Architecture of ML Systems
04 Operator Fusion and Runtime Adaptation

Matthias Boehm

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: Apr 05, 2019
Announcements/Org

▪ #1 Programming/Analysis Projects
 ▪ **Apr 05:** Project selection
 ▪ **3/9 projects** assigned so far
 ▪ Discussion individual projects (first come, first served)

▪ #1b Selected Projects
 ▪ #1 *Auto Differentiation*
 ▪ #6 *Reproduce Automated Label Generation*
 ▪ #12 *Information Extraction from Unstructured PDF/HTML*
 ▪ #5 *LLVM Code Generator*
Agenda

- Runtime Adaptation
- Automatic Operator Fusion
Runtime Adaptation
Issues of Unknown or Changing Sizes

- Problem of unknown/changing sizes
 - Unknown or changing sizes and sparsity of intermediates
 These unknowns lead to very conservative fallback plans

- Example ML Program Scenarios
 - Conditional control flow
 - User-Defined Functions
 - Data-dependent operators
 \[Y = \text{table}(\text{seq}(1, \text{nrow}(X)), y) \]
 \[\text{grad} = t(X) \%\% (P - Y); \]
 - Computed size expressions
 - Changing dimensions or sparsity

→ Dynamic recompilation techniques as robust fallback strategy
 - Shares goals and challenges with adaptive query processing
 - However, ML domain-specific techniques and rewrites
Recap: Linear Algebra Systems

- **Comparison Query Optimization**
 - Rule- and cost-based rewrites and operator ordering
 - Physical operator selection and query compilation
 - Linear algebra / other ML operators, DAGs, control flow, sparse/dense formats

- **#1 Interpretation** (operation at-a-time)
 - Examples: R, PyTorch, Morpheus [PVLDB’17]

- **#2 Lazy Expression Compilation** (DAG at-a-time)
 - Examples: RIOT [CIDR’09], Mahout Samsara [MLSystems’16]
 - Examples w/ control structures: Weld [CIDR’17], OptiML [ICML’11], Emma [SIGMOD’15]

- **#3 Program Compilation** (entire program)
 - Examples: SystemML [PVLDB’16], Julia, Cumulon [SIGMOD’13], Tupleware [PVLDB’15]
Recompilation

Runtime Adaptation

Language

- Parsing (syntactic analysis)
- Live Variable Analysis
- Validate (semantic analysis)

HOPs

- Construct HOP DAGs
- Static Rewrites HOP DAGs
- Intra-/Inter-Procedural Analysis
- Dynamic Rewrites HOP DAGs
- Compute Memory Estimates

LOPs

- Construct LOP DAGs (incl operator selection, hop-lop rewrites)
- Generate Runtime Program

Execution Plan

Other systems w/ recompile: SciDB, MatFast

Dynamic Recompilation

Dynamic Recompilation

- Optimizer Recompilation Decisions
 - **Split HOP DAGs for recompilation**: prevent unknowns but keep DAGs as large as possible; split after reads w/ unknown sizes and specific operators
 - **Mark HOP DAGs for recompilation**: Spark due to unknown sizes / sparsity

Control flow → statement blocks → initial recompilation granularity

[Diagram of control flow and statement blocks]
Dynamic Recompilation, cont.

- **Optimizer Recompilation Decisions**
 - **Split HOP DAGs for recompilation**: prevent unknowns but keep DAGs as large as possible; split after reads w/ unknown sizes and specific operators
 - **Mark HOP DAGs for recompilation**: Spark due to unknown sizes / sparsity

- **Dynamic Recompilation at Runtime** on recompilation hooks (last level program blocks, predicates, recompile once functions)
 - Deep Copy DAG
 - Update DAG Statistics
 - Dynamic Rewrites
 - Recompute
 - Memory Estimates
 - Generate
 - Runtime Instructions
Dynamic Recompilation, cont.

