
1

SCIENCE

PASSION

TECHNOLOGY

Architecture of ML Systems
02 Languages, Architectures, and
System Landscape

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering

Institute of Interactive Systems and Data Science

BMVIT endowed chair for Data Management

Last update: Mar 22, 2019

2

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Agenda

 Data Science Lifecycle

 ML Systems Stack

 System Architectures

 Discussion Programming Projects

3

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Data Science Lifecycle

4

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

The Data Science Lifecycle

Data Science Lifecycle

Data/SW
Engineer

DevOps
Engineer

Data Integration
Data Cleaning

Data Preparation

Model Selection
Training

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data
Scientist

Data-centric View:
Application perspective

Workload perspective

System perspective

Exploratory Process
(experimentation, refinements, ML pipelines)

5

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

 Classic KDD Process (Knowledge Discovery in Databases)

 Descriptive (association rules, clustering) and predictive

 1990-2010

Select
Preprocess

Transform

Mining

Evaluate

The Data Science Lifecycle, cont.

Data Science Lifecycle

[Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth: From Data Mining to

Knowledge Discovery in Databases. AI Magazine 17(3) (1996)]

6

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

The 80% Argument

 Data Sourcing Effort

 Data scientists spend 80-90% time on finding

relevant datasets and data integration/cleaning.

 Technical Debts in ML Systems

 Glue code, pipeline jungles, dead code paths

 Plain-old-data types, multiple languages, prototypes

 Abstraction and configuration debts

 Data testing, reproducibility, process management, and cultural debts

Data Science Lifecycle

[Michael Stonebraker, Ihab F. Ilyas:

Data Integration: The Current

Status and the Way Forward.

IEEE Data Eng. Bull. 41(2) (2018)]

[D. Sculley et al.:

Hidden Technical Debt

in Machine Learning

Systems. NIPS 2015]

ML

7

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

A Text Classification Scenario

 Example ML Pipeline

 Training and Scoring

Data Science Lifecycle

Sentence
Classification

Sentence
Classification

Feature Extraction
(e.g., doc structure, sentences,

tokenization, n-grams)

…
(e.g., ⨝⨝⨝⨝, ∪∪∪∪)

ΔFX

M
“Model”

(weights, meta data)

Token

FeaturesSentences

Scoring

Training

FY

BMY

Y

ΔŶ

FX transformencode X

MX

transformapplyΔFX ΔX

transformdecodeΔFŶ

large-scale,
distributed

training

embedded
scoring

8

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

ML Systems Stack

9

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Driving Factors for ML

 Improved Algorithms and Models

 Success across data and application domains

(e.g., health care, finance, transport, production)

 More complex models which leverage large data

 Availability of Large Data Collections

 Increasing automation and monitoring  data

(simplified by cloud computing & services)

 Feedback loops, data programming/augmentation

 HW & SW Advancements

 Higher performance of hardware and infrastructure (cloud)

 Open-source large-scale computation frameworks,

ML systems, and vendor-provides libraries

ML Systems Stack

Data

ModelUsage

Feedback Loop

[Credit: Andrew Ng’14]

10

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Stack of ML Systems

ML Systems Stack

ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Execution Strategies

Data Representations

HW & Infrastructure

Training

Eager interpretation, lazy

evaluation, prog. compilation

Approximation, lineage,

checkpointing, checksums, ECC

Supervised, unsupervised, RL

linear algebra, libs, AutoML

Validation &
Debugging

Deployment &
Scoring

Hyper-parameter
Tuning

Model and Feature
Selection

Data Preparation
(e.g., one-hot, binning)

Data Integration & Data
Cleaning

Data Programming &
Augmentation

Local, distributed, cloud

(data, task, parameter server)

Dense & sparse tensor/matrix;

compress, partition, cache

CPUs, NUMA, GPUs, FPGAs,

ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs. resource requirements
 Specialization & Heterogeneity

11

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Accelerators (GPUs, FPGAs, ASICs)

 Memory- vs Compute-intensive

 CPU: dense/sparse, large mem, high

mem-bandwidth, moderate compute

 GPU: dense, small mem, slow PCI,

very high mem-bandwidth / compute

 Graphics Processing Units (GPUs)

 Extensively used for deep learning training and scoring

 NVIDIA Volta: “tensor cores” for 4x4 mm  64 2B FMA instruction

 Field-Programmable Gate Arrays (FPGAs)

