
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of ML Systems*
07 Hardware Accelerators and
Data Access Methods
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Aug 25, 2022

2

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Categories of Execution Strategies
Motivation and Terminology

07a Hybrid Execution and HW Accelerators

06a Data-Parallel
Execution

06b Task-Parallel
Execution

06c Parameter Servers
(data, model)

Mini-batchBatch
SIMD/SPMD

Batch/Mini-batch,
Independent Tasks

MIMD

07b Caching, Partitioning, Indexing, and Compression

3

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Agenda
 GPUs in ML Systems
 FPGAs in ML Systems
 ASICs and other HW Accelerators
 Caching, Partitioning, and Indexing
 Lossy and Lossless Compression

Iterative, I/O-bound ML
algorithms Data access

crucial for performance

while(!converged) {
… q = X %*% v …

}

X

Data Weights

4

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Graphics Processing Units
(GPUs) in ML Systems

5

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

DNN Challenges
 #1 Larger Models

and Scoring Time

 #2 Training Time
 ResNet18: 10.76% error, 2.5 days training
 ResNet50: 7.02% error, 5 days training
 ResNet101: 6.21% error, 1 week training
 ResNet152: 6.16% error, 1.5 weeks training

 #3 Energy Efficiency

Graphics Processing Units (GPUs) in ML Systems

[Song Han: Efficient Methods and Hardware
for Deep Learning, Stanford cs231n, 2017]

6

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

HW Challenges
 #1 End of Dennard Scaling (~2005)

 Law: power stays proportional
to the area of the transistor

 Ignored leakage current / threshold voltage
 increasing power density S2 (power wall, heat) stagnating frequency

 #2 End of Moore’s Law (~2010-20)
 Law: #transistors/performance/

CPU frequency doubles every
18/24 months

 Original: # transistors per chip
doubles every two years
at constant costs

 Now increasing costs (10/7/5nm)

 Consequences: Dark Silicon and Specialization

Motivation and Terminology

P = α CFV2 (power density 1)
(P .. Power, C .. Capacitance,
F .. Frequency, V .. Voltage)

[S. Markidis, E. Laure, N. Jansson, S.
Rivas-Gomez and S. W. D. Chien:

Moore’s Law and Dennard Scaling]

Presenter
Presentation Notes
Dennard Scaling: (scaling factor S of transistors) * # transistors: S^2 * Capacitance: 1/S * Frequency: S * Device power V: 1/(S^2) * Alpha 1/2 (but V cannot be further reduced due to leakage (noise of neighboring transistors); capacity (current) of transistor -> the smaller the transistor, the smaller the frequency)Gordon Moore (co-founder of Intel)

7

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Towards Specialized Hardware
 HW Specialization

 Additional Specialization
 Data Transfer & Types: e.g., low-precision, quantization
 Sparsity Exploitation: e.g., sparsification, exploit across ops,

defer weight decompression just before instruction execution
 Near-Data Processing: e.g., operations in main memory, storage class memory

(SCM), secondary storage (e.g., SSDs), and tertiary storage (e.g., tapes)

Motivation and Terminology

HW Devices

General Purpose Specialized HW

CPU GPU FPGAs ASICs

Throughput-oriented,
specialized instructions

programmable
logic

fixed logic

Caching,
Indexing and
Compression

SIMD

Presenter
Presentation Notes
Tradeoff: reconfiguration (CPU high, ASIC impossible) vs energy efficiency (ASIC high, CPU low)

8

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

NVIDIA Volta V100 – Specifications
Graphics Processing Units (GPUs) in ML Systems

 Tesla V100 NVLink
 FP64: 7.8 TFLOPs, FP32: 15.7 TFLOPs
 DL FP16: 125 TFLOPs
 NVLink: 300GB/s
 Device HBM: 32 GB (900 GB/s)
 Power: 300 W

 Tesla V100 PCIe
 FP64: 7 TFLOPs, FP32: 14 TFLOPs
 DL FP16: 112 TFLOPs
 PCIe: 32 GB/s
 Device HBM: 16 GB (900 GB/s)
 Power: 250 W

[Credit: https://nvidia.com/de-de/
data-center/tesla-v100/]

9

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

NVIDIA Volta V100 – Architecture
 6 GPU Processing Clusters (GPCs)

 7 Texture Processing Clusters (TPC)
 14 Streaming Multiprocessors (SM)

Graphics Processing Units (GPUs) in ML Systems

[NVIDIA Tesla V100
GPU Architecture,

Whitepaper, Aug 2017]

 SM Architecture
 FP64 cores: 32
 FP32 cores: 64
 INT32 cores: 64
 “Tensor cores”: 8
 Max warps /SM: 64
 Threads/warp: 32

10

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Single Instruction Multiple Threads (SIMT)
 32 Threads grouped to warps and execute in SIMT model

 Pascal P100
Execution Model
 Warps use a

single program
counter +
active mask

 Volta V100
Execution Model
 Independent

thread scheduling
 Per-thread

program counters
and call stacks

 New __syncwarp() primitive (if needed) + convergence optimizer

Graphics Processing Units (GPUs) in ML Systems

Thread Divergence

11

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

NVIDIA Volta V100 – Tensor Cores
 “Tensor Core”

 Specialized instruction for 4x4 by 4x4 fused matrix multiply
 Two FP16 inputs and FP32 accumulator
 Exposed as warp-level matrix operations w/ special load, mm, acc, and store

Graphics Processing Units (GPUs) in ML Systems

D = A %*% B + C
64 FMA

operations

[Bill Dally: Hardware
for Deep Learning.

