

SCIENCE PASSION TECHNOLOGY

Architecture of ML Systems 02 Languages, Architectures, and System Landscape

Matthias Boehm

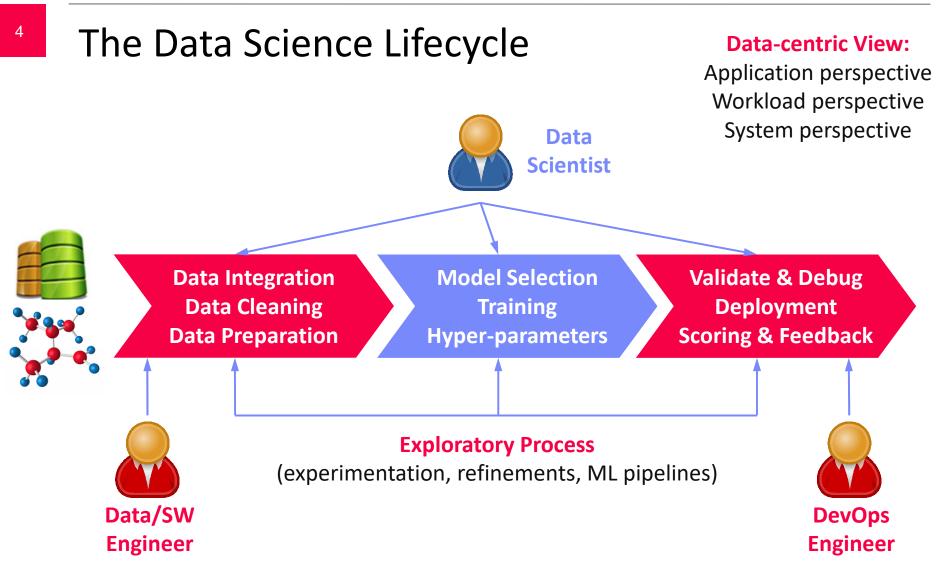
Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMVIT endowed chair for Data Management

Agenda

- Data Science Lifecycle
- ML Systems Stack
- System Architectures
- Discussion Programming Projects

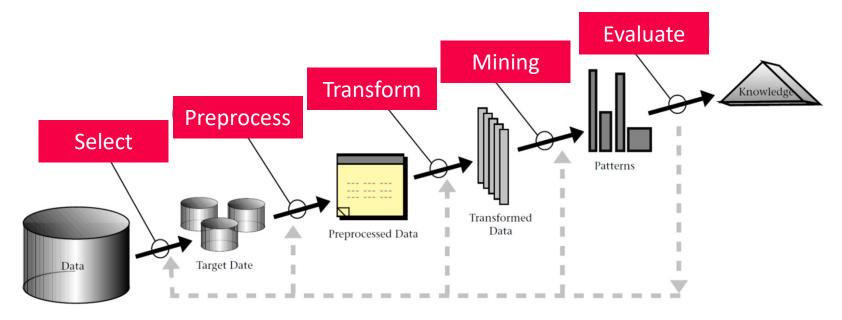
Data Science Lifecycle

Data Science Lifecycle



The Data Science Lifecycle, cont.

- Classic KDD Process (Knowledge Discovery in Databases)
 - Descriptive (association rules, clustering) and predictive



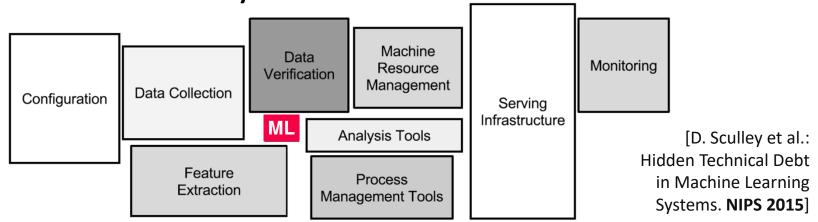
[Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth: From Data Mining to Knowledge Discovery in Databases. **AI Magazine 17(3) (1996)**]

