
1
SCIENCE

PASSION

TECHNOLOGY

Architecture of ML Systems
03 Size Inference, Rewrites, and
Operator Selection

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering

Institute of Interactive Systems and Data Science

BMVIT endowed chair for Data Management

Last update: Mar 29, 2019

2

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Announcements/Org

 #1 Modified Course Logistics

 5 ECTS (lectures+exam, and project),

 pick a (1) programming project, or

(2) survey / experimental analysis project

 #2 Programming/Analysis Projects

 Apr 05: Project selection

 Discussion individual projects (first come, first served)

3

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Agenda

 Compilation Overview

 Size Inference and Cost Estimation

 Rewrites and Operator Selection

4

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Compilation Overview

5

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Recap: Linear Algebra Systems

 Comparison Query Optimization

 Rule- and cost-based rewrites and operator ordering

 Physical operator selection and query compilation

 Linear algebra / other ML operators, DAGs,

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)

 Examples: R, PyTorch, Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)

 Examples: RIOT [CIDR’09],

Mahout Samsara [MLSystems’16]

 Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]

 #3 Program Compilation (entire program)

 Examples: SystemML [PVLDB’16], Julia,

Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Compilation Overview

Compilers for

Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix

2: y = read($2); # n x 1 vector

3: maxi = 50; lambda = 0.001;

4: intercept = $3;

5: ...

6: r = -(t(X) %*% y);

7: norm_r2 = sum(r * r); p = -r;

8: w = matrix(0, ncol(X), 1); i = 0;

9: while(i<maxi & norm_r2>norm_r2_trgt)

10: {

11: q = (t(X) %*% X %*% p)+lambda*p;

12: alpha = norm_r2 / sum(p * q);

13: w = w + alpha * p;

14: old_norm_r2 = norm_r2;

15: r = r + alpha * q;

16: norm_r2 = sum(r * r);

17: beta = norm_r2 / old_norm_r2;

18: p = -r + beta * p; i = i + 1;

19: }

20: write(w, $4, format="text");

Optimization Scope

6

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

ML Program Compilation

 Script:

 Operator DAG

 a.k.a. “graph”

 a.k.a. intermediate

representation (IR)

 Runtime Plan

 Compiled runtime plans

Interpreted plans

Compilation Overview

SPARK mapmmchain X.MATRIX.DOUBLE w.MATRIX.DOUBLE

v.MATRIX.DOUBLE _mVar4.MATRIX.DOUBLE XtwXv

while(...) {

q = t(X) %*% (w * (X %*% v)) ...

}

X v

ba+*

ba+*

b(*)r(t)

w

q

Operation

Data Dependency

[Multiple] Consumers of

Intermediates

[Multiple] DAG roots (outputs)

No cycles

[Multiple] DAG leafs (inputs)

7

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Compilation Chain

Compilation Overview

Parsing (syntactic analysis)

Live Variable Analysis

Validate (semantic analysis)

Script

Construct HOP DAGs

Compute Memory Estimates

Construct LOP DAGs

(incl operator selection, hop-lop rewrites)

Generate Runtime Program

[Matthias Boehm et al:

SystemML's Optimizer:

Plan Generation for

Large-Scale Machine

Learning Programs. IEEE

Data Eng. Bull 2014]

Multiple

Rounds

Static Rewrites HOP DAGs

Intra-/Inter-Procedural Analysis

Dynamic Rewrites HOP DAGs

Execution Plan

Language

HOPs

LOPs

Dynamic

Recompilation

(lecture 04)

8

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Recap: Basic HOP and LOP DAG Compilation

Compilation Overview

LinregDS (Direct Solve)

X = read($1);

y = read($2);

intercept = $3;

lambda = 0.001;

...

if(intercept == 1) {

ones = matrix(1, nrow(X), 1);

X = append(X, ones);

}

I = matrix(1, ncol(X), 1);

A = t(X) %*% X + diag(I)*lambda;

b = t(X) %*% y;

beta = solve(A, b);

...

write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:

• driver mem: 20 GB

• exec mem: 60 GB

dg(rand)

(103x1,103)

r(diag)

