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Announcements/Org

 #1 Programming/Analysis Projects

 #1 Auto Differentiation

 #5 LLVM Code Generator

 #12 Information Extraction from Unstructured PDF/HTML

 Individual meetings in next two weeks (if needed)

 #2 Recommended Reading

 SysML whitepaper (building the ML systems community)

 Alexander Ratner et al: SysML: The New Frontier of

Machine Learning Systems, SysML 2019
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Agenda

 Overview Execution Strategies

 Background MapReduce and Spark

 Data-Parallel Execution

 Task-Parallel Execution
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Overview Execution Strategies
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Categories of Execution Strategies

 #1 Data-parallel Execution

 Run the same operations over data partitions in parallel

 ML focus: batch algorithms, hybrid batch/mini-batch algorithms

 #2 Task-parallel Execution

 Run different tasks (e.g., iterations of parfor) in parallel

 Custom parallelization of independent subtasks

 ML focus: meta learning, batch and mini-batch algorithms

 #3 Parameter Servers 

 Compute partial or full model updates over data partitions, 

with periodic model synchronization

 Compute parts of neural networks on different nodes w/ pipelining

 Also know as data-parallel learning vs model-parallel learning

 ML focus: mini-batch algorithms

Overview Execution Strategies

This 

lecture

Next 

lecture
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Categories of Execution Strategies, cont.

 Example Systems

 Local computation

 Distributed computation

Overview Execution Strategies

Category System Data Par Task Par Param Serv Accelerators

Numerical 

Computing

R X / X (GPU)*

Julia X / X (GPU)*

Batch ML SystemML X / X X / X (X) / (X) (GPU)

Mahout S X / X (- / X)

Mini-batch 

ML

TensorFlow X / - X / X GPU / TPU

PyTorch X / X GPU
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Recap: Fault Tolerance & Resilience

 Resilience Problem

 Increasing error rates at scale

(soft/hard mem/disk/net errors)

 Robustness for preemption

 Need for cost-effective resilience

 Fault Tolerance in Large-Scale Computation

 Block replication in distributed file systems

 ECC; checksums for blocks, broadcast, shuffle

 Checkpointing (all task outputs / on request)

 Lineage-based recomputation for recovery in Spark

 ML-specific Approaches (exploit app characteristics)

 Estimate contribution from lost partition to avoid strugglers

 Example: user-defined “compensation” functions

Overview Execution Strategies

[Google Data Center: 

https://www.youtube.com/watch?v=XZmGGAbHqa0]
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Background MapReduce and Spark

Abstractions for Fault-tolerant, Distributed 

Storage and Computation



9

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019 

Hadoop History and Architecture

 Brief History

 Google’s GFS [SOSP’03] + MapReduce [ODSI’04]  Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

 Hadoop Architecture / Eco System

 Management (Ambari)

 Coordination / workflows

(Zookeeper, Oozie)

 Storage (HDFS)

 Resources (YARN)

[SoCC’13]

 Processing 

(MapReduce)

Background MapReduce and Spark

NameNode

Head Node

Worker Node 1

Resource 

Manager Node 

Manager

MR 

AM

MR 

task

MR 

task

MR 

task

Worker Node n

Node 

Manager

MR 

task

MR 

task

MR 

task

MR 

task

MR Client DataNode
1 3 2

DataNode
3 2 9
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MapReduce – Programming Model

 Overview Programming Model

 Inspired by functional programming languages

 Implicit parallelism (abstracts distributed storage and processing)

 Map function: key/value pair  set of intermediate key/value pairs

 Reduce function: merge all intermediate values by key 

 Example

Background MapReduce and Spark

map(Long pos, String line) {

parts  line.split(“,”)

emit(parts[1], 1)

}

Name Dep

X CS

Y CS

A EE

Z CS

CS 1

CS 1

EE 1

CS 1

SELECT Dep, count(*) FROM csv_files GROUP BY Dep

reduce(String dep, 

Iterator<Long> iter) {

total  iter.sum();

emit(dep, total)

} CS 3

EE 1
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MapReduce – Execution Model

Background MapReduce and Spark

CSV 

File 1

Input CSV files 

(stored in HDFS)