The 80% Argument

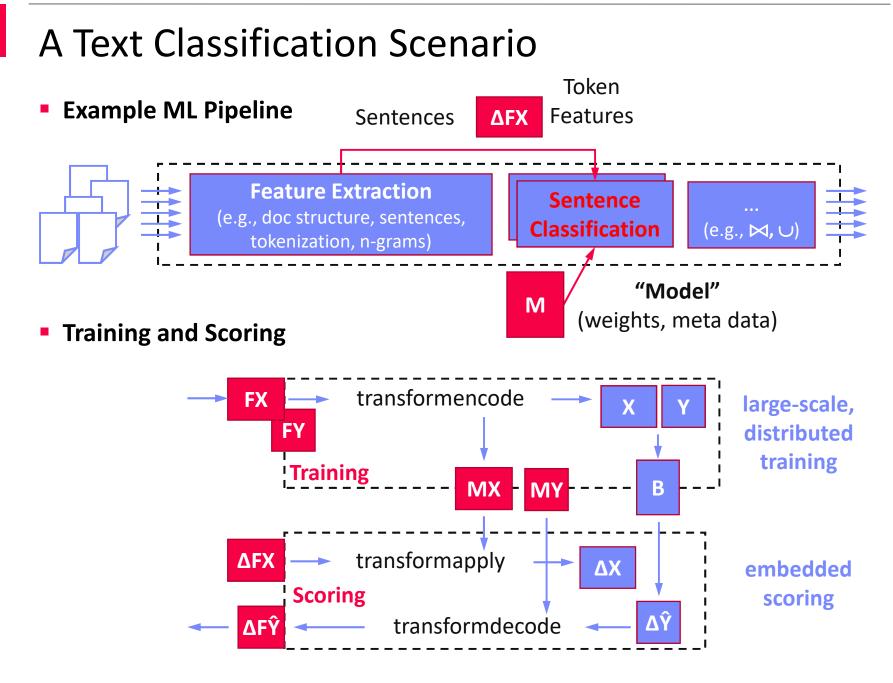
- Data Sourcing Effort
 - Data scientists spend 80-90% time on finding relevant datasets and data integration/cleaning.

[Michael Stonebraker, Ihab F. Ilyas: Data Integration: The Current Status and the Way Forward. IEEE Data Eng. Bull. 41(2) (2018)]

Technical Debts in ML Systems



- Glue code, pipeline jungles, dead code paths
- Plain-old-data types, multiple languages, prototypes
- Abstraction and configuration debts
- Data testing, reproducibility, process management, and cultural debts



ML Systems Stack

Driving Factors for ML

Improved Algorithms and Models

- Success across data and application domains (e.g., health care, finance, transport, production)
- More complex models which leverage large data

Availability of Large Data Collections

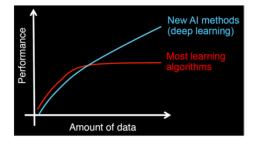
- Increasing automation and monitoring → data (simplified by cloud computing & services)
- Feedback loops, data programming/augmentation

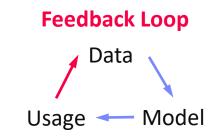
HW & SW Advancements

- Higher performance of hardware and infrastructure (cloud)
- Open-source large-scale computation frameworks, ML systems, and vendor-provides libraries

706.550 Architecture of Machine Learning Systems – 02 System Architecture Matthias Boehm, Graz University of Technology, SS 2019

[Credit: Andrew Ng'14]





ISDS

¹⁰ Stack of ML	Vali	Deployment idation & Scoring	Deployment &		
Hyper-paramete	Training	De	bugging		
Tuning	ML Apps & Algorithms		Supervised, unsupervised, RL linear algebra, libs, AutoML Eager interpretation, lazy evaluation, prog. compilation		
Model and Feature Selection	Language Abstractions				
Data Programming & Augmentation	Fault Tolerance		Approximation, lineage, checkpointing, checksums, ECC		
Data Preparation	Execution Strategies		Local, distributed, cloud (data, task, parameter server)		
(e.g., one-hot, binning)	Data Representations		Dense & sparse tensor/matrix; compress, partition, cache		
Data Integration & Data Cleaning	HW & Infrastructure		CPUs, NUMA, GPUs, FPGAs, ASICs, RDMA, SSD/NVM		

