

SCIENCE PASSION TECHNOLOGY

Architecture of ML Systems* 06 Execution and Parallelization

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Agenda

- Motivation and Terminology
- Data-Parallel Execution
- Task-Parallel Execution
- Parameter Servers
- Federated Machine Learning

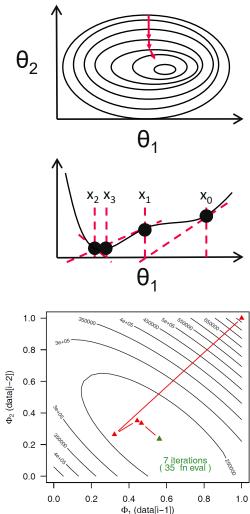
Motivation and Terminology

Terminology Optimization Methods

- Problem: Given a continuous, differentiable function $f(D, \theta)$, find optimal parameters $\theta^* = \operatorname{argmin}(f(D, \theta))$
- #1 Gradient Methods (1st order)
 - Pick a starting point, compute gradient, descent in opposite direction of gradient -γ∇f(D, θ)

#2 Newton's Method (2nd order)

- Pick a starting point, compute gradient, descend to where derivative = 0 (via 2nd derivative)
- Jacobian/Hessian matrices for multi-dimensional
- #3 Quasi-Newton Methods
 - Incremental approximation of Hessian
 - Algorithms: BFGS, L-BFGS, Conjugate Gradient (CG)
 - Example: L-BFGS-B, AR(2), MSE, N=100
 EnBW energy-demand time series



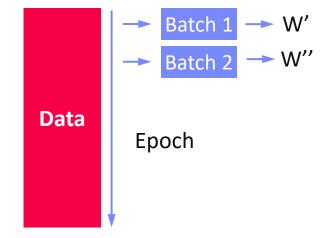
Terminology Batch/Mini-batch

Batch ML Algorithms

- Iterative ML algorithms, where each iteration uses the entire dataset to compute gradients ΔW
- For (pseudo-)second-order methods, many features
- Dedicated optimizers for traditional ML algorithms

Mini-batch ML Algorithms

- Iterative ML algorithms, where each iteration only uses a batch of rows to make the next model update (in epochs or w/ sampling)
- For large and highly redundant training sets
- Applies to almost all iterative, model-based ML algorithms (LDA, reg., class., factor., DNN)
- Stochastic Gradient Descent (SGD)



Multiple Data

SIMD

(vector)

MIMD

(multi-core)

Terminology Parallelism

- Flynn's Classification
 - SISD, SIMD
 - (MISD), MIMD

[Michael J. Flynn, Kevin W. Rudd: Parallel Architectures. ACM Comput. Surv. 28(1) 1996]

Example: SIMD Processing

- Streaming SIMD Extensions (SSE)
- Process the same operation on multiple elements at a time (packed vs scalar SSE instructions)
- Data parallelism (aka: instruction-level parallelism)
- Example: VFMADD132PD

2009 Nehalem: **128b** (2xFP64) 2012 Sandy Bridge: **256b** (4xFP64) 2017 Skylake: **512b** (8xFP64)

Single Data

SISD

(uni-core)

MISD

(pipelining)

c = _mm512_fmadd_pd(a, b);

Single

Instruction

Multiple

Instruction

7

Terminology Parallelism, cont.

- Distributed, Data-Parallel
 Y = X.map(x -> foo(x))
 Computation
 - Parallel computation of function foo() → single instruction
 - Collection X of data items (key-value pairs) → multiple data
 - Data parallelism similar to SIMD but more coarse-grained notion of "instruction" and "data" → SPMD (single program, multiple data)

[Frederica Darema: The SPMD Model : Past, Present and Future. **PVM/MPI 2001**]

Additional Terminology

- BSP: Bulk Synchronous Parallel (global barriers)
- ASP: Asynchronous Parallel (no barriers, often with accuracy impact)
- SSP: Stale-synchronous parallel (staleness constraint on fastest-slowest)
- Other: Fork&Join, Hogwild!, event-based, decentralized
- Beware: data parallelism used in very different contexts (e.g., Param Server)

Categories of Execution Strategies

07_a Hybrid Execution and HW Accelerators

07_b Caching, Partitioning, Indexing, and Compression

Data-Parallel Execution

Batch ML Algorithms

Hadoop History and Architecture

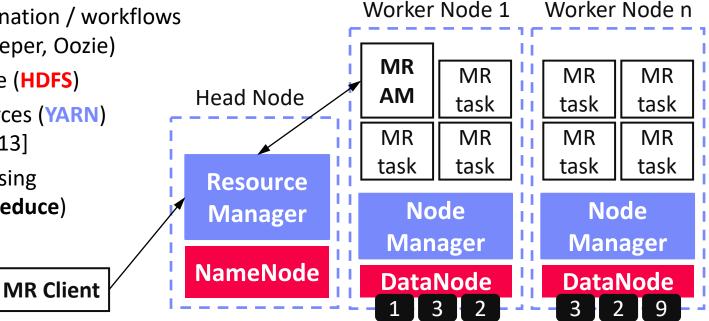
- **Recap: Brief History**
 - Google's GFS [SOSP'03] + MapReduce \rightarrow Apache Hadoop (2006)

[Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004]

Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

Hadoop Architecture / Eco System

- Management (Ambari)
- Coordination / workflows (Zookeeper, Oozie)
- Storage (HDFS)
- Resources (YARN) [SoCC'13]
- Processing (MapReduce)



