
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of ML Systems*
07 Hardware Accelerators and
Data Access Methods
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Aug 25, 2022

2

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Categories of Execution Strategies
Motivation and Terminology

07a Hybrid Execution and HW Accelerators

06a Data-Parallel
Execution

06b Task-Parallel
Execution

06c Parameter Servers
(data, model)

Mini-batchBatch
SIMD/SPMD

Batch/Mini-batch,
Independent Tasks

MIMD

07b Caching, Partitioning, Indexing, and Compression

3

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Agenda
 GPUs in ML Systems
 FPGAs in ML Systems
 ASICs and other HW Accelerators
 Caching, Partitioning, and Indexing
 Lossy and Lossless Compression

Iterative, I/O-bound ML
algorithms  Data access

crucial for performance

while(!converged) {
… q = X %*% v …

}

X

Data Weights

4

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Graphics Processing Units
(GPUs) in ML Systems

5

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

DNN Challenges
 #1 Larger Models

and Scoring Time

 #2 Training Time
 ResNet18: 10.76% error, 2.5 days training
 ResNet50: 7.02% error, 5 days training
 ResNet101: 6.21% error, 1 week training
 ResNet152: 6.16% error, 1.5 weeks training

 #3 Energy Efficiency

Graphics Processing Units (GPUs) in ML Systems

[Song Han: Efficient Methods and Hardware
for Deep Learning, Stanford cs231n, 2017]

6

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

HW Challenges
 #1 End of Dennard Scaling (~2005)

 Law: power stays proportional
to the area of the transistor

 Ignored leakage current / threshold voltage
 increasing power density S2 (power wall, heat)  stagnating frequency

 #2 End of Moore’s Law (~2010-20)
 Law: #transistors/performance/

CPU frequency doubles every
18/24 months

 Original: # transistors per chip
doubles every two years
at constant costs

 Now increasing costs (10/7/5nm)

 Consequences: Dark Silicon and Specialization

Motivation and Terminology

P = α CFV2 (power density 1)
(P .. Power, C .. Capacitance,
F .. Frequency, V .. Voltage)

[S. Markidis, E. Laure, N. Jansson, S.
Rivas-Gomez and S. W. D. Chien:

Moore’s Law and Dennard Scaling]

Presenter
Presentation Notes
Dennard Scaling: (scaling factor S of transistors)
 * # transistors: S^2
 * Capacitance: 1/S
 * Frequency: S
 * Device power V: 1/(S^2)
 * Alpha 1/2
(but V cannot be further reduced due to leakage (noise of neighboring transistors); capacity (current) of transistor -> the smaller the transistor, the smaller the frequency)

Gordon Moore (co-founder of Intel)

7

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Towards Specialized Hardware
 HW Specialization

 Additional Specialization
 Data Transfer & Types: e.g., low-precision, quantization
 Sparsity Exploitation: e.g., sparsification, exploit across ops,

defer weight decompression just before instruction execution
 Near-Data Processing: e.g., operations in main memory, storage class memory

(SCM), secondary storage (e.g., SSDs), and tertiary storage (e.g., tapes)

Motivation and Terminology

HW Devices

General Purpose Specialized HW

CPU GPU FPGAs ASICs

Throughput-oriented,
specialized instructions

programmable
logic

fixed logic

Caching,
Indexing and
Compression

SIMD

Presenter
Presentation Notes
Tradeoff: reconfiguration (CPU high, ASIC impossible) vs energy efficiency (ASIC high, CPU low)

8

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

NVIDIA Volta V100 – Specifications
Graphics Processing Units (GPUs) in ML Systems

 Tesla V100 NVLink
 FP64: 7.8 TFLOPs, FP32: 15.7 TFLOPs
 DL FP16: 125 TFLOPs
 NVLink: 300GB/s
 Device HBM: 32 GB (900 GB/s)
 Power: 300 W

 Tesla V100 PCIe
 FP64: 7 TFLOPs, FP32: 14 TFLOPs
 DL FP16: 112 TFLOPs
 PCIe: 32 GB/s
 Device HBM: 16 GB (900 GB/s)
 Power: 250 W

[Credit: https://nvidia.com/de-de/
data-center/tesla-v100/]

9

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

NVIDIA Volta V100 – Architecture
 6 GPU Processing Clusters (GPCs)

 7 Texture Processing Clusters (TPC)
 14 Streaming Multiprocessors (SM)

Graphics Processing Units (GPUs) in ML Systems

[NVIDIA Tesla V100
GPU Architecture,

Whitepaper, Aug 2017]

 SM Architecture
 FP64 cores: 32
 FP32 cores: 64
 INT32 cores: 64
 “Tensor cores”: 8
 Max warps /SM: 64
 Threads/warp: 32

10

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Single Instruction Multiple Threads (SIMT)
 32 Threads grouped to warps and execute in SIMT model

