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Announcements/Org

 #1 Programming/Analysis Projects

 Apr 05: Project selection

 3/9 projects assigned so far

 Discussion individual projects (first come, first served)

 #1b Selected Projects

 #1 Auto Differentiation

 #6 Reproduce Automated Label Generation

 #12 Information Extraction from Unstructured PDF/HTML

 #5 LLVM Code Generator
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Agenda

 Runtime Adaptation

 Automatic Operator Fusion
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Runtime Adaptation
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Issues of Unknown or Changing Sizes

 Problem of unknown/changing sizes 

 Unknown or changing sizes and sparsity of intermediates 

These unknowns lead to very conservative fallback plans

 Example ML Program Scenarios

 Conditional control flow

 User-Defined Functions

 Data-dependent operators
Y = table( seq(1,nrow(X)), y )
grad = t(X) %*% (P - Y); 

 Computed size expressions

 Changing dimensions or sparsity

 Dynamic recompilation techniques as robust fallback strategy

 Shares goals and challenges with adaptive query processing

 However, ML domain-specific techniques and rewrites 

Runtime Adaptation
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Ex: Stepwise LinregDS

while( continue ) {
parfor( i in 1:n ) {

if( fixed[1,i]==0 ) {
X = cbind(Xg, Xorig[,i])
AIC[1,i] = linregDS(X,y)

}

}

#select & append best to Xg

}
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Recap: Linear Algebra Systems

 Comparison Query Optimization

 Rule- and cost-based rewrites and operator ordering

 Physical operator selection and query compilation

 Linear algebra / other ML operators, DAGs, 

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)

 Examples: R, PyTorch, Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)

 Examples: RIOT [CIDR’09], 

Mahout Samsara [MLSystems’16]

 Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]

 #3 Program Compilation (entire program)

 Examples: SystemML [PVLDB’16], Julia,

Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Runtime Adaptation

Compilers for 

Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001; 

4: intercept = $3;
5: ...

6: r = -(t(X) %*% y); 
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt) 
10: {
11: q = (t(X) %*% X %*% p)+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;

14: old_norm_r2 = norm_r2;

15: r = r + alpha * q;

16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;

18: p = -r + beta * p; i = i + 1; 

19: }

20: write(w, $4, format="text");

Optimization Scope



7

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation

Matthias Boehm, Graz University of Technology, SS 2019 

Recompilation

Runtime Adaptation

Parsing (syntactic analysis)

Live Variable Analysis

Validate (semantic analysis)

Script

Construct HOP DAGs

Compute Memory Estimates

Construct LOP DAGs 

(incl operator selection, hop-lop rewrites) 

Generate Runtime Program

[Matthias Boehm et al:

SystemML's Optimizer: 

Plan Generation for 

Large-Scale Machine 

Learning Programs. IEEE 

Data Eng. Bull 2014]

Multiple 

Rounds

Static Rewrites HOP DAGs

Intra-/Inter-Procedural Analysis

Dynamic Rewrites HOP DAGs

Execution Plan

Language

HOPs

LOPs

Dynamic 

Recompilation

Other systems 

w/ recompile: 

SciDB, MatFast

Compute Memory Estimates

Construct LOP DAGs 

(incl operator selection, hop-lop rewrites) 

Generate Runtime Program

Dynamic Rewrites HOP DAGs
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Dynamic Recompilation

 Optimizer Recompilation Decisions

 Split HOP DAGs for recompilation: prevent unknowns but keep DAGs as large 

as possible; split after reads w/ unknown sizes and specific operators

 Mark HOP DAGs for recompilation: Spark due to unknown sizes / sparsity

Runtime Adaptation

+

C

R1

A

abs
rm

B

*

rm

R3

rms

R2

abs

A

rm

R4 tmp2

*

tmp1

R3

rm

s

R2

abs

tmp3

R4

+

C

R1

A

abs
rm

B

rm tmp2
tmp3

A

rm
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Control flow  statement blocks

 initial recompilation granularity
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Dynamic Recompilation, cont.