MapReduce – Programming Model

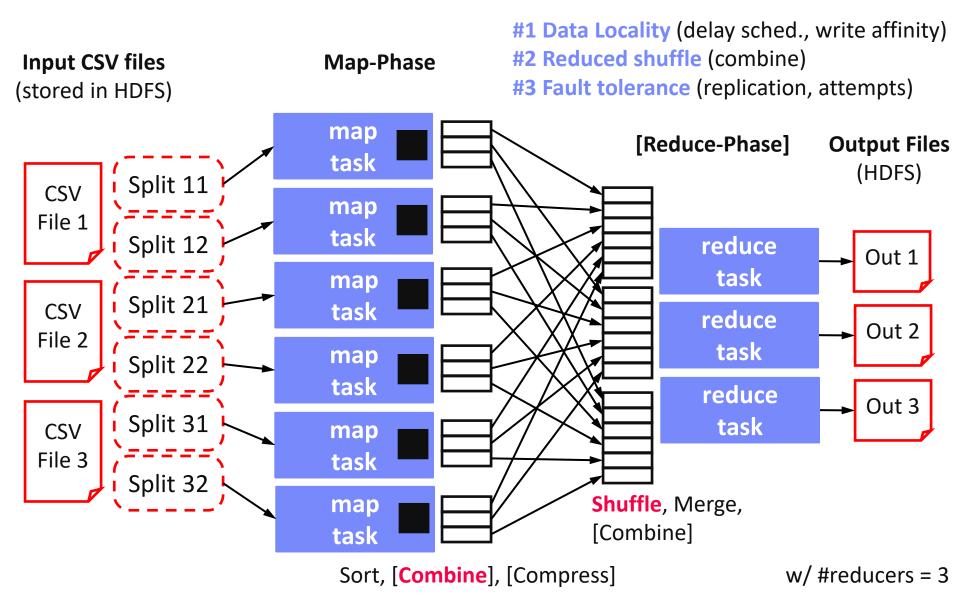
- Overview Programming Model
 - Inspired by functional programming languages
 - Implicit parallelism (abstracts distributed storage and processing)
 - Map function: key/value pair \rightarrow set of intermediate key/value pairs
 - Reduce function: merge all intermediate values by key

Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

lame	Dep	<pre>map(Long parts </pre>	•	-	
Х	CS	emit(pa		•	L(,)
Y	CS	}			<pre>reduce(String dep,</pre>
А	EE		CS	1	Iterator <long< td=""></long<>
	CS		CS	1	total 🗲 iter.sum
Z	CS				
Z Collecti			EE	1	<pre>emit(dep, total) </pre>

12

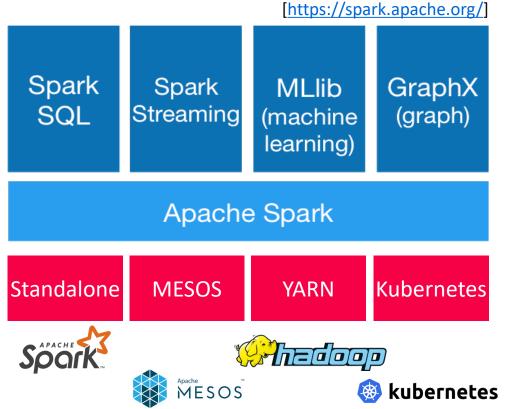
MapReduce – Execution Model



Spark History and Architecture

High-Level Architecture

- Different language bindings: Scala, Java, Python, R
- Different libraries: SQL, ML, Stream, Graph
- Spark core (incl RDDs)
- Different cluster managers: Standalone, Mesos, Yarn, Kubernetes
- Different file systems/ formats, and data sources: HDFS, S3, SWIFT, DBs, NoSQL



Focus on a unified platform for data-parallel computation (Apache Flink w/ similar goals)

Spark Resilient Distributed Datasets (RDDs)

- **RDD** Abstraction
 - **Immutable**, partitioned collections of key-value pairs
 - **Coarse-grained** deterministic operations (transformations/actions)
 - Fault tolerance via lineage-based re-computation

t	ributed Caching	Node1
I	Use fraction of worker memory for caching	
I	Eviction at granularity of individual partitions	
I	Different storage levels (e.g., mem/disk x serialization x compress	ion)
	Architecture of Machine Learning Sustance Of Execution and Devellalization Strategies	

Node2

ISDS

Туре	Examples
Transformation (lazy)	<pre>map, hadoopFile, textFile, flatMap, filter, sample, join, groupByKey, cogroup, reduceByKey, cross, sortByKey, mapValues</pre>
Action	<pre>reduce, save, collect, count, lookupKey</pre>

JavaPairRDD<MatrixIndexes,MatrixBlock>

Operations

- Transformations: define new RDDs
- Actions: return result to driver

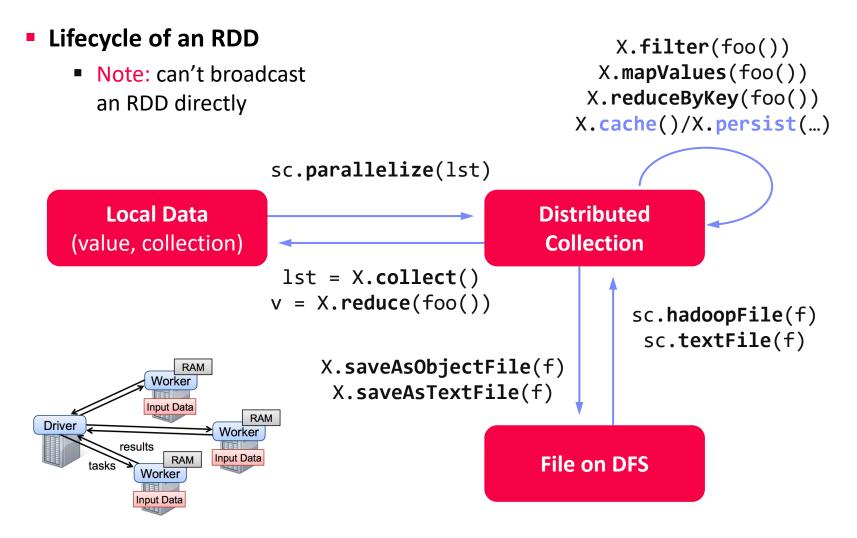
Distribut

- Use f
- Evicti

14

15

Spark Resilient Distributed Datasets (RDDs), cont.

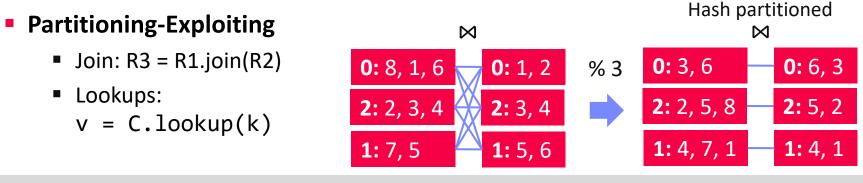


Spark Partitions and Implicit/Explicit Partitioning

Spark Partitions

16

- Logical key-value collections are split into physical partitions
- Partitions are granularity of tasks, I/O, shuffling, evictions
- Partitioning via Partitioners
 - Implicitly on every data shuffling
 - Explicitly via R.repartition(n)
- Partitioning-Preserving
 - All operations that are guaranteed to keep keys unchanged (e.g. mapValues(), mapPartitions() w/ preservesPart flag)



Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies Matthias Boehm, Graz University of Technology, SS 2022

