

SCIENCE PASSION TECHNOLOGY

Architecture of ML Systems* 07 Hardware Accelerators and Data Access Methods

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Categories of Execution Strategies

07_a Hybrid Execution and HW Accelerators

07_b Caching, Partitioning, Indexing, and Compression

Agenda

- GPUs in ML Systems
- FPGAs in ML Systems
- ASICs and other HW Accelerators
- Caching, Partitioning, and Indexing
- Lossy and Lossless Compression

Graphics Processing Units (GPUs) in ML Systems

DNN Challenges

#1 Larger Models and Scoring Time

#2 Training Time

- ResNet18: 10.76% error, 2.5 days training
- ResNet50: 7.02% error, 5 days training
- ResNet101: 6.21% error, 1 week training
- ResNet152: 6.16% error, 1.5 weeks training
- #3 Energy Efficiency

Efficient Methods and Hardware for Deep Learning Methods and Hardware for Methods and Hardware f

[Song Han: Efficient Methods and Hardware for Deep Learning, Stanford cs231n, 2017]

- #1 End of Dennard Scaling (~2005)
 - Law: power stays proportional to the area of the transistor

[S. Markidis, E. Laure, N. Jansson, S. Rivas-Gomez and S. W. D. Chien: Moore's Law and Dennard Scaling]

$P = \alpha CFV^2$ (power density 1)

(P...Power, C...Capacitance,

F .. Frequency, V .. Voltage)

Ignored leakage current / threshold voltage
 → increasing power density S² (power wall, heat) → stagnating frequency

#2 End of Moore's Law (~2010-20)

- Law: #transistors/performance/ CPU frequency doubles every 18/24 months
- Original: # transistors per chip doubles every two years at constant costs
- Now increasing costs (10/7/5nm)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

Consequences: Dark Silicon and Specialization

7

Towards Specialized Hardware

Additional Specialization

- Data Transfer & Types: e.g., low-precision, quantization
- Sparsity Exploitation: e.g., sparsification, exploit across ops, defer weight decompression just before instruction execution
- Near-Data Processing: e.g., operations in main memory, storage class memory (SCM), secondary storage (e.g., SSDs), and tertiary storage (e.g., tapes)

Caching,

Indexing and

Compression

NVIDIA Volta V100 – Specifications

Tesla V100 NVLink

- FP64: 7.8 TFLOPs, FP32: 15.7 TFLOPs
- DL FP16: 125 TFLOPs
- NVLink: 300GB/s
- Device HBM: 32 GB (900 GB/s)
- Power: 300 W

Tesla V100 PCIe

- FP64: 7 TFLOPs, FP32: 14 TFLOPs
- DL FP16: 112 TFLOPs
- PCIe: 32 GB/s
- Device HBM: 16 GB (900 GB/s)
- Power: 250 W

[Credit: https://nvidia.com/de-de/ data-center/tesla-v100/]

NVIDIA Volta V100 – Architecture

6 GPU Processing Clusters (GPCs)

- 7 Texture Processing Clusters (TPC)
- 14 Streaming Multiprocessors (SM)

SM																			
	L1 Instruction Cache																		
		L0 I	nstruc	tion <u>C</u>	ache		_	٦Г	L0 Instruction Cache										
	Warp Scheduler (32 thread/clk)										Warp Scheduler (32 thread/clk)								
Dispatch Unit (32 thread/clk)									Dispatch Unit (32 thread/clk)										
Register File (16,384 x 32-bit)									Register File (16,384 x 32-bit)										
FP64	INT	INT	FP32	FP32	+				FP6	54	INT	INT	FP32	FP32	-		$\square \square \square$		
FP64	INT	INT	FP32	FP32					FP6	54	INT	INT	FP32	FP32					
FP64	INT	INT	FP32	FP32	III.				FP6	64	INT	INT	FP32	FP32					
FP64	INT	INT	FP32	FP32	TEN	COD	TENSOR		FP6	64	INT	INT	FP32	FP32	TEN	COR	TENCOR		
FP64	INT	INT	FP32	FP32	CC	ORE	CORE		FP6	34	INT	INT	FP32	FP32	CC	ORE	CORE		
EP64	INT	INT	FP32	FP32					FRE	14	INT	INT	FP32	EP32					
EDEA	INT	INT	6032	ED22					EDe		INT	INT	6022	6022					
FP64			FP32	FP32					FPG				FP-32						
FP64	INT	INT	FP32	FP32					FP6	54	INT	INT	FP32	FP32					
ST ST	ST	ST	ST	ST	ST	ST	SFU		ST	ST	ST	ST	ST	ST	ST	ST	SFU		
		L0 h	nstruc	tion C	ache			٦Ē		_		L0 li	nstruc	tion C	ache				
Warp Scheduler (32 thread/clk)								Warp Scheduler (32 thread/clk)											
	Di	spatc	h Unit	(32 th	read/o	cik)					Di	spatcl	h Unit	(32 th	read/o	clk)			
	Reg	jister	File ('	16,384	4 x 32	2-bit)			Register File (16,384 x 32-bit)										
FP64	INT	INT	FP32	FP32	F				FP6	54	INT	INT	FP32	FP32					
FP64	INT	INT	FP32	FP32					FP6	i 4	INT	INT	FP32	FP32					
FP64	INT	INT	FP32	FP32	H				FP6	54	INT	INT	FP32	FP32					
FP64	INT	INT	FP32	FP32	TEN	ISOR	TENSOR		FP6	64	INT	INT	FP32	FP32	TEN	ISOR	TENSOR		
FP64	INT	INT	FP32	FP32	cc	DRE	CORE		FP6	54	INT	INT	FP32	FP32	cc	DRE	CORE		
FP64	INT	INT	FP32	FP32	H				FP6	64	INT	INT	FP32	FP32					
FP64	INT	INT	FP32	FP32					FP6	34	INT	INT	FP32	FP32					
FP64	INT	INT	FP32	FP32					FP6	54	INT	INT	FP32	FP32					
LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU		LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU		
						128K	3 L1 Data <u>Ca</u>	L che	/ Shar	ed M	emory	1							
	Tex		1			Tex		1			Tex					Tex			
				-										-					