X

(108x103,1011)

y

(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)

b(solve)

writeScenario:

X: 108 x 103, 1011

y: 108 x 1, 108

 Hybrid Runtime Plans:

• Size propagation / memory estimates

• Integrated CP / Spark runtime

• Dynamic recompilation during runtime

 Distributed Matrices

• Fixed-size (squared) matrix blocks

• Data-parallel operations

800MB

800GB

800GB
8KB

172KB

1.6TB

1.6TB

16MB
8MB

8KB

CP

SP

CP

CP

CP

SP
SP

CP

1.6GB

800MB

16KB

X

y

r’(CP)

mapmm(SP) tsmm(SP)

r’(CP)

(persisted in

MEM_DISK)

X1,1

X2,1

Xm,1

9

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Size Inference and Cost Estimation

10

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Constant and Size Propagation

 Size Information

 Dimensions (#rows, #columns)

 Sparsity (#nnz/(#rows * #columns))

 memory estimates and costs

 DAG-level Size Propagation

 Input: Size information for leaf nodes

 Output: size information for

all operators, -1 if still unknown

 Propagation based on

operation semantics (single

bottom-up pass over DAG)

Size Inference and Cost Estimation

X = read($1);

y = read($2);

I = matrix(0.001, ncol(X), 1);

A = t(X) %*% X + diag(I);

b = t(X) %*% y;

beta = solve(A, b);

dg(rand)

r(diag)

X

(108x103,1011)

y

(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)

b(solve)

write

(103x103,103)

(103x108,

1011)

(103x103,-1)

(103x1,-1)

(103x1,-1)

(103x103,

-1)
(103x1,

-1)

u(ncol)

(103x1,103)

0.001

11

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Constant and Size Propagation, cont.

 Constant Propagation

 Relies on live variable analysis

 Propagate constant literals into

read-only statement blocks

 Program-level Size Propagation

 Relies on constant propagation

and DAG-level size propagation

 Propagate size information across

conditional control flow: size in leafs,

DAG-level prop, extract roots

 if: reconcile if and else branch outputs

 while/for: reconcile pre and post loop,

reset if pre/post different

Size Inference and Cost Estimation

X = read($1); # n x m matrix

y = read($2); # n x 1 vector

maxi = 50; lambda = 0.001;

if(...){ }

r = -(t(X) %*% y);

r2 = sum(r * r);

p = -r;

w = matrix(0, ncol(X), 1);

i = 0;

while(i<maxi & r2>r2_trgt) {

q = (t(X) %*% X %*% p)+lambda*p;

alpha = norm_r2 / sum(p * q);

w = w + alpha * p;

old_norm_r2 = norm_r2;

r = r + alpha * q;

r2 = sum(r * r);

beta = norm_r2 / old_norm_r2;

p = -r + beta * p;

i = i + 1;

}

write(w, $4, format="text");

m x 1
m x 1

m x 1

m x 1

12

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Inter-Procedural Analysis

 Intra/Inter-Procedural Analysis (IPA)

 Integrates all size propagation techniques (DAG+program, size+constants)

 Intra-function and inter-function size propagation

(called once, consistent sizes, consistent literals)

 Additional IPA Passes (selection)

 Inline functions (single statement block, small)

 Dead code elimination and simplification rewrites

 Remove unused functions & flag functions for recompile-once

Size Inference and Cost Estimation

X = read($X1)

X = foo(X);

if($X2 != “ ”) {

X2 = cbind(X,

matrix(1,n,1));

X2 = foo(X2);

}...

foo = function (Matrix[Double] A)

return (Matrix[Double] B)

{

B = A – colSums(A);

if(sum(B!=B)>0)

print(“NaNs encountered.”);

}

1M x 1

1M x 2

13

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Sparsity Estimation Overview

 Motivation

 Sparse input matrices from NLP,

graph analytics, recommender

systems, scientific computing

 Sparse intermediates

(selections, dropout)

 Selection/permutation matrices

 Problem Definition

 Sparsity estimates used for format decisions, output allocation, cost estimates

 Matrix A with sparsity sA = nnz(A)/(mn) and matrix B with sB = nnz(B)/(nl)