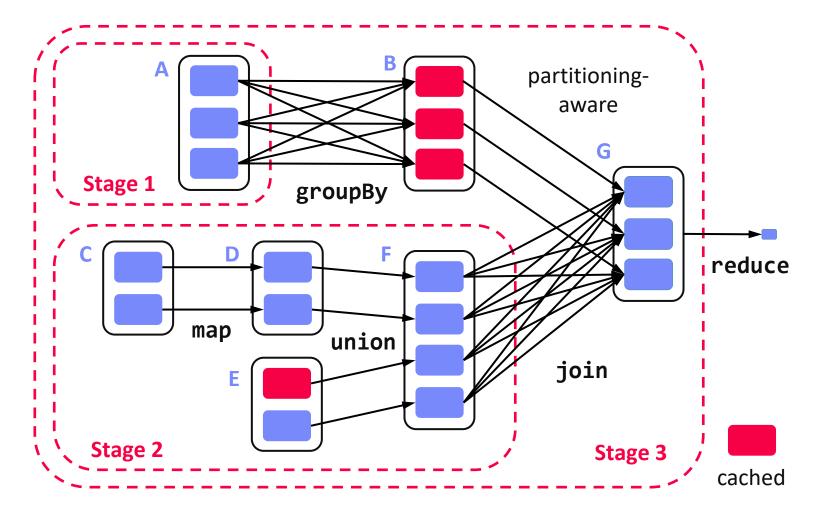
Example Hash Partitioning:

For all (k,v) of R: pid = hash(k) % n

ISDS

~128MB

Spark Lazy Evaluation, Caching, and Lineage



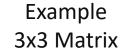
[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. **NSDI 2012**]

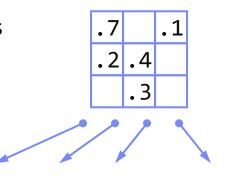
Background: Matrix Formats

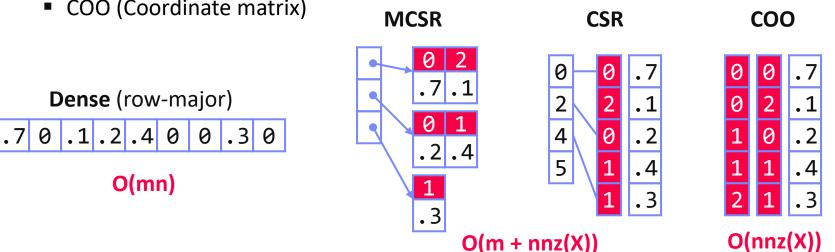
- Matrix Block (m x n)
 - A.k.a. tiles/chunks, most operations defined here
 - Local matrix: single block, different representations

Common Block Representations

- Dense (linearized arrays)
- MCSR (modified CSR)
- CSR (compressed sparse rows), CSC
- COO (Coordinate matrix)



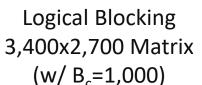




19

Distributed Matrix Representations

- Collection of "Matrix Blocks" (and keys)
 - **Bag semantics** (duplicates, unordered)
 - Logical (Fixed-Size) Blocking + join processing / independence - (sparsity skew)
 - E.g., SystemML on Spark: JavaPairRDD<MatrixIndexes,MatrixBlock>
 - Blocks encoded independently (dense/sparse)

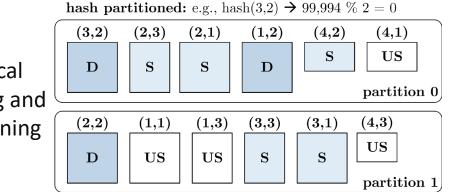


· ·	C ,	,
(1,1)	(1,2)	(1,3)
(2,1)	(2,2)	(2,3)
(3,1)	(3,2)	(3,3)
$\fbox{(4,1)}$	$\fbox{(4,2)}$	(4,3)

Partitioning

- Logical Partitioning (e.g., row-/column-wise)
- Physical Partitioning (e.g., hash / grid)

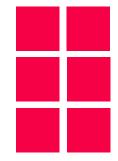
Physical Blocking and Partitioning



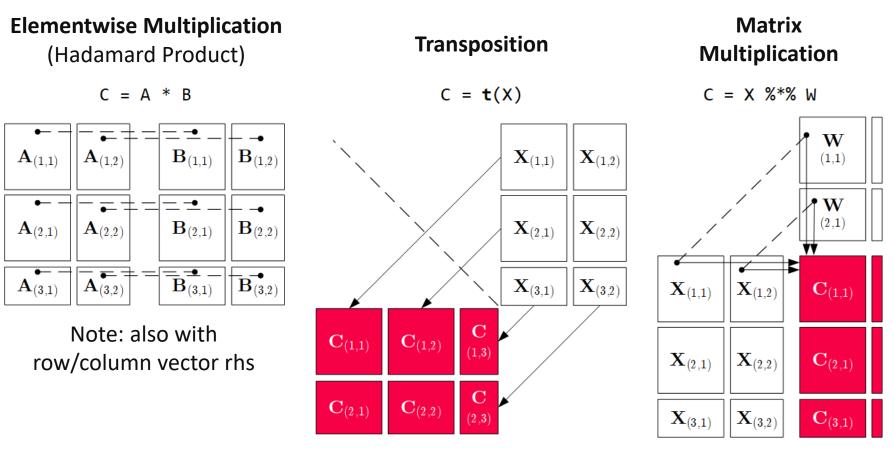
ISDS

Distributed Matrix Representations, cont.

- #1 Block-partitioned Matrices
 - Fixed-size, square or rectangular blocks
 - Pros: Input/output alignment, block-local transpose, amortize block overheads, bounded mem, cache-conscious
 - Cons: Converting row-wise inputs (e.g., text) requires shuffle
 - Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon, Distributed R, DMac, Spark Mllib, Gilbert, MatFast, and SimSQL
- #2 Row/Column-partitioned Matrices
 - Collection of row indexes and rows (or columns respectively)
 - Pros: Seamless data conversion and access to entire rows
 - **Cons:** Storage overhead in Java, and cache unfriendly operations
 - Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL
- #3 Algorithm-specific Partitioning
 - Operation and algorithm-centric data representations
 - Examples: matrix inverse, matrix factorization



