
1

SCIENCE

PASSION

TECHNOLOGY

Architecture of ML Systems
05 Execution Strategies

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering

Institute of Interactive Systems and Data Science

BMVIT endowed chair for Data Management

Last update: Apr 12, 2019

2

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Announcements/Org

 #1 Programming/Analysis Projects

 #1 Auto Differentiation

 #5 LLVM Code Generator

 #12 Information Extraction from Unstructured PDF/HTML

 Individual meetings in next two weeks (if needed)

 #2 Recommended Reading

 SysML whitepaper (building the ML systems community)

 Alexander Ratner et al: SysML: The New Frontier of

Machine Learning Systems, SysML 2019

3

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Agenda

 Overview Execution Strategies

 Background MapReduce and Spark

 Data-Parallel Execution

 Task-Parallel Execution

4

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Overview Execution Strategies

5

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Categories of Execution Strategies

 #1 Data-parallel Execution

 Run the same operations over data partitions in parallel

 ML focus: batch algorithms, hybrid batch/mini-batch algorithms

 #2 Task-parallel Execution

 Run different tasks (e.g., iterations of parfor) in parallel

 Custom parallelization of independent subtasks

 ML focus: meta learning, batch and mini-batch algorithms

 #3 Parameter Servers

 Compute partial or full model updates over data partitions,

with periodic model synchronization

 Compute parts of neural networks on different nodes w/ pipelining

 Also know as data-parallel learning vs model-parallel learning

 ML focus: mini-batch algorithms

Overview Execution Strategies

This

lecture

Next

lecture

6

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Categories of Execution Strategies, cont.

 Example Systems

 Local computation

 Distributed computation

Overview Execution Strategies

Category System Data Par Task Par Param Serv Accelerators

Numerical

Computing

R X / X (GPU)*

Julia X / X (GPU)*

Batch ML SystemML X / X X / X (X) / (X) (GPU)

Mahout S X / X (- / X)

Mini-batch

ML

TensorFlow X / - X / X GPU / TPU

PyTorch X / X GPU

7

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Recap: Fault Tolerance & Resilience

 Resilience Problem

 Increasing error rates at scale

(soft/hard mem/disk/net errors)

 Robustness for preemption

 Need for cost-effective resilience

 Fault Tolerance in Large-Scale Computation

 Block replication in distributed file systems

 ECC; checksums for blocks, broadcast, shuffle

 Checkpointing (all task outputs / on request)

 Lineage-based recomputation for recovery in Spark

 ML-specific Approaches (exploit app characteristics)

 Estimate contribution from lost partition to avoid strugglers

 Example: user-defined “compensation” functions

Overview Execution Strategies

[Google Data Center:

https://www.youtube.com/watch?v=XZmGGAbHqa0]

8

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Background MapReduce and Spark

Abstractions for Fault-tolerant, Distributed

Storage and Computation

9

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Hadoop History and Architecture

 Brief History

 Google’s GFS [SOSP’03] + MapReduce [ODSI’04]  Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

 Hadoop Architecture / Eco System

 Management (Ambari)

 Coordination / workflows

(Zookeeper, Oozie)

 Storage (HDFS)

 Resources (YARN)

[SoCC’13]

 Processing

(MapReduce)

Background MapReduce and Spark

NameNode

Head Node

Worker Node 1

Resource

Manager Node

Manager

MR

AM

MR

task

MR

task

MR

task

Worker Node n

Node

Manager

MR

task

MR

task

MR

task

MR

task

MR Client DataNode
1 3 2

DataNode
3 2 9

10

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

MapReduce – Programming Model

 Overview Programming Model

 Inspired by functional programming languages

 Implicit parallelism (abstracts distributed storage and processing)

 Map function: key/value pair  set of intermediate key/value pairs

 Reduce function: merge all intermediate values by key

 Example

Background MapReduce and Spark

map(Long pos, String line) {

parts  line.split(“,”)

emit(parts[1], 1)

}

Name Dep

X CS

Y CS

A EE

Z CS

CS 1

CS 1

EE 1

CS 1

SELECT Dep, count(*) FROM csv_files GROUP BY Dep

reduce(String dep,

Iterator<Long> iter) {

total  iter.sum();

emit(dep, total)