 Optimizer Recompilation Decisions

 Split HOP DAGs for recompilation: prevent unknowns but keep DAGs as large 

as possible; split after reads w/ unknown sizes and specific operators

 Mark HOP DAGs for recompilation: Spark due to unknown sizes / sparsity

 Dynamic Recompilation at Runtime on recompilation hooks (last level program 

blocks, predicates, recompile once functions)

 Deep Copy DAG

 Update DAG Statistics

 Dynamic Rewrites

 Recompute

Memory Estimates

 Generate 

Runtime Instructions

Runtime Adaptation

X

r(t)

ba(+*)

P

CP

SP

b(-)

Y

SP[100x1M,-1]

[100x-1,-1]

[1Mx100,-1] [1Mx-1,-1] [1Mx-1,-1]

[1Mx-1,-1]

X 1Mx100,99M

P 1Mx7,7M

Y 1Mx7,7M

[1Mx100,99M] [1Mx7,7M] [1Mx7,7M]

[1Mx7,-1][100x1M,99M]

[100x7,-1]

CP

CP
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Dynamic Recompilation, cont.

 Recompile Once Functions

 Unknowns due to inconsistent or 

unknown call size information

 IPA marks functions as “recompile 

once”, if it contains loops

 Recompile the entire function on entry

+ disable unnecessary recompile

 Recompile parfor Loops 

 Unknown sizes and iterations

 Recompile parfor loop on entry

+ disable unnecessary recompile

 Create independent DAGs for

individual parfor workers

Runtime Adaptation

foo = function(Matrix[Double] A)

return (Matrix[Double] C)
{

C = rand(nrow(A),1) + A;
while(...) 

C = C / rowSums(C) * s
}

recompiled w/ each entry A

while( continue ) {
parfor( i in 1:n ) {

if( fixed[1,i]==0 ) {
X = cbind(Xg,Xorig[,i])
AIC[1,i] = linregDS(X,y)

}

}

#select & append best to Xg

}
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Automatic Operator Fusion
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Motivation: Fusion Opportunities

 State-of-the art ML systems

 DAGs of linear algebra (LA) operations and statistical functions

 Materialized intermediates  ubiquitous fusion opportunities

Automatic Operator Fusion

sum(X*Y*Z)

a) Intermediates b) Single-Pass

t(X)%*%(X%*%v)

t(t(X%*%v)%*%X)

c) Multi-Aggregates

d) Sparsity 

Exploitation
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Operator Fusion Overview

 Related Research Areas

 DB: query compilation

 HPC: loop fusion, tiling, and distribution (NP complete)

 ML: operator fusion (dependencies given by data flow graph)

 Example Operator Fusion

Automatic Operator Fusion

A

+

s B

*

R

C

*

for( i in 1:n )
tmp1[i,1] = s * B[i,1]; 

for( i in 1:n )

tmp2[i,1] = A[i,1] + tmp1[i,1];

for( i in 1:n )

R[i,1] = tmp2[i,1] * C[i,1];

for( i in 1:n )
R[i,1] = (A[i,i] + s*B[i,1]) * C[i,1]; 
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 Challenge HW accelerators  TVM / tensorflow/mlir (Apr 4, 2019)

Operator Fusion System Landscape

Automatic Operator Fusion

System Year Approach Sparse Distr. Optimization

BTO 2009 Loop Fusion No No k-Greedy, cost-based 

Tupleware 2015 Loop Fusion No Yes Heuristic

Kasen 2016 Templates (Yes) Yes Greedy, cost-based

SystemML 2017 Templates Yes Yes Exact, cost-based

Weld 2017 Templates (Yes) Yes Heuristic

Taco 2017 Loop Fusion Yes No Manuel

Julia 2017 Loop Fusion Yes No Manuel

Tensorflow XLA 2017 Loop Fusion No No Manuel

Tensor 

Comprehensions

2018 Loop Fusion No No Evolutionary, 

cost-based

TVM 2018 Loop Fusion No No ML/cost-based
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Specific Fusion Techniques

