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Announcements/Org

 #1 Modified Course Logistics 

 5 ECTS (lectures+exam, and project), 

 pick a (1) programming project, or 

(2) survey / experimental analysis project

 #2 Programming/Analysis Projects

 Apr 05: Project selection

 Discussion individual projects (first come, first served)
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Agenda

 Compilation Overview

 Size Inference and Cost Estimation

 Rewrites and Operator Selection
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Compilation Overview
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Recap: Linear Algebra Systems

 Comparison Query Optimization

 Rule- and cost-based rewrites and operator ordering

 Physical operator selection and query compilation

 Linear algebra / other ML operators, DAGs, 

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)

 Examples: R, PyTorch, Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)

 Examples: RIOT [CIDR’09], 

Mahout Samsara [MLSystems’16]

 Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]

 #3 Program Compilation (entire program)

 Examples: SystemML [PVLDB’16], Julia,

Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Compilation Overview

Compilers for 

Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix

2: y = read($2); # n x 1 vector

3: maxi = 50; lambda = 0.001; 

4: intercept = $3;

5: ...

6: r = -(t(X) %*% y); 

7: norm_r2 = sum(r * r); p = -r;

8: w = matrix(0, ncol(X), 1); i = 0;

9: while(i<maxi & norm_r2>norm_r2_trgt) 

10: {

11: q = (t(X) %*% X %*% p)+lambda*p;

12: alpha = norm_r2 / sum(p * q);

13: w = w + alpha * p;

14: old_norm_r2 = norm_r2;

15: r = r + alpha * q;

16: norm_r2 = sum(r * r);

17: beta = norm_r2 / old_norm_r2;

18: p = -r + beta * p; i = i + 1; 

19: }

20: write(w, $4, format="text");

Optimization Scope
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ML Program Compilation

 Script:

 Operator DAG

 a.k.a. “graph” 

 a.k.a. intermediate 

representation (IR)

 Runtime Plan

 Compiled runtime plans 

Interpreted plans

Compilation Overview

SPARK mapmmchain X.MATRIX.DOUBLE w.MATRIX.DOUBLE

v.MATRIX.DOUBLE _mVar4.MATRIX.DOUBLE XtwXv

while(...) {

q = t(X) %*% (w * (X %*% v)) ...

}

X v

ba+*

ba+*

b(*)r(t)

w

q

Operation

Data Dependency

[Multiple] Consumers of 

Intermediates

[Multiple] DAG roots (outputs)

No cycles

[Multiple] DAG leafs (inputs)
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Compilation Chain

Compilation Overview

Parsing (syntactic analysis)

Live Variable Analysis

Validate (semantic analysis)

Script

Construct HOP DAGs

Compute Memory Estimates

Construct LOP DAGs 

(incl operator selection, hop-lop rewrites) 

Generate Runtime Program

[Matthias Boehm et al:

SystemML's Optimizer: 

Plan Generation for 

Large-Scale Machine 

Learning Programs. IEEE 

Data Eng. Bull 2014]

Multiple 

Rounds

Static Rewrites HOP DAGs

Intra-/Inter-Procedural Analysis

Dynamic Rewrites HOP DAGs

Execution Plan

Language

HOPs

LOPs

Dynamic 

Recompilation

(lecture 04)
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Recap: Basic HOP and LOP DAG Compilation

Compilation Overview

LinregDS (Direct Solve)

X = read($1);

y = read($2);

intercept = $3; 

lambda = 0.001;

...

if( intercept == 1 ) {

ones = matrix(1, nrow(X), 1); 

X = append(X, ones);

}

I = matrix(1, ncol(X), 1);

A = t(X) %*% X + diag(I)*lambda;

b = t(X) %*% y;

beta = solve(A, b);

...

write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:

• driver mem: 20 GB

• exec mem:   60 GB

dg(rand)

(103x1,103)

r(diag)

X

(108x103,1011)

y

(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)

b(solve)

writeScenario: 

X: 108 x 103, 1011

y: 108 x 1, 108

 Hybrid Runtime Plans:

• Size propagation / memory estimates

• Integrated CP / Spark runtime

• Dynamic recompilation during runtime

 Distributed Matrices

• Fixed-size (squared) matrix blocks

• Data-parallel operations

800MB

800GB

800GB
8KB

172KB

1.6TB

1.6TB

16MB
8MB

8KB

CP

SP

CP

CP

CP

SP
SP

CP

1.6GB

800MB

16KB

X

y

r’(CP)

mapmm(SP) tsmm(SP)

r’(CP)

(persisted in 

MEM_DISK)

X1,1

X2,1

Xm,1
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Size Inference and Cost Estimation
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Constant and Size Propagation

 Size Information

 Dimensions (#rows, #columns)

 Sparsity (#nnz/(#rows * #columns))

 memory estimates and costs

 DAG-level Size Propagation

 Input: Size information for leaf nodes

 Output: size information for 

all operators, -1 if still unknown

 Propagation based on 

operation semantics (single 

bottom-up pass  over DAG)

Size Inference and Cost Estimation

X = read($1);

y = read($2);

I = matrix(0.001, ncol(X), 1);

A = t(X) %*% X + diag(I);

b = t(X) %*% y;

beta = solve(A, b);

dg(rand)

r(diag)

X

(108x103,1011)

y

(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)

b(solve)

write

(103x103,103)

(103x108,

1011)

(103x103,-1)

(103x1,-1)

(103x1,-1)

(103x103,

-1)
(103x1,

-1)

u(ncol)

(103x1,103)

0.001
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Constant and Size Propagation, cont. 

 Constant Propagation

 Relies on live variable analysis

 Propagate constant literals into

read-only statement blocks

 Program-level Size Propagation

 Relies on constant propagation

and DAG-level size propagation

 Propagate size information across

conditional control flow: size in leafs,

DAG-level prop, extract roots 

 if: reconcile if and else branch outputs

 while/for: reconcile pre and post loop,

reset if pre/post different 

Size Inference and Cost Estimation

X = read($1); # n x m matrix

y = read($2); # n x 1 vector

maxi = 50; lambda = 0.001; 

if(...){ }

r = -(t(X) %*% y); 

r2 = sum(r * r); 

p = -r;                     

w = matrix(0, ncol(X), 1); 

i = 0;

while(i<maxi & r2>r2_trgt) {

q = (t(X) %*% X %*% p)+lambda*p;

alpha = norm_r2 / sum(p * q);

w = w + alpha * p;

old_norm_r2 = norm_r2;

r = r + alpha * q;

r2 = sum(r * r);

beta = norm_r2 / old_norm_r2;

p = -r + beta * p;

i = i + 1; 

}

write(w, $4, format="text");

# m x 1
# m x 1

# m x 1

# m x 1
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Inter-Procedural Analysis

 Intra/Inter-Procedural Analysis (IPA)

 Integrates all size propagation techniques (DAG+program, size+constants)

 Intra-function and inter-function size propagation 

(called once, consistent sizes, consistent literals)

 Additional IPA Passes (selection)

 Inline functions (single statement block, small)

 Dead code elimination and simplification rewrites

 Remove unused functions & flag functions for recompile-once 

Size Inference and Cost Estimation

X = read($X1)

X = foo(X);

if( $X2 != “ ” ) {

X2 = cbind(X,   

matrix(1,n,1));

X2 = foo(X2);

}...

foo = function (Matrix[Double] A) 

return (Matrix[Double] B)

{

B = A – colSums(A);

if( sum(B!=B)>0 )

print(“NaNs encountered.”); 

}

1M x 1

1M x 2
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Sparsity Estimation Overview

 Motivation

 Sparse input matrices from NLP, 

graph analytics, recommender 

systems, scientific computing

 Sparse intermediates

(selections, dropout)

 Selection/permutation matrices

 Problem Definition

 Sparsity estimates used for format decisions, output allocation, cost estimates

 Matrix A with sparsity sA = nnz(A)/(mn) and matrix B with sB = nnz(B)/(nl)