 Estimate sparsity sC of matrix product C = A B; d=max(m,n,l)

 Assumptions (Boolean matrix product)

 A1: No cancellation errors (round of errors)

 A2: No not-a-number (NaN)

Size Inference and Cost Estimation

NLP

Example

14

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Sparsity Estimation – Naïve Estimators

 Average-case Estimator (meta data)

 Computes output sparsity based

on sA and sB (e.g., SystemML, SpMachO)

 Assumes uniform nnz distribution



 Worst-case Estimator (meta data)

 Computes output sparsity based

on sA and sB (e.g., SystemML)

 Assumes worst-case scenario (upper bound)

 Bitset Estimator

 Constructs Boolean matrices and performs

an exact Boolean matrix multiply

(e.g., cuSPARSE, MKL, SciDB)



Size Inference and Cost Estimation

O(1)

O(1)

O(1)

O(1)

O(mn+nl

+ml)

O(mnl)

15

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Sparsity Estimation –

Sampling and Density Map

 Sampling-based Estimator

 Takes a sample S of aligned columns in A

and rows in B (e.g., MatFast)

 Estimates single matrix product via

no-collisions assumption (lower bound)

 Biased:

 (Unbiased:)

 DensityMap Estimator

 Creates density map of squared block

size b=256 (e.g., SPMachO)

 Estimate chains via average-case estimates



Size Inference and Cost Estimation

O(|S|)

O(|S|(m+l))

O(mn/b2

+nl/b2

+ml/b2)

O(mnl/b3)

16

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Sparsity Estimation –

Layered Graph

 Layered Graph

 Construct layered graph for mm chain,

where nodes represents rows/columns, and edges represent non-zeros

 Assign vector r (variable size) to leafs, propagate

via min(r1,…,rn), and estimate column counts as

Size Inference and Cost Estimation

O(rd

+nnz(A,B))

O(r(d

+nnz(A,B)))

17

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Sparsity Estimation –

MNC (Matrix Non-zero Count)

 MNC Estimator (SystemML, SystemDS)

 Create MNC sketch for inputs A and B

 Exact nnz estimates if structure

 Partial exact/approximate nnz estimates, or fallbacks otherwise

 Support for other operations (reorganizations, elementwise ops)

 Propagate sketches via sparsity estimation and scaling of input sketches

Size Inference and Cost Estimation

[Johanna Sommer, Matthias Boehm, Alexandre V.

Evfimievski, Berthold Reinwald, Peter J. Haas: MNC:

Structure-Exploiting Sparsity Estimation for Matrix

Expressions. SIGMOD 2019]

O(d)

O(d

+nnz(A,B))

18

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Memory Estimates and Costing

 Memory Estimates

 Matrix memory estimate := based on the dimensions and sparsity, decide the

format (sparse, dense) and estimate the size in memory

 Operation memory estimate := input, intermediates, output

 Worst-case sparsity estimates (upper bound)

 Costing at Logical vs Physical Level

 Costing at physical level takes physical ops

and rewrites into account but is much more costly

 Costing Operators vs Plans

 Costing plans requires heuristics for # iterations, branches in general

 Analytical vs Trained Cost Models

 Analytical: estimate I/O and compute workload

 Training: build regression models for individual ops

Size Inference and Cost Estimation

19

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Rewrites and Operator Selection

20

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Traditional PL Rewrites

 #1 Common Subexpression Elimination (CSE)

 Step 1: Collect and replace leaf nodes

(variable reads and literals)

 Step 2: recursively remove CSEs bottom-up starting at the leafs

by merging nodes with same inputs (beware non-determinism)

Rewrites and Operator Selection

R1 = 7 – abs(A * B)

R2 = abs(A * B) + rand()

7

-

R2

A B

abs

*

A B

+

rand

R1

abs

*

7

-

R2

abs

*

A B

+

rand

R1

abs

*

7

-

R2

+

rand

R1

A B

abs

*

Topic #10 Common Subexpression

Elimination & Constant Folding

21

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Traditional PL Rewrites, cont.

