

Architecture of ML Systems 05 Execution Strategies

Matthias Boehm

Last update: Apr 12, 2019

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Announcements/Org

- #1 Programming/Analysis Projects
 - #1 Auto Differentiation
 - #5 LLVM Code Generator
 - #12 Information Extraction from Unstructured PDF/HTML
 - → Individual meetings in next two weeks (if needed)
- #2 Recommended Reading
 - SysML whitepaper (building the ML systems community)
 - Alexander Ratner et al: SysML: The New Frontier of Machine Learning Systems, SysML 2019

Agenda

- Overview Execution Strategies
- Background MapReduce and Spark
- Data-Parallel Execution
- Task-Parallel Execution

Overview Execution Strategies

Categories of Execution Strategies

#1 Data-parallel Execution

- Run the same operations over data partitions in parallel
- ML focus: batch algorithms, hybrid batch/mini-batch algorithms

#2 Task-parallel Execution

- Run different tasks (e.g., iterations of parfor) in parallel
- Custom parallelization of independent subtasks
- ML focus: meta learning, batch and mini-batch algorithms

#3 Parameter Servers

- Compute partial or full model updates over data partitions, with periodic model synchronization
- Compute parts of neural networks on different nodes w/ pipelining
- Also know as data-parallel learning vs model-parallel learning
- ML focus: mini-batch algorithms

This lecture

Next lecture

Categories of Execution Strategies, cont.

Example Systems

- Local computation
- Distributed computation

Category	System	Data Par	Task Par	Param Serv	Accelerators
Numerical Computing	R		X/X		(GPU)*
	Julia		X / X		(GPU)*
Batch ML	SystemML	x / x	X/X	(X) / (X)	(GPU)
	Mahout S	x / x	(- / X)		
Mini-batch ML	TensorFlow		X / -	x / x	GPU / TPU
	PyTorch			x / x	GPU

Recap: Fault Tolerance & Resilience

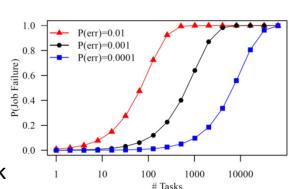
[Google Data Center:

https://www.youtube.com/watch?v=XZmGGAbHga0]

Resilience Problem

- Increasing error rates at scale (soft/hard mem/disk/net errors)
- Robustness for preemption
- Need for cost-effective resilience

- Block replication in distributed file systems
- ECC; checksums for blocks, broadcast, shuffle
- Checkpointing (all task outputs / on request)
- Lineage-based recomputation for recovery in Spark



- ML-specific Approaches (exploit app characteristics)
 - Estimate contribution from lost partition to avoid strugglers
 - Example: user-defined "compensation" functions

Background MapReduce and Spark

Abstractions for Fault-tolerant, Distributed Storage and Computation

Hadoop History and Architecture

Brief History

- Google's GFS [SOSP'03] + MapReduce [ODSI'04] → Apache Hadoop (2006)
- Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

Hadoop Architecture / Eco System

Management (Ambari) Worker Node n Worker Node 1 Coordination / workflows (Zookeeper, Oozie) MR MR MR MR Storage (HDFS) **Head Node AM** task task task Resources (YARN) MR MR MR MR [SoCC'13] task task task task Processing Resource (MapReduce) Node Node Manager Manager Manager NameNode **DataNode DataNode MR Client**

MapReduce – Programming Model

- Overview Programming Model
 - Inspired by functional programming languages
 - Implicit parallelism (abstracts distributed storage and processing)
 - Map function: key/value pair → set of intermediate key/value pairs
 - Reduce function: merge all intermediate values by key

map(Long pos, String line) {

parts ← line.split(",")

