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Motivation and Terminology ﬁ-grlan.

Categories of Execution Strategies

Batch/Mini-batch,
Batch Independent Tasks Mini-batch
SIMD/SPMD MIMD

06, Data-Parallel 06, Task-Parallel 06, Parameter Servers
Execution Execution (data, model)

07, Hybrid Execution and HW Accelerators

07, Caching, Partitioning, Indexing, and Compression
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Agenda

GPUs in ML Systems
FPGAs in ML Systems
ASICs and other HW Accelerators

Caching, Partitioning, and Indexing Iterative, 1/0-bound ML
algorithms =» Data access

crucial for performance

Lossy and Lossless Compression

while(!converged) {
w q =X %*% v ..

Data Weights
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Graphics Processing Units
(GPUs) in ML Systems
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Graphics Processing Units (GPUs) in ML Systems
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DNN Challenges

= #1 Larger Models
and Scoring Time

IMAGE RECOGNITION

16X

= #2 Training Time

= ResNetl8: 10.76% error, 2.5 days training

Model
152 layers
22.6 GFLOP
~3.5% error
8 layers
1.4 GFLOP
~16% Error
2012 2015
AlexNet ResNet

= ResNet50: 7.02% error, 5 days training
= ResNetl01:6.21% error, 1 week training

= ResNetl52:6.16% error, 1.5 weeks training

= #3 Energy Efficiency
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SPEECH RECOGNITION

10X

Training Ops
465 GFLOP

12,000 hrs of Data
~5% Error
80 GFLOP
7,000 hrs of Data

~8% Error

2014 2015
Deep Speech 1 Deep Speech 2

nnnnn
nnnnnnnnnnnnnn

[Song Han: Efficient Methods and Hardware
for Deep Learning, Stanford cs231n, 2017]
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Motivation and Terminology
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HW Challenges

= #1 End of Dennard Scaling (~2005)

= Law: power stays proportional
to the area of the transistor

= |gnored leakage current / threshold voltage

[S. Markidis, E. Laure, N. Jansson, S.

Rivas-Gomez and S. W. D. Chien:

Moore’s Law and Dennard Scaling]

P = a CFV? (power density 1)
(P .. Power, C .. Capacitance,
F .. Frequency, V .. Voltage)

- increasing power density S (power wall, heat) = stagnating frequency

= #2 End of Moore’s Law (~2010-20)

= Law: #transistors/performance/
CPU frequency doubles every
18/24 months

= Qriginal: # transistors per chip
doubles every two years
at constant costs

= Now increasing costs (10/7/5nm)

40 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

=» Consequences: Dark Silicon and Specialization
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Presentation Notes
Dennard Scaling: (scaling factor S of transistors) 
 * # transistors: S^2 
 * Capacitance: 1/S
 * Frequency: S
 * Device power V: 1/(S^2) 
 * Alpha 1/2  
(but V cannot be further reduced due to leakage (noise of neighboring transistors); capacity (current) of transistor -> the smaller the transistor, the smaller the frequency)

Gordon Moore (co-founder of Intel)


Motivation and Terminology ﬁ-grlan.

Towards Specialized Hardware

= HW Specialization

HW Devices

General Purpose Specialized HW

e

SIMD Throughput-oriented, programmable

Ul _ _ fixed logic
specialized instructions logic
= Additional Specialization Caching
= Data Transfer & Types: e.g., low-precision, quantization Indexing and
= Sparsity Exploitation: e.g., sparsification, exploit across ops, Compression

defer weight decompression just before instruction execution

= Near-Data Processing: e.g., operations in main memory, storage class memory
(SCM), secondary storage (e.g., SSDs), and tertiary storage (e.g., tapes)

Architecture of Machine Learning Systems — 07 HW Accelerators and Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022


Presenter
Presentation Notes
Tradeoff: reconfiguration (CPU high, ASIC impossible) vs energy efficiency (ASIC high, CPU low)


Graphics Processing Units (GPUs) in ML Systems ﬁ-grlan.

NVIDIA Volta V100 — Specifications

= Tesla V100 NVLink
= FP64: 7.8 TFLOPs, FP32: 15.7 TFLOPs
= DL FP16: 125 TFLOPs
= NVLink: 300GB/s
= Device HBM: 32 GB (900 GB/s)
= Power: 300 W

= Tesla V100 PCle

= FP64:7 TFLOPs, FP32: 14 TFLOPs

= DLEP16: 112 TELOPs [Credit: https://nvidia.com/de-de/
) data-center/tesla-v100/]
= PCle: 32 GB/s

= Device HBM: 16 GB (900 GB/s)
= Power: 250 W
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Graphics Processing Units (GPUs) in ML Systems

Grazm

. NVIDIA Volta V100 — Architecture

= 6 GPU Processing Clusters (GPCs)
= 7 Texture Processing Clusters (TPC)

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

= 14 Streaming Multiprocessors (SM)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 CORE
INT FP32 FP32

INT FP32 FP32
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Dispatch Unit (32 thread/clk)
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Dispatch Unit (32 thread/clk)
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INT FP32FP32 o\soR
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Dispatch Unit (32 thread/clk)
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128KB L1 Data Cache / Shared Memory

Tex

Tex

TENSOR
CORE

TENSOR
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[NVIDIA Tesla V100
GPU Architecture,
Whitepaper, Aug 2017]

PCI Expross 3.0 Host Interface

?
H

Memory Controller

= SM Architecture

FP64 cores: 32
FP32 cores: 64
INT32 cores: 64
“Tensor cores”: 8
Max warps /SM: 64
Threads/warp: 32

Py—

i




Graphics Processing Units (GPUs) in ML Systems ﬁ-IG-rlan-

Single Instruction Multiple Threads (SIMT)

= 32 Threads grouped to warps and execute in SIMT model

= Pascal P100
Execution Model
= Warps use a
single program
counter +
active mask

= Volta V100
Execution Model

= |[ndependent
thread scheduling

= Per-thread
program counters
and call stacks

Thread Divergence
X; Y;
if (threadIdx.x < 4) {
A;
B;
} else {
X;
e

Q
on
—
Q
>
| =
(=]
| &)
@
=

» Time

if (threadIdx.x < 4) {
Aj
B;
} else {
X3
Y;

Z
__syncwarp() .

* New __syncwarp() primitive (if needed) + convergence optimizer



Graphics Processing Units (GPUs) in ML Systems ﬁ-IG-rlan-

NVIDIA Volta V100 — Tensor Cores

* “Tensor Core” [Bill Dally: Hardware
= Specialized instruction for 4x4 by 4x4 fused matrix multiply for Deep Learning.
SysML 2018]

= Two FP16 inputs and FP32 accumulator
= Exposed as warp-level matrix operations w/ special load, mm, acc, and store

64 FMA
D = A %% B + C operations

\
D =

FP16 or FP32

FP16 or FP32
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Graphics Processing Units (GPUs) in ML Systems ﬁ-lcyz.