 Pascal P100
Execution Model
 Warps use a

single program
counter +
active mask

 Volta V100
Execution Model
 Independent

thread scheduling
 Per-thread

program counters
and call stacks

 New __syncwarp() primitive (if needed) + convergence optimizer

Graphics Processing Units (GPUs) in ML Systems

Thread Divergence

11

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

NVIDIA Volta V100 – Tensor Cores
 “Tensor Core”

 Specialized instruction for 4x4 by 4x4 fused matrix multiply
 Two FP16 inputs and FP32 accumulator
 Exposed as warp-level matrix operations w/ special load, mm, acc, and store

Graphics Processing Units (GPUs) in ML Systems

D = A %*% B + C
64 FMA

operations

[Bill Dally: Hardware
for Deep Learning.

SysML 2018]

12

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

NVIDIA Ampere A100
 Specification

 7nm, 8 GPC x 8 TPC * 2 SM = 128 SMs, 40GB HBM
 FP64: 9.7 TFLOPs / FP64 TensorCore: 19.5 TFLOPs
 FP32 19.5 TFLOPs, FP16: 78 TFLOPs, BF16: 39 TFLOPs
 TF32 TensorCore 156 TFLOPs / 312 TFLOPs (sparse)
 FP16 TensorCore 312 TFLOPs / 624 TFLOPs (sparse), INT8, INT4

 New Features
 New generation of “TensorCores” (FP64, new data types: TF32, BF16)
 Fine-grained sparsity exploitation
 Multi-instance GPU (MIG) virtualization: up to 7 virtual GPU instances
 Link technologies: NVLink 3 (25GB/s bidirectional) x 12 links = 600GB/s
 Submission of task graphs (launch a workflow of kernels)

Graphics Processing Units (GPUs) in ML Systems

[NVIDIA A100 Tensor Core GPU Architecture -
UNPRECEDENTED ACCELERATION AT

EVERY SCALE, Whitepaper, Aug 2020]

13

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

GPUs for DNN Training
 GPUs for DNN Training (2009)

 Deep belief networks
 Sparse coding

 Multi-GPU Learning (Now)
 Exploit multiple GPUs with a mix of

data- and model-parallel parameter servers
 Dedicated ML systems for multi-GPU learning
 Dedicated HW: e.g., NVIDIA DGX-1 (8xP100),

NVIDIA DGX-2 (16xV100, NVSwitch),
NVIDIA DGX A100 (8x A100, NVSwitch, Mellanox)

 New GPU Link Technologies (NVSwitch + NVLink 1.0 / 2.0 / 3.0)

 DNN Framework support
 All specialized DNN frameworks have very good support for GPU training
 Most of them also support multi-GPU training

Graphics Processing Units (GPUs) in ML Systems

[Rajat Raina, Anand Madhavan, Andrew Y. Ng:
Large-scale deep unsupervised learning using

graphics processors. ICML 2009]

14

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

DNN Benchmarks
Graphics Processing Units (GPUs) in ML Systems

[MLPerf v0.6: https://mlperf.org/training-results-0-6/,
MLPerf v0.7: https://mlperf.org/training-results-0-7]

96 x DGX-2H = 96 * 16 = 1536 V100 GPUs
 ~ 96 * $400K = $35M – $40M

[https://www.forbes.com/sites/tiriasresearch/2019/
06/19/nvidia-offers-a-turnkey-supercomputer-the-

dgx-superpod/#693400f43ee5]

V0.6

Presenter
Presentation Notes
V07: up to 4096 (regular), 16384 (HPC)

https://mlperf.org/training-results-0-6/
https://mlperf.org/training-results-0-7
https://www.forbes.com/sites/tiriasresearch/2019/06/19/nvidia-offers-a-turnkey-supercomputer-the-dgx-superpod/#693400f43ee5

15

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Handling Memory Constraints
 Problem: Limited Device Memory

 #1 Live Variable Analysis
 Remove intermediates ASAP
 Examples: SystemML, TensorFlow, MXNet, Superneurons, MONeT

 #2 GPU-CPU Eviction
 Evict variables from GPU to CPU memory under memory pressure
 Examples: SystemML, Superneurons, GeePS, (TensorFlow)

 #3 Recomputation
 Recompute inexpensive operations (e.g., activations of forward pass)
 Examples: MXNet, Superneurons, MONet

 #4 Reuse Allocations
 Reuse allocated matrices and tensors via free lists, but fragmentation
 Examples: SystemML, Superneurons, MONet

 #5 Physical Operator Selection
 Different tradeoffs of performance and size of intermediates (MONet)

Graphics Processing Units (GPUs) in ML Systems

[Linnan Wang et al: Superneurons: dynamic
GPU memory management for training

deep neural networks. PPOPP 2018]

Presenter
Presentation Notes
MONeT: Aashaka Shah, Chao-Yuan Wu, Jayashree Mohan, Vijay Chidambaram, Philipp Krähenbühl: Memory Optimization for Deep Networks. ICLR 2021