 #2 Constant Folding

 Applied after constant propagation

 Fold sub-DAGs over literals into a single literal

 Handling of one-side constants

 Approach: recursively compile

and execute runtime instructions

 Example

Rewrites and Operator Selection

ncol_y == 2 & dist_type == 2

& link_type >= 1 & link_type <= 5

2 == 2 & 2 == 2 & 3 >= 1 & 3 <= 5

2 2

==

&

2 2

== 3 1

>=
3 5

<=&

&

TRUE

&

TRUE

TRUE

TRUE&

& TRUE

Topic #10 Common Subexpression

Elimination & Constant Folding

22

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Traditional PL Rewrites, cont.

 #3 Branch Removal

 Applied after constant propagation

and constant folding

 True predicate: replace if statement

block with if-body blocks

 False predicate: replace if statement

block with else-body block, or remove

 #4 Merge of Statement Blocks

 Merge sequences of unconditional

blocks (s1,s2) into a single block

 Connect matching DAG roots of s1

with DAG inputs of s2

Rewrites and Operator Selection

LinregDS (Direct Solve)

X = read($1);

y = read($2);

intercept = 0;

lambda = 0.001;

...

if(intercept == 1) {

ones = matrix(1, nrow(X), 1);

X = cbind(X, ones);

}

I = matrix(1, ncol(X), 1);

A = t(X) %*% X + diag(I)*lambda;

b = t(X) %*% y;

beta = solve(A, b);

...

write(beta, $4);

FALSE

23

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Vectorization and Incremental Computation

 Loop Transformations

(e.g., OptiML, SystemML)

 Loop vectorization

 Loop hoisting

 Incremental Computations

 Delta update rules (e.g., LINVIEW, factorized)

 Incremental iterations (e.g., Flink)

Rewrites and Operator Selection

for(i in a:b)

X[i,1] = Y[i,2] + Z[i,1]

X[a:b,1] = Y[a:b,2] + Z[a:b,1]

A = t(X) %*% X + t(∆X) %*% ∆X

b = t(X) %*% y + t(∆X) %*% ∆y

X

t(X)

y

24

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Update-in-place

 Example: Cumulative Aggregate via Strawman Scripts

 But: R, Julia, Matlab, SystemML, NumPy all provide cumsum(X), etc

 Update in place (w/ O(n))

 SystemML: via rewrites (why do the above scripts apply?)

 R: via reference counting

 Julia: by default, otherwise explicit B = copy(A) necessary

Rewrites and Operator Selection

1: cumsumN2 = function(Matrix[Double] A)

2: return(Matrix[Double] B)

3: {

4: B = A; csums = matrix(0,1,ncol(A));

5: for(i in 1:nrow(A)) {

6: csums = csums + A[i,];

7: B[i,] = csums;

8: }

9: }

1: cumsumNlogN = function(Matrix[Double] A)

2: return(Matrix[Double] B)

3: {

4: B = A; m = nrow(A); k = 1;

5: while(k < m) {

6: B[(k+1):m,] = B[(k+1):m,] + B[1:(m-k),];

7: k = 2 * k;

8: }

9: }copy-on-write  O(n^2)  O(n log n)

25

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Static and Dynamic Simplification Rewrites

 Examples of Static Rewrites

 t(X) %*% y  t(t(y) %*% X)

 trace(X%*%Y)  sum(X*t(Y))

 sum(X+Y)  sum(X)+sum(Y)

 (X%*%Y)[7,3]  X[7,]%*%Y[,3]

 sum(t(X))  sum(X)

 rand()*7  rand(,min=0,max=7)

 sum(lambda*X)  lambda * sum(X);

 Examples of Dynamic Rewrites

 X[a:b,c:d]=Y  X = Y iff dims(X)=dims(Y)

 (...) * X  matrix(0, nrow(X), ncol(X)) iff nnz(X)=0

 sum(X^2)  t(X)%*%X; rowSums(X)  X iff ncol(X)=1

 sum(X%*%Y)  sum(t(colSums(X))*rowSums(Y)) iff ncol(X)>t

Rewrites and Operator Selection

X

Y

X Y
┬

*

O(n3) O(n2)

26

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Matrix Multiplication Chain Optimization

 Optimization Problem

 Matrix multiplication chain of n matrices M1, M2, …Mn (associative)