		PCI Express 3.	0 Host Interface	
нвиг 11 11 vory Controller Memory Controller				
HBM2 th Memory Controller Wee				
tt Memory Controller		The tree of the tr		Manage Catalogue

SM Architecture

- FP64 cores: 32
- FP32 cores: 64
- INT32 cores: 64
- "Tensor cores": 8
- Max warps /SM: 64
- Threads/warp: 32

10 Single Instruction Multiple Threads (SIMT)

32 Threads grouped to warps and execute in SIMT model

z;

- Pascal P100 **Execution Model**
 - Warps use a single program counter + active mask

Volta V100 **Execution Model**

- Independent thread scheduling
- Per-thread program counters and call stacks

- New **syncwarp()** primitive (if needed) + **convergence optimizer**

Z;

Time

Thread Divergence

X; Y;

¹¹ NVIDIA Volta V100 – Tensor Cores

- "Tensor Core"
 - Specialized instruction for 4x4 by 4x4 fused matrix multiply

D = A % * % B + C

- Two FP16 inputs and FP32 accumulator
- Exposed as warp-level matrix operations w/ special load, mm, acc, and store

SysML 2018]

[Bill Dally: Hardware for Deep Learning.

NVIDIA Ampere A100

Specification

- 7nm, 8 GPC x 8 TPC * 2 SM = 128 SMs, 40GB HBM
- FP64: 9.7 TFLOPs / FP64 TensorCore: 19.5 TFLOPs
- FP32 19.5 TFLOPs, FP16: 78 TFLOPs, BF16: 39 TFLOPs
- TF32 TensorCore 156 TFLOPs / 312 TFLOPs (sparse)
- FP16 TensorCore 312 TFLOPs / 624 TFLOPs (sparse), INT8, INT4

New Features

- New generation of "TensorCores" (FP64, new data types: TF32, BF16)
- Fine-grained sparsity exploitation
- Multi-instance GPU (MIG) virtualization: up to 7 virtual GPU instances
- Link technologies: NVLink 3 (25GB/s bidirectional) x 12 links = 600GB/s
- Submission of task graphs (launch a workflow of kernels)

ISDS

[NVIDIA A100 Tensor Core GPU Architecture -

UNPRECEDENTED ACCELERATION AT EVERY SCALE, Whitepaper, Aug 2020]

GPUs for DNN Training

- **GPUs for DNN Training** (2009)
 - Deep belief networks
 - Sparse coding
- Multi-GPU Learning (Now)
 - Exploit multiple GPUs with a mix of data- and model-parallel parameter servers
 - Dedicated ML systems for multi-GPU learning
 - Dedicated HW: e.g., NVIDIA DGX-1 (8xP100), NVIDIA DGX-2 (16xV100, NVSwitch), NVIDIA DGX A100 (8x A100, NVSwitch, Mellanox)

New GPU Link Technologies (NVSwitch + NVLink 1.0 / 2.0 / 3.0)

DNN Framework support

- All specialized DNN frameworks have very good support for GPU training
- Most of them also support multi-GPU training

[Rajat Raina, Anand Madhavan, Andrew Y. Ng: Large-scale deep unsupervised learning using graphics processors. ICML 2009]