 Estimate sparsity sC of matrix product C = A B; d=max(m,n,l)

 Assumptions (Boolean matrix product)

 A1: No cancellation errors (round of errors)

 A2: No not-a-number (NaN)

Size Inference and Cost Estimation

NLP 

Example
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Sparsity Estimation – Naïve Estimators

 Average-case Estimator (meta data)

 Computes output sparsity based

on sA and sB (e.g., SystemML, SpMachO)

 Assumes uniform nnz distribution



 Worst-case Estimator (meta data)

 Computes output sparsity based

on sA and sB (e.g., SystemML)

 Assumes worst-case scenario (upper bound)

 Bitset Estimator

 Constructs Boolean matrices and performs 

an exact Boolean matrix multiply 

(e.g., cuSPARSE, MKL, SciDB)



Size Inference and Cost Estimation

O(1)

O(1)

O(1)

O(1)

O(mn+nl

+ml)

O(mnl)
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Sparsity Estimation –

Sampling and Density Map

 Sampling-based Estimator

 Takes a sample S of aligned columns in A

and rows in B (e.g., MatFast)

 Estimates single matrix product via 

no-collisions assumption (lower bound)

 Biased:

 (Unbiased:                                                )

 DensityMap Estimator

 Creates density map of squared block 

size b=256 (e.g., SPMachO) 

 Estimate chains via average-case estimates



Size Inference and Cost Estimation

O(|S|)

O(|S|(m+l))

O(mn/b2

+nl/b2

+ml/b2)

O(mnl/b3)
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Sparsity Estimation –

Layered Graph

 Layered Graph

 Construct layered graph for mm chain, 

where nodes represents rows/columns, and edges represent non-zeros

 Assign vector r (variable size) to leafs, propagate 

via min(r1,…,rn), and estimate column counts as 

Size Inference and Cost Estimation

O(rd

+nnz(A,B))

O(r(d

+nnz(A,B)))
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Sparsity Estimation –

MNC (Matrix Non-zero Count)

 MNC Estimator (SystemML, SystemDS)

 Create MNC sketch for inputs A and B

 Exact nnz estimates if structure

 Partial exact/approximate nnz estimates, or fallbacks otherwise

 Support for other operations (reorganizations, elementwise ops)

 Propagate sketches via sparsity estimation and scaling of input sketches 

Size Inference and Cost Estimation

[Johanna Sommer, Matthias Boehm, Alexandre V. 

Evfimievski, Berthold Reinwald, Peter J. Haas: MNC: 

Structure-Exploiting Sparsity Estimation for Matrix 

Expressions. SIGMOD 2019]

O(d)

O(d

+nnz(A,B))
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Memory Estimates and Costing

 Memory Estimates

 Matrix memory estimate := based on the dimensions and sparsity, decide the 

format (sparse, dense) and estimate the size in memory

 Operation memory estimate := input, intermediates, output

 Worst-case sparsity estimates (upper bound)

 Costing at Logical vs Physical Level

 Costing at physical level takes physical ops 

and rewrites into account but is much more costly

 Costing Operators vs Plans 

 Costing plans requires heuristics for # iterations, branches in general

 Analytical vs Trained Cost Models

 Analytical: estimate I/O and compute workload

 Training: build regression models for individual ops

Size Inference and Cost Estimation
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Rewrites and Operator Selection
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Traditional PL Rewrites

 #1 Common Subexpression Elimination (CSE)

 Step 1: Collect and replace leaf nodes

(variable reads and literals)

 Step 2: recursively remove CSEs bottom-up starting at the leafs

by merging nodes with same inputs (beware non-determinism)

Rewrites and Operator Selection

R1 = 7 – abs(A * B)

R2 = abs(A * B) + rand()

7

-

R2

A B

abs

*

A B

+

rand

R1

abs

*

7

-

R2

abs

*

A B

+

rand

R1

abs

*

7

-

R2

+

rand

R1

A B

abs

*

Topic #10 Common Subexpression 

Elimination & Constant Folding
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Traditional PL Rewrites, cont.