NVIDIA Am pere A100 [NVIDIA A100 Tensor Core GPU Architecture - |

UNPRECEDENTED ACCELERATION AT
EVERY SCALE, Whitepaper, Aug 2020]

= Specification

= 7nm, 8 GPCx 8 TPC * 2 SM = 128 SMs, 40GB HBM
FP64: 9.7 TFLOPs / FP64 TensorCore: 19.5 TFLOPs
FP32 19.5 TFLOPs, FP16: 78 TFLOPs, BF16: 39 TFLOPs
TF32 TensorCore 156 TFLOPs / 312 TFLOPs (sparse)
FP16 TensorCore 312 TFLOPs / 624 TFLOPs (sparse), INTS8, INT4

= New Features
= New generation of “TensorCores” (FP64, new data types: TF32, BF16)
= Fine-grained sparsity exploitation

Multi-instance GPU (MIG) virtualization: up to 7 virtual GPU instances
Link technologies: NVLink 3 (25GB/s bidirectional) x 12 links = 600GB/s
Submission of task graphs (launch a workflow of kernels)

Architecture of Machine Learning Systems — 07 HW Accelerators and Data Access Methods .ISDS
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Graphics Processing Units (GPUs) in ML Systems ﬁ-lcyz.

GPUs for DNN Training

= GPUs for DNN Training (2009) S
[Rajat Raina, Anand Madhavan, Andrew Y. Ng:

= Deep belief networks Large-scale deep unsupervised learning using
- Sparse coding graphics processors. ICML 2009]

= Multi-GPU Learning (Now)
= Exploit multiple GPUs with a mix of
data- and model-parallel parameter servers

= Dedicated ML systems for multi-GPU learning

= Dedicated HW: e.g., NVIDIA DGX-1 (8xP100),
NVIDIA DGX-2 (16xV100, NVSwitch),
NVIDIA DGX A100 (8x A100, NVSwitch, Mellanox)

= New GPU Link Technologies (NVSwitch + NVLink 1.0 / 2.0 / 3.0)

= DNN Framework support

= All specialized DNN frameworks have very good support for GPU training
= Most of them also support multi-GPU training



Graphics Processing Units (GPUs) in ML Systems
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DNN Benchmarks

[MLPerf v0.6: https://mlperf.org/training-results-0-6/,
MLPerf v0.7: https://mlperf.org/training-results-0-7]

0 d LU 0
Benchmark results (minutes)
Object
Image detection, |Object Reinforce-
VO 6 cla.ssiﬁ- IigI.Tt- detecti T lati Tr lation Recnm-. ment )
. cation weight heavy-wt. |, recurrent |, non-recur.|mendation |Learning
MovielLens-

ImageNet |COCO COCO WMTE-G |WMTE-G |20M Go

ResNet-50 |SSD w/ Mask-
# Submitter| System Processor [# |Ac # e v1.5 ResNet-34 |R-CNN NMT Transformer [NCF Mini Go Details |Code Notes
Available in cloud
0.6-1 |Google TPUv3.32 TPUV3 16| TensorFlow, TPU 1.14.1.deyv| 42.19 12.61 107.03 12.25 10.20 1] details |code none
0.6-2 |Google TPUv3.128 TPUV3 64 |TensorFlow, TPU 1.14.1.dey| 11.22 3.89 57.46 4.62 3.85 [1] details |code none
0.6-3 |Google |TPUv3.256 TPUV3 128|TensorFlow, TPU 1.14.1.dev| 6.86 276 35.60 3.53 281 ] details |code none
0.6-4 |Google TPUv3.512 TPUv3 256 | TensorFlow, TPU 1.14.1.dev| 3.85 1.79 2.51 1.58 1 details |code none
0.6-5 |Google TPUv3.1024 TPUV3 512|TensorFlow, TPU 1.14.1.dev| 227 1.34 211 1.05 1 details |code none
0.6-6 |Google TPUv3.2048 TPUV3 1024 | TensorFlow, TPU 1.14.1.dev| 1.28 121 0.85 [ details |code none
Available on-premise
0.6-7 |Intel 32x 28 CLX 8260L CLX 8260L |64 TensorFlow 1 14.43|details |code none
0.6-8 |NVIDIA DGX-1 Tesla V100 8| MXNet, NGC19.05 115.22 1] details |code none
0.6-9 |NVIDIA DGX-1 Tesla V100 8| PyTorch, NGC19.05 2236 207.48 20.55 20.34 1 details |code nene
0.6-10 |NVIDIA DGX-1 Tesla V100 8| TensorFlow, NGC19.05 1] 27.30 |details | code noene
0.6-11 [NVIDIA [3x DGX-1 Tesla V100 24 |TensorFlow, NGC19.05 M 13.57 |details  |code none
0.6-12 |[NVIDIA [24x DGX-1 Tesla V100 192| PyTorch, NGC19.05 2203 [ details |code none
0.6-13 |NVIDIA  [30x DGX-1 Tesla V100 240|PyTorch, NGC19.05 267 M details |code none
0.6-14 |NVIDIA [48x DGX-1 Tesla V100 384 |PyTorch, NGC19.05 1.99 [ details |code none
0.6-15 |[NVIDIA [60x DGX-1 Tesla V100 480|PyTorch, NGC19.05 205 M details |code none
0.6-16 |NVIDIA 130x DGX-1 Tesla V100 | 1040 MXNet, NGC19.05 1.69 1] details | code none
0.6-17 |NVIDIA DGX-2 Tesla V100 16| MXNet, NGC19.05 57.87
0.6-18 |NVIDIA DGX-2 Tesla V100 16| PyTorch, NGC19.05 1221 101.00 10.94 11.04
0.6-19 |NVIDIA DGX-2H Tesla V100 16| MXNet, NGC19.05 52.74
0.6-20 |NVIDIA DGX-2H Tesla V100 16| PyTorch, NGC19.05 11.41 9520 987 9.80
0.6-21 [NVIDIA [4x DGX-2H Tesla V100 64 |PyTorch, NGC19.05 478 32.72
0.6-22 |NVIDIA 10x DGX-2H Tesla V100 160| PyTorch, NGC19.05 241
0.6-23 |NVIDIA 12x DGX-2H Tesla V100 192|PyTorch, NGC19.05 18.47
0.6-24 |NVIDIA 15x DGX-2H Tesla V100 240|PyTorch, NGC19.05 2.56
0.6-25 |NVIDIA 16x DGX-2H Tesla V100 256|PyTorch, NGC19.05 212
0.6-26 |[NVIDIA [24x DGX-2H Tesla V100 384 |PyTorch, NGC19.05 1.80
0.6-27 |[NVIDIA  [30x DGX-2H, 8 chips eact Tesla V100 240|PyTorch, NGC19.05 223
0.6-28 |NVIDIA [30x DGX-2H Tesla V100 480|PyTorch, NGC19.05 1.59
0.6-29 |NVIDIA _[32x DGX-2H Tesla V100 | 512 MXNet, NGG19.05 2.59 (% f’,\gﬁ;ﬂ,x EDR IB per node