14

DNN Benchmarks

[MLPerf v0.6: <u>https://mlperf.org/training-results-0-6/</u>, MLPerf v0.7: <u>https://mlperf.org/training-results-0-7</u>]

Close	ed Divisi	ion Times											_			
							Benchmark	results (minu	ıtes)							
		V0.6					lmage classifi- cation	Object detection, light- weight	Object detection, heavy-wt.	Translation , recurrent	Translation , non-recur.	Recom- mendation	Reinforce- ment Learning			
							ImageNet	сосо	сосо	WMT E-G	WMT E-G	MovieLens- 20M	Go			
#	Submitter	System	Processor #	# Accelerator	· #	Software	ResNet-50 v1.5	SSD w/ ResNet-34	Mask- R-CNN	NMT	Transformer	NCF	Mini Go	Details	Code	Notes
Availab	le in cloud															
0.6-1	Google	TPUv3.32		TPUv3	16	TensorFlow, TPU 1.14.1.dev	42.19	12.61	107.03	12.25	10.20	[1]		details	code	none
0.6-2	Google	TPUv3.128		TPUv3	64	TensorFlow, TPU 1.14.1.dev	11.22	3.89	57.46	4.62	3.85	[1]		details	<u>code</u>	none
0.6-3	Google	TPUv3.256		TPUv3	128	TensorFlow, TPU 1.14.1.dev	6.86	2.76	35.60	3.53	2.81	[1]		details	<u>code</u>	none
0.6-4	Google	TPUv3.512		TPUv3	256	TensorFlow, TPU 1.14.1.dev	3.85	1.79		2.51	1.58	[1]		details	<u>code</u>	none
0.6-5	Google	TPUv3.1024		TPUv3	512	TensorFlow, TPU 1.14.1.dev	2.27	1.34		2.11	1.05	[1]		details	code	none
0.6-6	Google	TPUv3.2048		TPUv3	1024	TensorFlow, TPU 1.14.1.dev	1.28	1.21			0.85	[1]		<u>details</u>	code	none
Availab	le on-prem	ise														
0.6-7	Intel	32x 2S CLX 8260L	CLX 8260L 6	64		TensorFlow						[1]	14.43	details	code	none
0.6-8	NVIDIA	DGX-1		Tesla V100	8	MXNet, NGC19.05	115.22					[1]		details	<u>code</u>	none
0.6-9	NVIDIA	DGX-1		Tesla V100	8	PyTorch, NGC19.05		22.36	207.48	20.55	20.34	[1]		<u>details</u>	<u>code</u>	none
0.6-10	NVIDIA	DGX-1		Tesla V100	8	TensorFlow, NGC19.05						[1]	27.39	details	code	none
0.6-11	NVIDIA	3x DGX-1		Tesla V100	24	TensorFlow, NGC19.05						[1]	13.57	details	<u>code</u>	none
0.6-12	NVIDIA	24x DGX-1		Tesla V100	192	PyTorch, NGC19.05			22.03			[1]		<u>details</u>	<u>code</u>	none
0.6-13	NVIDIA	30x DGX-1		Tesla V100	240	PyTorch, NGC19.05		2.67				[1]		<u>details</u>	code	none
0.6-14	NVIDIA	48x DGX-1		Tesla V100	384	PyTorch, NGC19.05				1.99		[1]		details	code	none
0.6-15	NVIDIA	60x DGX-1		Tesla V100	480	PyTorch, NGC19.05					2.05	[1]		<u>details</u>	<u>code</u>	none
0.6-16	NVIDIA	130x DGX-1		Tesla V100	1040	MXNet, NGC19.05	1.69					[1]		<u>details</u>	code	none
0.6-17	NVIDIA	DGX-2		Tesla V100	16	MXNet, NGC19.05	57.87					DG	Y SLIP	FRP	חר	
0.6-18	NVIDIA	DGX-2		Tesla V100	16	PyTorch, NGC19.05		12.21	101.00	10.94	11.04		A 301			
0.6-19	NVIDIA	DGX-2H		Tesla V100	16	MXNet, NGC19.05	52.74					Autono	omous Vehicles	Speech A	I Healtho	are Graphics HP
0.6-20	NVIDIA	DGX-2H		Tesla V100	16	PyTorch, NGC19.05		11.41	95.20	9.87	9.80	-				
0.6-21	NVIDIA	4x DGX-2H		Tesla V100	64	PyTorch, NGC19.05		4.78	32.72							
0.6-22	NVIDIA	10x DGX-2H		Tesla V100	160	PyTorch, NGC19.05					2.41	đava				
0.6-23	NVIDIA	12x DGX-2H		Tesla V100	192	PyTorch, NGC19.05			18.47			4		IA		
0.6-24	NVIDIA	15x DGX-2H		Tesla V100	240	PyTorch, NGC19.05		2.56				6				
0.6-25	NVIDIA	16x DGX-2H		Tesla V100	256	PyTorch, NGC19.05				2.12		-	Party in the	. 1		
0.6-26	NVIDIA	24x DGX-2H		Tesla V100	384	PyTorch, NGC19.05				1.80			-	10		
0.6-27	NVIDIA	30x DGX-2H, 8 chips each		Tesla V100	240	PyTorch, NGC19.05		2.23				2 IW				
0.6-28	NVIDIA	30x DGX-2H		Tesla V100	480	PyTorch, NGC19.05					1.59	S .		1	• 96 DGX-	2H
0.6-29	NVIDIA	32x DGX-2H		Tesla V100	512	MXNet, NGC19.05	2.59								• 10 Mella	nox EDR IB per node
0.6-30	NVIDIA	96x DGX-2H		Tesla V100	1536	MXNet, NGC19.05	1.33							- 1	1,536 V	100 Tensor Core GPU