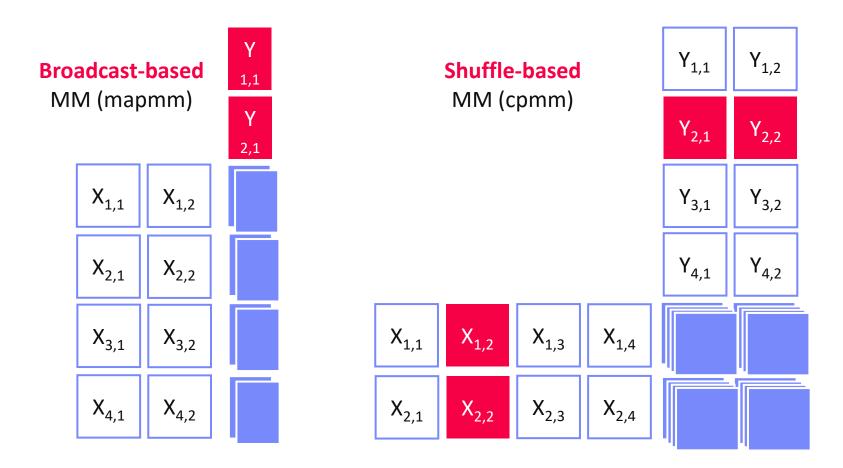
Distributed Matrix Operations



Note: 1:N join

Physical MM Operator Selection, cont.

Examples Distributed MM Operators



Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies Matthias Boehm, Graz University of Technology, SS 2022

Partitioning-Preserving Operations

- Shuffle is major bottleneck for ML on Spark
- Preserve Partitioning
 - Op is partitioning-preserving if keys unchanged (guaranteed)
 - Implicit: Use restrictive APIs (mapValues() vs mapToPair())
 - Explicit: Partition computation w/ declaration of partitioning-preserving

Exploit Partitioning

- Implicit: Operations based on join, cogroup, etc
- Explicit: Custom operators (e.g., zipmm)

```
repart, chkpt X MEM DISK
Example:
                     parfor(iter class in 1:num classes) {
                        Y local = 2 * (Y == iter class) - 1
  Multiclass SVM
                        g old = t(X) %*% Y local
    Vectors fit
                                                          chkpt y local MEM DISK
                        while( continue ) {
      neither into
                        — Xd = X %*% s
                                                          chkpt Xd, Xw MEM DISK
      driver nor
                           ... inner while loop (compute step sz)
      broadcast
                           Xw = Xw + step sz * Xd;
                           out = 1 - Y local * Xw;
    • ncol(X) \leq B_c
                           out = (out > 0) * out;
                                                                     zipmm
                           g new = t(X) %*% (out * Y local) ...
```


Pandas

Pandas

Dataframe Dask

Dataframe

January, 2016

February, 2016

March, 2016

April, 2016 May, 2016

24

[Matthew Rocklin: Dask: Parallel Computation with Blocked algorithms and Task Scheduling, **Python in Science 2015**] [Dask Development Team: Dask: Library for dynamic task scheduling, 2016, <u>https://dask.org</u>]

Numpy

- Overview Dask
 - Multi-threaded and distributed operations for arrays, bags, and dataframes
 - dask.array: list of numpy n-dim arrays
 - dask.dataframe: list of pandas data frames
 - dask.bag:unordered list of tuples (second order functions)
 - Local and distributed schedulers: threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

Execution

- Lazy evaluation
- Limitation: requires static size inference
- Triggered via compute()

import dask.array as da

```
x = da.random.random(
    (10000,10000), chunks=(1000,1000))
y = x + x.T
y.persist() # cache in memory
z = y[::2, 5000:].mean(axis=1) # colMeans
ret = z.compute() # returns NumPy array
```


Task-Parallel Execution

Parallel Computation of Independent Tasks, Emulation of Data-Parallel Operations/Programs

Overview Task-Parallelism

Historic Perspective

- Since 1980s: various parallel Fortran extensions, especially in HPC
- DOALL parallel loops (independent iterations)
- OpenMP (since 1997, Open Multi-Processing)

Open**MP**

```
#pragma omp parallel for reduction(+: nnz)
for (int i = 0; i < N; i++) {
    int threadID = omp_get_thread_num();
    R[i] = foo(A[i]);
    nnz += (R[i]!=0) ? 1 : 0;
}</pre>
```

Motivation: Independent Tasks in ML Workloads

- Use cases: Ensemble learning, cross validation, hyper-parameter tuning, complex models with disjoint/overlapping/all data per task
- Challenge #1: Adaptation to data and cluster characteristics
- Challenge #2: Combination with data-parallelism

Apache SystemML^{**}

Parallel For Loops (ParFor)

- Hybrid Parallelization Strategies
 - Combination of data- and task-parallel ops
 - Combination of local and distributed computation

Key Aspects

- Dependency Analysis
- Task partitioning
- Data partitioning, scan sharing, various rewrites
- Execution strategies
- Result agg strategies
- ParFor optimizer

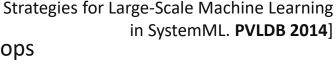
```
reg = 10^(seq(-1,-10))
B_all = matrix(0, nrow(reg), n)
```

[M. Boehm et al.: Hybrid Parallelization

```
parfor( i in 1:nrow(reg) ) {
    B = lm(X, y, reg[i,1]);
    B_all[i,] = t(B);
}
```

Local ParFor (multi-threaded), w/ local ops

Remote ParFor (distributed Spark job) Local ParFor, w/ concurrent distributed ops



Additional ParFor Examples

Pairwise Pearson Correlation

- In practice: uni/bivariate stats
- Pearson's R, Anova F, Chi-squared, Degree of freedom, P-value, Cramers V, Spearman, etc)

Batch-wise CNN Scoring

 Emulate data-parallelism for complex functions

```
D = read("./input/D");
R = matrix(0, ncol(D), ncol(D));
parfor(i in 1:(ncol(D)-1)) {
  X = D[,i];
   sX = sd(X);
   parfor(j in (i+1):ncol(D)) {
      Y = D[, j];
      sY = sd(Y);
      R[i,j] = cov(X,Y)/(sX*sY);
write(R, "./output/R");
prob = matrix(0, Ni, Nc)
parfor( i in 1:ceil(Ni/B) ) {
  Xb = X[((i-1)*B+1):min(i*B,Ni),];
  prob[((i-1)*B+1):min(i*B,Ni),] =
      ... # CNN scoring
}
```

Conceptual Design:

Coordinator/worker (task: group of parfor iterations)

ParFor Execution Strategies

#1 Task Partitioning

- Fixed-size schemes: naive (1) , static (n/k), fixed (m)
- Self-scheduling: e.g., guided self scheduling, factoring