1l0.630 NVIDIA _|96x DGX-2H Tesla V100 | 1536 [xnet, NGC19.05 1.33 + 1,536 V100 Tensor Core GPUs

96 x DGX-2H =96 * 16 = 1536 V100 GPUs
= ~ 96 * S400K = $35M — S40M

- 1 megawatt of power

[https://www.forbes.com/sites/tiriasresearch/2019/

06/19/nvidia-offers-a-turnkey-supercomputer-the-

dgx-superpod/#693400f43ee5]
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Graphics Processing Units (GPUs) in ML Systems ﬁ'l;lan_
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[Linnan Wang et al: Superneurons: dynamic
GPU memory management for training
deep neural networks. PPOPP 2018]

#1 Live Variable Analysis

= Remove intermediates ASAP

= Examples: SystemML, TensorFlow, MXNet, Superneurons, MONeT
#2 GPU-CPU Eviction

= Evict variables from GPU to CPU memory under memory pressure

= Examples: SystemML, Superneurons, GeePS, (TensorFlow)

#3 Recomputation
= Recompute inexpensive operations (e.g., activations of forward pass)
= Examples: MXNet, Superneurons, MONet

#4 Reuse Allocations
= Reuse allocated matrices and tensors via free lists, but fragmentation
= Examples: SystemML, Superneurons, MONet

#5 Physical Operator Selection

= Different tradeoffs of performance and size of intermediates (MONet)
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Graphics Processing Units (GPUs) in ML Systems ﬁ-lc;lan.

Hybrid CPU/GPU Execution

= Manual Placement

= Most DNN frameworks allow manual placement of
variables and operations on individual CPU/GPU devices

= Heuristics and intuition of human experts

= Automatic Placement

[Azalia Mirhoseini et al: Device
Placement Optimization with

= Sequence-to-sequence model to predict . )
| ) ) ) Reinforcement Learning.
which operations should run on which device ICML 2017]
= Examples:
Neural
=emes [ I (1 1 I CICIC]E I BT DI I M I I I BB L]
MTgraph et mmimim| [mim] | [simf =] | Je{sisl | (=in] (sie m] Imis) [u)s
T R e . R e agan
=m=caims | | [ ][] ] OO OO OO0 00O000 000000000000 000000000000
| I~
Inception V3 ] . . . .
¥ i f— o
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Graphics Processing Units (GPUs) in ML Systems
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Sparsity in DNN

= State-of-the-art

= Very limited support of sparse tensors in TensorFlow, PyTorch, etc Tenso
= GPU operations for linear algebra (cuSparse), early support in ASICs

PYTHRCH

= Problem: Irregular structures of sparse matrices/tensors

= Common Techniques

= #1: Blocking/clustering of rows/columns by number of non-zeros

= #2: Padding rows/columns to common number of non-zeros

= Example A100 Sparsity Exploitation

= Constraint: 2 non-zeros in block of 4

= Regular access pattern

a [NVIDIA A100 Tensor Core
=" | GPU Architecture,
Whitepaper, Aug 2020]

Dense trained
weights

Fine-grained
structured pruning

Core

Sparse Tensor

Select‘

= Structured valued pruning = accuracy impact |

Input activations

:g:

Dot-product

0= zero entry

Compress

—> m—

2:4 sparsity: 2 non-
zero out of 4 entries

P

Fine-tune weights

~

—

Non-zero Qutput activations
data values
Fine-tuned sparse and
compressed weights
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Field-Programmable Gate Arrays (FPGAs) in ML Systems ﬁ-IG-rlaJZI

FPGA Overview

= FPGA Definition

= |ntegrated circuit that
allows configuring
custom hardware designs

= Reconfiguration in <1s

= HW description language:
e.g.., VHDL, Verilog

= FPGA Components

= #1 lookup table (LUT)
as logic gates

= #2 flip-flops (registers)
= #3 interconnect network
= Additional memory and DSPs

=» Specialized neural networks
and kernel implementations

D5P Block

[Credit: https://intel.com]
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VHDL: Very High Speed Integrated Circuit Hardware Description Language
LUTs (bit-oriented logic, 4-input, 6-input lookup tables)  24x17bits 403 LUTs multiply vs 17 LUTs add
DSP (word-oriented multiply-accumulate)


Field-Programmable Gate Arrays (FPGAs) in ML Systems
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Example FPGA Characteristics

= |ntel (Altera) Stratix 10 SoC FPGA
= 64bit quad-core ARM
= 10 TFLOPs FP32
= 80GFLOPs/W
= QOther configurations w/ HBM?2

= Xilinx Virtex UltraSCALE+
= DSP:21.2 TMACs | STEREEHE - .

xC

= 64MB on-chip memory
= 8GB HBM2 w/ 460GB/s

Architecture of Machine Learning Systems — 07 HW Accelerators and Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022
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Other Intel FPGA families: Stratix (high-end), Arria (embedded), Cyclone (cost), MAX (mobile)
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Field-Programmable Gate Arrays (FPGAs) in ML Systems

Ty

FPGAs in Microsoft’s Data Centers

[Adrian M. Caulfield et al.: A cloud-

MICRO 2016]

Gen3 2x8

TOR

= Microsoft Catapult . .
scale acceleration architecture.
= Dual-socket Xeon w/ PCle-attached FPGA
= Pre-filtering neural networks, compression, and other workloads
' ™y
L2 D Network switch (top of rack, cluster)
— FPGA —switch link
L1 Ll
~—7 FPGA acceleration board
—— NIC-FPGA link
o8 WS ~—7 2-socket CPU server 2-socket server blade
Datacenter hw acceleration plane
TOR  TOR WA "El‘n - - 7
: e e
NEWOTS /£ 7 7 compressi
1.4 s : pd 7 Gen3 x8 =
W e 7~ —~Bioinformatics~ A =
T e i i — - ~ 5
1 Ginia s
// dn barkt 4 §
/ s " ¥
//’f/ a ! rmﬂﬁﬂq/,// 7 —_— 40Gb/s

Traditional sw (CPU) server plane
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Field-Programmable Gate Arrays (FPGAs) in ML Systems ﬁ-IG-rlaJZI

FPGAs in Microsoft’s Data Centers, cont.