} CS 3

EE 1

11

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

MapReduce – Execution Model

Background MapReduce and Spark

CSV

File 1

Input CSV files

(stored in HDFS)

CSV

File 2

CSV

File 3

Output Files

(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map

task

map

task

map

task

map

task

map

task

map

task

Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce

task

reduce

task

reduce

task

Shuffle, Merge,

[Combine]

#1 Data Locality (delay sched., write affinity)

#2 Reduced shuffle (combine)

#3 Fault tolerance (replication, attempts)

w/ #reducers = 3

12

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

MapReduce – Query Processing

 Basic Unary Operations

 Selections (brute-force), projections, ordering

 Additive and semi-additive aggregation with grouping

 Binary Operations

 Set operations (union, intersect, difference) and joins

 Different physical operators for R ⨝ S (comparison [SIGMOD’10], [TODS’16])

 Broadcast join: broadcast S, build HT S, map-side HJOIN

 Repartition join: shuffle (repartition) R and S, reduce-side MJOIN

 Improved repartition join, map-side/directed join (co-partitioned)

 Criticism on MR for Query Processing [SIGMOD’09] and ML

 Lacks high-level language/APIs, performance (caching, indexing, compression)

 Hybrid SQL-on-Hadoop Systems [VLDB’15]

 Examples: Hadapt (HadoopDB), Impala, IBM BigSQL, Presto, Drill, Actian

Background MapReduce and Spark

13

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Spark History and Architecture

 Summary MapReduce

 Large-scale & fault-tolerant processing w/ UDFs and files  Flexibility

 Restricted functional APIs  Implicit parallelism and fault tolerance

 Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

 Evolution to Spark (and Flink)

 Spark [HotCloud’10] + RDDs [NSDI’12]  Apache Spark (2014)

 Design: standing executors with in-memory storage,

lazy evaluation, and fault-tolerance via RDD lineage

 Performance: In-memory storage and fast job scheduling (100ms vs 10s)

 APIs: Richer functional APIs and general computation DAGs,

high-level APIs (e.g., DataFrame/Dataset), unified platform

 But many shared concepts/infrastructure

 Implicit parallelism through dist. collections (data access, fault tolerance)

 Resource negotiators (YARN, Mesos, Kubernetes)

 HDFS and object store connectors (e.g., Swift, S3)

Background MapReduce and Spark

14

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Spark History and Architecture, cont.

 High-Level Architecture

 Different language bindings:

Scala, Java, Python, R

 Different libraries:

SQL, ML, Stream, Graph

 Spark core (incl RDDs)

 Different cluster managers:

Standalone, Mesos,

Yarn, Kubernetes

 Different file systems/

formats, and data sources:

HDFS, S3, SWIFT, DBs, NoSQL

 Focus on a unified platform

for data-parallel computation

Background MapReduce and Spark

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

How about the integration of

specialized parameter severs?

 [SPARK-24375]

15

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Resilient Distributed Datasets (RDDs)

 RDD Abstraction

 Immutable, partitioned

collections of key-value pairs

 Coarse-grained deterministic operations (transformations/actions)

 Fault tolerance via lineage-based recomputation

 Operations

 Transformations:

define new RDDs

 Actions: return

result to driver

 Distributed Caching

 Use fraction of worker memory for caching

 Eviction at granularity of individual partitions

 Different storage levels (e.g., mem/disk x serialization x compression)

Background MapReduce and Spark

JavaPairRDD

<MatrixIndexes,MatrixBlock>

Type Examples

Transformation

(lazy)

map, hadoopFile, textFile,

flatMap, filter, sample, join,

groupByKey, cogroup, reduceByKey,

cross, sortByKey, mapValues

Action reduce, save,

collect, count, lookupKey

Node1 Node2

16

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Lazy Evaluation, Caching, and Lineage

Background MapReduce and Spark

join

union

groupBy

Stage 3

Stage 1

Stage 2

A B

C D F

G

map

partitioning-

aware

E

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy

McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A

Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

reduce

cached

17

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Data-Parallel Execution

18

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Background: Matrix Formats

 Matrix Block (m x n)

 A.k.a. tiles/chunks, most operations defined here

 Local matrix: single block, different representations

 Common Block Representations

 Dense (linearized arrays)

 MCSR (modified CSR)

 CSR (compressed sparse rows), CSC

 COO (Coordinate matrix)