 #2 Constant Folding

 Applied after constant propagation

 Fold sub-DAGs over literals into a single literal

 Handling of one-side constants

 Approach: recursively compile 

and execute runtime instructions

 Example

Rewrites and Operator Selection

ncol_y == 2 & dist_type == 2 

& link_type >= 1 & link_type <= 5

2 == 2 & 2 == 2 & 3 >= 1 & 3 <= 5

2 2

==

&

2 2

== 3 1

>=
3 5

<=&

&

TRUE

&

TRUE

TRUE

TRUE&

& TRUE

Topic #10 Common Subexpression 

Elimination & Constant Folding
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Traditional PL Rewrites, cont.

 #3 Branch Removal

 Applied after constant propagation

and constant folding

 True predicate: replace if  statement 

block with if-body blocks

 False predicate: replace if statement 

block with else-body block, or remove

 #4 Merge of Statement Blocks

 Merge sequences of unconditional

blocks (s1,s2) into a single block

 Connect matching DAG roots of s1

with DAG inputs of s2

Rewrites and Operator Selection

LinregDS (Direct Solve)

X = read($1);

y = read($2);

intercept = 0; 

lambda = 0.001;

...

if( intercept == 1 ) {

ones = matrix(1, nrow(X), 1); 

X = cbind(X, ones);

}

I = matrix(1, ncol(X), 1);

A = t(X) %*% X + diag(I)*lambda;

b = t(X) %*% y;

beta = solve(A, b);

...

write(beta, $4);

FALSE
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Vectorization and Incremental Computation

 Loop Transformations

(e.g., OptiML, SystemML)

 Loop vectorization

 Loop hoisting

 Incremental Computations

 Delta update rules (e.g., LINVIEW, factorized)

 Incremental iterations (e.g., Flink)

Rewrites and Operator Selection

for(i in a:b)

X[i,1] = Y[i,2] + Z[i,1]

X[a:b,1] = Y[a:b,2] + Z[a:b,1]

A = t(X) %*% X + t(∆X) %*% ∆X 

b = t(X) %*% y + t(∆X) %*% ∆y

X

t(X)

y
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Update-in-place

 Example: Cumulative Aggregate via Strawman Scripts

 But: R, Julia, Matlab, SystemML, NumPy all provide cumsum(X), etc

 Update in place (w/ O(n))

 SystemML: via rewrites (why do the above scripts apply?)

 R: via reference counting

 Julia: by default, otherwise explicit B = copy(A) necessary

Rewrites and Operator Selection

1: cumsumN2 = function(Matrix[Double] A)

2:   return(Matrix[Double] B)

3: {

4:   B = A; csums = matrix(0,1,ncol(A));

5:   for( i in 1:nrow(A) ) {

6:     csums = csums + A[i,];

7:     B[i,] = csums;

8: }

9: }

1: cumsumNlogN = function(Matrix[Double] A)

2:   return(Matrix[Double] B)

3: {

4:   B = A; m = nrow(A); k = 1;

5:   while( k < m ) {

6:     B[(k+1):m,] = B[(k+1):m,] + B[1:(m-k),];

7:     k = 2 * k;

8:   }

9: }copy-on-write  O(n^2)  O(n log n)
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Static and Dynamic Simplification Rewrites

 Examples of Static Rewrites

 t(X) %*% y     t(t(y) %*% X)

 trace(X%*%Y)   sum(X*t(Y))

 sum(X+Y)       sum(X)+sum(Y)

 (X%*%Y)[7,3]   X[7,]%*%Y[,3]

 sum(t(X))      sum(X)

 rand()*7       rand(,min=0,max=7)

 sum(lambda*X)  lambda * sum(X); 

 Examples of Dynamic Rewrites

 X[a:b,c:d]=Y  X = Y iff dims(X)=dims(Y)