- **Recompile Once Functions**
 - Unknowns due to inconsistent or unknown call size information
 - IPA marks functions as “recompile once”, if it contains loops
 - **Recompile the entire function on entry** + disable unnecessary recompile

- **Recompile parfor Loops**
 - Unknown sizes and iterations
 - **Recompile parfor loop on entry** + disable unnecessary recompile
 - Create independent DAGs for individual parfor workers

```r
foo = function(Matrix[Double] A)
  recompiled w/ each entry A
  return (Matrix[Double] C)
  {
    C = rand(nrow(A),1) + A;
    while(...)
    C = C / rowSums(C) * s
  }

  while( continue ) {
    parfor( i in 1:n ) {
      if( fixed[1,i]==0 ) {
        X = cbind(Xg,Xorig[,i])
        AIC[1,i] = linregDS(X,y)
      }
    }
  }
  # select & append best to Xg
```
Automatic Operator Fusion
Motivation: Fusion Opportunities

- State-of-the-art ML systems
 - DAGs of linear algebra (LA) operations and statistical functions
 - Materialized intermediates → ubiquitous fusion opportunities

Automatic Operator Fusion

a) Intermediates
\[
\text{sum}(X \times Y \times Z)
\]

b) Single-Pass
\[
t(X) \times (X \times v) \\
\rightarrow t((X \times v) \times X)
\]

c) Multi-Aggregates
\[
\text{sum} \quad \text{sum} \quad \text{sum}
\]

d) Sparsity Exploitation
\[
\text{sum} \quad \text{sum} \quad \log \quad + \text{eps}
\]
Operator Fusion Overview

- Related Research Areas
 - DB: query compilation
 - HPC: loop fusion, tiling, and distribution (NP complete)
 - ML: operator fusion (dependencies given by data flow graph)

- Example Operator Fusion

```
for( i in 1:n )
tmp1[i,1] = s * B[i,1];
for( i in 1:n )
tmp2[i,1] = A[i,1] + tmp1[i,1];
for( i in 1:n )
R[i,1] = tmp2[i,1] * C[i,1];
```

```
for( i in 1:n )
R[i,1] = (A[i,i] + s*B[i,1]) * C[i,1];
```
Operator Fusion System Landscape

<table>
<thead>
<tr>
<th>System</th>
<th>Year</th>
<th>Approach</th>
<th>Sparse</th>
<th>Distr.</th>
<th>Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTO</td>
<td>2009</td>
<td>Loop Fusion</td>
<td>No</td>
<td>No</td>
<td>k-Greedy, cost-based</td>
</tr>
<tr>
<td>Tupleware</td>
<td>2015</td>
<td>Loop Fusion</td>
<td>No</td>
<td>Yes</td>
<td>Heuristic</td>
</tr>
<tr>
<td>Kasen</td>
<td>2016</td>
<td>Templates</td>
<td>(Yes)</td>
<td>Yes</td>
<td>Greedy, cost-based</td>
</tr>
<tr>
<td>SystemML</td>
<td>2017</td>
<td>Templates</td>
<td>Yes</td>
<td>Yes</td>
<td>Exact, cost-based</td>
</tr>
<tr>
<td>Weld</td>
<td>2017</td>
<td>Templates</td>
<td>(Yes)</td>
<td>Yes</td>
<td>Heuristic</td>
</tr>
<tr>
<td>Taco</td>
<td>2017</td>
<td>Loop Fusion</td>
<td>Yes</td>
<td>No</td>
<td>Manuel</td>
</tr>
<tr>
<td>Julia</td>
<td>2017</td>
<td>Loop Fusion</td>
<td>Yes</td>
<td>No</td>
<td>Manuel</td>
</tr>
<tr>
<td>Tensorflow XLA</td>
<td>2017</td>
<td>Loop Fusion</td>
<td>No</td>
<td>No</td>
<td>Manuel</td>
</tr>
<tr>
<td>Tensor Comprehensions</td>
<td>2018</td>
<td>Loop Fusion</td>
<td>No</td>
<td>No</td>
<td>Evolutionary, cost-based</td>
</tr>
<tr>
<td>TVM</td>
<td>2018</td>
<td>Loop Fusion</td>
<td>No</td>
<td>No</td>
<td>ML/cost-based</td>
</tr>
</tbody>
</table>

- **Challenge HW accelerators** → **TVM / tensorflow/mlir** (Apr 4, 2019)
Specific Fusion Techniques

- **#1 Micro Optimizations**
 - Hybrid tile-at-a-time loop fusion, predication, and result allocation
 - Examples: Tupleware

- **#2 Cross-Library Optimization**
 - Generic IR based on parallel loops and builders
 - Examples: Weld

- **#3 Sparsity Exploitation**
 - Exploit sparsity over chains of operations (compute, size of intermediates)
 - Examples: SystemML

- **#4 Iteration Schedules**
 - Decisions on loop ordering (e.g., tensor storage formats, join ordering)
 - Examples: Taco, TVM, Mateev et al

- **#5 Optimizing Fusion Plans**
A Case for Optimizing Fusion Plans

- **Problem:** Fusion heuristics → **poor plans** for complex DAGs (cost/structure), sparsity exploitation, and local/distributed operations