Data-Parallel Execution

.7 .1

.2 .4

.3

Example

3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0

Dense (row-major)

.7

.1

.2

.4

.3

0

2

0

1

1

0

2

4

5

CSR

.7

.1

.2

.4

.3

0

2

0

1

1

COO

0

0

1

1

2

.7 .1

2

MCSR

0

.2 .4

10

.3

1O(mn)

O(m + nnz(X)) O(nnz(X))

19

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Distributed Matrix Representations

 Collection of “Matrix Blocks” (and keys)

 Bag semantics (duplicates, unordered)

 Logical (Fixed-Size) Blocking

+ join processing / independence

- (sparsity skew)

 E.g., SystemML on Spark:

JavaPairRDD<MatrixIndexes,MatrixBlock>

 Blocks encoded independently (dense/sparse)

 Partitioning

 Logical Partitioning

(e.g., row-/column-wise)

 Physical Partitioning

(e.g., hash / grid)

Data-Parallel Execution

Logical Blocking

3,400x2,700 Matrix

(w/ Bc=1,000)

Physical

Blocking and

Partitioning

20

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Distributed Matrix Representations, cont.

 #1 Block-partitioned Matrices

 Fixed-size, square or rectangular blocks

 Pros: Input/output alignment, block-local transpose, amortize block

overheads, bounded memory requirements, cache-conscious block ops

 Cons: Converting row-wise inputs (e.g., text) into blocks requires shuffle

 Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon, Distributed R,

DMac, Spark Mllib, Gilbert, MatFast, and SimSQL

 #2 Row/Column-partitioned Matrices

 Collection of row indexes and rows (or columns respectively)

 Pros: Seamless data conversion and access to entire rows

 Cons: Storage overhead in Java, and cache unfriendly operations

 Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL

 #3 Algorithm-specific Partitioning

 Operation and algorithm-centric data representations

 Examples: matrix inverse, matrix factorization

21

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Distributed Matrix Operations

Data-Parallel Execution

Elementwise Multiplication

(Hadamard Product) Transposition
Matrix

Multiplication

Note: also with

row/column vector rhs

Note: 1:N join

22

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Partitioning-Preserving Operations

 Shuffle is major bottleneck for ML on Spark

 Preserve Partitioning

 Op is partitioning-preserving if keys unchanged (guaranteed)

 Implicit: Use restrictive APIs (mapValues() vs mapToPair())

 Explicit: Partition computation w/ declaration of partitioning-preserving

 Exploit Partitioning

 Implicit: Operations based on join, cogroup, etc

 Explicit: Custom operators (e.g., zipmm)

 Example:

Multiclass SVM

 Vectors fit

neither into

driver nor

broadcast

 ncol(X) ≤ Bc

Data-Parallel Execution

parfor(iter_class in 1:num_classes) {

Y_local = 2 * (Y == iter_class) - 1

g_old = t(X) %*% Y_local

...

while(continue) {

Xd = X %*% s

... inner while loop (compute step_sz)

Xw = Xw + step_sz * Xd;

out = 1 - Y_local * Xw;

out = (out > 0) * out;

g_new = t(X) %*% (out * Y_local) ...

repart, chkpt X MEM_DISK

chkpt y_local MEM_DISK

zipmm

chkpt Xd, Xw MEM_DISK

23

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Single Instruction Multiple Data (SIMD)

 SIMD Processing

 Streaming SIMD Extensions (SSE)

 Process the same operation on

multiple elements at a time

(packed vs scalar SSE instructions)

 A.k.a: instruction-level parallelism

 Example: VFMADD132PD

 SIMD vs Multi-threading in ML Systems

 ML systems in native programming languages focus primarily on SIMD

 Essential for mini-batch algorithms and compute-intensive kernels

 SIMD very good for dense operations, gather/scatter required for sparse

 Multi-threading additionally applied via reused thread pools

 Even without SIMD: quickly saturate peak memory bandwidth

 ML systems in Java use JNI to call native BLAS to exploit SIMD

Data-Parallel Execution

Increasing Vector Lengths

2009 Nehalem: 128b (2xFP64)

2012 Sandy Bridge: 256b (4xFP64)

2017 Skylake: 512b (8xFP64)

a
b
c

c = _mm512_fmadd_pd(a, b);