 (...) * X  matrix(0, nrow(X), ncol(X)) iff nnz(X)=0

 sum(X^2)      t(X)%*%X; rowSums(X)  X iff ncol(X)=1

 sum(X%*%Y)    sum(t(colSums(X))*rowSums(Y)) iff ncol(X)>t

Rewrites and Operator Selection

X

Y

X Y
┬

*

O(n3) O(n2)
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Matrix Multiplication Chain Optimization

 Optimization Problem

 Matrix multiplication chain of n matrices M1, M2, …Mn (associative)

 Optimal parenthesization of the product M1M2 … Mn

 Search Space Characteristics

 Naïve exhaustive: Catalan numbers  Ω(4n / n3/2))

 DP applies: (1) optimal substructure, 

(2) overlapping subproblems

 Textbook DP algorithm: Θ(n3) time, Θ(n2) space

 Examples: SystemML ‘14, 

RIOT (‘09 I/O costs), SpMachO (‘15 sparsity)

 Best known algorithm (‘81): O(n log n)

Rewrites and Operator Selection



t(X)

1kx1k

X

1kx1k

Z

1

2,002  MFLOPs

t(X)

1kx1k

X

1kx1k

p

1

4  MFLOPs

Size propagation 

and sparsity 

estimation

n Cn-1

5 14

10 4,862

15 2,674,440

20 1,767,263,190

25 1,289,904,147,324

[T. C. Hu, M. T. Shing: Computation of Matrix Chain Products. Part II. 

SIAM J. Comput. 13(2): 228-251, 1984]
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Matrix Multiplication Chain Optimization, cont. 

Rewrites and Operator Selection

M1 M2 M3 M4 M5

10x7 7x5 5x1 1x3 3x9

M1 M2 M3 M4 M5

Cost matrix 

m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

m[1,3] = min(

m[1,1] + m[2,3] + p1p2p4,

m[1,2] + m[3,3] + p1p3p4 )

= min(

0 + 35 + 10*7*1, 

350 + 0 + 10*5*1 )

= min(

105,

400 )

[T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. 

Stein: Introduction to Algorithms, Third Edition, 

The MIT Press, pages 370-377, 2009]
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Matrix Multiplication Chain Optimization, cont.

Rewrites and Operator Selection

Optimal split 

matrix s

1 2 3 4

2 41 3 3

3 3

3

M1 M2 M3 M4 M5

10x7 7x5 5x1 1x3 3x9

M1 M2 M3 M4 M5

Cost matrix 

m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

( M1 M2 M3 M4 M5 )

( ( M1 M2 M3 ) ( M4 M5 ) )

( ( M1 ( M2 M3 ) ) ( M4 M5 ) )

 ((M1 (M2 M3)) (M4 M5))

getOpt(s,1,5)

getOpt(s,1,3)

getOpt(s,4,5)

 Open questions: DAGs; other operations, sparsity

joint opt w/ rewrites, CSE, fusion, and physical operators
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Matrix Multiplication Chain Optimization, cont.

 Sparsity-aware

mmchain Opt

 Additional n x n 

sketch matrix e

 Sketch propagation for optimal subchains (currently for all chains)

 Modified cost computation via MNC sketches

(number FLOPs for sparse instead of dense mm)

Rewrites and Operator Selection

Topic #2: Sparsity-Aware Optimization 

of Matrix Product Chains (incl DAGs)

Optimal split 

matrix S

Cost matrix 

M

Sketch matrix E

��,� � min
	∈ �,���


��,	 � �	��,�

  ���,�. ������,�. ���
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Physical Rewrites and Optimizations

 Distributed Caching

 Redundant compute vs. memory consumption and I/O

 #1 Cache intermediates w/ multiple refs (Emma)

 #2 Cache initial read and read-only loop vars (SystemML) 

 Partitioning

 Many frameworks exploit co-partitioning for efficient joins

 #1 Partitioning-exploiting operators (SystemML, Emma, Samsara)

 #2 Inject partitioning to avoid shuffle per iteration (SystemML)

 #3 Plan-specific data partitioning (SystemML, Dmac, Kasen)