 #1 Micro Optimizations

 Hybrid tile-at-a-time loop fusion, predication, and result allocation

 Examples: Tupleware

 #2 Cross-Library Optimization

 Generic IR based on parallel loops and builders

 Examples: Weld

 #3 Sparsity Exploitation

 Exploit sparsity over chains of operations (compute, size of intermediates)

 Examples: SystemML

 #4 Iteration Schedules

 Decisions on loop ordering (e.g., tensor storage formats, join ordering)

 Examples: Taco, TVM, Mateev et al

 #5 Optimizing Fusion Plans

 Example:

SystemML

Automatic Operator Fusion

[Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, 

Alexandre V. Evfimievski, Niketan Pansare: On Optimizing Operator Fusion 

Plans for Large-Scale Machine Learning in SystemML. PVLDB 2018]



16

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation

Matthias Boehm, Graz University of Technology, SS 2019 

A Case for Optimizing Fusion Plans

 Problem: Fusion heuristics  poor plans for complex DAGs 

(cost/structure), sparsity exploitation, and local/distributed operations

 Goal: Principled approach for optimizing fusion plans

 #1 Materialization Points

(e.g., for multiple consumers) 

 #2 Sparsity Exploitation

(and ordering of sparse inputs)

 #3 Decisions on Fusion Patterns

(e.g., template types)

 #4 Constraints

(e.g., memory budget and block sizes)

Automatic Operator Fusion

Y + X * (U %*% t(V))

sparse-safe over X

 Search Space that 

requires optimization
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System Architecture (Compiler & Codegen Architecture)

Automatic Operator Fusion

[CIDR’17] (w/ fuse-all heuristic)

- Lacked maintainability

- Poor plans for complex DAGs 

and local/distributed operations

Practical, exact, cost-based optimizer

 Templates: Cell, Row, MAgg, Outer w/ different data bindings
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Codegen Example L2SVM (Cell/MAgg)

 L2SVM Inner Loop

 # of Vector Intermediates

 Base (w/o fused ops): 10

 Fused (w/ fused ops):   4

Automatic Operator Fusion

1: while(continueOuter & iter < maxi) {

2    #...     

3:   while(continueInner) {
4:     out = 1-Y* (Xw+step_sz*Xd);

5:     sv = (out > 0);

6:     out = out * sv;

7:     g = wd + step_sz*dd

- sum(out * Y * Xd);
8:     h = dd + sum(Xd * sv * Xd);
9:     step_sz = step_sz - g/h;

10: }} ...

b(*)

Xd Xwstep_sz

b(+)

b(*)

b(-)

1

b(>)

0

b(*)

Y

b(*)

b(*)

ua(RC,+)

b(-)

write g...

b(+)

b(+)

dd

wd

b(*)

b(*)

ua(RC,+)

b(+)

write h
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Codegen Example L2SVM, cont. (Cell/MAgg)

 Template Skeleton

 Data access, blocking

 Multi-threading

 Final aggregation

 # of Vector Intermediates

 Gen (codegen ops): 0

Automatic Operator Fusion

public final class TMP25 extends SpoofMAgg { 

public TMP25() {

super(false, AggOp.SUM, AggOp.SUM);
}

protected void genexec(double a, SideInput[] b, 
double[] scalars, double[] c, ...) { 
double TMP11 = getValue(b[0], rowIndex);
double TMP12 = getValue(b[1], rowIndex);
double TMP13 = a * scalars[0];

double TMP14 = TMP12 + TMP13;

double TMP15 = TMP11 * TMP14;

double TMP16 = 1 - TMP15;

double TMP17 = (TMP16 > 0) ? 1 : 0;

double TMP18 = a * TMP17;

double TMP19 = TMP18 * a;

double TMP20 = TMP16 * TMP17;

double TMP21 = TMP20 * TMP11;

double TMP22 = TMP21 * a;

c[0] += TMP19;
c[1] += TMP22;

}

}
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Codegen Example MLogreg (Row)

 MLogreg Inner Loop

(main expression on feature matrix X)

Automatic Operator Fusion

1: Q = P[, 1:k] * (X %*% v)