24

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Task-Parallel Execution

25

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Parallel For Loops (parfor)

 Motivation

 Use cases: ensemble learning, cross validation, hyper-parameter tuning,

complex models with disjoint/overlapping/all data per task

 Hybrid parallelization strategies (combined data- and task-parallel)

 Key Ideas:

 Dependency Analysis

 Task partitioning

 Data partitioning, scan

sharing, various rewrites

 Execution strategies

 Result agg strategies

 ParFor optimizer

 Example Systems

 SystemML, R, Matlab

Task-Parallel Execution

[M. Boehm, S. Tatikonda, B. Reinwald, P. Sen,

Y. Tian, D. Burdick, S. Vaithyanathan: Hybrid

Parallelization Strategies for Large-Scale

Machine Learning in SystemML. PVLDB 2014]

reg = 10^(seq(-1,-10))

B_all = matrix(0, nrow(reg), n)

parfor(i in 1:nrow(reg)) {

B = linregCG(X, y, reg[i,1]);

B_all[i,] = t(B);

}

Local ParFor

(multi-threaded),

w/ local ops

Remote ParFor

(distributed

Spark job)

Local ParFor,

w/ concurrent

distributed ops

26

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Additional Examples

Task-Parallel Execution

D = read("./input/D");

m = nrow(D);

n = ncol(D);

R = matrix(0, rows=n, cols=n);

parfor(i in 1:(n-1)) {

X = D[,i];

m2X = centralMoment(X,2);

sigmaX = sqrt(m2X*(m/(m-1.0)));

parfor(j in (i+1):n) {

Y = D[,j];

m2Y = centralMoment(Y,2);

sigmaY = sqrt(m2Y*(m/(m-1.0)));

R[i,j] = cov(X,Y) / (sigmaX*sigmaY);

}

}

write(R, "./output/R");

prob = matrix(0, Ni, Nc)

parfor(i in 1:ceil(Ni/B)) {

Xb = X[((i-1)*B+1):min(i*B,Ni),];

prob[((i-1)*B+1):min(i*B,Ni),] =

... # CNN scoring

}

#1 Pairwise Pearson Correlation
(in practice, bivariate statistics: Pearson‘s R,

Anova F, Chi-squared, Degree of freedom, P-

value, Cramers V, Spearman, etc)

#2 Batch-wise CNN Scoring

 Conceptual Design:

Master/worker

(task: group of parfor iterations)

27

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

ParFor Execution Strategies

 #1 Task Partitioning

 Fixed-size schemes:

naive (1) , static (n/k), fixed (m)

 Self-scheduling: e.g.,

guided self scheduling, factoring

 #2 Data Partitioning

 Local or remote row/column

partitioning (incl locality)

 #3 Task Execution

 Local (multi-core) execution

 Remote (MR/Spark) execution

 #4 Result Aggregation

 With and without compare (non-empty output variable)

 Local in-memory / remote MR/Spark result aggregation

Task-Parallel Execution

Local
ParWorker k

ParFOR (local)

Local
ParWorker 1

while(w deq())
foreach pi ∈ w
execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

Task Queue

...

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Factoring (n=101, k=4)

(13,13,13,13, 7,7,7,7, 3,3,3,3, 2,2,2,2, 1)

28

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

ParFor Optimizer Framework

 Design: Runtime optimization for each top-level parfor

 Plan Tree P

 Nodes N
P

 Exec type et

 Parallelism k

 Attributes A

 Height h

 Exec contexts EC
P

 Plan Tree

Optimization

Objective

 Heuristic optimizer w/ transformation-based search strategy

 Cost and memory estimates w/ plan tree aggregate statistics

Task-Parallel Execution

29

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies

Matthias Boehm, Graz University of Technology, SS 2019

Summary and Conclusions

 Categories of Execution Strategies

 Data-parallel execution for batch ML algorithms

 Task-parallel execution for custom parallelization of independent tasks

 Parameter servers (data-parallel vs model-parallel)

for mini-batch ML algorithms

 #1 Different strategies (and systems) for different ML workloads

 Specialization and abstraction

 #2 Awareness of underlying execution frameworks

 #3 Awareness of effective compilation and runtime techniques

 Next Lecture

 06 Parameter Servers [May 03]