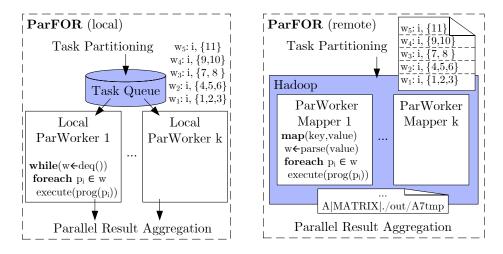
#2 Data Partitioning

- Local or remote row/column partitioning (incl locality)
- #3 Task Execution
 - Local (multi-core) execution
 - Remote (MR/Spark) execution
- #4 Result Aggregation
 - With and without compare (non-empty output variable)
 - Local in-memory / remote MR/Spark result aggregation

Factoring (n=101, k=4)

$$R_0 = N, \\ R_{i+1} = R_i - k \cdot l_i, \quad l_i = \left\lceil \frac{R_i}{x_i \cdot k} \right\rceil = \left\lceil \left(\frac{1}{x_i}\right)^{i+1} \frac{N}{k} \right\rceil$$

(13,13,13,13, 7,7,7,7, 3,3,3,3, 2,2,2,2, 1)



ISDS

Task-Parallelism in R

- Multi-Threading
 - doMC as multi-threaded foreach backend
 - Foreach w/ parallel (%dopar%) or sequential (%do%) execution

[https://cran.r-project.org/web/packages/ doMC/vignettes/gettingstartedMC.pdf]

Distribution

- doSNOW as distributed foreach backend
- MPI/SOCK as comm methods

```
[https://cran.r-project.org/web/packages/
doSNOW/doSNOW.pdf]
```

```
library(doMC)
registerDoMC(32)
R <- foreach(i=1:(ncol(D)-1),</pre>
              .combine=rbind) %dopar% {
   X = D[,i]; sX = sd(X);
   Ri = matrix(0, 1, ncol(D))
   for(j in (i+1):ncol(D)) {
      Y = D[,j]; sY = sd(Y)
      Ri[1,j] = cov(X,Y)/(sX*sY);
   }
   return(Ri);
}
library(doSNOW)
clust = makeCluster(
   c("192.168.0.1", "192.168.0.2",
   "192.168.0.3"), type="SOCK");
registerDoSNOW(clust);
... %dopar% ...
stopCluster(clust);
```


30

MATLAB

Task-Parallelism in Other Systems

matlabpool 32

c = pi; z = 0;

r = rand(1, 10)

parfor i = 1 : 10

z = z+1; # reduction

b(i) = r(i); # sliced

MATLAB

- Parfor loops for multi-process & distributed loops
- Use-defined par

Julia

 Dedicated macros: @threads
 @distributed

```
a = zeros(1000)
@threads for i in 1:1000
    a[i] = rand(r[threadid()])
end
```


[https://docs.julialang. org/en/v1/manual/ parallel-computing/]

TensorFlow

 User-defined parallel iterations, responsible for correct results or acceptable approximate results

end

TensorFlow

[https://www.tensorflow.org/ api_docs/python/tf/while_loop]

[Gaurav Sharma, Jos Martin:

Parallel Computing. Int. Journal

MATLAB[®]: A Language for

on Parallel Prog. 2009]

```
tf.while_loop(cond, body, loop_vars, parallel_iterations=10,
    swap_memory=False, maximum_iterations=None, ...)
```


32

learn

Task-Parallelism in Other Systems, cont.

- sk-dist [<u>https://pypi.org/project/sk-dist/</u>]
 - Distributed training of local scikit-learn models (via PySpark)
 - Grid Search / Cross Validation (hyper-parameter optimization)
 - Multi-class Training (one-against the rest)
 - Tree Ensembles (many decision trees)
- Model Hopper Parallelism (MOP)
 - Given a dataset D, p workers, and several NN configurations S
 - Partition D into worker-local partitions D_p
 - Schedule tasks for sub-epochs of S' ⊆ S on p without moving the partitioned data
 - Checkpointing of models between tasks
- Reinforcement Learning Frameworks
- Future-based Task Graphs (Ray, Pathways, UPLIFT)

[Supun Nakandala, Yuhao Zhang, Arun Kumar: Cerebro: Efficient and Reproducible Model Selection on Deep Learning Systems. DEEM@SIGMOD 2019]

> [Supun Nakandala, Yuhao Zhang, Arun Kumar: Cerebro: A Data System for Optimized Deep Learning Model Selection. **PVLDB 2020**]

No. OF COMPANY				

Part of Next Lecture

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies Matthias Boehm, Graz University of Technology, SS 2022

Data-Parallel Parameter Servers

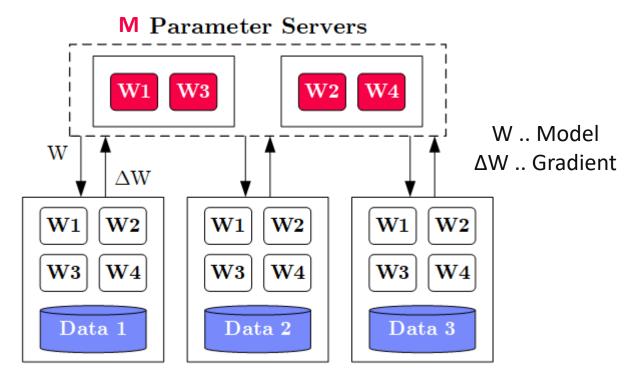
34

Background: Mini-batch DNN Training (LeNet)

```
[Yann LeCun, Leon Bottou, Yoshua
# Initialize W1-W4, b1-b4
                                                          Bengio, and Patrick Haffner: Gradient-
# Initialize SGD w/ Nesterov momentum optimizer
                                                           Based Learning Applied to Document
iters = ceil(N / batch size)
                                                             Recognition, Proc of the IEEE 1998]
for( e in 1:epochs ) {
   for( i in 1:iters ) {
      X batch = X[((i-1) * batch size) \% N + 1:min(N, beg + batch size - 1),]
      y batch = Y[((i-1) * batch size) \% N + 1:min(N, beg + batch size - 1),]
      ## layer 1: conv1 -> relu1 -> pool1
      ## layer 2: conv2 -> relu2 -> pool2
                                                                                NN Forward
      ## layer 3: affine3 -> relu3 -> dropout
      ## layer 4: affine4 -> softmax
                                                                                    Pass
      outa4 = affine::forward(outd3, W4, b4)
      probs = softmax::forward(outa4)
      ## layer 4: affine4 <- softmax</pre>
                                                                               NN Backward
      douta4 = softmax::backward(dprobs, outa4)
      [doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
                                                                                    Pass
      ## layer 3: affine3 <- relu3 <- dropout</pre>
                                                                                \rightarrow Gradients
      ## layer 2: conv2 <- relu2 <- pool2</pre>
      ## layer 1: conv1 <- relu1 <- pool1</pre>
      # Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
                                                                                   Model
      [W4, vW4] = sgd nesterov::update(W4, dW4, lr, mu, vW4)
                                                                                  Updates
      [b4, vb4] = sgd nesterov::update(b4, db4, lr, mu, vb4)
   }
}
```