SysML 2018]

12

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

NVIDIA Ampere A100
 Specification

 7nm, 8 GPC x 8 TPC * 2 SM = 128 SMs, 40GB HBM
 FP64: 9.7 TFLOPs / FP64 TensorCore: 19.5 TFLOPs
 FP32 19.5 TFLOPs, FP16: 78 TFLOPs, BF16: 39 TFLOPs
 TF32 TensorCore 156 TFLOPs / 312 TFLOPs (sparse)
 FP16 TensorCore 312 TFLOPs / 624 TFLOPs (sparse), INT8, INT4

 New Features
 New generation of “TensorCores” (FP64, new data types: TF32, BF16)
 Fine-grained sparsity exploitation
 Multi-instance GPU (MIG) virtualization: up to 7 virtual GPU instances
 Link technologies: NVLink 3 (25GB/s bidirectional) x 12 links = 600GB/s
 Submission of task graphs (launch a workflow of kernels)

Graphics Processing Units (GPUs) in ML Systems

[NVIDIA A100 Tensor Core GPU Architecture -
UNPRECEDENTED ACCELERATION AT

EVERY SCALE, Whitepaper, Aug 2020]

13

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

GPUs for DNN Training
 GPUs for DNN Training (2009)

 Deep belief networks
 Sparse coding

 Multi-GPU Learning (Now)
 Exploit multiple GPUs with a mix of

data- and model-parallel parameter servers
 Dedicated ML systems for multi-GPU learning
 Dedicated HW: e.g., NVIDIA DGX-1 (8xP100),

NVIDIA DGX-2 (16xV100, NVSwitch),
NVIDIA DGX A100 (8x A100, NVSwitch, Mellanox)

 New GPU Link Technologies (NVSwitch + NVLink 1.0 / 2.0 / 3.0)

 DNN Framework support
 All specialized DNN frameworks have very good support for GPU training
 Most of them also support multi-GPU training

Graphics Processing Units (GPUs) in ML Systems

[Rajat Raina, Anand Madhavan, Andrew Y. Ng:
Large-scale deep unsupervised learning using

graphics processors. ICML 2009]

14

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

DNN Benchmarks
Graphics Processing Units (GPUs) in ML Systems

[MLPerf v0.6: https://mlperf.org/training-results-0-6/,
MLPerf v0.7: https://mlperf.org/training-results-0-7]

96 x DGX-2H = 96 * 16 = 1536 V100 GPUs
 ~ 96 * $400K = $35M – $40M

[https://www.forbes.com/sites/tiriasresearch/2019/
06/19/nvidia-offers-a-turnkey-supercomputer-the-

dgx-superpod/#693400f43ee5]

V0.6

Presenter
Presentation Notes
V07: up to 4096 (regular), 16384 (HPC)

https://mlperf.org/training-results-0-6/
https://mlperf.org/training-results-0-7
https://www.forbes.com/sites/tiriasresearch/2019/06/19/nvidia-offers-a-turnkey-supercomputer-the-dgx-superpod/#693400f43ee5

15

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Handling Memory Constraints
 Problem: Limited Device Memory

 #1 Live Variable Analysis
 Remove intermediates ASAP
 Examples: SystemML, TensorFlow, MXNet, Superneurons, MONeT

 #2 GPU-CPU Eviction
 Evict variables from GPU to CPU memory under memory pressure
 Examples: SystemML, Superneurons, GeePS, (TensorFlow)

 #3 Recomputation
 Recompute inexpensive operations (e.g., activations of forward pass)
 Examples: MXNet, Superneurons, MONet

 #4 Reuse Allocations
 Reuse allocated matrices and tensors via free lists, but fragmentation
 Examples: SystemML, Superneurons, MONet

 #5 Physical Operator Selection
 Different tradeoffs of performance and size of intermediates (MONet)

Graphics Processing Units (GPUs) in ML Systems

[Linnan Wang et al: Superneurons: dynamic
GPU memory management for training

deep neural networks. PPOPP 2018]

Presenter
Presentation Notes
MONeT: Aashaka Shah, Chao-Yuan Wu, Jayashree Mohan, Vijay Chidambaram, Philipp Krähenbühl: Memory Optimization for Deep Networks. ICLR 2021