. . [Eric S. Chung et al: Serving DNNs in
" Microsoft Brainwave Real Time at Datacenter Scale with

Project Brainwave. IEEE Micro 2018]

= ML serving w/ low latency (e.g., Bing)
= |ntel Stratix 10 FPGA
[ Distributed Matrix-Vector Unit T _______ -‘l”.-lbl\lleuraIFunctiunalUnit

model parallelism, — | o
.. Kernel Kernel Kernel Decoder Processor
p re C I S I O n -a d a pta b | e Matrix Vactap VatfFix veetar Matrix ector

Multiply Multiply VU tTply

= Peak 39.5 TFLOPs

v
Tensor Manager

MatrixMemary:
S Managar
: NV ECta R VIS VG ‘_J
5 [anager L. Outpui Message

Input Message
Processor

*= Brainwave NPU

Pracessor

= Neural
processing unit

. ¥ = <4—Vector data ° Veclor Adiivation Functions
= Dense matrix-vector — 0 e <— —mstructions @ Vet vector iy
. . . < Commands tor-Vecknr ul
multiplication Jo -
f Vector Register File Terisor Arbiter
O Matrix Register File
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Field-Programmable Gate Arrays (FPGAs) in ML Systems ‘%‘ DAPHNE ﬁ-grlan.

Example DM Cluster Node > B

2x Intel Xeon Gold 6238 (112 vcores, 7.7 TFLOP/s),
768 GB DDR4 RAM, 12x 2TB SSDs, NVIDIA T4 GPU (8.1 TFLOP/s,
16 GB), and Intel FPGA PAC D5005 (w/ Stratix 10SX FPGA, 32 GB)
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Application-Specific Integrated Circuit
(ASICs) and other HW Accelerators
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ASICs and other HW Accelerators ﬁ-grlan.

Overview ASICs

= Motivation

= Additional improvements of performance, power/energy
=» Additional specialization via custom hardware

= #1 General ASIC DL Accelerators

= HW support for matrix multiply, convolution and activation functions
= Examples:Google TPU, NVIDIA DLA (in NVIDIA Xavier SoC), Intel Nervana NNP

= #2 Specialized ASIC Accelerators

= Custom instructions for specific domains such as computer vision
= Example: (Cadence) Tensilica Vision processor (image processing)

= #3 Other Accelerators/Technologies (some skepticism)

= a) Neuromorphic computing / spiking neural networks
(e.g., SYNAPSE = IBM TrueNorth, HP memristor for computation storage)

= b) Analog computing (especially for ultra-low precision/quantization)
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ASICs and other HW Accelerators ﬂ-grlaJZI

Tensor Processing Unit (TPU v1)

= Motivation

[Norman P. Jouppi et al:

= Cost-effective ML scoring (no training) In-Datacenter Performance
. Analysis of a Tensor Processin

= Latency- and throughput-oriented Y Unit. ISCA 2017g]

= Improve cost-performance over GPUs by 10x

= Architecture — —  DDR3 DRAM Ghips | |

= 256x256 8bit e WALLLY 108 (e
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Interlaces :> (Weight Fetcher)
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e e / aVa ' !
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PP g) é 8 Unified 167 h[llatr::ll\n_:ﬂt}*pli
= 64K MAC per CVCIe 14 GiBIs 3% 14 GiB/s g o ﬁ_l:::::: Sﬁ::—:ic — ”145_4K : :-:"‘H )
(92 TOPs at 8 bit) || <= i Asctt‘i,::g:)" Setup H EEmEE
= ;
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ASICs and other HW Accelerators
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Tensor Processing Unit (TPU v2)

= Motivation

= Cost effective ML training (not scoring)
because edge device w/ custom inference
but training in data centers

= Unveiled at Google 1/0 2017
= Board w/ 4 TPU chips

= Pod w/ 64 boards
and custom
high-speed network

= Shelf w/ 2 boards or
1 processor

= Cloud Offering (beta)

= Min 32 cores -’__ -

= Max 512 cores TPU v2-3 I 128 T TPUV2-256
| (32 cores, 4x4 slice) | ; {256 cores, 8x14 slice)
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ASICs and other HW Accelerators ﬁ-lc:rauz.

Tensor Processing Unit (TPU v3)

= Motivation

= Competitive cost-performance compared
to state-of-the-art GPUs

= Unveiled at Google I/0 2018
= Added liquid cooling

= Twice as many racks per pod, twice as many TPUs per rack
=>» TPUv3 promoted as 8x higher performance than TPUv2

1:!&'_..,:.,_,_..},.:._.4"

B = H:I!H___q
1 i = 1
o g By o == u

= Min 32 cores
= Max 2048 cores

= Cloud Offering R ' 4
(b@ta) I—'--*--" H l] uElI' it ‘-]' I!'E;ﬁ!lliiiﬁll ;I:!E,I II;EIF

(~100PFLOPs)
[TOP 500 Supercomputers: ~ [FSSSSEES e — — _,F_ e
Summit @ Oak Ridge NL (‘18): Sre] (TS TR, (SRR, TR, TR, R
TPUv3-32 TPU v3-512
200.7 PFLOP/S (2.4M COfES)] (32 cores, 4x4 slice) {512 cores, 16x16 slice)
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TPU v4 unveiled at Google I/O 2022
[Norman P. Jouppi et al: Ten Lessons From Three Generations Shaped Google’s TPUv4i, ISCA 2021,
https://www.gwern.net/docs/ai/scaling/hardware/2021-jouppi.pdf]

Abstract: Google deployed several TPU generations since�2015, teaching us lessons that changed our views: semi-�conductor technology advances unequally; compiler�compatibility trumps binary compatibility, especially for�VLIW domain-specific architectures (DSA); target total�cost of ownership vs initial cost; support multi-tenancy;�deep neural networks (DNN) grow 1.5X annually; DNN�advances evolve workloads; some inference tasks require�floating point; inference DSAs need air-cooling; apps�limit latency, not batch size; and backwards ML�compatibility helps deploy DNNs quickly. These lessons�molded TPUv4i, an inference DSA deployed since 2020.


ASICs and other HW Accelerators ﬁ'l;lan_

Recap: Operator Fusion and Code Generation

= TVM: Code Generation for HW Accelerators (Tiangi Chen et al: TVM:

= Graph- /operator-level optimizations for ~ An Alut?cmated End-to-End Optimizing
Compi Deep Learning. OSDI 2018
embedded and HW accelerators ompiier tor Deep Learning ]

= Lack of low-level instruction set!
= Schedule Primitives

™~ * y.
= Loop Frameworks [} O vqg} @ m @
Transform | Computational Graph |
v
" Thread Section 3 High Level Graph Rewriting
T v
Bmdmg \ Optimized Computational Graph \
\/
|
ComPUte Operator-level Optimization and Code Generation
Local |ty Section 4 Declarative Hardware-Aware
. . ection Tensor Expressions Optimization Primitives
= Tensorization ~a o
Section 5 Machine Learning Based
= |Latency ection Automateg Optimizer
Hiding | Optimized Low Level Loop Program |
r —
| Accelerator Backend || LLVMIR || CUDA/Metal/OpenCL |
[
=» Apache 8gtvm y

| Deployable Module |




ASICs and other HW Accelerators ﬁ-lc:rauz.