Overview Parameter Servers

- System Architecture
 - M Parameter Servers
 - N Workers
 - Optional Coordinator



Key Techniques

N Workers

- Data partitioning D → workers Di (e.g., disjoint, reshuffling)
- Updated strategies (e.g., synchronous, asynchronous)
- Batch size strategies (small/large batches, hybrid methods)

History of Parameter Servers

- 1st Gen: Key/Value
 - **Distributed key-value store** for parameter exchange and synchronization
 - Relatively high overhead
- 2nd Gen: Classic Parameter Servers
 - **Parameters as dense/sparse matrices**
 - Different update/consistency strategies
 - Flexible configuration and fault tolerance
- 3rd Gen: Parameter Servers w/ improved data communication
 - Prefetching and range-based pull/push
 - Lossy or lossless compression w/ compensations

Examples

TensorFlow, MXNet, PyTorch, CNTK, Petuum

[Alexander J. Smola, Shravan M. Narayanamurthy: An Architecture for Parallel Topic Models. PVLDB 2010]

An Architecture for Parallel Topic Madeia		
man and	_369769C_	

[Jeffrey Dean et al.: Large Scale **Distributed Deep Networks.** NIPS 2012

[Mu Li et al: Scaling Distributed Machine Learning with the Parameter Server. OSDI 2014]

[Jiawei Jiang, Bin Cui, Ce Zhang, Lele Yu: Heterogeneity-aware **Distributed Parameter Servers. SIGMOD 2017**]

Record of the second se		

[Jiawei Jiang et al: SketchML: Accelerating Distributed Machine Learning with Data Sketches. **SIGMOD 2018**]

36

Basic Worker Algorithm (batch)

```
for( i in 1:epochs ) {
   for( j in 1:iterations ) {
      params = pullModel(); # W1-W4, b1-b4 lr, mu
      batch = getNextMiniBatch(data, j);
      gradient = computeGradient(batch, params);
      pushGradients(gradient);
   }
}
```

[Jeffrey Dean et al.: Large Scale Distributed Deep Networks. NIPS 2012]

Extended Worker Algorithm (nfetch batches)

```
gradientAcc = matrix(0,...);
                                                 nfetch batches require
                                               local gradient accrual and
for( i in 1:epochs ) {
                                                  local model update
   for( j in 1:iterations ) {
      if( step mod nfetch = 0 )
          params = pullModel();
      batch = getNextMiniBatch(data, j);
      gradient = computeGradient(batch, params);
      gradientAcc += gradient;
      params = updateModel(params, gradients);
      if( step mod nfetch = 0 ) {
          pushGradients(gradientAcc); step = 0;
          gradientAcc = matrix(0, ...);
       }
                                               [Jeffrey Dean et al.: Large Scale
                                                 Distributed Deep Networks.
      step++;
                                                           NIPS 2012
}
   }
```


Update Strategies

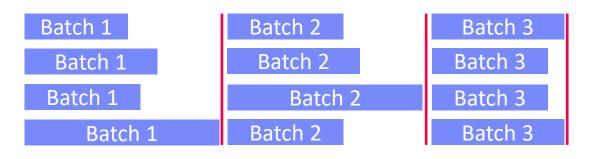
- Bulk Synchronous Parallel (BSP)
 - Update model w/ accrued gradients
 - Barrier for N workers

Asynchronous Parallel (ASP)

- Update model for each gradient
- No barrier

Synchronous w/ Backup Workers

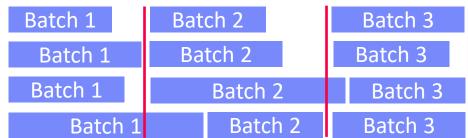
- Update model w/ accrued gradients
- Barrier for N of N+b workers



Batch 1	Batch 2	Batch	Batch 3		but, stale
Batch 1	Batch 2		atch 3		model
Batch 1	Batch 2		Batch 3		updates
Batch 1		Batch 2	Bat	ch 3	

[Martín Abadi et al: TensorFlow: A System for

Large-Scale Machine Learning. OSDI 2016]



, /

Selected Optimizers (updateModel)

- Stochastic Gradient Descent (SGD)
 - Vanilla SGD, basis for many other optimizers
 - See **05 Data/Task-Parallel:** $-\gamma \nabla f(D, \theta)$

SGD w/ Momentum

Incorporates parameter velocity w/ momentum

SGD w/ Nesterov Momentum

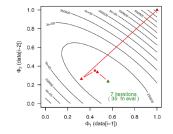
 Incorporates parameter velocity w/ momentum, but update from position after momentum

AdaGrad

Adaptive learning rate w/ regret guarantees

RMSprop

Adaptive learning rate, extended AdaGrad



 $X = X - lr^*dX$

v = mu*v - lr*dXX = X + v

v0 = v $v = mu^*v - lr^*dX$ $X = X - mu^*v0 + (1+mu)^*v$

[John C. Duchi et al: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. JMLR 2011]

c = dr*c+(1-dr)*dX^2 X = X-(lr*dX/(sqrt(c)+eps))

Selected Optimizers (updateModel), cont.

- Adam
 - Individual adaptive learning rates for different parameters

```
[Diederik P. Kingma, Jimmy Ba:
Adam: A Method for Stochastic
Optimization. ICLR 2015]
```



```
t = t + 1
m = beta1*m + (1-beta1)*dX # update biased 1st moment est
v = beta2*v + (1-beta2)*dX^2 # update biased 2nd raw moment est
mhat = m / (1-beta1^t) # bias-corrected 1st moment est
vhat = v / (1-beta2^t) # bias-corrected 2nd raw moment est
X = X - (lr * mhat/(sqrt(vhat)+epsilon)) # param update
```

Shampoo

- Preconditioned gradient method (Newton's method, Quasi-Newton)
- Retains gradients tensor structure by maintaining a preconditioner per dim
- $O(m^2n^2) \rightarrow O(m^2 + n^2)$

[Vineet Gupta, Tomer Koren, Yoram Singer: Shampoo: Preconditioned Stochastic Tensor Optimization. **ICML 2018**]

Batch Size Configuration

2²¹ 2²⁰

2¹⁹

2¹⁸

2¹⁷

2¹⁵

 2^{14}

2¹³

2¹²

 2^{11} 2¹⁰

Steps 2¹⁶

ResNet-50

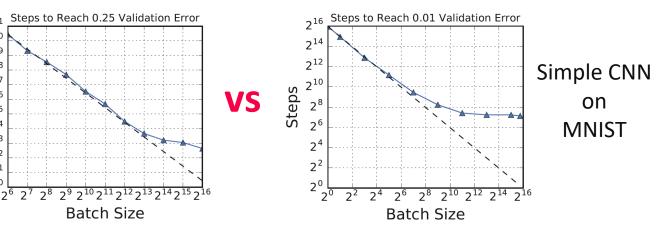
on

ImageNet

What is the right batch size for my data?