16

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Hybrid CPU/GPU Execution
 Manual Placement

 Most DNN frameworks allow manual placement of
variables and operations on individual CPU/GPU devices

 Heuristics and intuition of human experts

 Automatic Placement
 Sequence-to-sequence model to predict

which operations should run on which device
 Examples:

Graphics Processing Units (GPUs) in ML Systems

[Azalia Mirhoseini et al: Device
Placement Optimization with

Reinforcement Learning.
ICML 2017]

Inception V3

Neural
MT graph

Presenter
Presentation Notes
Note: white: CPU; colors: different GPU devicesSequence-to-sequence model with attention (encoder-decoder operator sequence to device sequence)

17

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Sparsity in DNN
 State-of-the-art

 Very limited support of sparse tensors in TensorFlow, PyTorch, etc
 GPU operations for linear algebra (cuSparse), early support in ASICs
 Problem: Irregular structures of sparse matrices/tensors

 Common Techniques
 #1: Blocking/clustering of rows/columns by number of non-zeros
 #2: Padding rows/columns to common number of non-zeros

 Example A100 Sparsity Exploitation
 Constraint: 2 non-zeros in block of 4
 Structured valued pruning accuracy impact
 Regular access pattern

Graphics Processing Units (GPUs) in ML Systems

[NVIDIA A100 Tensor Core
GPU Architecture,
Whitepaper, Aug 2020]

Presenter
Presentation Notes
Open ProblemMany sources of sparsity (inputs, transformations, selections)Broader support for efficient sparsity exploitation required

18

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Field-Programmable Gate Arrays
(FPGAs) in ML Systems

19

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

FPGA Overview
 FPGA Definition

 Integrated circuit that
allows configuring
custom hardware designs

 Reconfiguration in <1s
 HW description language:

e.g.., VHDL, Verilog

 FPGA Components
 #1 lookup table (LUT)

as logic gates
 #2 flip-flops (registers)
 #3 interconnect network
 Additional memory and DSPs

 Specialized neural networks
and kernel implementations

Field-Programmable Gate Arrays (FPGAs) in ML Systems

[Credit: https://intel.com]

Presenter
Presentation Notes
VHDL: Very High Speed Integrated Circuit Hardware Description LanguageLUTs (bit-oriented logic, 4-input, 6-input lookup tables) 24x17bits 403 LUTs multiply vs 17 LUTs addDSP (word-oriented multiply-accumulate)

20

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Example FPGA Characteristics
 Intel (Altera) Stratix 10 SoC FPGA

 64bit quad-core ARM
 10 TFLOPs FP32
 80GFLOPs/W
 Other configurations w/ HBM2

 Xilinx Virtex UltraSCALE+
 DSP: 21.2 TMACs
 64MB on-chip memory
 8GB HBM2 w/ 460GB/s

Field-Programmable Gate Arrays (FPGAs) in ML Systems

Presenter
Presentation Notes
Other Intel FPGA families: Stratix (high-end), Arria (embedded), Cyclone (cost), MAX (mobile)

21

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

FPGAs in Microsoft’s Data Centers
 Microsoft Catapult

 Dual-socket Xeon w/ PCIe-attached FPGA
 Pre-filtering neural networks, compression, and other workloads

Field-Programmable Gate Arrays (FPGAs) in ML Systems

[Adrian M. Caulfield et al.: A cloud-
scale acceleration architecture.

MICRO 2016]

Presenter
Presentation Notes
NIC .. network interface card

22

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

FPGAs in Microsoft’s Data Centers, cont.
 Microsoft Brainwave

 ML serving w/ low latency (e.g., Bing)
 Intel Stratix 10 FPGA
 Distributed

model parallelism,
precision-adaptable

 Peak 39.5 TFLOPs

 Brainwave NPU
 Neural

processing unit
 Dense matrix-vector

multiplication

Field-Programmable Gate Arrays (FPGAs) in ML Systems

[Eric S. Chung et al: Serving DNNs in
Real Time at Datacenter Scale with

Project Brainwave. IEEE Micro 2018]

23

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Example DM Cluster Node
2x Intel Xeon Gold 6238 (112 vcores, 7.7 TFLOP/s),
768 GB DDR4 RAM, 12x 2TB SSDs, NVIDIA T4 GPU (8.1 TFLOP/s,
16 GB), and Intel FPGA PAC D5005 (w/ Stratix 10SX FPGA, 32 GB)

Field-Programmable Gate Arrays (FPGAs) in ML Systems

Intel PAC D5005
Stratix 10 FPGA

Broadcom 2x10G
RDMA Ethernet

2 x Intel Xeon
Gold 6238R

Adaptec 12G SAS

Nvidia Tesla T4

768 GB RAM

24

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Application-Specific Integrated Circuit
(ASICs) and other HW Accelerators