2: H = t(X) %*% (Q - P[, 1:k] * rowSums(Q))

public final class TMP25 extends SpoofRow { 

public TMP25() {

super(RowType.COL_AGG_B1_T, true, 5);
}

protected void genexecDense(double[] a, int ai,

SideInput[] b, double[] c,..., int len) {

double[] TMP11 = getVector(b[1].vals(rix),...);
double[] TMP12 = vectMatMult(a, b[0].vals(rix),...);
double[] TMP13 = vectMult(TMP11, TMP12, 0, 0,...);
double TMP14 = vectSum(TMP13, 0, TMP13.length);
double[] TMP15 = vectMult(TMP11, TMP14, 0,...);
double[] TMP16 = vectMinus(TMP13, TMP15, 0, 0,...);
vectOuterMultAdd(a, TMP16, c, ai, 0, 0,...); }

protected void genexecSparse(double[] avals, int[] aix,
int ai, SideInput[] b, ..., int len) {...}

}
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Candidate Exploration (by example MLogreg)

 Memo Table for partial 

fusion plans (candidates)

 OFMC Template 

Fusion API

 Open

 Fuse, Merge 

 Close

 OFMC

Algorithm

 Bottom-up 

Exploration

(single-pass, 

template-

agnostic)

 Linear space

and time

Automatic Operator Fusion

Memo Table
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Candidate Selection (Partitions and Interesting Points)

 #1 Determine Plan Partitions

 Materialization 

Points M 

 Connected components

of fusion references

 Root and input nodes

Optimize partitions

independently

 #2 Determine Interesting Points

 Materialization Point Consumers: Each data dependency on materialization 

points considered separately

 Template / Sparse Switches: Data dependencies where producer has 

templates that are non-existing for consumers

 Optimizer considers all 2|M’i| plans (with |M’i| ≥ |Mi|) per partition

Automatic Operator Fusion
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Candidate Selection, cont. (Costs and Constraints)

 Overview Cost Model

 Cost partition with analytical cost model 

based on peak memory and compute bandwidth

 Plan comparisons / fusion errors don’t propagate / dynamic recompilation

 #3 Evaluate Costs

 #1: Memoization of already processed sub-DAGs

 #2: Account for shared reads and CSEs within operators

 #3: Account for redundant computation (overlap)

 DAG traversal and cost vectors per fused operator

(with memoization of pairs of operators and cost vectors)

 #4 Handle Constraints

 Prefiltering violated constraints (e.g., row template in distributed ops)

 Assign infinite costs for violated constraints during costing

Automatic Operator Fusion
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Candidate Selection, cont. (MPSkipEnum and Pruning)

 #5 Basic Enumeration

 Linearized search space: from - to *

 #6 Cost-Based Pruning

 Upper bound: cost CU of best plan q* (monotonically decreasing)

 Opening heuristic: evaluate FA and FNR heuristics first

 Lower bound: CLS (read input, write output, min compute) + dynamic CLD

(materialize intermediates q)  skip subspace if CU ≤ CLS + CLD

 #7 Structural Pruning

 Observation: Assignments can create independent sub problems

 Build reachability graph to determine cut sets

 During enum: probe cut sets, recursive enum, combine, and skip

Automatic Operator Fusion

for( j in 1:pow(2,|M’i|) )

q = createAssignment(j)
C = getPlanCost(Pi, q)
maintainBest(q, C)
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Experimental Setting

 Setup

 1+6 node cluster (head 2x4 Intel Xeon E5530, 64GB RAM; 6workers 2x6 Intel 

Xeon E5-2440, 96GB RAM, peak 2x32GB/s 2x115GFLOP/s, 10Gb Ethn)

 Modern scale-up server (2x20 Intel Xeon Gold 6138, 768GB RAM, 

peak 2x119 GB/s 2x1.25TFLOP/s)

 Java 1.8.0, Hadoop 2.7.3, Spark 2.2.0 (client w/ 35GB driver, 6 executors w/ 65 

GB and  24 cores, aggregate cluster memory: 234 GB)

