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Agenda

 Data Science Lifecycle

 ML Systems Stack

 System Architectures

 Discussion Programming Projects
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Data Science Lifecycle
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The Data Science Lifecycle

Data Science Lifecycle

Data/SW 
Engineer

DevOps 
Engineer

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data 
Scientist

Data-centric View:
Application perspective

Workload perspective

System perspective

Exploratory Process 
(experimentation, refinements, ML pipelines)
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 Classic KDD Process (Knowledge Discovery in Databases)

 Descriptive (association rules, clustering) and predictive

 1990-2010

Select
Preprocess

Transform

Mining

Evaluate

The Data Science Lifecycle, cont.

Data Science Lifecycle

[Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth: From Data Mining to 

Knowledge Discovery in Databases. AI Magazine 17(3) (1996)]
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The 80% Argument

 Data Sourcing Effort

 Data scientists spend 80-90% time on finding 

relevant datasets and data integration/cleaning.

 Technical Debts in ML Systems

 Glue code, pipeline jungles, dead code paths

 Plain-old-data types, multiple languages, prototypes

 Abstraction and configuration debts

 Data testing, reproducibility, process management, and cultural debts

Data Science Lifecycle

[Michael Stonebraker, Ihab F. Ilyas: 

Data Integration: The Current 

Status and the Way Forward. 

IEEE Data Eng. Bull. 41(2) (2018)]

[D. Sculley et al.: 

Hidden Technical Debt 

in Machine Learning 

Systems. NIPS 2015]

ML
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A Text Classification Scenario

 Example ML Pipeline

 Training and Scoring 

Data Science Lifecycle

Sentence 
Classification

Sentence 
Classification

Feature Extraction
(e.g., doc structure, sentences, 

tokenization, n-grams)

…
(e.g., ⨝⨝⨝⨝, ∪∪∪∪)

ΔFX

M
“Model”

(weights, meta data)

Token 

FeaturesSentences

Scoring

Training

FY

BMY

Y

ΔŶ

FX transformencode X

MX

transformapplyΔFX ΔX

transformdecodeΔFŶ

large-scale, 
distributed  

training

embedded 
scoring
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ML Systems Stack
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Driving Factors for ML

 Improved Algorithms and Models

 Success across data and application domains

(e.g., health care, finance, transport, production) 

 More complex models which leverage large data

 Availability of Large Data Collections

 Increasing automation and monitoring  data

(simplified by cloud computing & services)

 Feedback loops, data programming/augmentation

 HW & SW Advancements

 Higher performance of hardware and infrastructure (cloud)

 Open-source large-scale computation frameworks, 

ML systems, and vendor-provides libraries

ML Systems Stack

Data

ModelUsage

Feedback Loop

[Credit: Andrew Ng’14]
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Stack of ML Systems

ML Systems Stack

ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Execution Strategies

Data Representations

HW & Infrastructure

Training

Eager interpretation, lazy 

evaluation, prog. compilation

Approximation, lineage, 

checkpointing, checksums, ECC

Supervised, unsupervised, RL

linear algebra, libs, AutoML

Validation & 
Debugging

Deployment & 
Scoring

Hyper-parameter 
Tuning

Model and Feature 
Selection

Data Preparation 
(e.g., one-hot, binning)

Data Integration & Data 
Cleaning

Data Programming & 
Augmentation

Local, distributed, cloud 

(data, task, parameter server)

Dense & sparse tensor/matrix;

compress, partition, cache

CPUs, NUMA, GPUs, FPGAs, 

ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs. resource requirements
 Specialization & Heterogeneity
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Accelerators (GPUs, FPGAs, ASICs)

 Memory- vs Compute-intensive

 CPU: dense/sparse, large mem, high 

mem-bandwidth, moderate compute

 GPU: dense, small mem, slow PCI, 

very high mem-bandwidth / compute

 Graphics Processing Units (GPUs) 

 Extensively used for deep learning training and scoring

 NVIDIA Volta: “tensor cores” for 4x4 mm  64 2B FMA instruction

 Field-Programmable Gate Arrays (FPGAs)

 Customizable HW accelerators for prefiltering, compression, DL

 Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

 Application-Specific Integrated Circuits (ASIC)