25

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Overview ASICs
 Motivation

 Additional improvements of performance, power/energy
 Additional specialization via custom hardware

 #1 General ASIC DL Accelerators
 HW support for matrix multiply, convolution and activation functions
 Examples: Google TPU, NVIDIA DLA (in NVIDIA Xavier SoC), Intel Nervana NNP

 #2 Specialized ASIC Accelerators
 Custom instructions for specific domains such as computer vision
 Example: (Cadence) Tensilica Vision processor (image processing)

 #3 Other Accelerators/Technologies (some skepticism)
 a) Neuromorphic computing / spiking neural networks

(e.g., SyNAPSE IBM TrueNorth, HP memristor for computation storage)
 b) Analog computing (especially for ultra-low precision/quantization)

ASICs and other HW Accelerators

26

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Tensor Processing Unit (TPU v1)
 Motivation

 Cost-effective ML scoring (no training)
 Latency- and throughput-oriented
 Improve cost-performance over GPUs by 10x

 Architecture
 256x256 8bit

matrix multiply unit
(systolic array
 pipelining)

 64K MAC per cycle
(92 TOPs at 8 bit)

 50% if one input 16bit
 25% if all inputs 16 bit

ASICs and other HW Accelerators

[Norman P. Jouppi et al:
In-Datacenter Performance

Analysis of a Tensor Processing
Unit. ISCA 2017]

27

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Tensor Processing Unit (TPU v2)
 Motivation

 Cost effective ML training (not scoring)
because edge device w/ custom inference
but training in data centers

 Unveiled at Google I/O 2017
 Board w/ 4 TPU chips
 Pod w/ 64 boards

and custom
high-speed network

 Shelf w/ 2 boards or
1 processor

 Cloud Offering (beta)
 Min 32 cores
 Max 512 cores

ASICs and other HW Accelerators

28

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Tensor Processing Unit (TPU v3)
 Motivation

 Competitive cost-performance compared
to state-of-the-art GPUs

 Unveiled at Google I/O 2018
 Added liquid cooling
 Twice as many racks per pod, twice as many TPUs per rack
 TPUv3 promoted as 8x higher performance than TPUv2

 Cloud Offering
(beta)
 Min 32 cores
 Max 2048 cores

(~100PFLOPs)

ASICs and other HW Accelerators

[TOP 500 Supercomputers:
Summit @ Oak Ridge NL (‘18):
200.7 PFLOP/s (2.4M cores)]

Presenter
Presentation Notes
TPU v4 unveiled at Google I/O 2022[Norman P. Jouppi et al: Ten Lessons From Three Generations Shaped Google’s TPUv4i, ISCA 2021,https://www.gwern.net/docs/ai/scaling/hardware/2021-jouppi.pdf]Abstract: Google deployed several TPU generations since�2015, teaching us lessons that changed our views: semi-�conductor technology advances unequally; compiler�compatibility trumps binary compatibility, especially for�VLIW domain-specific architectures (DSA); target total�cost of ownership vs initial cost; support multi-tenancy;�deep neural networks (DNN) grow 1.5X annually; DNN�advances evolve workloads; some inference tasks require�floating point; inference DSAs need air-cooling; apps�limit latency, not batch size; and backwards ML�compatibility helps deploy DNNs quickly. These lessons�molded TPUv4i, an inference DSA deployed since 2020.

29

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Recap: Operator Fusion and Code Generation
 TVM: Code Generation for HW Accelerators

 Graph- /operator-level optimizations for
embedded and HW accelerators

 Lack of low-level instruction set!
 Schedule Primitives

 Loop
Transform

 Thread
Binding

 Compute
Locality

 Tensorization
 Latency

Hiding

 Apache

ASICs and other HW Accelerators

[Tianqi Chen et al: TVM:
An Automated End-to-End Optimizing

Compiler for Deep Learning. OSDI 2018]

30

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

SambaNova
 Overview

 Reconfigurable data flow architecture
 Based on hierarchical parallel patterns

(map, zip, reduce, flatMap, groupBy)
 Reconfigurable Dataflow Unit (RDU),

100s of TFLOPs, 100s MB on chip

 Mapping of Dataflow
Computation
 DNN / ML
 Graph processing
 SQL query processing

ASICs and other HW Accelerators

[Kunle Olukotun: Let the Data Flow!,
CIDR 2021, https://www.youtube.com/watch?v=iHhHHBuk3W4,

SDSC 2020, https://www.youtube.com/watch?v=E7se0KEa4BY]

reconfigure
in ~1-10ms

Presenter
Presentation Notes
VC capital: total $1.1B funding (676M by Apr 13 2021), $5B valuation (2021)https://www.crunchbase.com/organization/sambanova-systems

https://www.youtube.com/watch?v=iHhHHBuk3W4
https://www.youtube.com/watch?v=E7se0KEa4BY

31

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Caching, Partitioning, and
Indexing