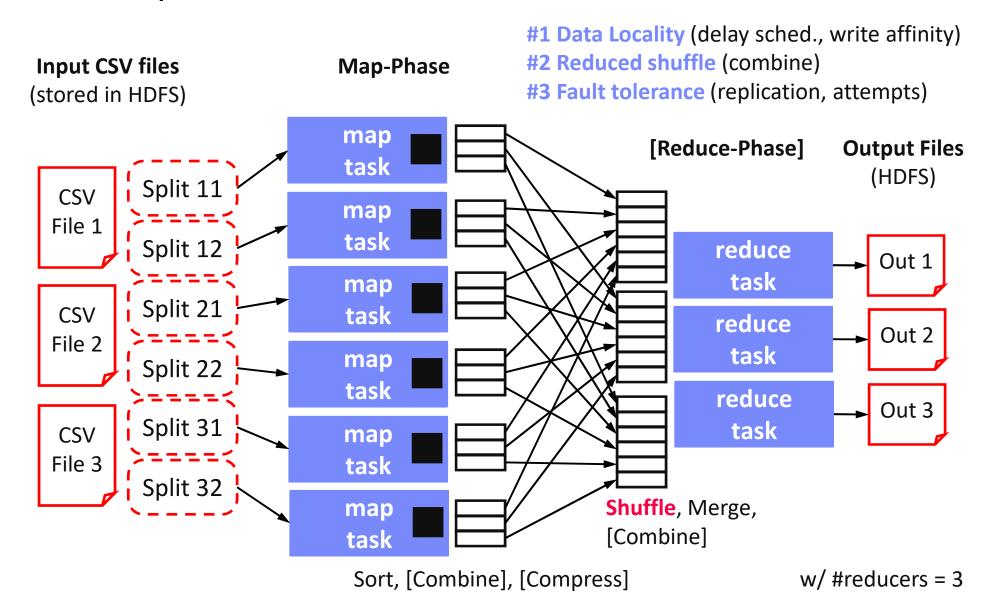
Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

Name	Dep
X	CS
Υ	CS
Α	EE
Z	CS

```
reduce(String dep,
    Iterator<Long> iter) {
  total ← iter.sum();
  emit(dep, total)
}
CS 3
EE 1
```

11

MapReduce – Execution Model



MapReduce – Query Processing

Basic Unary Operations

- Selections (brute-force), projections, ordering
- Additive and semi-additive aggregation with grouping

Binary Operations

- Set operations (union, intersect, difference) and joins
- Different physical operators for R ⋈ S (comparison [SIGMOD'10], [TODS'16])
 - Broadcast join: broadcast S, build HT S, map-side HJOIN
 - Repartition join: shuffle (repartition) R and S, reduce-side MJOIN
 - Improved repartition join, map-side/directed join (co-partitioned)

Criticism on MR for Query Processing [SIGMOD'09] and ML

- Lacks high-level language/APIs, performance (caching, indexing, compression)
- Hybrid SQL-on-Hadoop Systems [VLDB'15]
 - Examples: Hadapt (HadoopDB), Impala, IBM BigSQL, Presto, Drill, Actian

Spark History and Architecture

Summary MapReduce

- Large-scale & fault-tolerant processing w/ UDFs and files → Flexibility
- Restricted functional APIs -> Implicit parallelism and fault tolerance
- Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

Evolution to Spark (and Flink)

■ Spark [HotCloud'10] + RDDs [NSDI'12] → Apache Spark (2014)

- Design: standing executors with in-memory storage, lazy evaluation, and fault-tolerance via RDD lineage
- Performance: In-memory storage and fast job scheduling (100ms vs 10s)
- APIs: Richer functional APIs and general computation DAGs, high-level APIs (e.g., DataFrame/Dataset), unified platform

→ But many shared concepts/infrastructure

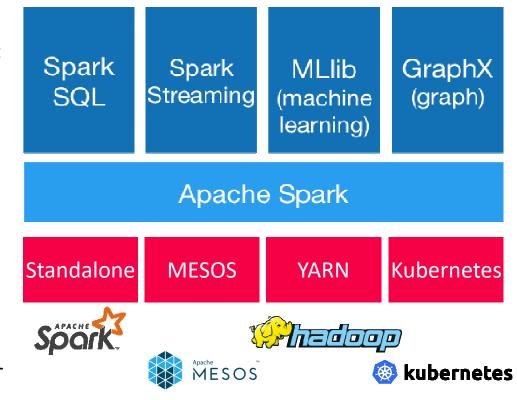
- Implicit parallelism through dist. collections (data access, fault tolerance)
- Resource negotiators (YARN, Mesos, Kubernetes)
- HDFS and object store connectors (e.g., Swift, S3)

[https://spark.apache.org/]

Spark History and Architecture, cont.

High-Level Architecture

- Different language bindings:
 Scala, Java, Python, R
- Different libraries: SQL, ML, Stream, Graph
- Spark core (incl RDDs)
- Different cluster managers:
 Standalone, Mesos,
 Yarn, Kubernetes
- Different file systems/ formats, and data sources: HDFS, S3, SWIFT, DBs, NoSQL



 Focus on a unified platform for data-parallel computation How about the integration of specialized parameter severs?

