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Motivation and Overview Graza

Driving Factors for ML

[Credit: Andrew Ng’14]
= Improved

New Al methods
(deep learning)

= Success across data and application domains
(e.g., health care, finance, transport, production)
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= More complex models which leverage large data

Amount of data

= Availability of Collections Feedback Loop
= |ncreasing automation and monitoring =2 data Data
(simplified by cloud computing & services) /

= Feedback loops, data programming/augmentation Usage Model

. Advancements
= Higher performance of hardware and infrastructure (cloud)
= QOpen-source large-scale computation frameworks,

ML systems, and vendor-provides libraries
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DNN Challenges

= #1 Larger Models IMAGE RECOGNITION
and Scoring Time
16X

Model

152 layers

22.6 GFLOP

~3.5% error
8 layers

1.4 GFLOP

~16% Error

2012 2015
AlexNet ResNet

= #2 Training Time

SPEECH RECOGNITION

10X

Training Ops

465 GFLOP

12,000 hrs of Data
~5% Error

80 GFLOP
7,000 hrs of Data

~8% Error

2014 2015
Deep Speech 1 Deep Speech 2

= ResNetl8: 10.76% error, 2.5 days training

= ResNet50: 7.02% error, 5 days training

= ResNetl01:6.21% error, 1 week training

= ResNetl52:6.16% error, 1.5 weeks training

[Song Han: Efficient Methods and Hardware

= #3 Energy Efficiency for Deep Learning, Stanford cs231n, 2017]
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Excursus: Roofline Analysis

= Setup: 2x6 E5-2440 @2.4GHz-2.9GHz, DDR3 RAM @1.3GHz (ECC)
= Max mem bandwidth (local): 2 sock x 3 chan x 8B x 1.3G trans/s = 2 x 32GB/s
= Max mem bandwidth (QPI, full duplex) > 2 x 12.8GB/s
= Max floating point ops: 12 cores x 2*4dFP-units x 2.4GHz = 2 x 115.2GFlops/s

= Roofline ) R — FeEm e sl s e e
Analysis 128 — ’ SystemML &
BLAS
= Off-chip % 64 —

g_ 36x ]
memory % 32 — SystemML
traffic 5 15- MM (n=768)

= @

- Peak _E 8 — SystemML
compute S = Mt(Mv)
< 4 — SystemML
5 ] mv = 10-bound =» compute-
| traditional ML bound DNN
| | | | | | | | | |
= [S. Williams, A. Waterman, D. A. 1/8 1/4 1/2 I 2 4 8 16 32 64
im;m': Patterson: Roofline: An Insightful Visual
“ | Performance Model for Multicore Operational Intensity (Flops/Byte)
Architectures. Commun. ACM 2009]



Motivation and Overview -I(;rE!l

Towards Specialized Hardware

= HW Specialization

HW Devices

General Purpose Specialized HW

Throughput-oriented, programmable
specialized instructions logic

fixed logic

= Additional specialization
= Data Transfer and Types: e.g., low-precision, quantization, sparsification

= Sparsity Exploitation: e.g., defer weight decompression just before
instruction execution
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Agenda

= GPUs in ML Systems
= FPGAs in ML Systems
= ASICs and other HW Accelerators
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Graphics Processing Units
(GPUs) in ML Systems
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Graphics Processing Units (GPUs) in ML Systems -ErLa!.

NVIDIA Volta V100 — Specifications

= Tesla V100 NVLink

= Tesla V100 PCle

FP64: 7.8 TFLOPs, FP32: 15.7 TFLOPs
DL FP16: 125 TFLOPs

NVLink: 300GB/s

Device HBM: 32 GB (900 GB/s)
Power: 300 W

FP64: 7 TFLOPs, FP32: 14 TFLOPs
. [Credit: https://nvidia.com/de-de/

DL FP16: 112 TFLOPs data-center/tesla-v100/]

PCle: 32 GB/s

Device HBM: 16 GB (900 GB/s)

Power: 250 W
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Graphics Processing Units (GPUs) in ML Systems -I(;rla!l

NVIDIA Volta V100 — Architecture

= 6 GPU Processing Clusters (GPCs) [NVIDIA Tesla V100 GPU |~
Architecture, Whitepaper,
Aug 2017]

= 7 Texture Processing Clusters (TPC)