 Customizable HW accelerators for prefiltering, compression, DL

 Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

 Application-Specific Integrated Circuits (ASIC)

 Spectrum of chips: DL accelerators to computer vision

 Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel NNP

ML Systems Stack

Apps

Lang

Faults

Exec

Data

HWOps

Operational Intensity

ML

DL

Roofline
Analysis

12

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Data Representation

 ML- vs DL-centric Systems

 ML: dense and sparse matrices or tensors, different sparse

formats (CSR, CSC, COO), frames (heterogeneous)

 DL: mostly dense tensors, relies

on embeddings for NLP, graphs

 Data-Parallel Operations for ML

 Distributed matrices: RDD<MatrixIndexes,MatrixBlock>

 Data properties: distributed caching,

partitioning, compression

 Lossy Compression  Acc/Perf-Tradeoff

 Sparsification (reduce non-zero values)

 Quantization (reduce value domain), learned

 New data types: Intel Flexpoint (mantissa, exp)

ML Systems Stack

vec(Berlin) – vec(Germany)

+ vec(France) ≈ vec(Paris)

Node1 Node2

[Credit: Song Han’16]

Apps

Lang

Faults

Exec

Data

HW

13

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Execution Strategies

 Batch Algorithms: Data and Task Parallel

 Data-parallel operations

 Different physical operators

 Mini-Batch Algorithms: Parameter Server

 Data-parallel and model-parallel PS

 Update strategies (e.g.,

async, sync, backup)

 Data partitioning strategies

 Federated ML (trend 2018)

 Lots of PS Decisions  Acc/Perf-Tradeoff

 Configurations (#workers, batch size/param schedules, update type/freq)

 Transfer optimizations: lossy compression, sparsification, residual accumulation,

gradient clipping, and momentum corrections

ML Systems Stack

Apps

Lang

Faults

Exec

Data

HW

14

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Fault Tolerance & Resilience

 Resilience Problem

 Increasing error rates at scale

(soft/hard mem/disk/net errors)

 Robustness for preemption

 Need cost-effective resilience

 Fault Tolerance in Large-Scale Computation

 Block replication (min=1, max=3) in distributed file systems

 ECC; checksums for blocks, broadcast, shuffle

 Checkpointing (MapReduce: all task outputs; Spark/DL: on request)

 Lineage-based recomputation for recovery in Spark

 ML-specific Schemes (exploit app characteristics)

 Estimate contribution from lost partition to avoid strugglers

 Example: user-defined “compensation” functions

ML Systems Stack

Apps

Lang

Faults

Exec

Data

HW

15

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Language Abstractions

 Optimization Scope

 #1 Eager Interpretation (debugging, no opt)

 #2 Lazy expression evaluation
(some opt, avoid materialization)

 #3 Program compilation (full opt, difficult)

 Optimization Objective

 Most common: min time s.t. memory constraints

 Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

 Trend: Fusion and Code Generation

 Custom fused operations

 Examples: SystemML,

Weld, Taco, Julia,

TF XLA,TVM, TensorRT

ML Systems Stack

Sparsity-Exploiting Operator

Apps

Lang

Faults

Exec

Data

HW

16

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

ML Applications

 ML Algorithms (cost/benefit – time vs acc)

 Unsupervised/supervised; batch/mini-batch; first/second-order ML

 Mini-batch DL: variety of NN architectures and SGD optimizers

 Specialized Apps: Video Analytics
in NoScope (time vs acc)

 Difference detectors / specialized

models for “short-circuit evaluation”

 AutoML (time vs acc)

 Not algorithms but tasks (e.g., doClassify(X, y) + search space)

 Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0

 AutoML services at Microsoft Azure, Amazon AWS, Google Cloud

 Data Programming and Augmentation (acc?)