CIDR 2021, https://www.youtube.com/watch?v=iHhHHBuk3W4,
SDSC 2020, https://www.youtube.com/watch?v=E7se0KEa4BY]

Sa m ba N Ova [Kunle Olukotun: Let the Data Flow!, [ T S

= Overview

— P
= Reconfigurable data flow architecture |

CARDINAL
SN1

= Based on hierarchical parallel patterns
(map, zip, reduce, flatMap, groupBy)

= Reconfigurable Dataflow Unit (RDU), 7 7 :
1 00 S Of T F LO PS, 1 OO S M B onc h I p R R i

Weight — reconfigure

= Mapping of Dataflow in ~1-10ms
Computation | T s Glo/eaaaam@

" DNN /ML 0= o e ey

= Graph processing 8 O aaamla

_ | el ‘@@@@al
SQL query processing Iﬂlﬂlﬂlﬂlﬂlﬂ \ﬂlﬂlﬂlﬂlﬂl

b e e S e e § ..—l.._.—....—_l.—\..— ..—.S..—l..— — i

|ﬂ|ﬂ|ﬂ|ﬂ|n|ﬂ[ [
Iglglglgl_!lgj_Ig(glg!g\g[gl_n_lg_lgl
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F— s r— i i .—-x-—;

Weight
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VC capital: total $1.1B funding (676M by Apr 13 2021), $5B valuation (2021)
https://www.crunchbase.com/organization/sambanova-systems 

https://www.youtube.com/watch?v=iHhHHBuk3W4
https://www.youtube.com/watch?v=E7se0KEa4BY
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Caching, Partitioning, and Indexing ﬁ-grlan.

Scan Sharing

= #1 Batching n

= One-pass evaluation of multiple configurations O(m*n)

= Use cases: EL, CV, feature selection, read
hyper parameter tuning, multi-user scoring O(m*n*k)
= E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14] compute
m >>n >> k

= #2 Fused Operator DAGs

= Avoid unnecessary scans, (e.g., mmchain)

Multi-Aggregate
sum sum sum
= Avoid unnecessary writes / reads f f f

= Multi-aggregates, redundancy sum(X2) u(*2)  b(*)  u(”2)

a =

" E.g.:SystemMLcodegen [PVLDB'18] | — gym(x*y) £

. . . c = sum(Y~"2 X Y

= #3 Runtime Piggybacking (¥22)

= Merge concurrent data-parallel jobs parfor( i in 1:numModels )
= “Wait-Merge-Submit-Return”-loop while( !converged )
= E.g.: SystemML parfor [PVLDB’14] q =X %*% v;
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Caching, Partitioning, and Indexing ﬁ-grlan.

Distributed Partitioning

Spark RDD Partitioning Example Hash Partitioning:

= Implicitly on every data shuffling For all (k,v) of R:
hash(k) % numPartitions = pid

= Explicitly viaR.repartition(n)

Distributed Joins 0:8,1,6 N/ 0:1,2 % 3 —m

2:2,3,4 b 2:3,4

= R3 =R1.join(R2)

EBEl EEn

"

/\

A £

Single-Key Lookups v = C.lookup(k)
= Without partitioning: scan all keys (reads/deserializes out-of-core data)
= With partitioning: lookup partition, scan keys of partition

Multi-Key Lookups //build hashset of required partition ids

i . e HashSet<Integer> flags = new HashSet<>();
Without partitioning: for( MatrixIndexes key : filter )
scan all keys flags.add(partitioner.getPartition(key));

= With partitioning: //create partition pruning rdd

new PartitionPruningFunction(flags));



Caching, Partitioning, and Indexing ﬁ-grlan.

Linearized Array B-Tree (LAB-Tree)

[Yi Zhang, Kamesh Munagala,
Jun Yang: Storing Matrices on

= B-tree over linearized array representation Disk: Theory and Practice
(e.g., row-/col-major, Z-order, UDF) Revisited. PVLDB 2011]

= Basic Ideas

= New leaf splitting strategies; dynamic leaf storage format (sparse and dense)

= Various flushing policies for update batching (all, LRU, smallest page, largest
page, largest page probabilistically, largest group)

#1 Example linearized #2 Example linearized
storage order iterator order
= [ matrix A: range query A[4:9,3:5]
p et 4 x 4 blocking with column-major
Pran row-major block order iterator order

row-major cell order I
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Caching, Partitioning, and Indexing ﬂl’g_

Ada pt|ve Ti I e (AT) M atriX [David Kernert, Wolfgang Lehner, Frank

Koéhler: Topology-aware optimization of big
sparse matrices and matrix multiplications
= Basic Ideas on main-memory systems. ICDE 2016]

= Two-level blocking and NUMA-aware
range partitioning (tiles, blocks)

= Z-order linearization, and
to find var-sized tiles (tile contains N blocks)

(see sparsity est.)

e 06 o [ ) : : : [ ) [
. 0.75--0.25 | 0.25+0.00
........ I o
* *° 0.25-1.00 ' 0.00-5-0.25 \
o o [ ____5____: T [
* *° 0.25--0.00 + 0.75--1.00 \\\%
* o0 (CECRITIE .- o e iy ¢ \
o o o 0.00--0.00 * 0.50-1.00 < \\
block tiles
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Caching, Partitioning, and Indexing ﬂl’g_

Tl Ie D B StO ra ge M a n age r [Stavros Papadopoulos, Kushal Datta, Samuel | -

Madden, Timothy G. Mattson: The TileDB
Array Data Storage Manager. PVLDB 2016]

= Basic Ideas .
https://docs.tiledb.com
= of
different data types (incl. vector, 3D)
= Two-level blocking (space/data tiles), update batching via fragments

space tile extents: 4x2 space tile extents: 2x2 space tile extents: 2x2 ] my 2d dense array
tile order: row-major tile order: row-major tile order: column-major - -
cell order; row-major cell order: row-major cell order: row-major
— __array schema.tdb
- tl tl uuidl v
LT - £
L/ / space tiles 7 /
A 4 A / _ fragment_metadata.tdb
720 SN & .t
/ _— R
B a2.tdb
Z = 7 7 2 tdb
a var.
2% 2 Tz
Fragment #1 Fragment #2 Fragment #3 Collective logical array view
(dense) (dense) (sparse)
1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4
Y 1 4 )
0 1 4 | 5 a | bb e | ff
1 a bb @ ff ! 1
2 3 6 7
2 2 3 (§) 7 2 2 cce |dddd | geg [hhhh
cce |dddd | 8g8 | hhhh
208 9 212|213
3 8 9 12 | 13 | 3 3 2(1)18 2)1(2 213 u 3 < v
i i m | nn b4 10 | 211
g o a5 |y 4 211 kkk howvew
kkk 1111 000 | PPPP Wwww
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TileDB Inc startup, $20M funding: TileDB Cloud, a commercial SaaS offering for planet-scale data sharing and serverless distributed computations. 