 Spectrum of chips: DL accelerators to computer vision

 Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel NNP

ML Systems Stack

Apps

Lang

Faults

Exec

Data

HWOps

Operational Intensity

ML

DL

Roofline 
Analysis
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Data Representation

 ML- vs DL-centric Systems

 ML: dense and sparse matrices or tensors, different sparse 

formats (CSR, CSC, COO), frames (heterogeneous)

 DL: mostly dense tensors, relies 

on embeddings for NLP, graphs

 Data-Parallel Operations for ML

 Distributed matrices: RDD<MatrixIndexes,MatrixBlock>

 Data properties: distributed caching, 

partitioning, compression

 Lossy Compression  Acc/Perf-Tradeoff

 Sparsification (reduce non-zero values)

 Quantization (reduce value domain), learned

 New data types: Intel Flexpoint (mantissa, exp)

ML Systems Stack

vec(Berlin) – vec(Germany) 

+ vec(France) ≈ vec(Paris) 

Node1 Node2

[Credit: Song Han’16]

Apps

Lang

Faults

Exec

Data

HW
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Execution Strategies

 Batch Algorithms: Data and Task Parallel

 Data-parallel operations

 Different physical operators

 Mini-Batch Algorithms: Parameter Server 

 Data-parallel and model-parallel PS

 Update strategies (e.g., 

async, sync, backup)

 Data partitioning strategies

 Federated ML (trend 2018)

 Lots of PS Decisions  Acc/Perf-Tradeoff

 Configurations (#workers, batch size/param schedules, update type/freq)

 Transfer optimizations: lossy compression, sparsification, residual accumulation, 

gradient clipping, and momentum corrections

ML Systems Stack

Apps

Lang

Faults

Exec

Data

HW
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Fault Tolerance & Resilience

 Resilience Problem

 Increasing error rates at scale

(soft/hard mem/disk/net errors)

 Robustness for preemption

 Need cost-effective resilience

 Fault Tolerance in Large-Scale Computation

 Block replication (min=1, max=3) in distributed file systems

 ECC; checksums for blocks, broadcast, shuffle

 Checkpointing (MapReduce: all task outputs; Spark/DL: on request)

 Lineage-based recomputation for recovery in Spark

 ML-specific Schemes (exploit app characteristics)

 Estimate contribution from lost partition to avoid strugglers

 Example: user-defined “compensation” functions

ML Systems Stack

Apps

Lang

Faults

Exec

Data

HW
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Language Abstractions

 Optimization Scope

 #1 Eager Interpretation (debugging, no opt)

 #2 Lazy expression evaluation
(some opt, avoid materialization)

 #3 Program compilation (full opt, difficult)

 Optimization Objective

 Most common: min time s.t. memory constraints

 Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

 Trend: Fusion and Code Generation

 Custom fused operations

 Examples: SystemML, 

Weld, Taco, Julia, 

TF XLA,TVM, TensorRT

ML Systems Stack

Sparsity-Exploiting Operator

Apps

Lang

Faults

Exec

Data

HW
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ML Applications

 ML Algorithms (cost/benefit – time vs acc)

 Unsupervised/supervised; batch/mini-batch; first/second-order ML

 Mini-batch DL: variety of NN architectures and SGD optimizers 

 Specialized Apps: Video Analytics
in NoScope (time vs acc)

 Difference detectors / specialized 

models for “short-circuit evaluation”

 AutoML (time vs acc)

 Not algorithms but tasks (e.g., doClassify(X, y) + search space)

 Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0

 AutoML services at Microsoft Azure, Amazon AWS, Google Cloud

 Data Programming and Augmentation (acc?)

