quantiles)

 Multi-tenant 
Federated Learning
 Tenant Isolation

Federated Machine Learning in SystemDS

Lineage-based 
Reuse

Asynchronous 
Compression
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TensorFlow Federated
 Overview TFF

 Federated PS algorithms and federated second order functions
 Primarily for simulating federated training, no OSS federated runtime

 #1 Federated PS

 #2 Federated Analytics
 r = t(y) %*% X 
 User-level composition

of federated algorithms
 PET primitives

Federated Machine Learning

[https://www.tensorflow.org/federated/]

iterative_process = tff.learning.build_federated_averaging_process(
model_fn, # function for created federated models
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),
server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))

X = ... # tff.type_at_clients(tf.float32)
by = tff.federated_broadcast(y)
R  = tff.federated_sum(

tff.federated_map(X, by, foo_mm), foo_s)
# note: tff.federated_secure_sum

https://www.tensorflow.org/federated/
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Summary and Q&A
 Data-Parallel Parameter Servers
 Model-Parallel Parameter Servers
 Distributed Reinforcement Learning
 Federated Machine Learning

 #1 Different strategies (and systems) for different ML workloads
 Specialization and abstraction

 #2 Awareness of underlying execution frameworks
 #3 Awareness of effective compilation and runtime techniques
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