 Optimal parenthesization of the product M1M2 … Mn

 Search Space Characteristics

 Naïve exhaustive: Catalan numbers  Ω(4n / n3/2))

 DP applies: (1) optimal substructure,

(2) overlapping subproblems

 Textbook DP algorithm: Θ(n3) time, Θ(n2) space

 Examples: SystemML ‘14,

RIOT (‘09 I/O costs), SpMachO (‘15 sparsity)

 Best known algorithm (‘81): O(n log n)

Rewrites and Operator Selection



t(X)

1kx1k

X

1kx1k

Z

1

2,002 MFLOPs

t(X)

1kx1k

X

1kx1k

p

1

4 MFLOPs

Size propagation

and sparsity

estimation

n Cn-1

5 14

10 4,862

15 2,674,440

20 1,767,263,190

25 1,289,904,147,324

[T. C. Hu, M. T. Shing: Computation of Matrix Chain Products. Part II.

SIAM J. Comput. 13(2): 228-251, 1984]

27

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Matrix Multiplication Chain Optimization, cont.

Rewrites and Operator Selection

M1 M2 M3 M4 M5

10x7 7x5 5x1 1x3 3x9

M1 M2 M3 M4 M5

Cost matrix

m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

m[1,3] = min(

m[1,1] + m[2,3] + p1p2p4,

m[1,2] + m[3,3] + p1p3p4)

= min(

0 + 35 + 10*7*1,

350 + 0 + 10*5*1)

= min(

105,

400)

[T. H. Cormen, C. E. Leiserson, R. L. Rivest, C.

Stein: Introduction to Algorithms, Third Edition,

The MIT Press, pages 370-377, 2009]

28

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Matrix Multiplication Chain Optimization, cont.

Rewrites and Operator Selection

Optimal split

matrix s

1 2 3 4

2 41 3 3

3 3

3

M1 M2 M3 M4 M5

10x7 7x5 5x1 1x3 3x9

M1 M2 M3 M4 M5

Cost matrix

m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

(M1 M2 M3 M4 M5)

((M1 M2 M3) (M4 M5))

((M1 (M2 M3)) (M4 M5))

 ((M1 (M2 M3)) (M4 M5))

getOpt(s,1,5)

getOpt(s,1,3)

getOpt(s,4,5)

 Open questions: DAGs; other operations, sparsity

joint opt w/ rewrites, CSE, fusion, and physical operators

29

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Matrix Multiplication Chain Optimization, cont.

 Sparsity-aware

mmchain Opt

 Additional n x n

sketch matrix e

 Sketch propagation for optimal subchains (currently for all chains)

 Modified cost computation via MNC sketches

(number FLOPs for sparse instead of dense mm)

Rewrites and Operator Selection

Topic #2: Sparsity-Aware Optimization

of Matrix Product Chains (incl DAGs)

Optimal split

matrix S

Cost matrix

M

Sketch matrix E

��,� � min
	∈ �,���

��,	 � �	��,�

 ���,�. ������,�. ���

30

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Physical Rewrites and Optimizations

 Distributed Caching

 Redundant compute vs. memory consumption and I/O

 #1 Cache intermediates w/ multiple refs (Emma)

 #2 Cache initial read and read-only loop vars (SystemML)

 Partitioning

 Many frameworks exploit co-partitioning for efficient joins

 #1 Partitioning-exploiting operators (SystemML, Emma, Samsara)

 #2 Inject partitioning to avoid shuffle per iteration (SystemML)

 #3 Plan-specific data partitioning (SystemML, Dmac, Kasen)

 Other Data Flow Optimizations (Emma)

 #1 Exists unnesting (e.g., filter w/ broadcast  join)

 #2 Fold-group fusion (e.g., groupByKey  reduceByKey)

 Physical Operator Selection

Rewrites and Operator Selection

31

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Physical Operator Selection

 Common Selection Criteria

 Data and cluster characteristics (e.g., data size/shape, memory, parallelism)

 Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)

 Data flow properties (e.g., co-partitioning, co-location, data locality)