96 x DGX-2H = 96 * 16 = 1536 V100 GPUs → ~ 96 * \$400K = **\$35M - \$40M** [https://www.forbes.com/sites/tiriasresearch/2019/ 06/19/nvidia-offers-a-turnkey-supercomputer-thedgx-superpod/#693400f43ee5]

Handling Memory Constraints

- Problem: Limited Device Memory
- #1 Live Variable Analysis
 - Remove intermediates ASAP

[Linnan Wang et al: Superneurons: dynamic GPU memory management for training deep neural networks. **PPOPP 2018**]

- Examples: SystemML, TensorFlow, MXNet, Superneurons, MONeT
- #2 GPU-CPU Eviction
 - Evict variables from GPU to CPU memory under memory pressure
 - Examples: SystemML, Superneurons, GeePS, (TensorFlow)
- #3 Recomputation
 - Recompute inexpensive operations (e.g., activations of forward pass)
 - Examples: MXNet, Superneurons, MONet
- #4 Reuse Allocations
 - Reuse allocated matrices and tensors via free lists, but fragmentation
 - Examples: SystemML, Superneurons, MONet
- #5 Physical Operator Selection
 - Different tradeoffs of performance and size of intermediates (MONet)

Hybrid CPU/GPU Execution

Manual Placement

- Most DNN frameworks allow manual placement of variables and operations on individual CPU/GPU devices
- Heuristics and intuition of human experts
- Automatic Placement
 - Sequence-to-sequence model to predict which operations should run on which device
 - Examples:

ISDS

[Azalia Mirhoseini et al: Device Placement Optimization with

Reinforcement Learning.

ICML 2017]

17

Sparsity in DNN

- State-of-the-art
 - Very limited support of sparse tensors in TensorFlow, PyTorch, etc.
 - GPU operations for linear algebra (cuSparse), early support in ASICs
 - Problem: Irregular structures of sparse matrices/tensors
- **Common Techniques**
 - #1: Blocking/clustering of rows/columns by number of non-zeros
 - #2: Padding rows/columns to common number of non-zeros
- Example A100 Sparsity Exploitation
 - Constraint: 2 non-zeros in block of 4
 - Structured valued pruning \rightarrow accuracy impact
 - Regular access pattern

[NVIDIA A100 Tensor Core GPU Architecture, Whitepaper, Aug 2020]

Dense trained weights

Dot-product Compress

Non-zero

PYTORCH

Input activations

Output activations

Sparse Tensor

Core Select

data values Fine-tuned sparse and compressed weights

Indices

Field-Programmable Gate Arrays (FPGAs) in ML Systems

FPGA Definition

- Integrated circuit that allows configuring custom hardware designs
- Reconfiguration in <1s</p>
- HW description language: e.g., VHDL, Verilog

FPGA Components

- #1 lookup table (LUT) as logic gates
- #2 flip-flops (registers)
- #3 interconnect network
- Additional memory and DSPs

Example FPGA Characteristics

Intel (Altera) Stratix 10 SoC FPGA

- 64bit quad-core ARM
- 10 TFLOPs FP32
- 80GFLOPs/W
- Other configurations w/ HBM2

Xilinx Virtex UltraSCALE+

- DSP: 21.2 TMACs
- 64MB on-chip memory
- 8GB HBM2 w/ 460GB/s

21

[Adrian M. Caulfield et al.: A cloud-

scale acceleration architecture.

MICRO 2016]

FPGAs in Microsoft's Data Centers

- Microsoft Catapult
 - Dual-socket Xeon w/ PCIe-attached FPGA

Traditional sw (CPU) server plane

Pre-filtering neural networks, compression, and other workloads

FPGAs in Microsoft's Data Centers, cont.