32

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Scan Sharing
 #1 Batching

 One-pass evaluation of multiple configurations
 Use cases: EL, CV, feature selection,

hyper parameter tuning, multi-user scoring
 E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14]

 #2 Fused Operator DAGs
 Avoid unnecessary scans, (e.g., mmchain)
 Avoid unnecessary writes / reads
 Multi-aggregates, redundancy
 E.g.: SystemML codegen [PVLDB’18]

 #3 Runtime Piggybacking
 Merge concurrent data-parallel jobs
 “Wait-Merge-Submit-Return”-loop
 E.g.: SystemML parfor [PVLDB’14]

Caching, Partitioning, and Indexing

Xm

n

k

O(m*n)
read

O(m*n*k)
compute

m >> n >> k

parfor(i in 1:numModels)
while(!converged)

q = X %*% v; ...

X Y

b(*)u(^2) u(^2)

sumsum sum
Multi-Aggregate

a = sum(X^2)
b = sum(X*Y)
c = sum(Y^2)

33

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Distributed Partitioning
 Spark RDD Partitioning

 Implicitly on every data shuffling
 Explicitly via R.repartition(n)

 Distributed Joins
 R3 = R1.join(R2)

 Single-Key Lookups v = C.lookup(k)
 Without partitioning: scan all keys (reads/deserializes out-of-core data)
 With partitioning: lookup partition, scan keys of partition

 Multi-Key Lookups
 Without partitioning:

scan all keys
 With partitioning:

lookup relevant partitions

Caching, Partitioning, and Indexing

Example Hash Partitioning:
For all (k,v) of R:

hash(k) % numPartitions pid

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

//build hashset of required partition ids
HashSet<Integer> flags = new HashSet<>();
for(MatrixIndexes key : filter)

flags.add(partitioner.getPartition(key));

//create partition pruning rdd
ppRDD = PartitionPruningRDD.create(in.rdd(),

new PartitionPruningFunction(flags));

% 3

34

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Linearized Array B-Tree (LAB-Tree)
 Basic Ideas

 B-tree over linearized array representation
(e.g., row-/col-major, Z-order, UDF)

 New leaf splitting strategies; dynamic leaf storage format (sparse and dense)
 Various flushing policies for update batching (all, LRU, smallest page, largest

page, largest page probabilistically, largest group)

Caching, Partitioning, and Indexing

#1 Example linearized
storage order

#2 Example linearized
iterator order

[Yi Zhang, Kamesh Munagala,
Jun Yang: Storing Matrices on

Disk: Theory and Practice
Revisited. PVLDB 2011]

35

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Adaptive Tile (AT) Matrix
 Basic Ideas

 Two-level blocking and NUMA-aware
range partitioning (tiles, blocks)

 Z-order linearization, and recursive
quad-tree partitioning to find var-sized tiles (tile contains N blocks)

Caching, Partitioning, and Indexing

[David Kernert, Wolfgang Lehner, Frank
Köhler: Topology-aware optimization of big
sparse matrices and matrix multiplications

on main-memory systems. ICDE 2016]

Input Matrix Z-ordering

block tiles

Density Map
(see sparsity est.)

36

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

TileDB Storage Manager
 Basic Ideas

 Storage manager for 2D arrays of
different data types (incl. vector, 3D)

 Two-level blocking (space/data tiles), update batching via fragments

Caching, Partitioning, and Indexing

[Stavros Papadopoulos, Kushal Datta, Samuel
Madden, Timothy G. Mattson: The TileDB

Array Data Storage Manager. PVLDB 2016]

https://docs.tiledb.com

Presenter
Presentation Notes
TileDB Inc startup, $20M funding: TileDB Cloud, a commercial SaaS offering for planet-scale data sharing and serverless distributed computations.

https://docs.tiledb.com/

37

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Pipelining for Mini-batch Algorithms
 Motivation

 Overlap data access and computation in mini-batch algorithms (e.g., DNN)
 Simple pipelining of I/O and compute via queueing / prefetching

 Example TensorFlow
 #1 Queueing

and Threading

 #2 Dataset API
Prefetching

 #3 Reuse via
Data Echoing

Caching, Partitioning, and Indexing

dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=1)

[https://www.tensorflow
.org/guide/performance/

datasets]

[https://ai.googleblog.com/
2020/05/speeding-up-neural-

network-training.html]

https://www.tensorflow.org/guide/performance/datasets
https://ai.googleblog.com/2020/05/speeding-up-neural-network-training.html

38

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Lossy and Lossless Compression

39

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Motivation: Data Characteristics
 Tall and Skinny

(#rows >> #cols)

 Non-Uniform
Sparsity

 Small Column
Cardinalities

 Small Val Range

 Column
Correlations
(on census:
12.8x 35.7x)

Lossy and Lossless Compression

Covtype Mnist8mImageNet

Higgs Census

Presenter
Presentation Notes
Note: small column cardinalities (e.g., categorical, dummy-coded)