16

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Hybrid CPU/GPU Execution
 Manual Placement

 Most DNN frameworks allow manual placement of
variables and operations on individual CPU/GPU devices

 Heuristics and intuition of human experts

 Automatic Placement
 Sequence-to-sequence model to predict

which operations should run on which device
 Examples:

Graphics Processing Units (GPUs) in ML Systems

[Azalia Mirhoseini et al: Device
Placement Optimization with

Reinforcement Learning.
ICML 2017]

Inception V3

Neural
MT graph

Presenter
Presentation Notes
Note: white: CPU; colors: different GPU devices
Sequence-to-sequence model with attention (encoder-decoder  operator sequence to device sequence)

17

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Sparsity in DNN
 State-of-the-art

 Very limited support of sparse tensors in TensorFlow, PyTorch, etc
 GPU operations for linear algebra (cuSparse), early support in ASICs
 Problem: Irregular structures of sparse matrices/tensors

 Common Techniques
 #1: Blocking/clustering of rows/columns by number of non-zeros
 #2: Padding rows/columns to common number of non-zeros

 Example A100 Sparsity Exploitation
 Constraint: 2 non-zeros in block of 4
 Structured valued pruning  accuracy impact
 Regular access pattern

Graphics Processing Units (GPUs) in ML Systems

[NVIDIA A100 Tensor Core
GPU Architecture,
Whitepaper, Aug 2020]

Presenter
Presentation Notes
Open Problem
Many sources of sparsity (inputs, transformations, selections)
Broader support for efficient sparsity exploitation required

18

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Field-Programmable Gate Arrays
(FPGAs) in ML Systems

19

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

FPGA Overview
 FPGA Definition

 Integrated circuit that
allows configuring
custom hardware designs

 Reconfiguration in <1s
 HW description language:

e.g.., VHDL, Verilog

 FPGA Components
 #1 lookup table (LUT)

as logic gates
 #2 flip-flops (registers)
 #3 interconnect network
 Additional memory and DSPs

 Specialized neural networks
and kernel implementations

Field-Programmable Gate Arrays (FPGAs) in ML Systems

[Credit: https://intel.com]

Presenter
Presentation Notes
VHDL: Very High Speed Integrated Circuit Hardware Description Language
LUTs (bit-oriented logic, 4-input, 6-input lookup tables)  24x17bits 403 LUTs multiply vs 17 LUTs add
DSP (word-oriented multiply-accumulate)

20

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Example FPGA Characteristics
 Intel (Altera) Stratix 10 SoC FPGA

 64bit quad-core ARM
 10 TFLOPs FP32
 80GFLOPs/W
 Other configurations w/ HBM2

 Xilinx Virtex UltraSCALE+
 DSP: 21.2 TMACs
 64MB on-chip memory
 8GB HBM2 w/ 460GB/s

Field-Programmable Gate Arrays (FPGAs) in ML Systems

Presenter
Presentation Notes
Other Intel FPGA families: Stratix (high-end), Arria (embedded), Cyclone (cost), MAX (mobile)

21

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

FPGAs in Microsoft’s Data Centers
 Microsoft Catapult

 Dual-socket Xeon w/ PCIe-attached FPGA
 Pre-filtering neural networks, compression, and other workloads

Field-Programmable Gate Arrays (FPGAs) in ML Systems

[Adrian M. Caulfield et al.: A cloud-
scale acceleration architecture.

MICRO 2016]

Presenter
Presentation Notes
NIC .. network interface card

22

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

FPGAs in Microsoft’s Data Centers, cont.
 Microsoft Brainwave

 ML serving w/ low latency (e.g., Bing)
 Intel Stratix 10 FPGA
 Distributed

model parallelism,
precision-adaptable

 Peak 39.5 TFLOPs

 Brainwave NPU
 Neural

processing unit
 Dense matrix-vector

multiplication

Field-Programmable Gate Arrays (FPGAs) in ML Systems

[Eric S. Chung et al: Serving DNNs in
Real Time at Datacenter Scale with

Project Brainwave. IEEE Micro 2018]

23

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Example DM Cluster Node
2x Intel Xeon Gold 6238 (112 vcores, 7.7 TFLOP/s),
768 GB DDR4 RAM, 12x 2TB SSDs, NVIDIA T4 GPU (8.1 TFLOP/s,
16 GB), and Intel FPGA PAC D5005 (w/ Stratix 10SX FPGA, 32 GB)

Field-Programmable Gate Arrays (FPGAs) in ML Systems

Intel PAC D5005
Stratix 10 FPGA

Broadcom 2x10G
RDMA Ethernet

2 x Intel Xeon
Gold 6238R

Adaptec 12G SAS

Nvidia Tesla T4

768 GB RAM

24

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Application-Specific Integrated Circuit
(ASICs) and other HW Accelerators