 Generate noisy labels for pre-training

 Exploit expert rules, simulation models,

rotations/shifting, and labeling IDEs (Software 2.0)

ML Systems Stack

Apps

Lang

Faults

Exec

Data

HW

[Credit:
Jonathan 

Tremblay‘18]

[Credit: Daniel Kang‘17]
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Language Abstractions and

System Architectures
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Landscape of ML Systems

Language Abstractions and System Architectures

Mahout
Spark ML MADlib

Orion

Santoku

Bismarck

F

LibFM

TensorDB
DeepDive

Spark R

ORE

ScalOps
SimSQL

Fa

SAP HANA

RIOT-DB
OptiML

SystemML

Cumulon

Mahout 

Samsara

LINVIEW

Velox

Emma
Kasen

Tupleware
GraphLab

TensorFlow

SciDB

MlbaseTUPAQ

Cümülön(-D)

Brainwash

Zombie

KeystoneML

Hamlet

Longview

Sherlock ModelHub

ModelDB

AzureML

BigR

R

Matlab

Julia

Weka

SPSS

SAS
VW

Torch

TheanoCNTK

Singa
DL4J

Caffe

Keras

Photon ML

Columbus

scikit-learn

MS (Rev) R

RIOT

DMac

HP 

Distributed R

Hemingway

Glade

Flink ML

BigDL

MXNetBUDS

R4ML
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Landscape of ML Systems, cont.

Language Abstractions and System Architectures

#3 Distribution

Local (single node)

HW accelerators 
(GPUs, FPGAs, ASICs)

Distributed

#4 Data Types

Collections

Graphs

Matrices

Tensors

Frames

#1 Language Abstraction

Operator Libraries

Algorithm Libraries

Computation Graphs

Linear Algebra 
Programs

#2 Execution Strategies

Data-Parallel
Operations

Task-Parallel
Constructs

Parameter Server
(Modell-Parallel)
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UDF-based Systems

 User-defined Functions (UDF)

 Data type: Input usually collections of cells, rows, or blocks

 Implement loss and overall optimizer by yourself / UDF abstractions 

 Examples: data-parallel (e.g., Spark MLlib) 

or In-DBMS analytics (MADlib)

 Example SQL

Language Abstractions and System Architectures

Matrix Product in SQL

SELECT A.i, B.j, 

SUM(A.val*B.val)

FROM A, B

WHERE A.j = B.i

GROUP BY A.i, B.j;

Matrix Product w/ UDF

SELECT A.i, B.j, 

dot(A.row, B.col)

FROM A, B;

Optimization w/ UDA

Init(state)

Accumulate(state,data)

Merge(state,data)

Finalize(state,data)
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Graph-based Systems

 Large-scale Graph Processing

 Natively represent graph as nodes/edges

 Think like a vertex

 Partition: a collection of vertices

 Computation: a vertex and its edges

 Communication: 1-hop at a time (e.g., ABD)

 Think like a graph

 Partition: a proper subgraph

 Computation: a subgraph

 Communication: multiple-hops at a time e.g., AD

 Graph partitioning

Language Abstractions and System Architectures

[Grzegorz Malewicz et al: Pregel: a system for large-scale graph processing. 

SIGMOD 2010]

[Yuanyuan Tian et al: From "Think Like a Vertex" to "Think Like a Graph". 

PVLDB 2013]
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Linear Algebra Systems

 Comparison Query Optimization

 Rule- and cost-based rewrites and operator ordering

 Physical operator selection and query compilation

 Linear algebra / other ML operators, DAGs, 

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)

 Examples: R, PyTorch, Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)

 Examples: RIOT [CIDR’09], 

Mahout Samsara [MLSystems’16]

 Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]

 #3 Program Compilation (entire program)

 Examples: SystemML [PVLDB’16], Julia
Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Language Abstractions and System Architectures

Compilers for 
Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix

2: y = read($2); # n x 1 vector

3: maxi = 50; lambda = 0.001; 

4: intercept = $3;

5: ...

6: r = -(t(X) %*% y); 

7: norm_r2 = sum(r * r); p = -r;

8: w = matrix(0, ncol(X), 1); i = 0;

9: while(i<maxi & norm_r2>norm_r2_trgt) 

10: {

11: q = (t(X) %*% X %*% p)+lambda*p;

12: alpha = norm_r2 / sum(p * q);

13: w = w + alpha * p;

14: old_norm_r2 = norm_r2;

15: r = r + alpha * q;

16: norm_r2 = sum(r * r);

17: beta = norm_r2 / old_norm_r2;

18: p = -r + beta * p; i = i + 1; 

19: }

20: write(w, $4, format="text");

Optimization Scope
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Linear Algebra Systems, cont.