40

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Recap: Database Compression Schemes
 Null Suppression

 Compress integers by omitting
leading zero bytes/bits (e.g., NS, gamma)

 Run-Length Encoding
 Compress sequences of equal values by

runs of (value, start, run length)

 Dictionary Encoding
 Compress column w/ few distinct values

as pos in dictionary (code size)

 Delta Encoding
 Compress sequence w/ small changes

by storing deltas to previous value

 Frame-of-Reference Encoding
 Compress values by storing delta to

reference value (outlier handling)

Lossy and Lossless Compression

00000000 00000000 00000000 01101010

106

11 01101010

1 1 1 1 7 7 7 7 7 3 3 3 3 3 3 ...

1,1,4 7,5,5 3,10,6

1 7 7 3 1 7 1 3 3 7 1 3 3 7 3 ...

1,3,7 dictionary (code size 2 bit)
1 3 3 2 1 3 1 2 2 3 1 2 2 3 2 ...

20 21 22 20 19 18 19 20 21 20 ...
0 1 1 -2 -1 -1 1 1 1 -1...

20 21 22 20 71 70 71 69 70 21 ...

-1 0 1 -1 1 0 1 -1 0 -1 ...
21 70 22

41

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Overview Lossless Compression Techniques
 #1 Block-Level General-Purpose Compression

 Heavyweight or lightweight compression schemes
 Decompress matrices block-wise for each operation
 E.g.: Spark RDD compression (Snappy/LZ4),

SciDB SM [SSDBM’11], TileDB SM [PVLDB’16],
scientific formats NetCDF, HDF5 at chunk granularity

 #2 Block-Level Matrix Compression
 Compress matrix block with homogeneous encoding scheme
 Perform LA ops over compressed representation
 E.g.: CSR-VI (dict) [CF’08, TPDS’13], cPLS (grammar) [KDD’16],

TOC (LZW w/ trie) [SIGMOD’19]

 #3 Column-Group-Level Matrix Compression
 Compress column groups w/ heterogeneous schemes
 Perform LA ops over compressed representation
 E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB’16]

Lossy and Lossless Compression

Storage
Manager

Mdecompress
& deserialize

comp.
M

Dict.

D2D1

comp.
M

42

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

CLA: Compressed Linear Algebra
 Key Idea

 Use lightweight database compression techniques
 Perform LA operations on compressed matrices

 Goals of CLA
 Operations performance close to uncompressed
 Good compression ratios

Lossy and Lossless Compression

X

while(!converged) {
… q = X %*% v …

}

[Ahmed Elgohary et al:
Compressed Linear Algebra

for Large-Scale Machine
Learning. PVLDB 2016]

[SIGMOD Record’17,
VLDBJ’18, CACM’19]

43

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

CLA: Compressed Linear Algebra, cont.
 Overview Compression Framework

 Column-wise matrix compression (values + compressed offsets / references)
 Column co-coding (column groups, encoded as single unit)
 Heterogeneous column encoding formats (w/ dedicated physical encodings)

 Column Encoding
Formats
 Offset-List (OLE)
 Run-Length (RLE)
 Dense Dictionary

Coding (DDC)*
 Uncompressed

Columns (UC)

 Automatic Compression Planning (sampling-based)
 Select column groups and formats per group (data dependent)

Lossy and Lossless Compression

* DDC1/2
in VLDBJ’18

44

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

CLA: Compressed Linear Algebra, cont.
 Matrix-Vector Multiplication

 Naïve: for each tuple, pre-aggregate values, add values at offsets to q
Example: q = X v, with

 Cache-conscious: Horizontal,
segment-aligned scans, maintain positions

 Vector-Matrix Multiplication
 Naïve: cache-unfriendly on input (v)
 Cache-conscious: again use horizontal, segment-aligned scans

Lossy and Lossless Compression

9*11=99 0
0
0
0
0
0
0
0
0
0

90.2 55 25 54 6.3 99
99
99
99
0
0

99
99
99
0

99
99
99
99
0

90.2
99
99
99
0

154
99

154
99
0

90.2
99
99

154
0

154
124
154
99
25

90.2
124
124
154
25

154
124
154
153
25

144.2
124
124
154
25

160.3
124

160.3
153
31.3

144.2
124
124

160.3
25

 cache unfriendly
on output (q)

9 160.3
133

160.3
162
31.3

153.2
133
124

160.3
34

162.3
134.5
160.4
162.8
32.5
155

133.1
125.8
161.4
34.3

162.3
134.5
160.4
162.8
32.5
155

133.1
125.8
161.4
34.3

v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2)

45

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Compressed Linear Algebra Extended
 Lossless Matrix Compression

 Improved general applicability (compression time, new compression schemes,
new kernels, intermediates, workload-aware)