 #0 Local Operators

 SystemML mm, tsmm, mmchain; Samsara/Mllib local

 #1 Special Operators (special patterns/sparsity)

 SystemML tsmm, mapmmchain; Samsara AtA

 #2 Broadcast-Based Operators (aka broadcast join)

 SystemML mapmm, mapmmchain

 #3 Co-Partitioning-Based Operators (aka improved repartition join)

 SystemML zipmm; Emma, Samsara OpAtB

 #4 Shuffle-Based Operators (aka repartition join)

 SystemML cpmm, rmm; Samsara OpAB

Rewrites and Operator Selection

X

v

X

1st

pass 2nd

pass

q
┬

t(X) %*% (X%*%v)

32

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

 Examples Distributed MM Operators

Physical Operator Selection, cont.

Rewrites and Operator Selection

X1,1

X2,1

X3,1

X1,2

X2,2

X3,2

X4,1 X4,2

Y

1,1

Y

2,1

Y1,1

Y2,1

Y3,1

Y1,2

Y2,2

Y3,2

Y4,1 Y4,2

X1,1

X2,1

X1,3X1,2

X2,2

X1,4

X2,3 X2,4

Broadcast-based

MM (mapmm)

Shuffle-based

MM (cpmm)

33

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Sparsity-Exploiting Operators

 Goal: Avoid dense intermediates and unnecessary computation

 #1 Fused Physical Operators

 E.g., SystemML [PVLDB’16]

wsloss, wcemm, wdivmm

 Selective computation

over non-zeros of

“sparse driver”

 #2 Masked Physical Operators

 E.g., Cumulon MaskMult [SIGMOD’13]

 Create mask of “sparse driver”

 Pass mask to single masked

matrix multiply operator

Rewrites and Operator Selection

U V
┬W –sum X

^2

*

sum(W * (X – U %*% t(V))^2)

O / (C %*% E %*% t(B))

/

O E t(B)

mm

mm

C

M

34

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Conclusions

 Summary

 Basic compilation overview

 Size inference and cost estimation (foundation for optimization)

 Rewrites and operator selection

 Impact of Size Inference and Costs

 Advanced optimization of linear algebra programs requires

size inference for cost estimation and validity constraints

 Ubiquitous Rewrite Opportunities

 Linear algebra programs have plenty of room for optimization

 Potential for changed asymptotic behavior

 Next Lectures

 04 Operator Fusion and Runtime Adaptation [Apr 05]

(advanced compilation)

35

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Backup: Programming/Analysis Projects

36

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Example Projects (to be refined by Mar 29)

 #1 Auto Differentiation

 Implement auto differentiation for deep neural networks

 Integrate auto differentiation framework in compiler or runtime

 #2 Sparsity-Aware Optimization of Matrix Product Chains

 Extend DP algorithm for DAGs and other operations

 #3 Parameter Server Update Schemes

 New PS update schemes: e.g., stale-synchronous, Hogwild!

 Language and local/distributed runtime extensions

 #4 Extended I/O Framework for Other Formats

 Implement local readers/writers for NetCDF, HDF5, libsvm, and/or Arrow

 #5 LLVM Code Generator

 Extend codegen framework by LLVM code generator

 Native vector library, native operator skeletons, JNI bridge

 #6 Reproduce Automated Label Generation (analysis)

Programming/Analysis Projects

37

706.550 Architecture of Machine Learning Systems – 03 Compilation

Matthias Boehm, Graz University of Technology, SS 2019

Example Projects, cont.

 #7 Data Validation Scripts

 Implement recently proposed integrity constraints

 Write DML scripts to check a set of constraints on given dataset

 #8 Data Cleaning Primitives

 Implement scripts or physical operators to perform data imputation

and data cleaning (find and remove/fix incorrect values)

 #9 Data Preparation Primitives

 Extend transform functionality for distributed binning

 Needs to work in combination w/ dummy coding, recoding, etc

 #10 Common Subexpression Elimination & Constant Folding

 Exploit commutative common subexpressions

 One-shot constant folding (avoid compile overhead)

 #11 Repartition joins and binary ops without replication

 Improve repartition mm and binary ops by avoiding unnecessary replication

Programming/Analysis Projects