 Some Examples …

Language Abstractions and System Architectures

X = read("./X");

y = read("./y");

p = t(X) %*% y;

w = matrix(0,ncol(X),1);

while(...) {

q = t(X) %*% X %*% p;

...

}

var X = drmFromHDFS("./X")

val y = drmFromHDFS("./y")

var p = (X.t %*% y).collect

var w = dense(...)

X = X.par(256).checkpoint()

while(...) {

q = (X.t %*% X %*% p)

.collect

...

}

# read via queues

sess = tf.Session()

# ...

w = tf.Variable(tf.zeros(...,    

dtype=tf.float64))

while ...:

v1 = tf.matrix_transpose(X)

v2 = tf.matmult(X, p)

v3 = tf.matmult(v1, v2)

q = sess.run(v3)

...

(Custom DSL 

w/ R-like syntax; 

program compilation)

(Embedded DSL in Scala; 

lazy evaluation)

(Embedded DSL in Python; 

lazy [and eager] evaluation)
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ML Libraries

 Fixed algorithm implementations

 Often on top of existing linear algebra or UDF abstractions

Language Abstractions and System Architectures

Single-node Example (Python)

from numpy import genfromtxt

from sklearn.linear_model \

import LinearRegression

X = genfromtxt('X.csv')

y = genfromtxt('y.csv')

reg = LinearRegression()

.fit(X, y)

out = reg.score(X, y)

Distributed Example (Spark Scala)

import org.apache.spark.ml 

.regression.LinearRegression

val X = sc.read.csv('X.csv')

val y = sc.read.csv('y.csv')

val Xy = prepare(X, y).cache() 

val reg = new LinearRegression()

.fit(Xy)

val out reg.transform(Xy)

SparkML/ 
MLlib
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DL Frameworks

 High-level DNN Frameworks

 Language abstraction for DNN construction and model fitting

 Examples: Caffe, Keras

 Low-level DNN Frameworks

 Examples: TensorFlow, MXNet, PyTorch, CNTK

Language Abstractions and System Architectures

model = Sequential()

model.add(Conv2D(32, (3, 3), 

padding='same',

input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(32, (3, 3)))

model.add(Activation('relu'))

model.add(

MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

...

opt = keras.optimizers.rmsprop(

lr=0.0001, decay=1e-6)

# Let's train the model using RMSprop

model.compile(loss='cat…_crossentropy',

optimizer=opt,

metrics=['accuracy'])

model.fit(x_train, y_train,

batch_size=batch_size,

epochs=epochs,

validation_data=(x_test, y_test), 

shuffle=True)
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A Critical Perspective on ML Systems (broad sense)

 Recommended Reading

 M. Jordan:  SysML: Perspectives and 

Challenges. Keynote at  SysML 2018

 “ML […] is far from being a solid engineering 

discipline that can yield robust, scalable solutions 

to modern data-analytic problems” 

 https://www.youtube.com/watch?v=4inIBmY8dQI

Language Abstractions and System Architectures



27

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019 

Programming Projects



28

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019 

Example Projects (to be refined by Mar 29)

 #1: Auto Differentiation

 Implement auto differentiation for deep neural networks

 Integrate auto differentiation framework in compiler or runtime

 #2: Sparsity-Aware Optimization of Matrix Product Chains

 Integrate sparsity estimators into DP algorithm

 Extend DP algorithm for DAGs and other operations

 #3 Parameter Server Update Schemes

 New PS update schemes: e.g., stale-synchronous, Hogwild!

 Language and local/distributed runtime extensions

 #4 Extended I/O Framework for Other Formats

 Implement local readers/writers for NetCDF, HDF5, libsvm, and/or Arrow

 #5: LLVM Code Generator

 Extend codegen framework by LLVM code generator

 Native vector library, native operator skeletons, JNI bridge

Programming Projects
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Example Projects, cont. (to be refined by Mar 29)

 #6 Data Validation Scripts

 Implement recently proposed integrity constraints

 Write DML scripts to check a set of constraints on given dataset

 #7 Data Cleaning Primitives

 Implement scripts or physical operators to perform data imputation

and data cleaning (find and remove/fix incorrect values)

 #8 Data Preparation Primitives

 Extend transform functionality for distributed binning

 Needs to work in combination w/ dummy coding, recoding, etc

Programming Projects