= 14 Streaming Multiprocessors (SM)
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NVIDIA Volta V100 — SM Architecture

FP64 cores: 32
FP32 cores: 64
INT32 cores: 64
“Tensor cores”: 8
Max warps /SM: 64
Threads/warp: 32

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32 TENSOR

INT FP32 FP32 CORE

INT FP32 FP32
INT

INT

Lo/
ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)

Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32 TENSOR

INT FP32 FP32 CORE

INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

LY LD LY LD/
ST sT §T §T

TENSOR
CORE

TENSOR
CORE

SFU

FP64

FP64

FP64

FP84

FP64

FP64

FP64

Lo LD
ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32 TENSOR

INT FP32 FP32 CORE

INT FP32 FP32
INT FP32 FP32

FP32 FP32

Lo/ Lo/ Lo/ Lo/
sT ST ST ST

L6 Matiuciion Cachs

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32 TENSOR

INT FP32 FP32 CORE

INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

LD D LD LD Lo/
ST ST ST ST

128KB L1 Data Cache / Shared Memory

Tex

Tex

TENSOR
CORE

TENSOR
CORE




Graphics Processing Units (GPUs) in ML Systems -I(;rE!l

Single Instruction Multiple Threads (SIMT)

= 32 Threads grouped to warps and execute in SIMT model

Thread Divergence

* Pascal P100 if (threadidx.x < 4) { s
Execution Model Ai )
= Warps use a } 61)5({3 { %
single program Yi =
counter + ;;
active mask > Time

= Volta V100 if (threadidx.x < 4) {

Execution Model o

= Independent e

thread scheduling y Y;

= Per-thread Z;
__syncwarp()
program counters
and call stacks

» New __syncwarp() primitive



Graphics Processing Units (GPUs) in ML Systems -I(;rE!l

NVIDIA Volta V100 — Tensor Cores

= “Tensor Core” [Bill Dally: Hardware

for Deep Learning.

" Specialized instruction for 4x4 by 4x4 fused matrix multiply SysMIL 2018]

= Two FP16 inputs and FP32 accumulator
= Exposed as warp-level matrix operations w/ special load, mm, acc, and store

64 FMA
D = A %% B + C operations

D =

FP16 or FP32

FP16 or FP32
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Graphics Processing Units (GPUs) in ML Systems -ErLa!.

Excursus: Amdahl’s Law

= Amdahl’s law
= Given a fixed problem size, Amdahl’s law gives the maximum speedup
= Tis the execution time, s is the serial fraction, and p the number of processors

i 1—39)T T
ExeFutlon . ! T Speedup S, = —
Time p p Tp
Upper-Bound g = lim S, = -
Speedup p— S
= Examples
= Serial fraction s = 0.01 = max S, =100
= Serial fraction s = 0.05 = max S, =20
= Serial fraction s = 0.1 2 max S, =10
= Serial fraction s = 0.5 2 max S,=2
706.550 Architect f Machine L ing Syst — 07 HW Accelerat
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Graphics Processing Units (GPUs) in ML Systems -ErLa!.

GPUs for DNN Training

= GPUs for DNN Training (2009) o
[Rajat Raina, Anand Madhavan, Andrew Y. Ng:

= Deep belief networks Large-scale deep unsupervised learning using
graphics processors. ICML 2009]

= Sparse coding

= Multi-GPU Learning

= Exploit multiple GPUs with a mix of
data- and model-parallel parameter servers

= Dedicated ML systems for multi-GPU learning

= Dedicated HW: e.g., NVIDIA DGX-1 (8xP100),
NVIDIA DGX-2 (16xV100, NVSwitch)

= DNN Framework support
= All specialized DNN frameworks have very good support for GPU training
= Most of them also support multi-GPU training
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Graphics Processing Units (GPUs) in ML Systems -Erla'!l

GPU Link Technologies

= Classic PCI Express

= Peripheral Component Interconnect Express (default)
= , V4 (2017) x16 lanes: 32GB/s, v5 (2019) x16 lanes: 64GB/s

= #1 NVLink

= Proprietary technology —l,ﬁjl— _ltri“ﬁ
= Requires NVLink-enabled CPU DD DD

(e.g., IBM Power 8/9)
= Connect GPU-GPU and GPU-CPU ' [ -
= NVLink 1: 80+80 GB/s
= NVLink 2: 150+150 GB/s [

" #1 NVSwitch

= Fully connected GPUs, each communicating at 300GB/s
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Graphics Processing Units (GPUs) in ML Systems
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GPU Link Technologies, cont.