Microsoft Brainwave

- ML serving w/ low latency (e.g., Bing)
- Intel Stratix 10 FPGA
- Distributed model parallelism, precision-adaptable
- Peak 39.5 TFLOPs
- Brainwave NPU
 - Neural processing unit
 - Dense matrix-vector multiplication

[Eric S. Chung et al: Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. **IEEE Micro 2018**]

Example DM Cluster Node

2x Intel Xeon Gold 6238 (112 vcores, 7.7 TFLOP/s), 768 GB DDR4 RAM, 12x 2TB SSDs, NVIDIA **T4 GPU** (8.1 TFLOP/s, 16 GB), and Intel FPGA PAC D5005 (w/ Stratix **10SX FPGA**, 32 GB)

Application-Specific Integrated Circuit (ASICs) and other HW Accelerators

Overview ASICs

- Motivation
 - Additional improvements of performance, power/energy
 - Additional specialization via custom hardware
- #1 General ASIC DL Accelerators
 - HW support for matrix multiply, convolution and activation functions
 - Examples: Google TPU, NVIDIA DLA (in NVIDIA Xavier SoC), Intel Nervana NNP
- #2 Specialized ASIC Accelerators
 - Custom instructions for specific domains such as computer vision
 - Example: (Cadence) Tensilica Vision processor (image processing)
- #3 Other Accelerators/Technologies (some skepticism)
 - a) Neuromorphic computing / spiking neural networks
 (e.g., SyNAPSE → IBM TrueNorth, HP memristor for computation storage)
 - b) Analog computing (especially for ultra-low precision/quantization)

Tensor Processing Unit (TPU v1)

- Motivation
 - Cost-effective ML scoring (no training)
 - Latency- and throughput-oriented
 - Improve cost-performance over GPUs by 10x

[Norman P. Jouppi et al: In-Datacenter Performance Analysis of a Tensor Processing Unit. **ISCA 2017**]

Architecture

- 256x256 8bit matrix multiply unit (systolic array
 → pipelining)
- 64K MAC per cycle (92 TOPs at 8 bit)
- 50% if one input 16bit
- 25% if all inputs 16 bit

Tensor Processing Unit (TPU v2)

Motivation

- Cost effective ML training (not scoring) because edge device w/ custom inference but training in data centers
- Unveiled at Google I/O 2017
- Board w/ 4 TPU chips
- Pod w/ 64 boards and custom high-speed network
- Shelf w/ 2 boards or 1 processor
- Cloud Offering (beta)
 - Min 32 cores
 - Max 512 cores

Tensor Processing Unit (TPU v3)

- Motivation
 - Competitive cost-performance compared to state-of-the-art GPUs
 - Unveiled at Google I/O 2018
 - Added liquid cooling

- Twice as many racks per pod, twice as many TPUs per rack
- → TPUv3 promoted as 8x higher performance than TPUv2
- Cloud Offering (beta)
 - Min 32 cores
 - Max 2048 cores (~100PFLOPs)

[TOP 500 Supercomputers: Summit @ Oak Ridge NL ('18): 200.7 PFLOP/s (2.4M cores)]

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods Matthias Boehm, Graz University of Technology, SS 2022

Recap: Operator Fusion and Code Generation

TVM: Code Generation for HW Accelerators

- Graph- /operator-level optimizations for embedded and HW accelerators
- Lack of low-level instruction set!
- Schedule Primitives
 - Loop
 Transform
 - Thread
 Binding
 - Compute Locality
 - Tensorization
 - Latency Hiding

12 Frameworks Κ m **Computational Graph** Section 3 **High Level Graph Rewriting** Optimized Computational Graph Operator-level Optimization and Code Generation Declarative Hardware-Aware Section 4 **Tensor Expressions Optimization Primitives** Machine Learning Based Section 5 Automated Optimizer Optimized Low Level Loop Program Accelerator Backend LLVM IR CUDA/Metal/OpenCL **Deployable Module**

An Automated End-to-End Optimizing Compiler for Deep Learning. **OSDI 2018**]

Let the Data Flow

[Kunle Olukotun: Let the Data Flow!, CIDR 2021, <u>https://www.youtube.com/watch?v=iHhHHBuk3W4</u>, SDSC 2020, <u>https://www.youtube.com/watch?v=E7se0KEa4BY</u>]

- Overview
 - Reconfigurable data flow architecture
 - Based on hierarchical parallel patterns (map, zip, reduce, flatMap, groupBy)
 - Reconfigurable Dataflow Unit (RDU), 100s of TFLOPs, 100s MB on chip