25

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Overview ASICs
 Motivation

 Additional improvements of performance, power/energy
 Additional specialization via custom hardware

 #1 General ASIC DL Accelerators
 HW support for matrix multiply, convolution and activation functions
 Examples: Google TPU, NVIDIA DLA (in NVIDIA Xavier SoC), Intel Nervana NNP

 #2 Specialized ASIC Accelerators
 Custom instructions for specific domains such as computer vision
 Example: (Cadence) Tensilica Vision processor (image processing)

 #3 Other Accelerators/Technologies (some skepticism)
 a) Neuromorphic computing / spiking neural networks

(e.g., SyNAPSE IBM TrueNorth, HP memristor for computation storage)
 b) Analog computing (especially for ultra-low precision/quantization)

ASICs and other HW Accelerators

26

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Tensor Processing Unit (TPU v1)
 Motivation

 Cost-effective ML scoring (no training)
 Latency- and throughput-oriented
 Improve cost-performance over GPUs by 10x

 Architecture
 256x256 8bit

matrix multiply unit
(systolic array
 pipelining)

 64K MAC per cycle
(92 TOPs at 8 bit)

 50% if one input 16bit
 25% if all inputs 16 bit

ASICs and other HW Accelerators

[Norman P. Jouppi et al:
In-Datacenter Performance

Analysis of a Tensor Processing
Unit. ISCA 2017]

27

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Tensor Processing Unit (TPU v2)
 Motivation

 Cost effective ML training (not scoring)
because edge device w/ custom inference
but training in data centers

 Unveiled at Google I/O 2017
 Board w/ 4 TPU chips
 Pod w/ 64 boards

and custom
high-speed network

 Shelf w/ 2 boards or
1 processor

 Cloud Offering (beta)
 Min 32 cores
 Max 512 cores

ASICs and other HW Accelerators

28

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Tensor Processing Unit (TPU v3)
 Motivation

 Competitive cost-performance compared
to state-of-the-art GPUs

 Unveiled at Google I/O 2018
 Added liquid cooling
 Twice as many racks per pod, twice as many TPUs per rack
 TPUv3 promoted as 8x higher performance than TPUv2

 Cloud Offering
(beta)
 Min 32 cores
 Max 2048 cores

(~100PFLOPs)

ASICs and other HW Accelerators

[TOP 500 Supercomputers:
Summit @ Oak Ridge NL (‘18):
200.7 PFLOP/s (2.4M cores)]

Presenter
Presentation Notes
TPU v4 unveiled at Google I/O 2022
[Norman P. Jouppi et al: Ten Lessons From Three Generations Shaped Google’s TPUv4i, ISCA 2021,
https://www.gwern.net/docs/ai/scaling/hardware/2021-jouppi.pdf]

Abstract: Google deployed several TPU generations since�2015, teaching us lessons that changed our views: semi-�conductor technology advances unequally; compiler�compatibility trumps binary compatibility, especially for�VLIW domain-specific architectures (DSA); target total�cost of ownership vs initial cost; support multi-tenancy;�deep neural networks (DNN) grow 1.5X annually; DNN�advances evolve workloads; some inference tasks require�floating point; inference DSAs need air-cooling; apps�limit latency, not batch size; and backwards ML�compatibility helps deploy DNNs quickly. These lessons�molded TPUv4i, an inference DSA deployed since 2020.

29

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Recap: Operator Fusion and Code Generation
 TVM: Code Generation for HW Accelerators

 Graph- /operator-level optimizations for
embedded and HW accelerators

 Lack of low-level instruction set!
 Schedule Primitives

 Loop
Transform

 Thread
Binding

 Compute
Locality

 Tensorization
 Latency

Hiding

 Apache

ASICs and other HW Accelerators

[Tianqi Chen et al: TVM:
An Automated End-to-End Optimizing

Compiler for Deep Learning. OSDI 2018]

30

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

SambaNova
 Overview

 Reconfigurable data flow architecture
 Based on hierarchical parallel patterns

(map, zip, reduce, flatMap, groupBy)
 Reconfigurable Dataflow Unit (RDU),

100s of TFLOPs, 100s MB on chip

 Mapping of Dataflow
Computation
 DNN / ML
 Graph processing
 SQL query processing

ASICs and other HW Accelerators

[Kunle Olukotun: Let the Data Flow!,
CIDR 2021, https://www.youtube.com/watch?v=iHhHHBuk3W4,

SDSC 2020, https://www.youtube.com/watch?v=E7se0KEa4BY]

reconfigure
in ~1-10ms

Presenter
Presentation Notes
VC capital: total $1.1B funding (676M by Apr 13 2021), $5B valuation (2021)
https://www.crunchbase.com/organization/sambanova-systems

https://www.youtube.com/watch?v=iHhHHBuk3W4
https://www.youtube.com/watch?v=E7se0KEa4BY

31

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Caching, Partitioning, and
Indexing