CSV 

File 2

CSV 

File 3

Output Files 

(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map 

task

map 

task

map 

task

map 

task

map 

task

map 

task

Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce 

task

reduce 

task

reduce 

task

Shuffle, Merge, 

[Combine]

#1 Data Locality (delay sched., write affinity)

#2 Reduced shuffle (combine)

#3 Fault tolerance (replication, attempts)

w/ #reducers = 3
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MapReduce – Query Processing

 Basic Unary Operations

 Selections (brute-force), projections, ordering 

 Additive and semi-additive aggregation with grouping

 Binary Operations

 Set operations (union, intersect, difference) and joins

 Different physical operators for R ⨝ S (comparison [SIGMOD’10], [TODS’16])

 Broadcast join: broadcast S, build HT S, map-side HJOIN 

 Repartition join: shuffle (repartition) R and S, reduce-side MJOIN 

 Improved repartition join, map-side/directed join (co-partitioned) 

 Criticism on MR for Query Processing [SIGMOD’09] and ML

 Lacks high-level language/APIs, performance (caching, indexing, compression)

 Hybrid SQL-on-Hadoop Systems [VLDB’15]

 Examples: Hadapt (HadoopDB), Impala, IBM BigSQL, Presto, Drill, Actian

Background MapReduce and Spark
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Spark History and Architecture 

 Summary MapReduce

 Large-scale & fault-tolerant processing w/ UDFs and files  Flexibility

 Restricted functional APIs  Implicit parallelism and fault tolerance

 Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

 Evolution to Spark (and Flink)

 Spark [HotCloud’10] + RDDs [NSDI’12]  Apache Spark (2014)

 Design: standing executors with in-memory storage, 

lazy evaluation, and fault-tolerance via RDD lineage

 Performance: In-memory storage and fast job scheduling (100ms vs 10s)

 APIs: Richer functional APIs and general computation DAGs, 

high-level APIs (e.g., DataFrame/Dataset), unified platform  

 But many shared concepts/infrastructure

 Implicit parallelism through dist. collections (data access, fault tolerance) 

 Resource negotiators (YARN, Mesos, Kubernetes)

 HDFS and object store connectors (e.g., Swift, S3)

Background MapReduce and Spark
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Spark History and Architecture, cont.

 High-Level Architecture

 Different language bindings:

Scala, Java, Python, R

 Different libraries:

SQL, ML, Stream, Graph

 Spark core (incl RDDs)

 Different cluster managers:

Standalone, Mesos, 

Yarn, Kubernetes

 Different file systems/

formats, and data sources:

HDFS, S3, SWIFT, DBs, NoSQL

 Focus on a unified platform 

for data-parallel computation

Background MapReduce and Spark

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

How about the integration of 

specialized parameter severs? 

 [SPARK-24375]
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Resilient Distributed Datasets (RDDs)

 RDD Abstraction

 Immutable, partitioned 

collections of key-value pairs

 Coarse-grained deterministic operations (transformations/actions) 

 Fault tolerance via lineage-based recomputation

 Operations

 Transformations: 

define new RDDs

 Actions: return 

result to driver

 Distributed Caching

 Use fraction of worker memory for caching

 Eviction at granularity of individual partitions

 Different storage levels (e.g., mem/disk x serialization x compression)

Background MapReduce and Spark

JavaPairRDD

<MatrixIndexes,MatrixBlock>

Type Examples

Transformation

(lazy)

map, hadoopFile, textFile, 

flatMap, filter, sample, join, 

groupByKey, cogroup, reduceByKey, 

cross, sortByKey, mapValues

Action reduce, save,

collect, count, lookupKey

Node1 Node2
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Lazy Evaluation, Caching, and Lineage

Background MapReduce and Spark

join

union

groupBy

Stage 3

Stage 1

Stage 2

A B

C D F

G

map

partitioning-

aware

E

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy 

McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A 

Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

reduce

cached
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Data-Parallel Execution
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Background: Matrix Formats

 Matrix Block (m x n)

 A.k.a. tiles/chunks, most operations defined here

 Local matrix: single block, different representations

 Common Block Representations

 Dense (linearized arrays)

 MCSR (modified CSR)

 CSR (compressed sparse rows), CSC

 COO (Coordinate matrix)