- **Goal:** Principled approach for optimizing fusion plans

- #1 **Materialization Points** (e.g., for multiple consumers)

- #2 **Sparsity Exploitation** (and ordering of sparse inputs)

- #3 **Decisions on Fusion Patterns** (e.g., template types)

- #4 **Constraints** (e.g., memory budget and block sizes)

\[
C = A + \delta \times B \\
D = \left(C \div 2\right)^{\left(C - 1\right)} \\
E = \exp\left(C - 1\right)
\]

\[
Y + X \times \left(U \times t(V)\right) \quad \text{sparse-safe over X}
\]

⇒ Search Space that requires optimization
System Architecture (Compiler & Codegen Architecture)

- **Templates:** Cell, Row, MAgg, Outer w/ different data bindings

Codegen Example L2SVM (Cell/MAgg)

- **L2SVM Inner Loop**

```java
while(continueOuter & iter < maxi) {
    #...
    while(continueInner) {
        out = 1-Y* (Xw+step_sz*Xd);
        sv = (out > 0);
        out = out * sv;
        g = wd + step_sz*dd
            - sum(out * Y * Xd);
        h = dd + sum(Xd * sv * Xd);
        step_sz = step_sz - g/h;
    }
}
```

- **# of Vector Intermediates**
 - Base (w/o fused ops): 10
 - Fused (w/ fused ops): 4
CodeGen Example L2SVM, cont. (Cell/MAgg)

- **Template Skeleton**
 - Data access, blocking
 - Multi-threading
 - Final aggregation

```java
public final class TMP25 extends SpoofMAgg {
    public TMP25() {
        super(false, AggOp.SUM, AggOp.SUM);
    }

    protected void genexec(double a, SideInput[] b, double[] scalars, double[] c, ...) {
        double TMP11 = getValue(b[0], rowIndex);
        double TMP12 = getValue(b[1], rowIndex);
        double TMP13 = a * scalars[0];
        double TMP14 = TMP12 + TMP13;
        double TMP15 = TMP11 * TMP14;
        double TMP16 = 1 - TMP15;
        double TMP17 = (TMP16 > 0) ? 1 : 0;
        double TMP18 = a * TMP17;
        double TMP19 = TMP18 * a;
        double TMP20 = TMP16 * TMP17;
        double TMP21 = TMP20 * TMP11;
        double TMP22 = TMP21 * a;
        c[0] += TMP19;
        c[1] += TMP22;
    }
}
```

- **# of Vector Intermediates**
 - Gen (codegen ops): 0
CodeGen Example MLogreg (Row)

- MLogreg Inner Loop
 (main expression on feature matrix X)

1: \(Q = P[, 1:k] \times (X \%\% v) \)
2: \(H = t(X) \%\% (Q - P[, 1:k] \times \text{rowSums}(Q)) \)

```java
public final class TMP25 extends SpoofRow {
    public TMP25() {
        super(RowType.COL_AGG_B1_T, true, 5);
    }
    protected void genexecDense(double[] a, int ai, SideInput[] b, double[] c,..., int len) {
        double[] TMP11 = getVector(b[1].vals(rix),...);
        double[] TMP12 = vectMatMult(a, b[0].vals(rix),...);
        double[] TMP13 = vectMult(TMP11, TMP12, 0, 0,...);
        double TMP14 = vectSum(TMP13, 0, TMP13.length);
        double[] TMP15 = vectMult(TMP11, TMP14, 0,...);
        double[] TMP16 = vectMinus(TMP13, TMP15, 0, 0,...);
        vectOuterMultAdd(a, TMP16, c, ai, 0, 0,...); }
    protected void genexecSparse(double[] avals, int[] aix, int ai, SideInput[] b, ..., int len) {...}
}
```
Candidate Exploration (by example MLogreg)

- **Memo Table for partial fusion plans** (candidates)
- **OFMC Template**
 - Fusion API
 - Open
 - Fuse, Merge
 - Close
- **OFMC Algorithm**
 - Bottom-up Exploration (single-pass, template-agnostic)
 - Linear space and time