 Generate noisy labels for pre-training

 Exploit expert rules, simulation models,

rotations/shifting, and labeling IDEs (Software 2.0)

ML Systems Stack

Apps

Lang

Faults

Exec

Data

HW

[Credit:
Jonathan

Tremblay‘18]

[Credit: Daniel Kang‘17]

17

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Language Abstractions and

System Architectures

18

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Landscape of ML Systems

Language Abstractions and System Architectures

Mahout
Spark ML MADlib

Orion

Santoku

Bismarck

F

LibFM

TensorDB
DeepDive

Spark R

ORE

ScalOps
SimSQL

Fa

SAP HANA

RIOT-DB
OptiML

SystemML

Cumulon

Mahout

Samsara

LINVIEW

Velox

Emma
Kasen

Tupleware
GraphLab

TensorFlow

SciDB

MlbaseTUPAQ

Cümülön(-D)

Brainwash

Zombie

KeystoneML

Hamlet

Longview

Sherlock ModelHub

ModelDB

AzureML

BigR

R

Matlab

Julia

Weka

SPSS

SAS
VW

Torch

TheanoCNTK

Singa
DL4J

Caffe

Keras

Photon ML

Columbus

scikit-learn

MS (Rev) R

RIOT

DMac

HP

Distributed R

Hemingway

Glade

Flink ML

BigDL

MXNetBUDS

R4ML

19

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Landscape of ML Systems, cont.

Language Abstractions and System Architectures

#3 Distribution

Local (single node)

HW accelerators
(GPUs, FPGAs, ASICs)

Distributed

#4 Data Types

Collections

Graphs

Matrices

Tensors

Frames

#1 Language Abstraction

Operator Libraries

Algorithm Libraries

Computation Graphs

Linear Algebra
Programs

#2 Execution Strategies

Data-Parallel
Operations

Task-Parallel
Constructs

Parameter Server
(Modell-Parallel)

20

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

UDF-based Systems

 User-defined Functions (UDF)

 Data type: Input usually collections of cells, rows, or blocks

 Implement loss and overall optimizer by yourself / UDF abstractions

 Examples: data-parallel (e.g., Spark MLlib)

or In-DBMS analytics (MADlib)

 Example SQL

Language Abstractions and System Architectures

Matrix Product in SQL

SELECT A.i, B.j,

SUM(A.val*B.val)

FROM A, B

WHERE A.j = B.i

GROUP BY A.i, B.j;

Matrix Product w/ UDF

SELECT A.i, B.j,

dot(A.row, B.col)

FROM A, B;

Optimization w/ UDA

Init(state)

Accumulate(state,data)

Merge(state,data)

Finalize(state,data)

21

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Graph-based Systems

 Large-scale Graph Processing

 Natively represent graph as nodes/edges

 Think like a vertex

 Partition: a collection of vertices

 Computation: a vertex and its edges

 Communication: 1-hop at a time (e.g., ABD)

 Think like a graph

 Partition: a proper subgraph

 Computation: a subgraph

 Communication: multiple-hops at a time e.g., AD

 Graph partitioning

Language Abstractions and System Architectures

[Grzegorz Malewicz et al: Pregel: a system for large-scale graph processing.

SIGMOD 2010]

[Yuanyuan Tian et al: From "Think Like a Vertex" to "Think Like a Graph".

PVLDB 2013]

22

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Linear Algebra Systems

 Comparison Query Optimization

 Rule- and cost-based rewrites and operator ordering

 Physical operator selection and query compilation

 Linear algebra / other ML operators, DAGs,

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)

 Examples: R, PyTorch, Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)

 Examples: RIOT [CIDR’09],

Mahout Samsara [MLSystems’16]

 Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]

 #3 Program Compilation (entire program)

 Examples: SystemML [PVLDB’16], Julia
Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Language Abstractions and System Architectures

Compilers for
Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix

2: y = read($2); # n x 1 vector

3: maxi = 50; lambda = 0.001;

4: intercept = $3;

5: ...

6: r = -(t(X) %*% y);

7: norm_r2 = sum(r * r); p = -r;

8: w = matrix(0, ncol(X), 1); i = 0;

9: while(i<maxi & norm_r2>norm_r2_trgt)

10: {

11: q = (t(X) %*% X %*% p)+lambda*p;

12: alpha = norm_r2 / sum(p * q);

13: w = w + alpha * p;

14: old_norm_r2 = norm_r2;

15: r = r + alpha * q;

16: norm_r2 = sum(r * r);

17: beta = norm_r2 / old_norm_r2;

18: p = -r + beta * p; i = i + 1;

19: }

20: write(w, $4, format="text");

Optimization Scope

23

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Linear Algebra Systems, cont.