- DNN / ML
- Graph processing
- SQL query processing

SambaNova

Quarter Rack

Half Rack

Full Rack

CARDINA SN10

Caching, Partitioning, and Indexing

Scan Sharing

- #1 Batching
 - One-pass evaluation of multiple configurations
 - Use cases: EL, CV, feature selection, hyper parameter tuning, multi-user scoring
 - E.g.: TUPAQ [SoCC'16], Columbus [SIGMOD'14]

#2 Fused Operator DAGs

- Avoid unnecessary scans, (e.g., mmchain)
- Avoid unnecessary writes / reads
- Multi-aggregates, redundancy
- E.g.: SystemML codegen [PVLDB'18]

#3 Runtime Piggybacking

- Merge concurrent data-parallel jobs
- "Wait-Merge-Submit-Return"-loop
- E.g.: SystemML parfor [PVLDB'14]

<pre>parfor(i in 1:numModels</pre>)
<pre>while(!converged)</pre>	
q = X %*% v;	

Distributed Partitioning

- Spark RDD Partitioning
 - Implicitly on every data shuffling
 - Explicitly via R.repartition(n)
- Distributed Joins
 - R3 = R1.join(R2)

- Single-Key Lookups v = C.lookup(k)
 - Without partitioning: scan all keys (reads/deserializes out-of-core data)
 - With partitioning: lookup partition, scan keys of partition
- Multi-Key Lookups
 - Without partitioning: scan all keys
 - With partitioning: lookup relevant partitions

```
//build hashset of required partition ids
HashSet<Integer> flags = new HashSet<>();
for( MatrixIndexes key : filter )
    flags.add(partitioner.getPartition(key));
```

Linearized Array B-Tree (LAB-Tree)

- Basic Ideas
 - B-tree over linearized array representation (e.g., row-/col-major, Z-order, UDF)
- [Yi Zhang, Kamesh Munagala, Jun Yang: Storing Matrices on Disk: Theory and Practice Revisited. **PVLDB 2011**]

- New leaf splitting strategies; dynamic leaf storage format (sparse and dense)
- Various flushing policies for update batching (all, LRU, smallest page, largest page probabilistically, largest group)

#1 Example linearized

storage order

matrix A:

4 x 4 blocking row-major block order row-major cell order

#2 Example linearized

iterator order

range query A[4:9,3:5] with column-major iterator order

Adaptive Tile (AT) Matrix

- Basic Ideas
 - Two-level blocking and NUMA-aware range partitioning (tiles, blocks)
 - Z-order linearization, and recursive quad-tree partitioning to find var-sized tiles (tile contains N blocks)

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods Matthias Boehm, Graz University of Technology, SS 2022

ISDS

- Basic Ideas
 - Storage manager for 2D arrays of different data types (incl. vector, 3D)
- [Stavros Papadopoulos, Kushal Datta, Samuel Madden, Timothy G. Mattson: The TileDB Array Data Storage Manager. **PVLDB 2016**]

https://docs.tiledb.com

Two-level blocking (space/data tiles), update batching via fragments

1

0

2

ccc

8

10

kkk

1

2

3

4

Pipelining for Mini-batch Algorithms

Motivation

37

- Overlap data access and computation in mini-batch algorithms (e.g., DNN)
- → Simple pipelining of I/O and compute via queueing / prefetching

Lossy and Lossless Compression

39

Motivation: Data Characteristics

Architecture of Machine Learning Systems – 07 HW Accelerators and Data Access Methods Matthias Boehm, Graz University of Technology, SS 2022

Recap: Database Compression Schemes

- Null Suppression
 - Compress integers by omitting leading zero bytes/bits (e.g., NS, gamma)
- Run-Length Encoding
 - Compress sequences of equal values by runs of (value, start, run length)

Dictionary Encoding

 Compress column w/ few distinct values as pos in dictionary (→ code size)

Delta Encoding

 Compress sequence w/ small changes by storing deltas to previous value

Frame-of-Reference Encoding

 Compress values by storing delta to reference value (outlier handling)

00000000	00000000	00000000	01101010
		11	01101010

1	7	7	3	1	7	1	3	3	7	1	3	3	7	3	• • •
1,	3,	7	di	ct	ior	nar	у (со	de	e si	ze	2	bit)	
1	3	3	2	1	3	1	2	2	3	1	2	2	3	2	

106

41

TU Graz

Overview Lossless Compression Techniques

#1 Block-Level General-Purpose Compression

- Heavyweight or lightweight compression schemes
- Decompress matrices block-wise for each operation
- E.g.: Spark RDD compression (Snappy/LZ4), SciDB SM [SSDBM'11], TileDB SM [PVLDB'16], scientific formats NetCDF, HDF5 at chunk granularity