Improve accuracy vs. performance vs. resource requirements
Specialization & Heterogeneity

Accelerators (GPUs, FPGAs, ASICs)

Memory- vs Compute-intensive

- CPU: dense/sparse, large mem, high mem-bandwidth, moderate compute
- GPU: dense, small mem, slow PCI, very high mem-bandwidth / compute

Graphics Processing Units (GPUs)

- Extensively used for deep learning training and scoring
- NVIDIA Volta: "tensor cores" for 4x4 mm \rightarrow 64 2B FMA instruction
- Field-Programmable Gate Arrays (FPGAs)
 - Customizable HW accelerators for prefiltering, compression, DL
 - Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)
- Application-Specific Integrated Circuits (ASIC)
 - Spectrum of chips: DL accelerators to computer vision
 - Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel NNP

DL

Operational Intensity

Roofline

Analysis

Ops

ML

Data Representation

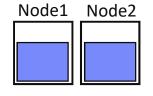
- ML- vs DL-centric Systems
 - ML: dense and sparse matrices or tensors, different sparse formats (CSR, CSC, COO), frames (heterogeneous)
 - DL: mostly dense tensors, relies on embeddings for NLP, graphs

Data-Parallel Operations for ML

- Distributed matrices: RDD<MatrixIndexes,MatrixBlock>
- Data properties: distributed caching, partitioning, compression

■ Lossy Compression → Acc/Perf-Tradeoff

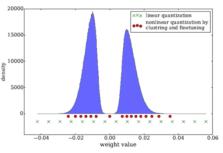
- Sparsification (reduce non-zero values)
- Quantization (reduce value domain), learned
- New data types: Intel Flexpoint (mantissa, exp)



[Credit: Song Han'16]

vec(Berlin) - vec(Germany)

+ vec(France) ≈ vec(Paris)



706.550 Architecture of Machine Learning Systems – 02 System Architecture Matthias Boehm, Graz University of Technology, SS 2019

Faults

Exec

Data

HW

Apps

Lang

Faults

Exec

Data

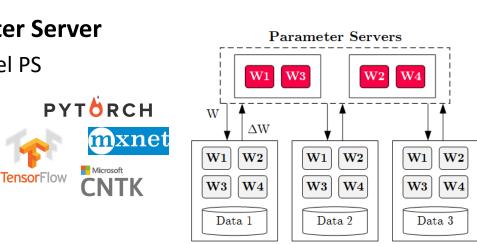
HW

Execution Strategies

- Batch Algorithms: Data and Task Parallel
 - Data-parallel operations
 - Different physical operators

Mini-Batch Algorithms: Parameter Server

- Data-parallel and model-parallel PS
- Update strategies (e.g., async, sync, backup)
- Data partitioning strategies
- Federated ML (trend 2018)
- Lots of PS Decisions Acc/Perf-Tradeoff
 - Configurations (#workers, batch size/param schedules, update type/freq)
 - Transfer optimizations: lossy compression, sparsification, residual accumulation, gradient clipping, and momentum corrections



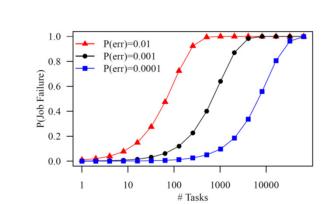
Apache

SystemML[™]

Workers

Fault Tolerance & Resilience

- Resilience Problem
 - Increasing error rates at scale (soft/hard mem/disk/net errors)
 - Robustness for preemption
 - Need cost-effective resilience



Fault Tolerance in Large-Scale Computation

- Block replication (min=1, max=3) in distributed file systems
- ECC; checksums for blocks, broadcast, shuffle
- Checkpointing (MapReduce: all task outputs; Spark/DL: on request)
- Lineage-based recomputation for recovery in Spark
- ML-specific Schemes (exploit app characteristics)
 - Estimate contribution from lost partition to avoid strugglers
 - Example: user-defined "compensation" functions