 Some Examples …

Language Abstractions and System Architectures

X = read("./X");

y = read("./y");

p = t(X) %*% y;

w = matrix(0,ncol(X),1);

while(...) {

q = t(X) %*% X %*% p;

...

}

var X = drmFromHDFS("./X")

val y = drmFromHDFS("./y")

var p = (X.t %*% y).collect

var w = dense(...)

X = X.par(256).checkpoint()

while(...) {

q = (X.t %*% X %*% p)

.collect

...

}

read via queues

sess = tf.Session()

...

w = tf.Variable(tf.zeros(...,

dtype=tf.float64))

while ...:

v1 = tf.matrix_transpose(X)

v2 = tf.matmult(X, p)

v3 = tf.matmult(v1, v2)

q = sess.run(v3)

...

(Custom DSL

w/ R-like syntax;

program compilation)

(Embedded DSL in Scala;

lazy evaluation)

(Embedded DSL in Python;

lazy [and eager] evaluation)

24

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

ML Libraries

 Fixed algorithm implementations

 Often on top of existing linear algebra or UDF abstractions

Language Abstractions and System Architectures

Single-node Example (Python)

from numpy import genfromtxt

from sklearn.linear_model \

import LinearRegression

X = genfromtxt('X.csv')

y = genfromtxt('y.csv')

reg = LinearRegression()

.fit(X, y)

out = reg.score(X, y)

Distributed Example (Spark Scala)

import org.apache.spark.ml

.regression.LinearRegression

val X = sc.read.csv('X.csv')

val y = sc.read.csv('y.csv')

val Xy = prepare(X, y).cache()

val reg = new LinearRegression()

.fit(Xy)

val out reg.transform(Xy)

SparkML/
MLlib

25

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

DL Frameworks

 High-level DNN Frameworks

 Language abstraction for DNN construction and model fitting

 Examples: Caffe, Keras

 Low-level DNN Frameworks

 Examples: TensorFlow, MXNet, PyTorch, CNTK

Language Abstractions and System Architectures

model = Sequential()

model.add(Conv2D(32, (3, 3),

padding='same',

input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(32, (3, 3)))

model.add(Activation('relu'))

model.add(

MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

...

opt = keras.optimizers.rmsprop(

lr=0.0001, decay=1e-6)

Let's train the model using RMSprop

model.compile(loss='cat…_crossentropy',

optimizer=opt,

metrics=['accuracy'])

model.fit(x_train, y_train,

batch_size=batch_size,

epochs=epochs,

validation_data=(x_test, y_test),

shuffle=True)

26

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

A Critical Perspective on ML Systems (broad sense)

 Recommended Reading

 M. Jordan: SysML: Perspectives and

Challenges. Keynote at SysML 2018

 “ML […] is far from being a solid engineering

discipline that can yield robust, scalable solutions

to modern data-analytic problems”

 https://www.youtube.com/watch?v=4inIBmY8dQI

Language Abstractions and System Architectures

27

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Programming Projects

28

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Example Projects (to be refined by Mar 29)

 #1: Auto Differentiation

 Implement auto differentiation for deep neural networks

 Integrate auto differentiation framework in compiler or runtime

 #2: Sparsity-Aware Optimization of Matrix Product Chains

 Integrate sparsity estimators into DP algorithm

 Extend DP algorithm for DAGs and other operations

 #3 Parameter Server Update Schemes

 New PS update schemes: e.g., stale-synchronous, Hogwild!

 Language and local/distributed runtime extensions

 #4 Extended I/O Framework for Other Formats

 Implement local readers/writers for NetCDF, HDF5, libsvm, and/or Arrow

 #5: LLVM Code Generator

 Extend codegen framework by LLVM code generator

 Native vector library, native operator skeletons, JNI bridge

Programming Projects

29

706.550 Architecture of Machine Learning Systems – 02 System Architecture

Matthias Boehm, Graz University of Technology, SS 2019

Example Projects, cont. (to be refined by Mar 29)

 #6 Data Validation Scripts

 Implement recently proposed integrity constraints

 Write DML scripts to check a set of constraints on given dataset

 #7 Data Cleaning Primitives

 Implement scripts or physical operators to perform data imputation

and data cleaning (find and remove/fix incorrect values)

 #8 Data Preparation Primitives

 Extend transform functionality for distributed binning

 Needs to work in combination w/ dummy coding, recoding, etc

Programming Projects