https://docs.tiledb.com/

Caching, Partitioning, and Indexing ﬁ-grlaJZI

Pipelining for Mini-batch Algorithms

= Motivation
= Qverlap data access and computation in mini-batch algorithms (e.g., DNN)
=» Simple pipelining of 1/0 and compute via queueing / prefetching

= Example TensorFlow v |

= #1 Queueing GPU/TPU
and Threading

time
= #2 Dataset API dataset = dataset.batch(batch_size=32)
Prefetching dataset = dataset.prefetch(buffer_size=1)

[https://www.tensorflow - '

.org/guide/performance/

GPU/TPU

datasets]
time i
= #3 Reuse via Upstream Upstream [https://ai.googleblog.com/
. 2020/05/speeding-up-neural-
Data Echomg |Dumm|nmmstrﬂm|nnmmn|ﬂmmham| /05/sp . g 0
- . network-training.html]
time
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Lossy and Lossless Compression ﬂ-lc:g.

Motivation: Data Characteristics

Covtype ImageNet Mnist8m
= Tall and Skinny ¢ M g M = 6M ]
y g SM #Rows: .6M § .M — #Rows: 1.2M § sM #Rows: 8.1M
(#rows >> #cols) = S o 3
C AM T C am -
. [9) o 4M - 15}
= Non-Uniform =3m 2 2 3
Sparsity 5 R 2M g 2M
S .IM S IM — S IM —
Z Z - Z
Column Rank [1,54] Column Rank [1,900] Column Rank [1,784]
Higgs Census
= Small Column = g0 - = 8e-04
. eg ® o o
Cardinalities 515 £ 604 -
2 10 4 £ 4e-04
= Small Val Range z 3
3* 5 * 2e—04 —
= =
< <
o 0 — © 0e+00 —
O OMB — m 34 1MB O0OMB — = 9.4MB
= Column o0 -
. 5 5 50
Correlations E ER
= =1
(on census: £ E 30
° = 20
12.8x = 35.7x) O S
0 _.-'- [ =
Column Index [1,28] Column Index [1,68]
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Lossy and Lossless Compression ﬂl},{.

Recap: Database Compression Schemes

= Null Suppression 106

00000000 |00V |00V 01101010

= Compress integers by

11|e1101010

bytes/bits (e.g., NS, gamma)

Run-Length Encoding 111177777333333 ...

= Compress sequences of equal values by

1,1,4| |7,5,5 3,10,6
of (value, start, run length) - - -
= Dictionary Encoding 177317133713373 ...
= Compress column w/ few distinct values [1,3,7] dictionary ( )
as (= code size) [13323133722312232 ..,

Delta Encoding

20 21 22 20 19 18 19 20 21 20 ...

= Compress sequence w/ small changes

e 1 1 -2 -1 -1 1 1 1 -1...

by storing
= Frame-of-Reference Encoding 0 21 22 20 71 70 71 69 70 21 ..
= Compress values by storing 21 70

(outlier handling) [-1 6 1 -1 1 o 1-106-1...




Lossy and Lossless Compression ﬁ-grlan.

Overview Lossless Compression Techniques

= #1 Block-Level General-Purpose Compression

= Heavyweight or lightweight compression schemes decompress
. . . & deserialize
= Decompress matrices block-wise for each operation .

|
= E.g.: Spark RDD compression (Snappy/LZ4), | Storage
SciDB SM [SSDBM'11], TileDB SM [PVLDB'16], ' Manager [ .
scientific formats NetCDF, HDF5 at chunk granularity

= #2 Block-Level Matrix Compression
= Compress matrix block with homogeneous encoding scheme

= Perform LA ops over compressed representation

= E.g.: CSR-VI (dict) [CF'08, TPDS’13], cPLS (grammar) [KDD’16],
TOC (LZW w/ trie) [SIGMOD’19]

= #3 Column-Group-Level Matrix Compression
= Compress column groups w/ heterogeneous schemes

= Perform LA ops over compressed representation
= E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB’16]

B o e mm m e e



Lossy and Lossless Compression ﬁ-grlan.

CLA: Compressed Linear Algebra _ [ahmed:eoharyetal: =

Compressed Linear Algebra
for Large-Scale Machine

n Key Idea Learning. PVLDB 2016]
= Use lightweight database compression techniques
= Perform LA operations on compressed matrices n
= Goals of CLA while(!converged) {
. _ 0/ %0,
= QOperations performance close to uncompressed w q =X %% Vv ..
= Good compression ratios }
A : 1 GB/s per node
Uncompressed | Uncompressed
data fits in |
| :
memory o Time
Execution (operations performance) Compressed
Time - e Space |
(compression ratio) ¢ |
25 GB/s |
per node Compressed data :
[SIGMOD Record’17, ____—— fits in memory .
VLDBJ'18, CACM’19] Data Size
Architecture of Machine Learning Systems — 07 HW Accelerators and Data Access Methods .ISDS
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Lossy and Lossless Compression

Ty

CLA: Compressed Linear Algebra, cont.

= Overview Compression Framework

= Column-wise matrix compression (values + compressed offsets / references)

= Column co-coding (column groups, encoded as single unit)

= Heterogeneous column encoding formats (w/ dedicated physical encodings)

= Column Encoding
Formats

= Offset-List (OLE)
= Run-Length (RLE)

= Dense Dictionary 7

Coding (DDC)*

= Uncompressed
Columns (UC)

S

Lo =] L0 L2 D Q0 =] =] LI =]

(

e O o= = O o= U1 O = O

2.1
3
2.1
3
2.1
3
3
0
2.1
3

Uncompressed
Input Matrix

-
0.99
0.73
0.05
0.42
0.61
0.89
0.07
0.92
0.54
0.16
—

Compressed Column Groups

(RLE(2))
©) (&2

1

He=

(OLE(1,3) )
(76)(34)(75)
1

[}

3
9

[ s

—
=

(DDC () UC(5) )

(2.1)!
(3) 1

0.99
0.73
0.05
0.42
0.61
0.89
0.07
0.92
0.54

L 0.16 )

[ T B e i e e s B T e

= Automatic Compression Planning (sampling-based)

= Select column groups and formats per group (data dependent)

* DDC1/2

in VLDBJ'18
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Lossy and Lossless Compression
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CLA: Compressed Linear Algebra, cont.