Maximum useful batch size is dependent on data redundancy and model complexity

[Christopher J. Shallue et al.: Measuring the Effects of Data Parallelism on Neural Network Training. CoRR 2018]



Additional Heuristics/Hybrid Methods

- #1 Increase the batch size instead of decaying the learning rate
- #2 Combine batch and mini-batch algorithms (full batch + n online updates)

[Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le: Don't Decay the Learning Rate, Increase the Batch Size. ICLR 2018]

[Ashok Cutkosky, Róbert Busa-Fekete: Distributed Stochastic Optimization via Adaptive SGD. NeurIPS 2018]

Reducing Communication Overhead

- Large Batch Sizes
 - Larger batch sizes reduce the relative communication overhead

[Priya Goyal et al: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. **CoRR 2017** (kn=8K, 256 GPUs)]

Overlapping Computation/Communication

 For deep NN w/ many weight/bias matrices, compute and comm. can be overlapped

tf.distribute:

MirroredStrategy MultiWorkerMirroredStrategy

[Frank Seide et al: 1-bit

stochastic gradient descent and

its application to data-parallel

distributed training of speech

DNNs. INTERSPEECH 2014]

Collective operations: all-Reduce / ring all-reduce / hierarchical all-reduce

Sparse and Compressed Communication

- Mini-batches of sparse data → sparse dW
- Lossy (mantissa truncation, quantization), and lossless (delta, bitpacking) for W and dW
- Gradient sparsification/clipping (send gradients larger than a threshold)
- In-Network Aggregation (SwitchML)
 - Aggregate worker updates in prog. switches
 - 32b fix-point, coordinated updates

[Amedeo Sapio et al: Scaling Distributed Machine Learning with In-Network Aggregation, **NSDI 2021**]

Federated Machine Learning

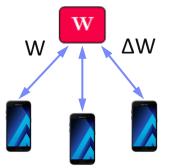
Problem Setting and Overview

- Motivation Federated ML
 - Learn model w/o central data consolidation
 - Privacy + data/power caps vs personalization and sharing
 - Applications Characteristics
 - #1 On-device data more relevant than server-side data
 - #2 On-device data is privacy-sensitive or large
 - #3 Labels can be inferred naturally from user interaction
 - Example: Language modeling for mobile keyboards and voice recognition

Challenges

- Massively distributed (data stored across many devices)
- Limited and unreliable communication
- Unbalanced data (skew in data size, non-IID)
- Unreliable compute nodes / data availability

[Jakub Konečný: Federated Learning -Privacy-Preserving Collaborative Machine Learning without Centralized Training Data, **UW Seminar 2018**]



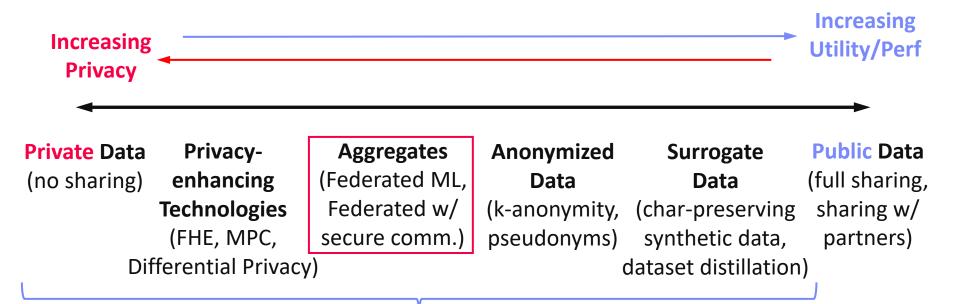
Federated Learning

ISDS

Excursus: Spectrum of Data Sharing

Fine-grained Spectrum

- Spectrum of technologies with performance/privacy/utility tradeoffs
- Different applications with different requirements
- Potential: New markets for data-driven services in this spectrum



Key Property: no reconstruction of private raw data

Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies Matthias Boehm, Graz University of Technology, SS 2022

}

A Federated ML Training Algorithm

- while(!converged) {
 - 1. Select random subset (e.g. 1000)
 of the (online) clients
 - 2. In parallel, send current parameters θ_t to those clients
 At each client
 - **2a.** Receive parameters θ_t from server [pull]
 - 2b. Run some number of minibatch SGD steps, producing ⊖'
 - **2c. Return θ'-θ**t (model averaging) [push]

3. $\theta_{t+1} = \theta_t + data$ -weighted average of client updates

[Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas: Communication-Efficient Learning of Deep Networks from Decentralized Data. **AISTATS 2017**]

ISL

Algorithmic PS Extensions

- #1 Client Sampling (FedAvg w/ model averaging)
- #2 Decentralized, Fault-tolerant Aggregation
- #3 Peer-to-peer Gradient and Model Exchange
- #4 Meta-learning for Private Models
- #5 Handling Statistical Heterogeneity (non-IID data)
 - Reducing variance
 - Selecting relevant subsets of data
 - Tolerating partial client work
 - Partitioning clients into congruent groups
 - Adaptive Optimization (FedOpt, FedAvgM)

[Peter Kairouz, Brendan McMahan, Virginia Smith: Federated Learning Tutorial. **NeurIPS 2020**, <u>https://slideslive.com/38935813/</u> <u>federated-learningtutorial]</u>

[Sashank J. Reddi et al: Adaptive Federated Optimization. **CoRR 2020**]