Apps

Lang

Faults

Exec

Data

HW

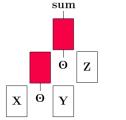
Language Abstractions

- Optimization Scope
 - #1 Eager Interpretation (debugging, no opt)
 - #2 Lazy expression evaluation (some opt, avoid materialization)
 - #3 Program compilation (full opt, difficult)
- Optimization Objective
 - Most common: min time s.t. memory constraints
 - Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

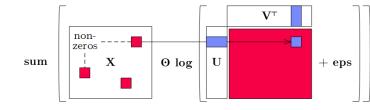
TensorFlow

Trend: Fusion and Code Generation

- Custom fused operations
- Examples: SystemML, Weld, Taco, Julia, TF XLA,TVM, TensorRT



Sparsity-Exploiting Operator



NumPy

MAHOUT

PYTORCH

Apache

SystemML[™]

ML Applications

- ML Algorithms (cost/benefit time vs acc)
 - Unsupervised/supervised; batch/mini-batch; first/second-order ML
 - Mini-batch DL: variety of NN architectures and SGD optimizers

Specialized Apps: Video Analytics in NoScope (time vs acc)

- Difference detectors / specialized models for "short-circuit evaluation"
- AutoML (time vs acc)
 - Not algorithms but tasks (e.g., **doClassify**(X, y) + search space)
 - Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0
 - AutoML services at Microsoft Azure, Amazon AWS, Google Cloud
- Data Programming and Augmentation (acc?)
 - Generate noisy labels for pre-training
 - Tremblay'18] Exploit expert rules, simulation models, rotations/shifting, and labeling IDEs (Software 2.0)

[Credit: Daniel Kang'17]

[Credit:

Apps

Language Abstractions and System Architectures

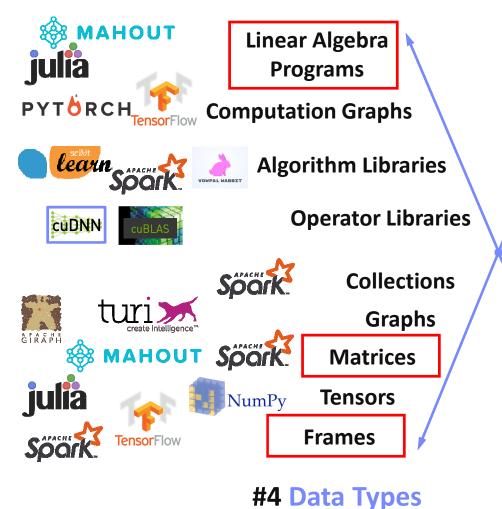
Landscape of ML Systems

18

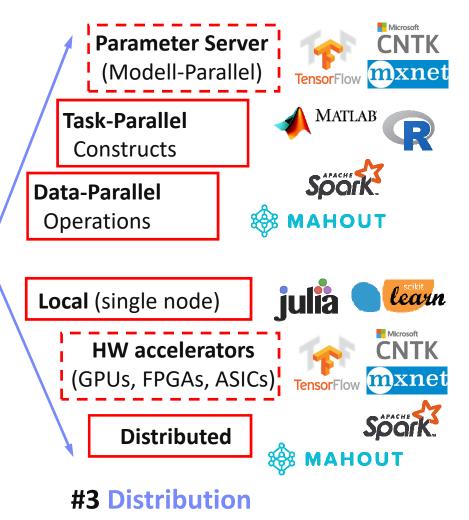
TUPAQ	Mlbase		Tupley	ware	GraphLab		HP
	Emma	Kasen	Cümülön(-D)				buted R
	Glade	Cumulo		OptiML	F DMac	RIOT-DB	
LINV	'IEW		Photon ML	SystemML			RIOT
	Heming			Μ	SAP S (Rev) R	P HANA	
	/elox · Tonc	Sams orDB	F Br	ainwash	ORE	BigR	SciDB
Longv	iew iens		Columbus	DeepDive	Azure	eML ^{Fa}	R4ML
R	Orion	SimSQL Bl	JDS	Zombie	ScalOps	Μ	XNet
Matlab	S	Santoku	LibFM	Keystone	ML To	rch	
Julia ^S Weka	scikit-learn	Sherlock N	/lodelHub Mode	IDB Ham	BigD let	ıL Ter	nsorFlow
CDCC	Mahout	Spark ML	MADlib		CNTK	The	eano
SAS	VW Spark	c R Flir	nk ML	Bismarck	Keras Caffe	Singa e	DL4J

Landscape of ML Systems, cont.