32

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Scan Sharing
 #1 Batching

 One-pass evaluation of multiple configurations
 Use cases: EL, CV, feature selection,

hyper parameter tuning, multi-user scoring
 E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14]

 #2 Fused Operator DAGs
 Avoid unnecessary scans, (e.g., mmchain)
 Avoid unnecessary writes / reads
 Multi-aggregates, redundancy
 E.g.: SystemML codegen [PVLDB’18]

 #3 Runtime Piggybacking
 Merge concurrent data-parallel jobs
 “Wait-Merge-Submit-Return”-loop
 E.g.: SystemML parfor [PVLDB’14]

Caching, Partitioning, and Indexing

Xm

n

k

O(m*n)
read

O(m*n*k)
compute

m >> n >> k

parfor(i in 1:numModels)
while(!converged)

q = X %*% v; ...

X Y

b(*)u(^2) u(^2)

sumsum sum
Multi-Aggregate

a = sum(X^2)
b = sum(X*Y)
c = sum(Y^2)

33

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Distributed Partitioning
 Spark RDD Partitioning

 Implicitly on every data shuffling
 Explicitly via R.repartition(n)

 Distributed Joins
 R3 = R1.join(R2)

 Single-Key Lookups v = C.lookup(k)
 Without partitioning: scan all keys (reads/deserializes out-of-core data)
 With partitioning: lookup partition, scan keys of partition

 Multi-Key Lookups
 Without partitioning:

scan all keys
 With partitioning:

lookup relevant partitions

Caching, Partitioning, and Indexing

Example Hash Partitioning:
For all (k,v) of R:

hash(k) % numPartitions pid

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

//build hashset of required partition ids
HashSet<Integer> flags = new HashSet<>();
for(MatrixIndexes key : filter)

flags.add(partitioner.getPartition(key));

//create partition pruning rdd
ppRDD = PartitionPruningRDD.create(in.rdd(),

new PartitionPruningFunction(flags));

% 3

34

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Linearized Array B-Tree (LAB-Tree)
 Basic Ideas

 B-tree over linearized array representation
(e.g., row-/col-major, Z-order, UDF)

 New leaf splitting strategies; dynamic leaf storage format (sparse and dense)
 Various flushing policies for update batching (all, LRU, smallest page, largest

page, largest page probabilistically, largest group)

Caching, Partitioning, and Indexing

#1 Example linearized
storage order

#2 Example linearized
iterator order

[Yi Zhang, Kamesh Munagala,
Jun Yang: Storing Matrices on

Disk: Theory and Practice
Revisited. PVLDB 2011]

35

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Adaptive Tile (AT) Matrix
 Basic Ideas

 Two-level blocking and NUMA-aware
range partitioning (tiles, blocks)

 Z-order linearization, and recursive
quad-tree partitioning to find var-sized tiles (tile contains N blocks)

Caching, Partitioning, and Indexing

[David Kernert, Wolfgang Lehner, Frank
Köhler: Topology-aware optimization of big
sparse matrices and matrix multiplications

on main-memory systems. ICDE 2016]

Input Matrix Z-ordering

block tiles

Density Map
(see sparsity est.)

36

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

TileDB Storage Manager
 Basic Ideas

 Storage manager for 2D arrays of
different data types (incl. vector, 3D)

 Two-level blocking (space/data tiles), update batching via fragments

Caching, Partitioning, and Indexing

[Stavros Papadopoulos, Kushal Datta, Samuel
Madden, Timothy G. Mattson: The TileDB

Array Data Storage Manager. PVLDB 2016]

https://docs.tiledb.com

Presenter
Presentation Notes
TileDB Inc startup, $20M funding: TileDB Cloud, a commercial SaaS offering for planet-scale data sharing and serverless distributed computations.

https://docs.tiledb.com/

37

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Pipelining for Mini-batch Algorithms
 Motivation

 Overlap data access and computation in mini-batch algorithms (e.g., DNN)
 Simple pipelining of I/O and compute via queueing / prefetching

 Example TensorFlow
 #1 Queueing

and Threading

 #2 Dataset API
Prefetching

 #3 Reuse via
Data Echoing

Caching, Partitioning, and Indexing

dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=1)

[https://www.tensorflow
.org/guide/performance/

datasets]

[https://ai.googleblog.com/
2020/05/speeding-up-neural-

network-training.html]

https://www.tensorflow.org/guide/performance/datasets
https://ai.googleblog.com/2020/05/speeding-up-neural-network-training.html

38

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Lossy and Lossless Compression

39

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Motivation: Data Characteristics
 Tall and Skinny

(#rows >> #cols)

 Non-Uniform
Sparsity

 Small Column
Cardinalities

 Small Val Range

 Column
Correlations
(on census:
12.8x  35.7x)

Lossy and Lossless Compression

Covtype Mnist8mImageNet

Higgs Census

Presenter
Presentation Notes
Note: small column cardinalities (e.g., categorical, dummy-coded)