 Other Data Flow Optimizations (Emma)

 #1 Exists unnesting (e.g., filter w/ broadcast  join)

 #2 Fold-group fusion (e.g., groupByKey  reduceByKey)

 Physical Operator Selection

Rewrites and Operator Selection
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Physical Operator Selection

 Common Selection Criteria

 Data and cluster characteristics (e.g., data size/shape, memory, parallelism)

 Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)

 Data flow properties (e.g., co-partitioning, co-location, data locality)

 #0 Local Operators

 SystemML mm, tsmm, mmchain; Samsara/Mllib local

 #1 Special Operators (special patterns/sparsity)

 SystemML tsmm, mapmmchain; Samsara AtA

 #2 Broadcast-Based Operators (aka broadcast join)

 SystemML mapmm, mapmmchain

 #3 Co-Partitioning-Based Operators (aka improved repartition join)

 SystemML zipmm; Emma, Samsara OpAtB

 #4 Shuffle-Based Operators (aka repartition join)

 SystemML cpmm, rmm; Samsara OpAB

Rewrites and Operator Selection

X

v

X

1st

pass 2nd

pass

q
┬

t(X) %*% (X%*%v)
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 Examples  Distributed MM Operators

Physical Operator Selection, cont.

Rewrites and Operator Selection
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Sparsity-Exploiting Operators

 Goal: Avoid dense intermediates and unnecessary computation

 #1 Fused Physical Operators 

 E.g., SystemML [PVLDB’16]

wsloss, wcemm, wdivmm

 Selective computation 

over non-zeros of 

“sparse driver”

 #2 Masked Physical Operators

 E.g., Cumulon MaskMult [SIGMOD’13]

 Create mask of “sparse driver”

 Pass mask to single masked

matrix multiply operator

Rewrites and Operator Selection

U V
┬W –sum X

^2

*

sum(W * (X – U %*% t(V))^2)
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Conclusions

 Summary

 Basic compilation overview

 Size inference and cost estimation (foundation for optimization)

 Rewrites and operator selection

 Impact of Size Inference and Costs

 Advanced optimization of linear algebra programs requires 

size inference for cost estimation and validity constraints

 Ubiquitous Rewrite Opportunities

 Linear algebra programs have plenty of room for optimization

 Potential for changed asymptotic behavior

 Next Lectures

 04 Operator Fusion and Runtime Adaptation [Apr 05]

(advanced compilation)
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Backup: Programming/Analysis Projects
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Example Projects (to be refined by Mar 29)

 #1 Auto Differentiation

 Implement auto differentiation for deep neural networks

 Integrate auto differentiation framework in compiler or runtime

 #2 Sparsity-Aware Optimization of Matrix Product Chains

 Extend DP algorithm for DAGs and other operations

 #3 Parameter Server Update Schemes

 New PS update schemes: e.g., stale-synchronous, Hogwild!

 Language and local/distributed runtime extensions

 #4 Extended I/O Framework for Other Formats

 Implement local readers/writers for NetCDF, HDF5, libsvm, and/or Arrow

 #5 LLVM Code Generator

 Extend codegen framework by LLVM code generator

 Native vector library, native operator skeletons, JNI bridge

 #6 Reproduce Automated Label Generation (analysis)

Programming/Analysis Projects
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Example Projects, cont. 

 #7 Data Validation Scripts

 Implement recently proposed integrity constraints

 Write DML scripts to check a set of constraints on given dataset

 #8 Data Cleaning Primitives

 Implement scripts or physical operators to perform data imputation

and data cleaning (find and remove/fix incorrect values)

 #9 Data Preparation Primitives

 Extend transform functionality for distributed binning

 Needs to work in combination w/ dummy coding, recoding, etc

 #10 Common Subexpression Elimination & Constant Folding

 Exploit commutative common subexpressions

 One-shot constant folding (avoid compile overhead)

 #11 Repartition joins and binary ops without replication

 Improve repartition mm and binary ops by avoiding unnecessary replication

Programming/Analysis Projects