#1 Language Abstraction



#2 Execution Strategies



UDF-based Systems

User-defined Functions (UDF)

- Data type: Input usually collections of cells, rows, or blocks
- Implement loss and overall optimizer by yourself / UDF abstractions
- Examples: data-parallel (e.g., Spark MLlib) or In-DBMS analytics (MADlib)

Example SQL

20

Matrix Product in SQL

Matrix Product w/ UDF

Optimization w/ UDA

```
SELECT A.i, B.j,
  SUM(A.val*B.val)
FROM A, B
WHERE A.j = B.i
GROUP BY A.i, B.j;
```

```
SELECT A.i, B.j, Init(state)
FROM A, B;
```

```
dot(A.row, B.col) Accumulate(state,data)
                   Merge(state, data)
                    Finalize(state,data)
```


Graph-based Systems

- Large-scale Graph Processing
 - Natively represent graph as nodes/edges
- Think like a vertex

21

- Partition: a collection of vertices
- Computation: a vertex and its edges
- Communication: 1-hop at a time (e.g., $A \rightarrow B \rightarrow D$)

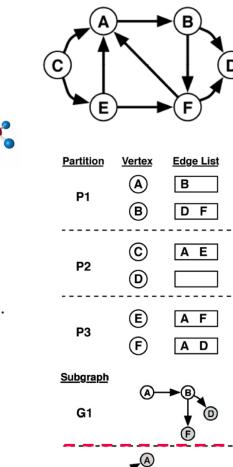
[Grzegorz Malewicz et al: **Pregel:** a system for large-scale graph processing. **SIGMOD 2010**]

Think like a graph

- Partition: a proper subgraph
- Computation: a subgraph
- Communication: multiple-hops at a time e.g., A→D
- Graph partitioning

[Yuanyuan Tian et al: From "Think Like a Vertex" to "Think Like a Graph". **PVLDB 2013**]

706.550 Architecture of Machine Learning Systems – 02 System Architecture Matthias Boehm, Graz University of Technology, SS 2019

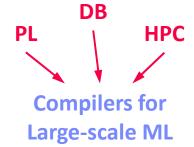


G2

G3

Linear Algebra Systems

- Comparison Query Optimization
 - Rule- and cost-based rewrites and operator ordering
 - Physical operator selection and query compilation
 - Linear algebra / other ML operators, DAGs, control flow, sparse/dense formats
- #1 Interpretation (operation at-a-time)
 - Examples: R, PyTorch, Morpheus [PVLDB'17]
- #2 Lazy Expression Compilation (DAG at-a-time)
 - Examples: RIOT [CIDR'09], Mahout Samsara [MLSystems'16]
 - Examples w/ control structures: Weld [CIDR'17], OptiML [ICML'11], Emma [SIGMOD'15]
- #3 Program Compilation (entire program)
 - Examples: SystemML [PVLDB'16], Julia
 Cumulon [SIGMOD'13], Tupleware [PVLDB'15]



Optimization Scope

```
1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001;
4:
   intercept = $3:
5:
   r = -(t(X) \% \% v);
6:
   norm r2 = sum(r * r); p = -r;
7:
   w = matrix(0, ncol(X), 1); i = 0;
8:
9:
   while(i<maxi & norm r2>norm r2 trgt)
10: {
11:
      q = (t(X) %*% X %*% p)+lambda*p;
12:
      alpha = norm_r2 / sum(p * q);
13:
      w = w + alpha * p;
14:
       old norm r2 = norm r2;
15:
       r = r + alpha * q;
16:
       norm r2 = sum(r * r);
17:
       beta = norm r2 / old norm r2;
       p = -r + beta * p; i = i + 1;
18:
19: }
20: write(w, $4, format="text");
```


}

Linear Algebra Systems, cont.