40

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Recap: Database Compression Schemes
 Null Suppression

 Compress integers by omitting
leading zero bytes/bits (e.g., NS, gamma)

 Run-Length Encoding
 Compress sequences of equal values by

runs of (value, start, run length)

 Dictionary Encoding
 Compress column w/ few distinct values

as pos in dictionary ( code size)

 Delta Encoding
 Compress sequence w/ small changes

by storing deltas to previous value

 Frame-of-Reference Encoding
 Compress values by storing delta to

reference value (outlier handling)

Lossy and Lossless Compression

00000000 00000000 00000000 01101010

106

11 01101010

1 1 1 1 7 7 7 7 7 3 3 3 3 3 3 ...

1,1,4 7,5,5 3,10,6

1 7 7 3 1 7 1 3 3 7 1 3 3 7 3 ...

1,3,7 dictionary (code size 2 bit)
1 3 3 2 1 3 1 2 2 3 1 2 2 3 2 ...

20 21 22 20 19 18 19 20 21 20 ...
0 1 1 -2 -1 -1 1 1 1 -1...

20 21 22 20 71 70 71 69 70 21 ...

-1 0 1 -1 1 0 1 -1 0 -1 ...
21 70 22

41

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Overview Lossless Compression Techniques
 #1 Block-Level General-Purpose Compression

 Heavyweight or lightweight compression schemes
 Decompress matrices block-wise for each operation
 E.g.: Spark RDD compression (Snappy/LZ4),

SciDB SM [SSDBM’11], TileDB SM [PVLDB’16],
scientific formats NetCDF, HDF5 at chunk granularity

 #2 Block-Level Matrix Compression
 Compress matrix block with homogeneous encoding scheme
 Perform LA ops over compressed representation
 E.g.: CSR-VI (dict) [CF’08, TPDS’13], cPLS (grammar) [KDD’16],

TOC (LZW w/ trie) [SIGMOD’19]

 #3 Column-Group-Level Matrix Compression
 Compress column groups w/ heterogeneous schemes
 Perform LA ops over compressed representation
 E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB’16]

Lossy and Lossless Compression

Storage
Manager

Mdecompress
& deserialize

comp.
M

Dict.

D2D1

comp.
M

42

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

CLA: Compressed Linear Algebra
 Key Idea

 Use lightweight database compression techniques
 Perform LA operations on compressed matrices

 Goals of CLA
 Operations performance close to uncompressed
 Good compression ratios

Lossy and Lossless Compression

X

while(!converged) {
… q = X %*% v …

}

[Ahmed Elgohary et al:
Compressed Linear Algebra

for Large-Scale Machine
Learning. PVLDB 2016]

[SIGMOD Record’17,
VLDBJ’18, CACM’19]

43

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

CLA: Compressed Linear Algebra, cont.
 Overview Compression Framework

 Column-wise matrix compression (values + compressed offsets / references)
 Column co-coding (column groups, encoded as single unit)
 Heterogeneous column encoding formats (w/ dedicated physical encodings)

 Column Encoding
Formats
 Offset-List (OLE)
 Run-Length (RLE)
 Dense Dictionary

Coding (DDC)*
 Uncompressed

Columns (UC)

 Automatic Compression Planning (sampling-based)
 Select column groups and formats per group (data dependent)

Lossy and Lossless Compression

* DDC1/2
in VLDBJ’18

44

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

CLA: Compressed Linear Algebra, cont.
 Matrix-Vector Multiplication

 Naïve: for each tuple, pre-aggregate values, add values at offsets to q
Example: q = X v, with

 Cache-conscious: Horizontal,
segment-aligned scans, maintain positions

 Vector-Matrix Multiplication
 Naïve: cache-unfriendly on input (v)
 Cache-conscious: again use horizontal, segment-aligned scans

Lossy and Lossless Compression

9*11=99 0
0
0
0
0
0
0
0
0
0

90.2 55 25 54 6.3 99
99
99
99
0
0

99
99
99
0

99
99
99
99
0

90.2
99
99
99
0

154
99

154
99
0

90.2
99
99

154
0

154
124
154
99
25

90.2
124
124
154
25

154
124
154
153
25

144.2
124
124
154
25

160.3
124

160.3
153
31.3

144.2
124
124

160.3
25

 cache unfriendly
on output (q)

9 160.3
133

160.3
162
31.3

153.2
133
124

160.3
34

162.3
134.5
160.4
162.8
32.5
155

133.1
125.8
161.4
34.3

162.3
134.5
160.4
162.8
32.5
155

133.1
125.8
161.4
34.3

v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2)

45

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Compressed Linear Algebra Extended
 Lossless Matrix Compression

 Improved general applicability (compression time, new compression schemes,
new kernels, intermediates, workload-aware)

 Sparsity  Redundancy exploitation
(data redundancy, structural redundancy)