= Recap: Amdahl’s Law

= Experimental Setup
= SnapML, 4 IBM Power x 4 V100 GPUs, NVLink 2.0

[Celestine Diinner et al.: Snap
ML: A Hierarchical Framework
for Machine Learning.
NeurlPS 2018]

= 200 million training examples of the Criteo dataset (> GPU mem)
* Train a logistic regression model

Train
Init chunk
U}

PCle v3 Interconnect NVLink Interconnect

“« > > > >4 e et b e e

e ra »

>t
Train Train Train Train Train Train Train
Init chunk | > S1 Init chunk Init chunk Init chunk Init | chunk Init chunk Init chunk >
(i+1) (i) (i+1) (i+2) (i+3) (i+4) (i+5)
Copy chunk Copy chunk Copy Copy Copy Copy Copy Copy
(i+1) (i+2) - S2 chunk chunk chunk chunk chunk chunk >
(i+1) (i+2) (i+3) (i+4) (i+5) (i+6)
- »
= 3 - > - » - > - > - > - »
318ms 318ms p 2
330ms 3130ms + L L L (2] > »
T B 93ms 93ms 93ms 93m 93ms 93ms
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Graphics Processing Units (GPUs) in ML Systems -ErLa!.

Handling GPU Memory Constraints

. St .
Problem: Limited Device Memory [Linnan Wang et al: Superneurons: dynamic

= Large models and activations GPU memory management for training
during training deep neural networks. PPOPP 2018]

#1 Live Variable Analysis
= Remove intermediates that are no longer needed
= Examples: SystemML, TensorFlow, MXNet, Superneurons

#2 GPU-CPU Eviction

= Evict variables from GPU to CPU memory under memory pressure

= Examples: SystemML, Superneurons, GeePS, (TensorFlow)

#3 Recomputation

= Recompute inexpensive operations (e.g., activations of forward pass)
= Examples: MXNet, Superneurons

#4 Reuse Allocations

= Reuse allocated matrices and tensors via free lists, but fragmentation
= Examples: SystemML, Superneurons



Graphics Processing Units (GPUs) in ML Systems TU

Hybrid CPU/GPU Execution

= Manual Placement

= Most DNN frameworks allow manual placement of
variables and operations on individual CPU/GPU devices

= Heuristics and intuition of human experts

= Automatic Placement [Azalia Mirhoseini et al: Device

Placement Optimization with

m Sequence-to-sequence model for to predict . .
Reinforcement Learning.

which operations should run on which device ICML 2017]
= Examples:
Neural
MT graph temez LM (] ] i F ] X
- R P R | Rt P SR
=ssa[ 1] OO0 00 0O00O0000O0000000000O000000000000000
Inception V3
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Graphics Processing Units (GPUs) in ML Systems TU

Sparsity in DNN

= State-of-the-art PYTORCH \
= Very limited support of sparse tensors in TensorFlow, PyTorch, etc TensorFloy
= GPU operations for basic linera algebra (cuSparse), early support in ASICs
= Research on specific operations and code generation ﬁ

= Problem: Irregular structures of sparse matrices/tensors

= Common Techniques

= #1: Blocking/clustering of rows/columns by number of non-zeros
= #2: Padding rows/columns to common number of non-zeros

= Open Problem

= Many sources of sparsity (inputs, transformations, selections)
= Broader support for efficient sparsity exploitation required
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Field-Programmable Gate Arrays
(FPGASs) in ML Systems
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F PG A OVG rVi eW Di:BIOCk [Credit: https://intel.com]

= FPGA Definition

= |ntegrated circuit that
allows configuring
custom hardware designs

= Reconfiguration in <1s

= HW description language:
e.g.., VHDL, Verilog

= FPGA Components

Memory Block
| ADDRA ADDR B [«
o CATAIN A DATAIN B |4
DATADLIT_A DATADUT_B
4 WEA WEEB |,
———— > LKA CLK Bifa——

A

b

= #1 IOOkup table (LUT) TR TIRN T IO (T

as logic gates E. % {:}:H:}:{}

= #2 flip-flops (registers BRiI= = = = ESLE
1 p p ( g ) == 4::}"'4::#"'4;}

" #3 interconnect network um

= Additional memory - ma ..4:} 4:} i:}

and DSP blocks Programmable T

Routing Switch o oy Ny ony

Logic
Madules

=
-
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Field-Programmable Gate Arrays (FPGAs) in ML Systems -I(;rE!l