#2 Block-Level Matrix Compression

- Compress matrix block with homogeneous encoding scheme
- Perform LA ops over compressed representation
- E.g.: CSR-VI (dict) [CF'08, TPDS'13], cPLS (grammar) [KDD'16], TOC (LZW w/ trie) [SIGMOD'19]

#3 Column-Group-Level Matrix Compression

- Compress column groups w/ heterogeneous schemes
- Perform LA ops over compressed representation
- E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB'16]

CLA: Compressed Linear Algebra

- Key Idea
 - Use lightweight database compression techniques
 - Perform LA operations on compressed matrices

Goals of CLA

- Operations performance close to uncompressed
- Good compression ratios

VLDBJ'18, CACM'19

1 GB/s per node

[Ahmed Elgohary et al:

Learning. PVLDB 2016]

X

}

Uncompressed

Compressed

while(!converged) {

... q = X %*% v ...

Graz

CLA: Compressed Linear Algebra, cont.

Overview Compression Framework

- Column-wise matrix compression (values + compressed offsets / references)
- Column co-coding (column groups, encoded as single unit)
- Heterogeneous column encoding formats (w/ dedicated physical encodings)

Select column groups and formats per group (data dependent)

CLA: Compressed Linear Algebra, cont.

Matrix-Vector Multiplication

Naïve: for each tuple, pre-aggregate values, add values at offsets to q

Example: q = X v, with v = (7, 11, 1, 3, 2)

cache unfriendly on output (q)

 Cache-conscious: Horizontal, segment-aligned scans, maintain positions

Vector-Matrix Multiplication

- Naïve: cache-unfriendly on input (v)
- Cache-conscious: again use horizontal, segment-aligned scans

45

Compressed Linear Algebra Extended [SIGMOD 2023]

Lossless Matrix Compression

- Improved general applicability (compression time, new compression schemes, new kernels, intermediates, workload-aware) Uncompressed **Compressed Matrix M Input Matrix**
- Sparsity \rightarrow Redundancy exploitation (data redundancy, structural redundancy)

Workload-aware Compression

- Workload summary \rightarrow compression
- Compression \rightarrow execution planning

9

3 0

Tuple-oriented Compression (TOC)

- Motivation
 - DNN and ML often trained with mini-batch SGD

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tupleoriented Compression for Large-scale Mini-batch Stochastic Gradient Descent, SIGMOD 2019]

Effective compression for small batches (#rows)

Tuple-oriented Compression (TOC), cont.

Example
 Compression Ratios

47

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tupleoriented Compression for Large-scale Mini-batch Stochastic Gradient Descent, SIGMOD 2019]

Take-away: specialized lossless matrix compression
→ reduce memory bandwidth requirements and #FLOPs

Lossy Compression

- Overview
 - Extensively used in DNN (runtime vs accuracy) -> data format + compute
 - Careful manual application regarding data and model
 - Note: ML algorithms approximate by nature + noise generalization effect
- Background Floating Point Numbers (IEEE 754)
 - Sign s, Mantissa m, Exponent e: value = s * m * 2^e (simplified)

Precision	Sign	Mantissa	Exponent	
Double (FP64)	1	52	11	[bits]
Single (FP32)	1	23	8	
Half (FP16)	1	10	5	
Quarter (FP8)	1	3	4	
Half-Quarter (FP4)	1	1	2	

Low and Ultra-low FP Precision

- Model Training w/ low FP Precision
 - Trend: from FP32/FP16 to FP8
 - #1: Precision of intermediates (weights, act, errors, grad) → loss in accuracy
 - #2: Precision of accumulation → impact on convergence (swamping s+L)
 - #3: Precision of weight updates → loss in accuracy

Example ResNet18 over ImageNet

[Naigang Wang et al.: Training Deep Neural Networks with **8-bit** Floating Point Numbers. **NeurIPS 2018**]

see 05 Execution Strategies, SIMD

 \rightarrow speedup/reduced energy

count set a	Palat Namburn	
Transfer States and the	ADDANC.	
	-	

50

Low and Ultra-low FP Precision, cont.