→ [SPARK-24375]

Resilient Distributed Datasets (RDDs)

RDD Abstraction

Immutable, partitioned collections of key-value pairs JavaPairRDD
 <MatrixIndexes,MatrixBlock>

- Coarse-grained deterministic operations (transformations/actions)
- Fault tolerance via lineage-based recomputation

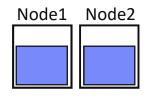
Operations

- Transformations: define new RDDs
- Actions: return result to driver

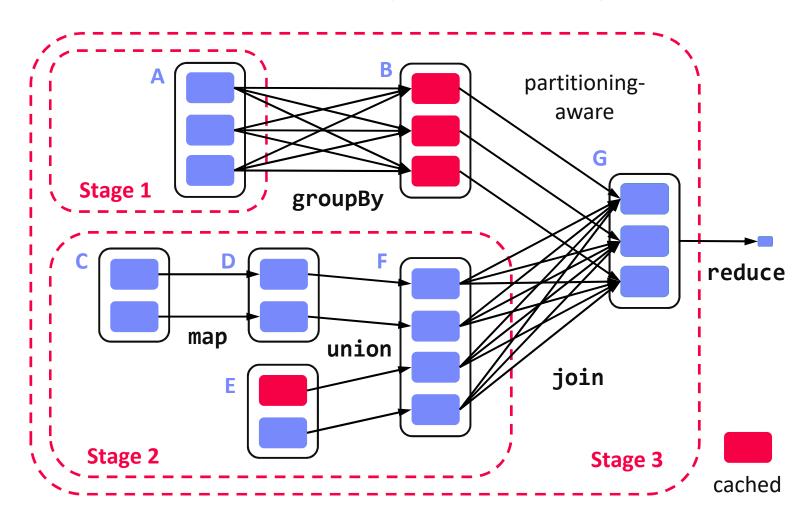
Туре	Examples				
Transformation (lazy)	<pre>map, hadoopFile, textFile, flatMap, filter, sample, join, groupByKey, cogroup, reduceByKey,</pre>				
Action	<pre>reduce, save, collect, count, lookupKey</pre>				

Distributed Caching

- Use fraction of worker memory for caching
- Eviction at granularity of individual partitions
- Different storage levels (e.g., mem/disk x serialization x compression)



Lazy Evaluation, Caching, and Lineage



[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. **NSDI 2012**]

Data-Parallel Execution

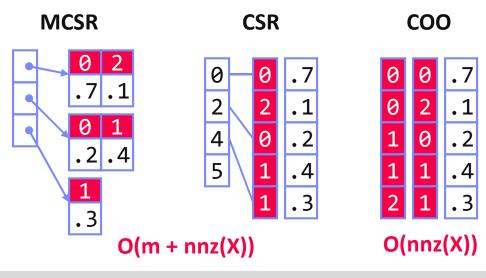
Background: Matrix Formats

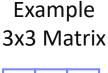
- Matrix Block (m x n)
 - A.k.a. tiles/chunks, most operations defined here
 - Local matrix: single block, different representations
- Common Block Representations
 - Dense (linearized arrays)
 - MCSR (modified CSR)
 - CSR (compressed sparse rows), CSC
 - COO (Coordinate matrix)

Dense (row-major)

.7 0 .1 .2 .4 0 0 .3 0

O(mn)





Distributed Matrix Representations

- Collection of "Matrix Blocks" (and keys)
 - Bag semantics (duplicates, unordered)
 - Logical (Fixed-Size) Blocking
 - + join processing / independence
 - (sparsity skew)
 - E.g., SystemML on Spark: JavaPairRDD<MatrixIndexes,MatrixBlock>
 - Blocks encoded independently (dense/sparse)

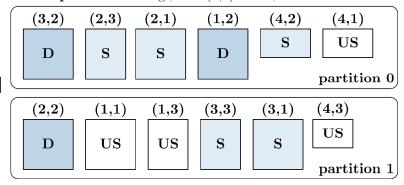
Logical Blocking 3,400x2,700 Matrix (w/ B_c=1,000)

- $\begin{array}{|c|c|c|c|c|}\hline (1,1) & (1,2) & (1,3) \\\hline (2,1) & (2,2) & (2,3) \\\hline \end{array}$

Partitioning

- Logical Partitioning (e.g., row-/column-wise)
- Physical Partitioning (e.g., hash / grid)

Physical Blocking and Partitioning



hash partitioned: e.g., $hash(3,2) \rightarrow 99,994 \% 2 = 0$

Distributed Matrix Representations, cont.