Memo Table

<table>
<thead>
<tr>
<th>Candidate</th>
<th>R(-1,9)</th>
<th>R(10,1)</th>
<th>R(10,9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 r(t)</td>
<td>R(-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 b(-)</td>
<td>R(-1,-1)</td>
<td>R(-1,8)</td>
<td>C(6,-1)</td>
</tr>
<tr>
<td></td>
<td>R(6,8)</td>
<td>C(-1,-1)</td>
<td>C(-1,8)</td>
</tr>
<tr>
<td>8 b(*)</td>
<td>R(-1,-1)</td>
<td>R(-1,5)</td>
<td>R(7,-1)</td>
</tr>
<tr>
<td></td>
<td>R(7,5)</td>
<td>C(-1,-1)</td>
<td></td>
</tr>
<tr>
<td>7 ua(R+)</td>
<td>R(-1)</td>
<td>R(6)</td>
<td>C(6)</td>
</tr>
<tr>
<td>6 b(*)</td>
<td>R(-1,-1)</td>
<td>R(-1,5)</td>
<td>R(4,-1)</td>
</tr>
<tr>
<td></td>
<td>R(4,5)</td>
<td>C(-1,-1)</td>
<td></td>
</tr>
<tr>
<td>5 rix</td>
<td>R(-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 ba(*)</td>
<td>R(-1,1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **ba** .. binary aggregate (matrix multiply)
- **b** .. binary
- **r(t)** .. transpose
- **rix** .. right indexing
- **ua** .. unary aggregate
Candidate Selection (Partitions and Interesting Points)

#1 Determine Plan Partitions
- Materialization Points \(M \)
- Connected components of fusion references
- Root and input nodes

\[\rightarrow \text{Optimize partitions independently} \]

#2 Determine Interesting Points
- **Materialization Point Consumers:** Each data dependency on materialization points considered separately
- **Template / Sparse Switches:** Data dependencies where producer has templates that are non-existing for consumers

\[\rightarrow \text{Optimizer considers all } 2^{|M'_i|} \text{ plans (with } |M'_i| \geq |M_i| \text{) per partition} \]
Candidate Selection, cont. (Costs and Constraints)

- **Overview Cost Model**
 - Cost partition with analytical cost model based on peak memory and compute bandwidth
 - Plan comparisons / fusion errors don’t propagate / dynamic recompilation

- **#3 Evaluate Costs**
 - #1: Memoization of already processed sub-DAGs
 - #2: Account for shared reads and CSEs within operators
 - #3: Account for redundant computation (overlap)
 - DAG traversal and cost vectors per fused operator (with memoization of pairs of operators and cost vectors)

- **#4 Handle Constraints**
 - Prefiltering violated constraints (e.g., row template in distributed ops)
 - Assign infinite costs for violated constraints during costing
Candidate Selection, cont. (MPSkipEnum and Pruning)

- **#5 Basic Enumeration**
 - Linearized search space: from - to *
    ```python
    for j in 1:pow(2,|M'|) :
        q = createAssignment(j)
        C = getPlanCost(P, q)
        maintainBest(q, C)
    ```

- **#6 Cost-Based Pruning**
 - **Upper bound**: cost C^U of best plan q^* (monotonically decreasing)
 - **Opening heuristic**: evaluate FA and FNR heuristics first
 - **Lower bound**: C^{LS} (read input, write output, min compute) + dynamic C^{LD}
 (materialize intermediates q) \(\Rightarrow\) **skip subspace** if $C^U \leq C^{LS} + C^{LD}$

- **#7 Structural Pruning**
 - **Observation**: Assignments can create independent sub problems
 - Build **reachability graph** to determine **cut sets**
 - During enum: probe cut sets, recursive enum, combine, and skip
Experimental Setting

- **Setup**
 - **1+6 node cluster** (head 2x4 Intel Xeon E5530, 64GB RAM; 6workers 2x6 Intel Xeon E5-2440, 96GB RAM, peak 2x32GB/s 2x115GFLOP/s, 10Gb Ethn)
 - **Modern scale-up server** (2x20 Intel Xeon Gold 6138, 768GB RAM, peak 2x119 GB/s 2x1.25TFLOP/s)
 - Java 1.8.0, Hadoop 2.7.3, Spark 2.2.0 (client w/ 35GB driver, 6 executors w/ 65 GB and 24 cores, aggregate cluster memory: 234 GB)

- **Baselines**
 - **SystemML 1.0++** (Feb 2018): Base, Fused (hand-coded, default), Gen (optimizer), and heuristics FA (all) and FNR (no redundancy)
 - **Julia 0.6.2** (Dec 13 2017): LLVM code generation, Julia (without fusion) and JuliaGen (fusion via dot syntax)
 - **TensorFlow 1.5** (Jan 26 2018): TF (without fusion), and TFGen (fusion via TensorFlow XLA), limited support for sparse
Operations Performance