 Baselines

 SystemML 1.0++ (Feb 2018): Base, Fused (hand-coded, default), 

Gen (optimizer), and heuristics FA (all) and FNR (no redundancy) 

 Julia 0.6.2 (Dec 13 2017): LLVM code generation, Julia

(without fusion) and JuliaGen (fusion via dot syntax)

 TensorFlow 1.5 (Jan 26 2018): TF (without fusion), and TFGen

(fusion via TensorFlow XLA), limited support for sparse

Automatic Operator Fusion
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TF w/ manual rewrite

 t(t(w*(X%*%v))%*%X):

9.2 s to 1.6 s (compared to Gen 283ms)

Operations Performance

Automatic Operator Fusion

Cell Template: sum(X*Y*Z)dense sparse (0.1)

Row: t(X)%*%(w*(X%*%v))

dense

Outer: sum(X*log(U%*%t(V)+1e-15))

20K x 20K, 

rank 100
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L2SVM End-to-End Performance (20 outer/∞ inner)

 Local and 

Distributed 

[seconds]

 Julia Comparison

 Dataset: 108 x 10 (8GB)

 Hand-tuned fusion 

script for JuliaGen

Automatic Operator Fusion

Data Base Fused* Gen FA FNR

108 x 10, D 446 276 37 44 92

Airline78, D 151 105 24 26 45

Mnist8m, S 203 156 113 115 116

2*108 x 100, D 1218 895 347 1433 539

2*108 x 103, S 1481 1066 373 2205 575

Mnist80m, S 1593 1114 552 1312 896

#1 Heuristics 

struggle w/ 

hybrid plans
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ALS-CG End-to-End Performance (20 outer/20 inner, rk 20)

 ALG-CG

 Representative for many matrix factorization algorithms

 Requires sparsity exploitation in loss computation and update rules

 Local single node [seconds]

Automatic Operator Fusion

Data Base Fused* Gen FA FNR

104 x 104, S (0.01) 426 20 25 215 226

105 x 105, S (0.01) 23,585 96 80 13,511 12,353

106 x 106, S (0.01) N/A 860 722 N/A N/A

Netflix N/A 1,026 789 N/A N/A

Amazon Books N/A 17,335 7,420 N/A N/A

#2 Heuristics struggle w/ 

sparsity exploitation
(8,026,324 x 2,330,066; 

sparsity=0.0000012)

#3 Heuristics struggle w/ 

complex DAGs
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Backup: Programming/Analysis Projects
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Example Projects

 #1 Auto Differentiation

 Implement auto differentiation for deep neural networks

 Integrate auto differentiation framework in compiler or runtime

 #2 Sparsity-Aware Optimization of Matrix Product Chains

 Extend DP algorithm for DAGs and other operations

 #3 Parameter Server Update Schemes

 New PS update schemes: e.g., stale-synchronous, Hogwild!

 Language and local/distributed runtime extensions

 #4 Extended I/O Framework for Other Formats

 Implement local readers/writers for NetCDF, HDF5, libsvm, and/or Arrow

 #5 LLVM Code Generator

 Extend codegen framework by LLVM code generator

 Native vector library, native operator skeletons, JNI bridge

 #6 Reproduce Automated Label Generation (analysis)

Programming/Analysis Projects
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Example Projects, cont. 

 #7 Data Validation Scripts

 Implement recently proposed integrity constraints

 Write DML scripts to check a set of constraints on given dataset

 #8 Data Cleaning Primitives

 Implement scripts or physical operators to perform data imputation

and data cleaning (find and remove/fix incorrect values)

 #9 Data Preparation Primitives

 Extend transform functionality for distributed binning

 Needs to work in combination w/ dummy coding, recoding, etc

 #10 Common Subexpression Elimination & Constant Folding

 Exploit commutative common subexpressions

 One-shot constant folding (avoid compile overhead)

 #11 Repartition joins and binary ops without replication

 Improve repartition mm and binary ops by avoiding unnecessary replication

Programming/Analysis Projects