Data-Parallel Execution

.7 .1

.2 .4

.3

Example 

3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0

Dense (row-major)

.7

.1

.2

.4

.3

0

2

0

1

1

0

2

4

5

CSR

.7

.1

.2

.4

.3

0

2

0

1

1

COO

0

0

1

1

2

.7 .1

2

MCSR

0

.2 .4

10

.3

1O(mn)

O(m + nnz(X)) O(nnz(X))
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Distributed Matrix Representations

 Collection of “Matrix Blocks” (and keys)

 Bag semantics (duplicates, unordered)

 Logical (Fixed-Size) Blocking 

+ join processing / independence

- (sparsity skew)

 E.g., SystemML on Spark:

JavaPairRDD<MatrixIndexes,MatrixBlock>

 Blocks encoded independently (dense/sparse)

 Partitioning

 Logical Partitioning 

(e.g., row-/column-wise)

 Physical Partitioning

(e.g., hash / grid)

Data-Parallel Execution

Logical Blocking 

3,400x2,700 Matrix 

(w/ Bc=1,000)

Physical 

Blocking and 

Partitioning 
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Distributed Matrix Representations, cont.

 #1 Block-partitioned Matrices

 Fixed-size, square or rectangular blocks

 Pros: Input/output alignment, block-local transpose, amortize block 

overheads, bounded memory requirements, cache-conscious block ops

 Cons: Converting row-wise inputs (e.g., text) into blocks requires shuffle

 Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon, Distributed R, 

DMac, Spark Mllib, Gilbert, MatFast, and SimSQL

 #2 Row/Column-partitioned Matrices

 Collection of row indexes and rows (or columns respectively)

 Pros: Seamless data conversion and access to entire rows

 Cons: Storage overhead in Java, and cache unfriendly operations

 Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL

 #3 Algorithm-specific Partitioning

 Operation and algorithm-centric data representations

 Examples: matrix inverse, matrix factorization
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Distributed Matrix Operations

Data-Parallel Execution

Elementwise Multiplication

(Hadamard Product) Transposition
Matrix

Multiplication

Note: also with 

row/column vector rhs

Note: 1:N join
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Partitioning-Preserving Operations

 Shuffle is major bottleneck for ML on Spark

 Preserve Partitioning 

 Op is partitioning-preserving if keys unchanged (guaranteed)

 Implicit: Use restrictive APIs (mapValues() vs mapToPair())

 Explicit: Partition computation w/ declaration of partitioning-preserving

 Exploit Partitioning

 Implicit: Operations based on join, cogroup, etc

 Explicit: Custom operators (e.g., zipmm)

 Example: 

Multiclass SVM

 Vectors fit 

neither into 

driver nor 

broadcast

 ncol(X) ≤ Bc

Data-Parallel Execution

parfor(iter_class in 1:num_classes) {

Y_local = 2 * (Y == iter_class) - 1

g_old = t(X) %*% Y_local

...

while( continue ) {

Xd = X %*% s

... inner while loop (compute step_sz)

Xw = Xw + step_sz * Xd;

out = 1 - Y_local * Xw;

out = (out > 0) * out;

g_new = t(X) %*% (out * Y_local) ...

repart, chkpt X MEM_DISK

chkpt y_local MEM_DISK

zipmm

chkpt Xd, Xw MEM_DISK
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Single Instruction Multiple Data (SIMD)

 SIMD Processing

 Streaming SIMD Extensions (SSE)

 Process the same operation on 

multiple elements at a time

(packed vs scalar SSE instructions)

 A.k.a: instruction-level parallelism

 Example: VFMADD132PD

 SIMD vs Multi-threading in ML Systems

 ML systems in native programming languages focus primarily on SIMD

 Essential for mini-batch algorithms and compute-intensive kernels

 SIMD very good for dense operations, gather/scatter required for sparse

 Multi-threading additionally applied via reused thread pools

 Even without SIMD: quickly saturate peak memory bandwidth

 ML systems in Java use JNI to call native BLAS to exploit SIMD

Data-Parallel Execution

Increasing Vector Lengths

2009 Nehalem: 128b (2xFP64)

2012 Sandy Bridge: 256b (4xFP64)

2017 Skylake: 512b (8xFP64)

a
b
c

c = _mm512_fmadd_pd(a, b);
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Task-Parallel Execution
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Parallel For Loops (parfor)