 Sparsity Redundancy exploitation
(data redundancy, structural redundancy)

 Workload-aware Compression
 Workload summary compression
 Compression execution planning

Lossy and Lossless Compression

[SIGMOD 2023]

46

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Tuple-oriented Compression (TOC)
 Motivation

 DNN and ML often trained
with mini-batch SGD

 Effective compression for small batches (#rows)

Lossy and Lossless Compression

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
oriented Compression for Large-scale Mini-batch

Stochastic Gradient Descent, SIGMOD 2019]

47

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Tuple-oriented Compression (TOC), cont.
 Example

Compression Ratios

Lossy and Lossless Compression

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
oriented Compression for Large-scale Mini-batch

Stochastic Gradient Descent, SIGMOD 2019]

Take-away: specialized lossless matrix compression
 reduce memory bandwidth requirements and #FLOPs

dense baseline?

48

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Lossy Compression
 Overview

 Extensively used in DNN (runtime vs accuracy) data format + compute
 Careful manual application regarding data and model
 Note: ML algorithms approximate by nature + noise generalization effect

 Background Floating Point Numbers (IEEE 754)
 Sign s, Mantissa m, Exponent e: value = s * m * 2e (simplified)

Lossy and Lossless Compression

Precision Sign Mantissa Exponent

Double (FP64) 1 52 11

Single (FP32) 1 23 8

Half (FP16) 1 10 5

Quarter (FP8) 1 3 4

Half-Quarter (FP4) 1 1 2

[bits]

49

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Low and Ultra-low FP Precision
 Model Training w/ low FP Precision

 Trend: from FP32/FP16 to FP8
 #1: Precision of intermediates (weights, act, errors, grad) loss in accuracy
 #2: Precision of accumulation impact on convergence (swamping s+L)
 #3: Precision of weight updates loss in accuracy

 Example ResNet18 over ImageNet

Lossy and Lossless Compression

see 05 Execution Strategies, SIMD
 speedup/reduced energy

#1 #2 #3

[Naigang Wang et al.: Training Deep
Neural Networks with 8-bit Floating

Point Numbers. NeurIPS 2018]

50

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Low and Ultra-low FP Precision, cont.
 Numerical Stable Accumulation

 #1 Sorting ASC + Summation
 #2 Kahan Summation

w/ error independent
of number of values n

 #3 Pairwise Summation
(divide & conquer)

 #4 Chunk-based Accumulation
 Divide long dot products into smaller chunks
 Hierarchy of partial sums FP16 accumulators

 #5 Stochastic Rounding
 Replace nearest w/ prob. rounding

Lossy and Lossless Compression

sumOld = sum;
sum = sum + (input + corr);
corr = (input + corr) – (sum – sumOld);

[N. Wang et al.: Training
Deep Neural Networks with

8-bit Floating Point
Numbers. NeurIPS 2018]

[Yuanyuan Tian, Shirish Tatikonda, Berthold
Reinwald: Scalable and Numerically Stable

Descriptive Statistics in SystemML. ICDE 2012]

uak+: 5.000000005E17 //sum(seq(1,1e9))
ua+: 5.0000000109721722E17
ua+: 5.0000000262154688E17 //rev

Presenter
Presentation Notes
Note: reproducibility of example Kahan additionn = 1e9x1 = seq(1,n);x2 = seq(n,1);ones = matrix(1,n,1)print("baseline: "+(n*(n+1)/2));print("agg1 : "+as.scalar(t(ones)%*%x1));print("agg2 : "+as.scalar(t(ones)%*%x2));print("kagg1 : "+sum(x1));print("kagg2 : "+sum(x2));

51

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Low and Ultra-low FP Precision – New Datatypes
 Google bfloat16

 “Brain” Float16 w/ range of FP32
 Drop in replacement for FP32,

no need for loss scaling

 Intel FlexPoint
 Blocks of values w/ shared exponent

(N=16bit w/ M=5bit exponent)
 Example: flex16+5

 NVIDIA TF32
 Range of FP32

w/ precision of FP16

Lossy and Lossless Compression

[Brennan Saeta: Training
Performance A user’s guide to

converge faster, TF Dev Summit 2018]

[Urs Köster et al.: Flexpoint: An Adaptive
Numerical Format for Efficient Training of

Deep Neural Networks. NeurIPS 2017]

[NVIDIA A100 Tensor Core GPU
Architecture - UNPRECEDENTED
ACCELERATION AT EVERY SCALE,

Whitepaper, Aug 2020]

52

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Fixed-Point Arithmetic
 Motivation

 Forward-pass for model scoring (inference) can be done in UINT8 and below
 Static, dynamic, and learned quantization schemes (weights and inputs)

 Quantization (reduce value domain)
 Split value domain into N buckets

such that k = log2 N can encode the data
 a) Static Quantization (e.g., min/max)

per tensor or per tensor channel

 b) Learned Quantization Schemes
 Dynamic programming
 Various heuristics
 Example systems:

ZipML, SketchML

Lossy and Lossless Compression

[Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce
Zhang: ZipML: Training Linear Models with End-to-End Low

Precision, and a Little Bit of Deep Learning. ICML 2017]

[https://blog.tensorflow.org/2020/04/
quantization-aware-training-with-tensorflow-

model-optimization-toolkit.html]

Recommended “Reading”
[Inside TensorFlow: Model Optimization Toolkit

(Quantization and Pruning), YouTube, 2020]

https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html

53

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Other Lossy Techniques
 #1 Sparsification/Pruning (reduce #non-zeros)

 Value clipping: zero-out very small values
below a threshold to reduce size of weights

 Training w/ target sparsity: remove connections

 #2 Mantissa Truncation
 Truncate m of FP32 from 23bit to 16bit
 E.g., TensorFlow (transfers), PStore

 #3 Aggregated Data Representations
 a) Dim reduction (e.g., auto encoders)
 b) No FK-PK joins in Factorized Learning

(foreign key as lossy compressed rep)

 #4 Sampling
 User specifies approximation contract for

error (regression/classification) and scale
 Min sample size for max likelihood estimators

Lossy and Lossless Compression

[Yongjoo Park et al: BlinkML:
Efficient Maximum Likelihood
Estimation with Probabilistic
Guarantees. SIGMOD 2019]

Sparse Accuracy NNZ
78.1% @ sp=1.0 27.1M
78.0% @ sp=0.5 13.6M

76.1% @ sp=0.25 6.8M
74.6% @ sp=0.125 3.3M

[Amir Ilkhechi et al: DeepSqueeze:
Deep Semantic Compression for

Tabular Data, SIGMOD 2020]

[Arun Kumar et al: To Join or Not to
Join?: Thinking Twice about Joins before

Feature Selection. SIGMOD 2016]

[Souvik Bhattacherjee et al: PStore: an
efficient storage framework for

managing scientific data. SSDBM 2014]

[https://blog.tensorflow.org/2019/05/tf-
model-optimization-toolkit-pruning-API.html]

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

54

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Summary and Q&A
 GPUs in ML Systems
 FPGAs in ML Systems
 ASICs and other HW Accelerators
 Caching, Partitioning, and Indexing
 Lossy and Lossless Compression

 Different Levels of Hardware Specialization
 General-purpose CPUs and GPUs
 FPGAs, DNN ASICs, and other technologies

 Different Levels of Data Layout Specialization
 Lossless caching, partitioning, indexing, compression
 Lossy compression, sparsification

High Impact on
Performance/Energy

Specialization w/o
Abstraction is harmful

	Architecture of ML Systems*�07 Hardware Accelerators and �Data Access Methods
	Categories of Execution Strategies
	Agenda
	Graphics Processing Units �(GPUs) in ML Systems
	DNN Challenges
	HW Challenges
	Towards Specialized Hardware
	NVIDIA Volta V100 – Specifications
	NVIDIA Volta V100 – Architecture
	Single Instruction Multiple Threads (SIMT)
	NVIDIA Volta V100 – Tensor Cores
	NVIDIA Ampere A100
	GPUs for DNN Training
	DNN Benchmarks
	Handling Memory Constraints
	Hybrid CPU/GPU Execution
	Sparsity in DNN
	Field-Programmable Gate Arrays �(FPGAs) in ML Systems
	FPGA Overview
	Example FPGA Characteristics
	FPGAs in Microsoft’s Data Centers
	FPGAs in Microsoft’s Data Centers, cont.
	Example DM Cluster Node
	Application-Specific Integrated Circuit�(ASICs) and other HW Accelerators
	Overview ASICs
	Tensor Processing Unit (TPU v1)
	Tensor Processing Unit (TPU v2)
	Tensor Processing Unit (TPU v3)
	Recap: Operator Fusion and Code Generation
	SambaNova
	Caching, Partitioning, and �Indexing
	Scan Sharing
	Distributed Partitioning
	Linearized Array B-Tree (LAB-Tree)
	Adaptive Tile (AT) Matrix
	TileDB Storage Manager
	Pipelining for Mini-batch Algorithms
	Lossy and Lossless Compression
	Motivation: Data Characteristics
	Recap: Database Compression Schemes
	Overview Lossless Compression Techniques
	CLA: Compressed Linear Algebra
	CLA: Compressed Linear Algebra, cont.
	CLA: Compressed Linear Algebra, cont.
	Compressed Linear Algebra Extended
	Tuple-oriented Compression (TOC)
	Tuple-oriented Compression (TOC), cont.
	Lossy Compression
	Low and Ultra-low FP Precision
	Low and Ultra-low FP Precision, cont.
	Low and Ultra-low FP Precision – New Datatypes
	Fixed-Point Arithmetic
	Other Lossy Techniques
	Summary and Q&A