Cell Template: $\text{sum}(X \times Y \times Z)$

- **dense**
 - TF/Gen
 - Fused
 - Gen
 - Base

- **sparse (0.1)**
 - Julia
 - JuliaGen
 - Gen
 - Base

Row: $t(X)^\ast\ast\%(w \ast (X \ast\ast \%v))$

- **dense**
 - Execution Time [ms]
 - Data Size (#cells per input)

Outer: $\text{sum}(X \ast \text{log}(U \ast\%t(V) + 1e-15))$

- **dense**
 - Execution Time [ms]
 - Sparsity (#nnz / #cells)

20K x 20K, rank 100

9.2 s to 1.6 s
(compared to Gen 283ms)
L2SVM End-to-End Performance (20 outer/∞ inner)

- **Local and Distributed** [seconds]
 - **Data** | **Base** | **Fused** | **Gen** | **FA** | **FNR**
 - $10^8 \times 10$, D | 446 | 276 | 37 | 44 | 92
 - Airline78, D | 151 | 105 | 24 | 26 | 45
 - Mnist8m, S | 203 | 156 | 113 | 115 | 116

- #1 **Heuristics struggle w/ hybrid plans**
 - $2\times10^8 \times 100$, D | 1218 | 895 | 347 | 1433 | 539
 - $2\times10^8 \times 10^3$, S | 1481 | 1066 | 373 | 2205 | 575
 - Mnist80m, S | 1593 | 1114 | 552 | 1312 | 896

- **Julia Comparison**
 - Dataset: $10^8 \times 10$ (8GB)
 - Hand-tuned fusion script for JuliaGen

Matthias Boehm, Graz University of Technology, SS 2019
ALS-CG End-to-End Performance (20 outer/20 inner, rk 20)

- **ALG-CG**
 - Representative for many matrix factorization algorithms
 - Requires sparsity exploitation in loss computation and update rules

- **Local single node** [seconds]

<table>
<thead>
<tr>
<th>Data</th>
<th>Base</th>
<th>Fused*</th>
<th>Gen</th>
<th>FA</th>
<th>FNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^4 \times 10^4$, S (0.01)</td>
<td>426</td>
<td>20</td>
<td>25</td>
<td>215</td>
<td>226</td>
</tr>
<tr>
<td>$10^5 \times 10^5$, S (0.01)</td>
<td>23,585</td>
<td>96</td>
<td>80</td>
<td>13,511</td>
<td>12,353</td>
</tr>
<tr>
<td>$10^6 \times 10^6$, S (0.01)</td>
<td>N/A</td>
<td>860</td>
<td>722</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Netflix</td>
<td>N/A</td>
<td>1,026</td>
<td>789</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Amazon Books</td>
<td>N/A</td>
<td>17,335</td>
<td>7,420</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(8,026,324 x 2,330,066; sparsity=0.0000012)

#2 Heuristics struggle w/ sparsity exploitation

#3 Heuristics struggle w/ complex DAGs
Backup: Programming/Analysis Projects
Example Projects

- **#1 Auto Differentiation**
 - Implement auto differentiation for deep neural networks
 - Integrate auto differentiation framework in compiler or runtime

- **#2 Sparsity-Aware Optimization of Matrix Product Chains**
 - Extend DP algorithm for DAGs and other operations

- **#3 Parameter Server Update Schemes**
 - New PS update schemes: e.g., stale-synchronous, Hogwild!
 - Language and local/distributed runtime extensions

- **#4 Extended I/O Framework for Other Formats**
 - Implement local readers/writers for NetCDF, HDF5, libsvm, and/or Arrow

- **#5 LLVM Code Generator**
 - Extend codegen framework by LLVM code generator
 - Native vector library, native operator skeletons, JNI bridge

- **#6 Reproduce Automated Label Generation (analysis)**
Example Projects, cont.

- **#7 Data Validation Scripts**
 - Implement recently proposed integrity constraints
 - Write DML scripts to check a set of constraints on given dataset

- **#8 Data Cleaning Primitives**
 - Implement scripts or physical operators to perform data imputation and data cleaning (find and remove/fix incorrect values)

- **#9 Data Preparation Primitives**
 - Extend `transform` functionality for distributed binning
 - Needs to work in combination w/ dummy coding, recoding, etc

- **#10 Common Subexpression Elimination & Constant Folding**
 - Exploit commutative common subexpressions
 - One-shot constant folding (avoid compile overhead)

- **#11 Repartition joins and binary ops without replication**
 - Improve repartition mm and binary ops by avoiding unnecessary replication