= Matrix-Vector Multiplication
= Naive: for each tuple, pre-aggregate values, add values at offsets to g

Example: g=Xv, withv=(7,11, 1, 3, 2)
9*%11=99.2 55 25 54 6.3 9

N

AN

(UC{5} )
0.99
0.73
0.05
0.42
0.61
0.89
0.07
0.92
0.54

J

162.3

134.5

160.4

162.8

32.5

155

133.1

125.8

161.4

L 0.16 )

= Cache-conscious: Horizontal,
segment-aligned scans, maintain positions

= Vector-Matrix Multiplication

= Naive: cache-unfriendly on input (v)

34.3

=» cache unfriendly
on output (q)

113]  value preaggE v

} segment

cache
> bucket
J (output)

\l
110

= Cache-conscious: again use horizontal, segment-aligned scans
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Lossy and Lossless Compression ﬁ'l;lan_

Compressed Linear Algebra Extended

[SIGMOD 2023]

= Lossless Matrix Compression

= Improved general applicability (compression time, new compression schemes,

new kernels, intermediates, workload-aware) Uncompressed Compressed Matrix M
nput Matrix B .
= Sparsity © Redundancy exploitation s {Lﬂ LI (Lﬂ
. 8.5} 19 2.5} 3
(data redundancy, structural redundancy) 39 40 _— d
7 9 5 3 2 4 3| ° 4
. 3 0 4 25 - 2| ? 7
= Workload-aware Compression 10850 0=V : of
3 85 4 3 2
= Workload summary = compression S 2
. . . 3 0 4 3 \(sparse)) \(dense) ij(sparse)/
= Compression = execution planning - .
User Script: /| if(shift) :{> Workload Tree
// X=X - colMeans(X)
i = read("data/X") /. |if(scale)
’= read("data/y") / X = X / colsds(X)
X = scale(X,TRUE, TRUE) “/1 if(intercept)
w = 12svm(X,y,TRUE, 7 | x = cbind(X,ones)
le-9,1e-3,100) ( while(conto & i<maxi) {
V| Xd =X %% s

write(w, "data/wXy") \ | while(conti) {
\ out = 1-y*(Xw+sz*Xd)
\ sz = sz - g/h; # ...

Cost Summary Jl,

}
Built-in || 8_new = t(X) %*% (out*y)
Functions: \J [0 [100[ 10 [ 10 [105] 0 |




Lossy and Lossless Compression
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Tuple-oriented Compression (TOC)

= Motivation

= DNN and ML often trained

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
oriented Compression for Large-scale Mini-batch

Stochastic Gradient Descent, SIGMOD 2019]

with mini-batch SGD
= Effective compression for small batches (#rows)

Original Table (A)

Prefix Tree (C) Column_index:value pairs in the
0

first layer of the prefix tree (1)

1 2 3 4
|
RU| 11 | 2 | 3 | 14 5[1] [1]2]3]4 2] jndexes
R2 1.1 2 3 0 value
R3 0 1.1 3 14 | M N AT 38 A A A # ) e > 5]1] ‘0‘1‘2‘3,0‘ indexes
/ .
R4 1.1 2 0 o |/ Step3 :Physical
| o i - - lues
I Encodin 1.1(2 (3|14 va
Stepl: Sparse | I 8 23]
) I
Encodin ¥ . .
g ,l Encoded Table (D) (# of integers, # of bytes per integer)
Sparse Encoded Table (B) ]
RL | 11.1] 22 | 33 |414] R1 1 3 °
J tree node
R2 | 111 22 | 33 i s; : ----- 4o [1 ] indexes
R3 |2:1.1| 33 [41.4 Step2 Loglcal YR Step3 :Physical tuple start
R4 | 111 22 Encoding Encoding ‘4 [6 ]2 | indexes
Architecture of Machine Learning Systems — 07 HW Accelerators and Data Access Methods .ISDS
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Lossy and Lossless Compression

Ty

Tuple-oriented Compression (TOC), cont.

B i
(e} o

Compression ratios
S

= Example

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
oriented Compression for Large-scale Mini-batch

Compression Ratios

Stochastic Gradient Descent, SIGMOD 2019]

dense baseline?

Census Imagenet Mnist Kdd99
2001
201
- 15' '—/d.___‘_’/,—-.""' 150-
| 101 = 7 :/; 10| # g : . g 1001
H o) : : : « " A 4 4 4 ﬁ‘ 507 .'//fi : ﬁ:‘j
.!:!—!—!;!. oL i i oL . . 0_%%%_
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
percent of rows percent of rows percent of rows percent of rows
=p== CSR == CVI == DVI == Snappy == Gzip |=4= TOC (ours) == CLA

Architecture of Machine Learning Systems — 07 HW Accelerators and Data Access Methods

Take-away: specialized lossless matrix compression
=» reduce memory bandwidth requirements and #FLOPs
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Lossy and Lossless Compression ﬁ-grlan.

Lossy Compression

= Overview
= Extensively used in DNN (runtime vs accuracy) =» data format + compute
= Careful manual application regarding data and model
= Note: ML algorithms approximate by nature + noise generalization effect

= Background Floating Point Numbers (IEEE 754)

= Sign's, Mantissa m, Exponent e: value = s * m * 2¢ (simplified)

Double (FP64) 1 [bits]
Single (FP32) 1 23 8
Half (FP16) 1 10 5
Quarter (FP8) 1 3 4
Half-Quarter (FP4) 1 1 2
e S *ISDS



Test Error (%)

Lossy and Lossless Compression

Ty

Low and Ultra-low FP Precision

= Model Training w/ low FP Precision
= Trend: from FP32/FP16 to FP8

see 05 Execution Strategies, SIMD

- speedup/reduced energy

= #1: Precision of intermediates (weights, act, errors, grad) = loss in accuracy
= #2: Precision of accumulation = impact on convergence (swamping s+L)
= #3: Precision of weight updates = loss in accuracy

= Example ResNet18 over ImageNet

110

[Naigang Wang et al.: Training Deep
Neural Networks with 8-bit Floating
Point Numbers. NeurlPS 2018]

110, 110
100b —Single precision baseline 100 —Single pre-cision base!ine R 100 —Single Pre'-cision Base.line .
—Mult: 8 bit, Acc: 32 bit, Update: 32 bit —Mult: 16 t:_|t, Acc: 16 bit, Update: 32 bit —Mult: 32 bit, Acc: 32 bit, Update: 16 bit
90 90 VU V } 90
80 #1 g 80 #2 1 g 80 #3
- 1=y
70 2 70 g 70
w w
60 2.0% degradation | % ©O 1.0% & 0 1.7%
50 = 50 radation] ~ 54 degradation
40 40 \ { 40
30 sof (b) sof  (€)
0 20 40 60 80 0 20 60 80 0 20 60 80
Epoch

40
Epoch
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Lossy and Lossless Compression ﬁ-lc;lan.

Low and Ultra-low FP Precision, cont.