 Workload-aware Compression
 Workload summary  compression
 Compression  execution planning

Lossy and Lossless Compression

[SIGMOD 2023]

46

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Tuple-oriented Compression (TOC)
 Motivation

 DNN and ML often trained
with mini-batch SGD

 Effective compression for small batches (#rows)

Lossy and Lossless Compression

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
oriented Compression for Large-scale Mini-batch

Stochastic Gradient Descent, SIGMOD 2019]

47

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Tuple-oriented Compression (TOC), cont.
 Example

Compression Ratios

Lossy and Lossless Compression

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
oriented Compression for Large-scale Mini-batch

Stochastic Gradient Descent, SIGMOD 2019]

Take-away: specialized lossless matrix compression
 reduce memory bandwidth requirements and #FLOPs

dense baseline?

48

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Lossy Compression
 Overview

 Extensively used in DNN (runtime vs accuracy)  data format + compute
 Careful manual application regarding data and model
 Note: ML algorithms approximate by nature + noise generalization effect

 Background Floating Point Numbers (IEEE 754)
 Sign s, Mantissa m, Exponent e: value = s * m * 2e (simplified)

Lossy and Lossless Compression

Precision Sign Mantissa Exponent

Double (FP64) 1 52 11

Single (FP32) 1 23 8

Half (FP16) 1 10 5

Quarter (FP8) 1 3 4

Half-Quarter (FP4) 1 1 2

[bits]

49

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Low and Ultra-low FP Precision
 Model Training w/ low FP Precision

 Trend: from FP32/FP16 to FP8
 #1: Precision of intermediates (weights, act, errors, grad)  loss in accuracy
 #2: Precision of accumulation impact on convergence (swamping s+L)
 #3: Precision of weight updates loss in accuracy

 Example ResNet18 over ImageNet

Lossy and Lossless Compression

see 05 Execution Strategies, SIMD
 speedup/reduced energy

#1 #2 #3

[Naigang Wang et al.: Training Deep
Neural Networks with 8-bit Floating

Point Numbers. NeurIPS 2018]

50

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Low and Ultra-low FP Precision, cont.
 Numerical Stable Accumulation

 #1 Sorting ASC + Summation
 #2 Kahan Summation

w/ error independent
of number of values n

 #3 Pairwise Summation
(divide & conquer)

 #4 Chunk-based Accumulation
 Divide long dot products into smaller chunks
 Hierarchy of partial sums  FP16 accumulators

 #5 Stochastic Rounding
 Replace nearest w/ prob. rounding

Lossy and Lossless Compression

sumOld = sum;
sum = sum + (input + corr);
corr = (input + corr) – (sum – sumOld);

[N. Wang et al.: Training
Deep Neural Networks with

8-bit Floating Point
Numbers. NeurIPS 2018]

[Yuanyuan Tian, Shirish Tatikonda, Berthold
Reinwald: Scalable and Numerically Stable

Descriptive Statistics in SystemML. ICDE 2012]

uak+: 5.000000005E17 //sum(seq(1,1e9))
ua+: 5.0000000109721722E17
ua+: 5.0000000262154688E17 //rev

Presenter
Presentation Notes
Note: reproducibility of example Kahan addition
n = 1e9
x1 = seq(1,n);
x2 = seq(n,1);
ones = matrix(1,n,1)
print("baseline: "+(n*(n+1)/2));
print("agg1 : "+as.scalar(t(ones)%*%x1));
print("agg2 : "+as.scalar(t(ones)%*%x2));
print("kagg1 : "+sum(x1));
print("kagg2 : "+sum(x2));

51

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Low and Ultra-low FP Precision – New Datatypes
 Google bfloat16

 “Brain” Float16 w/ range of FP32
 Drop in replacement for FP32,

no need for loss scaling

 Intel FlexPoint
 Blocks of values w/ shared exponent

(N=16bit w/ M=5bit exponent)
 Example: flex16+5

 NVIDIA TF32
 Range of FP32

w/ precision of FP16

Lossy and Lossless Compression

[Brennan Saeta: Training
Performance A user’s guide to

converge faster, TF Dev Summit 2018]

[Urs Köster et al.: Flexpoint: An Adaptive
Numerical Format for Efficient Training of

Deep Neural Networks. NeurIPS 2017]

[NVIDIA A100 Tensor Core GPU
Architecture - UNPRECEDENTED
ACCELERATION AT EVERY SCALE,

Whitepaper, Aug 2020]

52

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Fixed-Point Arithmetic
 Motivation

 Forward-pass for model scoring (inference) can be done in UINT8 and below
 Static, dynamic, and learned quantization schemes (weights and inputs)

 Quantization (reduce value domain)
 Split value domain into N buckets

such that k = log2 N can encode the data
 a) Static Quantization (e.g., min/max)

per tensor or per tensor channel

 b) Learned Quantization Schemes
 Dynamic programming
 Various heuristics
 Example systems:

ZipML, SketchML

Lossy and Lossless Compression

[Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce
Zhang: ZipML: Training Linear Models with End-to-End Low

Precision, and a Little Bit of Deep Learning. ICML 2017]

[https://blog.tensorflow.org/2020/04/
quantization-aware-training-with-tensorflow-

model-optimization-toolkit.html]

Recommended “Reading”
[Inside TensorFlow: Model Optimization Toolkit

(Quantization and Pruning), YouTube, 2020]

https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html

53

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Other Lossy Techniques
 #1 Sparsification/Pruning (reduce #non-zeros)

 Value clipping: zero-out very small values
below a threshold to reduce size of weights

 Training w/ target sparsity: remove connections

 #2 Mantissa Truncation
 Truncate m of FP32 from 23bit to 16bit
 E.g., TensorFlow (transfers), PStore

 #3 Aggregated Data Representations
 a) Dim reduction (e.g., auto encoders)
 b) No FK-PK joins in Factorized Learning

(foreign key as lossy compressed rep)

 #4 Sampling
 User specifies approximation contract for

error (regression/classification) and scale
 Min sample size for max likelihood estimators

Lossy and Lossless Compression

[Yongjoo Park et al: BlinkML:
Efficient Maximum Likelihood
Estimation with Probabilistic
Guarantees. SIGMOD 2019]

Sparse Accuracy NNZ
78.1% @ sp=1.0 27.1M
78.0% @ sp=0.5 13.6M

76.1% @ sp=0.25 6.8M
74.6% @ sp=0.125 3.3M

[Amir Ilkhechi et al: DeepSqueeze:
Deep Semantic Compression for

Tabular Data, SIGMOD 2020]

[Arun Kumar et al: To Join or Not to
Join?: Thinking Twice about Joins before

Feature Selection. SIGMOD 2016]

[Souvik Bhattacherjee et al: PStore: an
efficient storage framework for

managing scientific data. SSDBM 2014]

[https://blog.tensorflow.org/2019/05/tf-
model-optimization-toolkit-pruning-API.html]

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

54

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Summary and Q&A
 GPUs in ML Systems
 FPGAs in ML Systems
 ASICs and other HW Accelerators
 Caching, Partitioning, and Indexing
 Lossy and Lossless Compression

 Different Levels of Hardware Specialization
 General-purpose CPUs and GPUs
 FPGAs, DNN ASICs, and other technologies

 Different Levels of Data Layout Specialization
 Lossless caching, partitioning, indexing, compression
 Lossy compression, sparsification

High Impact on
Performance/Energy

Specialization w/o
Abstraction is harmful

	Architecture of ML Systems*�07 Hardware Accelerators and �Data Access Methods
	Categories of Execution Strategies
	Agenda
	Graphics Processing Units �(GPUs) in ML Systems
	DNN Challenges
	HW Challenges
	Towards Specialized Hardware
	NVIDIA Volta V100 – Specifications
	NVIDIA Volta V100 – Architecture
	Single Instruction Multiple Threads (SIMT)
	NVIDIA Volta V100 – Tensor Cores
	NVIDIA Ampere A100
	GPUs for DNN Training
	DNN Benchmarks
	Handling Memory Constraints
	Hybrid CPU/GPU Execution
	Sparsity in DNN
	Field-Programmable Gate Arrays �(FPGAs) in ML Systems
	FPGA Overview
	Example FPGA Characteristics
	FPGAs in Microsoft’s Data Centers
	FPGAs in Microsoft’s Data Centers, cont.
	Example DM Cluster Node
	Application-Specific Integrated Circuit�(ASICs) and other HW Accelerators
	Overview ASICs
	Tensor Processing Unit (TPU v1)
	Tensor Processing Unit (TPU v2)
	Tensor Processing Unit (TPU v3)
	Recap: Operator Fusion and Code Generation
	SambaNova
	Caching, Partitioning, and �Indexing
	Scan Sharing
	Distributed Partitioning
	Linearized Array B-Tree (LAB-Tree)
	Adaptive Tile (AT) Matrix
	TileDB Storage Manager
	Pipelining for Mini-batch Algorithms
	Lossy and Lossless Compression
	Motivation: Data Characteristics
	Recap: Database Compression Schemes
	Overview Lossless Compression Techniques
	CLA: Compressed Linear Algebra
	CLA: Compressed Linear Algebra, cont.
	CLA: Compressed Linear Algebra, cont.
	Compressed Linear Algebra Extended
	Tuple-oriented Compression (TOC)
	Tuple-oriented Compression (TOC), cont.
	Lossy Compression
	Low and Ultra-low FP Precision
	Low and Ultra-low FP Precision, cont.
	Low and Ultra-low FP Precision – New Datatypes
	Fixed-Point Arithmetic
	Other Lossy Techniques
	Summary and Q&A