}

• Some Examples ...


```
X = read("./X");
y = read("./y");
p = t(X) %*% y;
w = matrix(0,ncol(X),1);
while(...) {
q = t(X) %*% X %*% p;
...
```

```
🛞 маноит
```

```
var X = drmFromHDFS("./X")
val y = drmFromHDFS("./y")
var p = (X.t %*% y).collect
var w = dense(...)
X = X.par(256).checkpoint()
```

while(...) {
 q = (X.t %*% X %*% p)
 .collect


```
while ...:
v1 = tf.matrix_transpose(X)
v2 = tf.matmult(X, p)
v3 = tf.matmult(v1, v2)
q = sess.run(v3)
...
```

(Custom DSL w/ R-like syntax; program compilation)

(Embedded DSL in Scala; lazy evaluation) (Embedded DSL in Python; lazy [and eager] evaluation)

ML Libraries

24

Fixed algorithm implementations

Often on top of existing linear algebra or UDF abstractions

Distributed Example (Spark Scala)

import org.apache.spark.ml
.regression.LinearRegression

```
val X = sc.read.csv('X.csv')
val y = sc.read.csv('y.csv')
val Xy = prepare(X, y).cache()
```

```
val reg = new LinearRegression()
   .fit(Xy)
val out reg.transform(Xy)
```


DL Frameworks

25

High-level DNN Frameworks

- Language abstraction for DNN construction and model fitting
- Examples: Caffe, Keras

```
model = Sequential()
model.add(Conv2D(32, (3, 3),
padding='same',
```

```
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(
    MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
```

```
opt = keras.optimizers.rmsprop(
    lr=0.0001, decay=1e-6)
```

```
# Let's train the model using RMSprop
model.compile(loss='cat..._crossentropy',
    optimizer=opt,
    metrics=['accuracy'])
```

PYTORCH

```
model.fit(x_train, y_train,
    batch_size=batch_size,
    epochs=epochs,
    validation_data=(x_test, y_test),
    shuffle=True)
```

Low-level DNN Frameworks

. . .

Examples: TensorFlow, MXNet, PyTorch, CNTK


```
ISDS
```


A Critical Perspective on ML Systems (broad sense)

Recommended Reading

- M. Jordan: SysML: Perspectives and Challenges. Keynote at SysML 2018
- "ML [...] is far from being a solid engineering discipline that can yield robust, scalable solutions to modern data-analytic problems"

https://www.youtube.com/watch?v=4inIBmY8dQI

Programming Projects

Example Projects (to be refined by Mar 29)

- #1: Auto Differentiation
 - Implement auto differentiation for deep neural networks
 - Integrate auto differentiation framework in compiler or runtime
- **#2:** Sparsity-Aware Optimization of Matrix Product Chains
 - Integrate sparsity estimators into DP algorithm
 - Extend DP algorithm for DAGs and other operations
- **#3** Parameter Server Update Schemes
 - New PS update schemes: e.g., stale-synchronous, Hogwild!
 - Language and local/distributed runtime extensions
- #4 Extended I/O Framework for Other Formats
 - Implement local readers/writers for NetCDF, HDF5, libsvm, and/or Arrow
- #5: LLVM Code Generator
 - Extend codegen framework by LLVM code generator
 - Native vector library, native operator skeletons, JNI bridge

Example Projects, cont. (to be refined by Mar 29)

- #6 Data Validation Scripts
 - Implement recently proposed integrity constraints
 - Write DML scripts to check a set of constraints on given dataset
- #7 Data Cleaning Primitives
 - Implement scripts or physical operators to perform data imputation and data cleaning (find and remove/fix incorrect values)
- #8 Data Preparation Primitives
 - Extend transform functionality for distributed binning
 - Needs to work in combination w/ dummy coding, recoding, etc