Numerical Stable Accumulation

- #1 Sorting ASC + Summation
- #2 Kahan Summation w/ error independent of number of values n

[Yuanyuan Tian, Shirish Tatikonda, Berthold Reinwald: Scalable and Numerically Stable Descriptive Statistics in SystemML. ICDE 2012]

```
sumOld = sum;
sum = sum + (input + corr);
corr = (input + corr) - (sum - sumOld);
```

```
uak+: 5.00000005E17 //sum(seq(1,1e9))
```

```
ua+: 5.000000109721722E17
```

- ua+: 5.000000262154688E17 //rev
- #3 Pairwise Summation (divide & conquer)
- #4 Chunk-based Accumulation
 - Divide long dot products into smaller chunks
 - Hierarchy of partial sums → FP16 accumulators
- #5 Stochastic Rounding
 - Replace nearest w/ prob. rounding

 $Round(x) = \begin{cases} s \cdot 2^e \cdot (1 + \lfloor m \rfloor + \epsilon) & \text{with probability } \frac{m - \lfloor m \rfloor}{\epsilon}, \\ s \cdot 2^e \cdot (1 + \lfloor m \rfloor) & \text{with probability } 1 - \frac{m - \lfloor m \rfloor}{\epsilon}, \end{cases}$

[N. Wang et al.: Training Deep Neural Networks with

Numbers. NeurIPS 2018]

8-bit Floating Point

HISTORY .			
			2010/01/10/02
		-	

ISDS

Low and Ultra-low FP Precision – New Datatypes

- Google bfloat16
 - "Brain" Float16 w/ range of FP32
 - Drop in replacement for FP32, no need for loss scaling

[Brennan Saeta: Training Performance A user's guide to converge faster, **TF Dev Summit 2018**]

- Intel FlexPoint
 - Blocks of values w/ shared exponent (N=16bit w/ M=5bit exponent) (or
 - Example: flex16+5

[Urs Köster et al.: Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep Neural Networks. **NeurIPS 2017**]

There	ALLEPT NO	and former by	-
Contract in a	1010110	1912	
	-		
· Briddens			
			111
10/07	Adores to		20

• NVIDIA TF32

Range of FP32
 w/ precision of FP16

[NVIDIA A100 Tensor Core GPU Architecture - UNPRECEDENTED ACCELERATION AT EVERY SCALE, Whitepaper, Aug 2020]

Fixed-Point Arithmetic

Recommended "Reading"

[Inside TensorFlow: Model Optimization Toolkit (Quantization and Pruning), YouTube, 2020]

- **Motivation**
 - Forward-pass for model scoring (inference) can be done in **UINT8** and below
 - Static, dynamic, and learned quantization schemes (weights and inputs)
- **Quantization** (reduce value domain)
 - Split value domain into N buckets such that $k = \log_2 N$ can encode the data
 - a) Static Quantization (e.g., min/max) per tensor or per tensor channel
 - b) Learned Quantization Schemes
 - Dynamic programming
 - Various heuristics
 - Example systems: ZipML, SketchML

[Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce Zhang: ZipML: Training Linear Models with End-to-End Low Precision, and a Little Bit of Deep Learning. **ICML 2017**

[https://blog.tensorflow.org/2020/04/ quantization-aware-training-with-tensorflowmodel-optimization-toolkit.html]

52

53

Other Lossy Techniques

- **#1 Sparsification/Pruning** (reduce #non-zeros)
 - Value clipping: zero-out very small values below a threshold to reduce size of weights
 - Training w/ target sparsity: remove connections

#2 Mantissa Truncation

- Truncate m of FP32 from 23bit to 16bit
- E.g., TensorFlow (transfers), PStore

#3 Aggregated Data Representations

- a) Dim reduction (e.g., auto encoders)
- b) No FK-PK joins in Factorized Learning (foreign key as lossy compressed rep)

#4 Sampling

- User specifies approximation contract for error (regression/classification) and scale
- Min sample size for max likelihood estimators

[https://blog.tensorflow.org/2019/05/tfmodel-optimization-toolkit-pruning-API.html]

Sparse Accuracy	NNZ
78.1% @ sp=1.0	27.1M
78.0% @ sp=0.5	13.6M
76.1% @ sp=0.25	6.8M
74.6% @ sp=0.125	3.3M

[Souvik Bhattacherjee et al: PStore: an efficient storage framework for managing scientific data. SSDBM 2014]

> [Amir Ilkhechi et al: DeepSqueeze: **Deep Semantic Compression for** Tabular Data, **SIGMOD 2020**]

[Arun Kumar et al: To Join or Not to Join?: Thinking Twice about Joins before Feature Selection. SIGMOD 2016]

> [Yongjoo Park et al: BlinkML: Efficient Maximum Likelihood **Estimation with Probabilistic** Guarantees. SIGMOD 2019]

Summary and Q&A

- GPUs in ML Systems
- FPGAs in ML Systems
- ASICs and other HW Accelerators
- Caching, Partitioning, and Indexing
- Lossy and Lossless Compression

High Impact on Performance/Energy

Different Levels of Hardware Specialization

- General-purpose CPUs and GPUs
- FPGAs, DNN ASICs, and other technologies

Specialization w/o Abstraction is harmful

Different Levels of Data Layout Specialization

- Lossless caching, partitioning, indexing, compression
- Lossy compression, sparsification