#1 Block-partitioned Matrices

- Fixed-size, square or rectangular blocks
- Pros: Input/output alignment, block-local transpose, amortize block overheads, bounded memory requirements, cache-conscious block ops
- Cons: Converting row-wise inputs (e.g., text) into blocks requires shuffle
- Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon, Distributed R,
 DMac, Spark Mllib, Gilbert, MatFast, and SimSQL

#2 Row/Column-partitioned Matrices

- Collection of row indexes and rows (or columns respectively)
- Pros: Seamless data conversion and access to entire rows
- Cons: Storage overhead in Java, and cache unfriendly operations
- Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL

#3 Algorithm-specific Partitioning

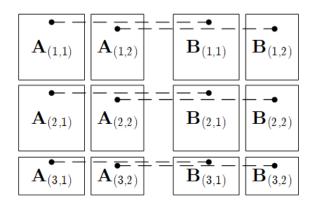
- Operation and algorithm-centric data representations
- Examples: matrix inverse, matrix factorization

Distributed Matrix Operations

Elementwise Multiplication

(Hadamard Product)

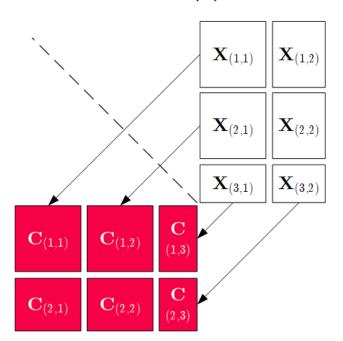
$$C = A * B$$



Note: also with row/column vector rhs

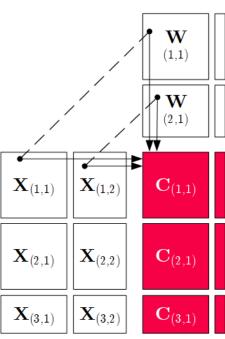
Transposition

$$C = t(X)$$



Matrix Multiplication

$$C = X %*% W$$



Note: 1:N join

Partitioning-Preserving Operations

- Shuffle is major bottleneck for ML on Spark
- Preserve Partitioning
 - Op is partitioning-preserving if keys unchanged (guaranteed)
 - Implicit: Use restrictive APIs (mapValues() vs mapToPair())
 - Explicit: Partition computation w/ declaration of partitioning-preserving
- Exploit Partitioning
 - Implicit: Operations based on join, cogroup, etc
 - Explicit: Custom operators (e.g., zipmm)

Example: Multiclass SVM

- Vectors fit neither into driver nor broadcast
- $ncol(X) \le B_c$

Single Instruction Multiple Data (SIMD)

SIMD Processing

- Streaming SIMD Extensions (SSE)
- Process the same operation on multiple elements at a time (packed vs scalar SSE instructions)
- A.k.a: instruction-level parallelism
- Example: VFMADD132PD

Increasing Vector Lengths

2009 Nehalem: **128b** (2xFP64)

2012 Sandy Bridge: **256b** (4xFP64)

2017 Skylake: **512b** (8xFP64)

c = _	_mm	151	2_:	fma	add	l_p	d (a,	b)
a									
b									
С									

SIMD vs Multi-threading in ML Systems

- ML systems in native programming languages focus primarily on SIMD
 - → Essential for mini-batch algorithms and compute-intensive kernels
- SIMD very good for dense operations, gather/scatter required for sparse
- Multi-threading additionally applied via reused thread pools
 - → Even without SIMD: quickly saturate peak memory bandwidth
- ML systems in Java use JNI to call native BLAS to exploit SIMD

Task-Parallel Execution

Parallel For Loops (parfor)

[M. Boehm, S. Tatikonda, B. Reinwald, P. Sen, Y. Tian, D. Burdick, S. Vaithyanathan: Hybrid Parallelization Strategies for Large-Scale Machine Learning in SystemML. **PVLDB 2014**]

Motivation

- Use cases: ensemble learning, cross validation, hyper-parameter tuning, complex models with disjoint/overlapping/all data per task
- Hybrid parallelization strategies (combined data- and task-parallel)

Key Ideas:

- Dependency Analysis
- Task partitioning
- Data partitioning, scan sharing, various rewrites
- Execution strategies
- Result agg strategies
- ParFor optimizer

Example Systems

SystemML, R, Matlab

```
reg = 10^(seq(-1,-10))
B_all = matrix(0, nrow(reg), n)

parfor( i in 1:nrow(reg) ) {
    B = linregCG(X, y, reg[i,1]);
    B_all[i,] = t(B);
}
```