= Numerical Stable Accumulation [Yua.nyuan Tian, Shirish TatikonQa, Berthold
Reinwald: Scalable and Numerically Stable
" H#1 Descriptive Statistics in SystemML. ICDE 2012]
= H#2 sumOld = sum;
w/ error independent = sum + (input + corr); !

uak+: 5.000000005E17 //sum(seq(1,1e9))
ua+: 5.0000000109721722E17
ua+: 5.0000000262154688E17 //rev

= #3 ot

[ ] [ ]
- ulia
(divide & conquer) J
= #4 Chunk-based Accumulation [N. Wang et al.: Training [———
. . Deep Neural Networks with
= Divide long dot products into smaller chunks 8-bit Floating Point
= Hierarchy of partial sums = FP16 accumulators Numbers. NeurIPS 2018]
= #5 Stochastic Rounding o) — {8,2e (1+|m]+e€ with probability “=lmL.
. ‘ T ]s-2¢-(1 ith probability 1 — ==lml
= Replace nearest w/ prob. rounding $:20- (L [ml) - with probability e
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Presenter
Presentation Notes
Note: reproducibility of example Kahan addition
n = 1e9
x1 = seq(1,n);
x2 = seq(n,1);
ones = matrix(1,n,1)
print("baseline: "+(n*(n+1)/2));
print("agg1    : "+as.scalar(t(ones)%*%x1));
print("agg2    : "+as.scalar(t(ones)%*%x2));
print("kagg1   : "+sum(x1));
print("kagg2   : "+sum(x2));



Lossy and Lossless Compression

Ty

Low and Ultra-low FP Precision — New Datatypes

= Google bfloatl6
= “Brain” Float16 w/ range of FP32

= Drop in replacement for FP32,
no need for loss scaling

= |Intel FlexPoint

= Blocks of values w/ shared exponent

(N=16bit w/ M=5bit exponent)
= Example: flex16+5

< Range

on
' lexponent

= NVIDIA TF32
Eliiin

= Range of FP32 o
.. 732 ST
w/ precision of FP16 es

FP16 E—{IIID

FP32

e8
BF16 B [0 (T
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bfloat16: Brain Floating Point Format Range: ~1e to ~3e™ N

J— s X l'
EEEEEEEEEEEEEEE
Tensor
fp32: Single-precision IEEE Floating Point Format Range: ~1e™ to ~3e* |
et o1 s Siptcany 230 |
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM =—
fp16: Half-precision IEEE Floating Point Format Range: ~5.96¢™ to 65504 il
Exponent5bts  Mantssa (Significand): 10 bis ..
B IR [Brennan Saeta: Training

Performance A user’s guide to
converge faster, TF Dev Summit 2018]

[Urs Koster et al.: Flexpoint: An Adaptive
Numerical Format for Efficient Training of
Deep Neural Networks. NeurlPS 2017]

(om hast) g

psm—y || EEERASEERRAAERNNANE

s T T

Preci_sion

maness [NVIDIA A100 Tensor Core GPU [

W‘ Architecture - UNPRECEDENTED | ™
AT ACCELERATION AT EVERY SCALE,
LT e Whitepaper, Aug 2020]

| |—

“ISDS



Lossy and Lossless Compression ﬁ-grlan.

Fixed-Point Arithmetic Recommended “Reading”

%
[Inside TensorFlow: Model Optimization Toolkit .li
(Quantization and Pruning), YouTube, 2020] Tensor
= Motivation

= Forward-pass for model scoring (inference) can be done in UINT8 and below
= Static, dynamic, and learned quantization schemes (weights and inputs)

] Quantization (reduce Value domain) [https://blog.tensorflow.org/2020/04/
. Lo quantization-aware-training-with-tensorflow-
" Split value domain into N buckets model-optimization-toolkit.html]
such that k = log, N can encode the data e
= 3) Static Quantization (e.g., min/max) e T

|
f | ‘
-3e38 min g max 3638 float32

per tensor or per tensor channel

Optimal Quantization Points
= b) Learned Quantization Schemes

= Dynamic programming
= Various heuristics

" Example systems: [Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce | - e
ZipML, SketchML Zhang: ZipML: Training Linear Models with End-to-End Low E“fr
Precision, and a Little Bit of Deep Learning. ICML 2017]
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https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html

Lossy and Lossless Compression ﬁ-grlan.

Ot h e r I—OSSy Tec h n I q u eS [https://blog.tensorflow.org/2019/05/tf-

model-optimization-toolkit-pruning-APIl.html]

= #1 Sparsification/Pruning (reduce #non-zeros) [ L2

= Value clipping: zero-out very small values 78.1% @ sp=1.0  27.1M

below a threshold to reduce size of weights 78.0% @ sp=0.5  13.6M
76.1% @ sp=0.25 6.8M

74.6% @ sp=0.125 3.3M

= Training w/ target sparsity: remove connections

= #2 Mantissa Truncation
= Truncate m of FP32 from 23bit to 16bit

[Souvik Bhattacherjee et al: PStore: an | ===
efficient storage framework for '

= E.g., TensorFlow (transfers), PStore managing scientific data. SSDBM 2014]
= #3 Aggregated Data Representations [Amir llkhechi et al: DeepSqueeze:
. . Deep Semantic Compression for
= a) Dim reduction (e.g., auto encoders) Tabular Data, SIGMOD 2020]
= b) No FK-PK joins in Factorized Learning . ——

] [Arun Kumar et al: To Join or Notto | ===
(forelgn key as lossy compressed rep) Join?: Thinking Twice about Joins before

Feature Selection. SIGMOD 2016]

= #4 Sampling
[Yongjoo Park et al: BlinkML:

error (regression/classification) and scale Estimation with Probabilistic
Guarantees. SIGMOD 2019]

= Min sample size for max likelihood estimators


https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

Ty

Summary and Q&A

GPUs in ML Systems
ASICs and other HW Accelerators Performance/Energy

Caching, Partitioning, and Indexing

Lossy and Lossless Compression

=» Different Levels of Hardware Specialization
= General-purpose CPUs and GPUs
= FPGAs, DNN ASICs, and other technologies Specialization w/o
Abstraction is harmful
=» Different Levels of Data Layout Specialization
= Lossless caching, partitioning, indexing, compression
= Lossy compression, sparsification
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