ISDS

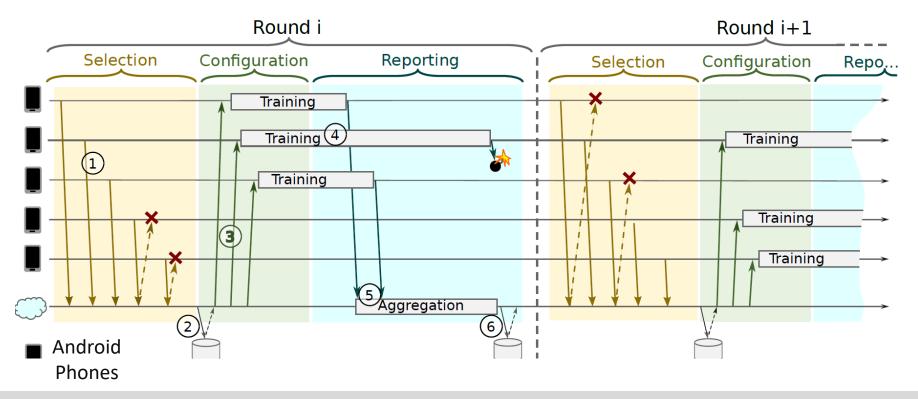
ederated Learning Tutoria

Reter Kairouz

Federated Learning Protocol

Recommended Reading

 [Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, Jason Roselander: Towards Federated Learning at Scale: System Design. MLSys 2019]



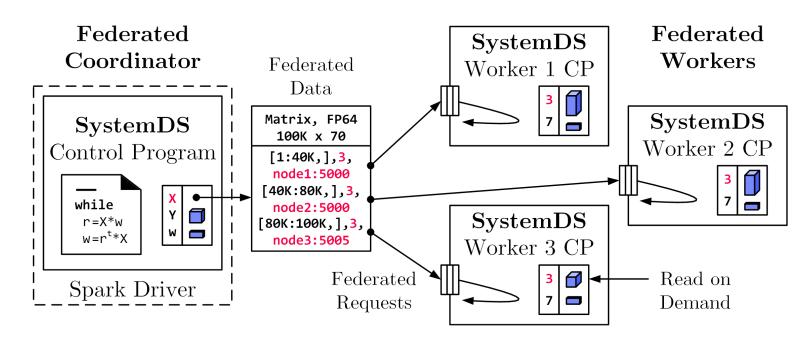
Architecture of Machine Learning Systems – 06 Execution and Parallelization Strategies Matthias Boehm, Graz University of Technology, SS 2022

TU Graz

- Federated Backend
 - Federated data (matrices/frames) as meta data objects
 - Federated linear algebra, (and federated parameter server)
 - X = federated(addresses=list(node1, node2, node3), ranges=list(list(0,0),list(40K,70), ..., list(80K,0),list(100K,70)));

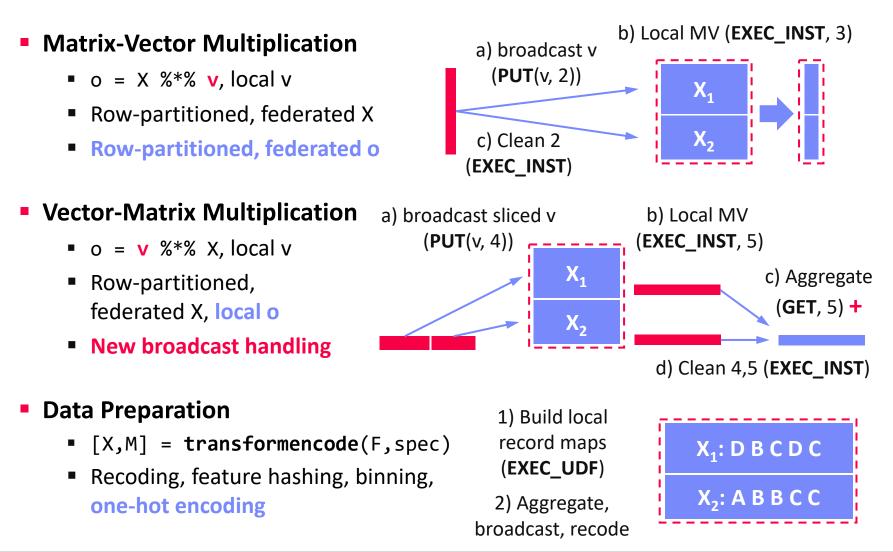
ex_dra

DDAI



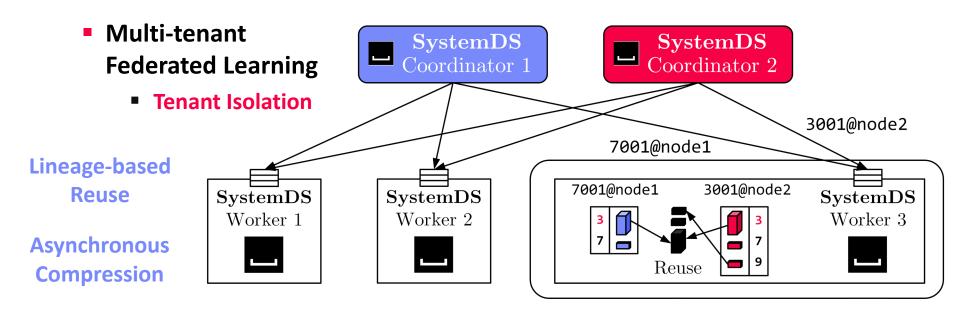
Federated Requests: READ, PUT, GET, EXEC_INST, EXEC_UDF, CLEAR

Example Federated Operations



Graz

- Federated Data Preparation, Learning, and Debugging
 - Federated Feature Transformations
 - Federated Linear-algebra-based Data Cleaning,
 Data Preparation, and Model Debugging (e.g., federated quantiles)



TensorFlow Federated

Overview TFF

53

- Federated PS algorithms and federated second order functions
- Primarily for simulating federated training, no OSS federated runtime

#1 Federated PS

iterative_process = tff.learning.build_federated_averaging_process(
 model_fn, # function for created federated models
 client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),
 server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))

#2 Federated Analytics

- r = t(y) %*% X
- User-level composition of federated algorithms
- PET primitives

```
X = ... # tff.type_at_clients(tf.float32)
by = tff.federated_broadcast(y)
R = tff.federated_sum(
        tff.federated_map(X, by, foo_mm), foo_s)
    # note: tff.federated_secure_sum
```


ISDS

[https://www.tensorflow.org/federated/]

Summary and Q&A

- Data-Parallel Parameter Servers
- Model-Parallel Parameter Servers
- Distributed Reinforcement Learning
- Federated Machine Learning

- #1 Different strategies (and systems) for different ML workloads
 > Specialization and abstraction
- #2 Awareness of underlying execution frameworks
- #3 Awareness of effective compilation and runtime techniques