Local ParFor (multi-threaded), w/ local ops

Remote ParFor (distributed Spark job) Local ParFor, w/ concurrent distributed ops

Additional Examples

#1 Pairwise Pearson Correlation

#2 Batch-wise CNN Scoring

... # CNN scoring

(in practice, bivariate statistics: Pearson's R, Anova F, Chi-squared, Degree of freedom, Pvalue, Cramers V, Spearman, etc)

```
D = read("./input/D");
                                     prob = matrix(0, Ni, Nc)
                                     parfor( i in 1:ceil(Ni/B) ) {
m = nrow(D);
                                         Xb = X[((i-1)*B+1):min(i*B,Ni),];
n = ncol(D);
                                         prob[((i-1)*B+1):min(i*B,Ni),] =
R = matrix(0, rows=n, cols=n);
parfor( i in 1:(n-1) ) {
  X = D[,i];
   m2X = centralMoment(X,2);
   sigmaX = sqrt( m2X*(m/(m-1.0)) );
   parfor( j in (i+1):n ) {
      Y = D[,i];
      m2Y = centralMoment(Y,2);
      sigmaY = sqrt(m2Y*(m/(m-1.0)));
      R[i,j] = cov(X,Y) / (sigmaX*sigmaY);
write(R, "./output/R");
```

→ Conceptual Design:

(task: group of parfor iterations)

Master/worker

ParFor Execution Strategies

#1 Task Partitioning

- Fixed-size schemes: naive (1), static (n/k), fixed (m)
- Self-scheduling: e.g., guided self scheduling, factoring

Factoring (n=101, k=4)

$$R_0 = N, R_{i+1} = R_i - k \cdot l_i, \quad l_i = \left\lceil \frac{R_i}{x_i \cdot k} \right\rceil = \left\lceil \left(\frac{1}{x_i}\right)^{i+1} \frac{N}{k} \right\rceil$$

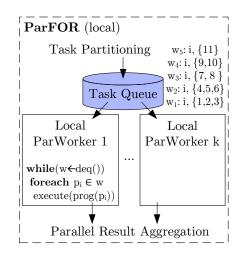
(13,13,13,13,7,7,7,7,3,3,3,3,2,2,2,2,1)

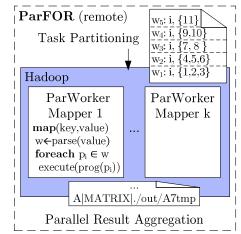
#2 Data Partitioning

 Local or remote row/column partitioning (incl locality)

#3 Task Execution

- Local (multi-core) execution
- Remote (MR/Spark) execution



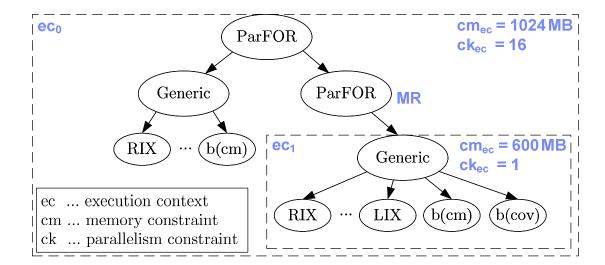


#4 Result Aggregation

- With and without compare (non-empty output variable)
- Local in-memory / remote MR/Spark result aggregation

ParFor Optimizer Framework

- Design: Runtime optimization for each top-level parfor
- Plan Tree P
 - Nodes N_P
 - Exec type et
 - Parallelism k
 - Attributes A
 - Height h
 - Exec contexts *EC_P*



Plan TreeOptimizationObjective

$$\phi_2$$
: min $\hat{T}(r(P))$
 $s.t.$ $\forall ec \in \mathcal{EC}_P : \hat{M}(r(ec)) \leq cm_{ec} \land K(r(ec)) \leq ck_{ec}.$

- Heuristic optimizer w/ transformation-based search strategy
 - Cost and memory estimates w/ plan tree aggregate statistics

Summary and Conclusions

- Categories of Execution Strategies
 - Data-parallel execution for batch ML algorithms
 - Task-parallel execution for custom parallelization of independent tasks
 - Parameter servers (data-parallel vs model-parallel) for mini-batch ML algorithms
- #1 Different strategies (and systems) for different ML workloads
 - → Specialization and abstraction
- #2 Awareness of underlying execution frameworks
- #3 Awareness of effective compilation and runtime techniques
- Next Lecture
 - 06 Parameter Servers [May 03]