 Motivation

 Use cases: ensemble learning, cross validation, hyper-parameter tuning, 

complex models with disjoint/overlapping/all data per task

 Hybrid parallelization strategies (combined data- and task-parallel)

 Key Ideas:

 Dependency Analysis

 Task partitioning

 Data partitioning, scan

sharing, various rewrites

 Execution strategies

 Result agg strategies

 ParFor optimizer 

 Example Systems

 SystemML, R, Matlab

Task-Parallel Execution

[M. Boehm, S. Tatikonda, B. Reinwald, P. Sen, 

Y. Tian, D. Burdick, S. Vaithyanathan: Hybrid 

Parallelization Strategies for Large-Scale 

Machine Learning in SystemML. PVLDB 2014]

reg = 10^(seq(-1,-10))

B_all = matrix(0, nrow(reg), n)

parfor( i in 1:nrow(reg) ) {

B = linregCG(X, y, reg[i,1]);

B_all[i,] = t(B);

}

Local ParFor

(multi-threaded),

w/ local ops

Remote ParFor

(distributed 

Spark job)

Local ParFor,

w/ concurrent 

distributed ops
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Additional Examples

Task-Parallel Execution

D = read("./input/D");

m = nrow(D);

n = ncol(D);

R = matrix(0, rows=n, cols=n);

parfor( i in 1:(n-1) ) {

X = D[ ,i];

m2X = centralMoment(X,2);

sigmaX = sqrt( m2X*(m/(m-1.0)) );

parfor( j in (i+1):n ) {

Y = D[ ,j];

m2Y = centralMoment(Y,2);

sigmaY = sqrt( m2Y*(m/(m-1.0)) );

R[i,j] = cov(X,Y) / (sigmaX*sigmaY);

}

}

write(R, "./output/R");

prob = matrix(0, Ni, Nc)

parfor( i in 1:ceil(Ni/B) ) {

Xb = X[((i-1)*B+1):min(i*B,Ni),];

prob[((i-1)*B+1):min(i*B,Ni),] =

... # CNN scoring

}

#1 Pairwise Pearson Correlation 
(in practice, bivariate statistics: Pearson‘s R, 

Anova F, Chi-squared, Degree of freedom, P-

value, Cramers V, Spearman, etc)

#2 Batch-wise CNN Scoring 

 Conceptual Design:

Master/worker

(task: group of parfor iterations)
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ParFor Execution Strategies

 #1 Task Partitioning

 Fixed-size schemes: 

naive (1) , static (n/k), fixed (m)

 Self-scheduling: e.g.,  

guided self scheduling, factoring

 #2 Data Partitioning

 Local or remote row/column 

partitioning (incl locality)

 #3 Task Execution

 Local (multi-core) execution

 Remote (MR/Spark) execution 

 #4 Result Aggregation

 With and without compare (non-empty output variable)

 Local in-memory / remote MR/Spark result aggregation

Task-Parallel Execution

Local 
ParWorker k

ParFOR (local)

Local 
ParWorker 1

while(w deq())
foreach pi ∈ w
execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

Task Queue

...

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Factoring (n=101, k=4)

(13,13,13,13, 7,7,7,7, 3,3,3,3, 2,2,2,2, 1)
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ParFor Optimizer Framework 

 Design: Runtime optimization for each top-level parfor

 Plan Tree P

 Nodes N
P

 Exec type et

 Parallelism k

 Attributes A

 Height h

 Exec contexts EC
P

 Plan Tree 

Optimization 

Objective

 Heuristic optimizer w/ transformation-based search strategy

 Cost and memory estimates w/ plan tree aggregate statistics

Task-Parallel Execution
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Summary and Conclusions

 Categories of Execution Strategies

 Data-parallel execution for batch ML algorithms

 Task-parallel execution for custom parallelization of independent tasks

 Parameter servers (data-parallel vs model-parallel) 

for mini-batch ML algorithms

 #1 Different strategies (and systems) for different ML workloads

 Specialization and abstraction

 #2 Awareness of underlying execution frameworks

 #3 Awareness of effective compilation and runtime techniques

 Next Lecture

 06 Parameter Servers [May 03]