Example FPGA Characteristics

= |ntel Stratix 10 SoC FPGA

64bit quad-core ARM

10 TFLOPs FP32

80GFLOPs/W

Other configurations w/ HBM2

= Xilinx Virtex UltraSCALE+
= DSP: 21.2 TMACs
= 64MB on-chip memory
= 8GB HBM2 w/ 460GB/s
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FPGASs in Microsoft’s Data Centers

= Microsoft Catapult
= Dual-socket Xeon w/ PCle-attached FPGA
= Pre-filtering neural networks, compression, and other workloads

. [j Network switch (top of rack, cluster)
= FPGA - switch link
L1 L1
#~7 FPGA acceleration board
——— NIC-FPGA link
OR| TOR
/ OB o /7 2-socket CPU server
/ & &
/ Datacenter hw acceleration plane
TOR, |TOR T i i i e A 77
Deep neural ~ - - -
T T 7 ’%@"1;,”'7/ /,/'/TE?SPE!‘IS!YE’T*
7777 7T 7 0NN 7 7 7 7 etmpression
A A i i o s i A A
il Fer A £ W
“Websearch = — e A 5/ 5/
—’—,—‘-fa'ﬂkiﬂg /// 7 7 7 s i /S 7 i V4
4 V4 VA VA ra A Z 7 VAR 4 AT /
UTHT AT
7 (W 7
4 I /' 7
/{ 'T 1/ dP4 d T I : E rd
/ 1TV 71 Waebi(searth |1 717 : 74
r TAA A irpnking A4 £ 7 Fr"
A7T7T7 Z 74 74 VAV AWA A AW AWA 7

Traditional sw (CPU) server plane

[Adrian M. Caulfield et al.: A cloud-

scale acceleration architecture.
MICRO 2016]

2-socket server blade

Gen3 x8 Gen3 2x8

Accelerator card

T ey TR




Field-Programmable Gate Arrays (FPGAs) in ML Systems -I(;rE!l

FPGAs in Microsoft’s Data Centers, cont.

. . [Eric S. Chung et al: Serving DNNs in
= Microsoft Brainwave Real Time at Datacenter Scale with

Project Brainwave. IEEE Micro 2018]

= ML serving w/ low latency (e.g., Bing)
= |ntel Stratix 10 FPGA

= Distributed
model parallelism,
precision-adaptable

= Peak 39.5 TFLOPs

Matrix-Vector Unit Neural Functional Unit

= Brainwave NPU

= Neural
processing unit -
. A PrTIR <4—Vector data . Vector Adtivation Functions
= Dense matrix-vector - ot <= —instructions @ Voo Vet Muinly
T . 0l ; s Bl
multiplication o- r— @ vewvewan
| -« x nvm"”ﬂﬂe'"h : Tensor Arbiter
- Malrix Register File
706.550 Architecture of Machine Learning Systems — 07 HW Accelerators &
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Field-Programmable Gate Arrays (FPGAs) in ML Systems -ErE!l

FPGAs in other ML Systems

" In-DB Acceleration of Advanced Analytics (DANA) . - \iahaian et al: in-

= Compilation of python DSL into micro instructions RDBMS Hardware

. . . Acceleration of Advanced
for multi-threaded FPGA-execution engine Analytics. PVLDB 2018]

= Striders to directly interact with the buffer pool

= MLWeaving _
[Zeke Wang et al: Accelerating

= Adapted BitWeaving to numeric matrices Generalized Linear Models with
MLWeaving. PVLDB 2019]

= Data layout basis for Any-Precision Learning

= Related FPGA implementation of SG D, (a) Full-precision fixed-point table TS = T4

matrix-vector multip“cation for GLM 1strow| ABCD | EFGH | IUKL |MNOP| RSTU | vXYZ | 1010 | 0101
VXYZ ‘ 1100 | 0011

abcd‘ efgh ‘ ijkl ‘mnop

|

1st bit AEIMRV10 >
2nd bit BFJNSX01 >
3abt | CGKOTY10

4th bit DHLPUZO01

rstu

1st row

Example memory
access pattern

= QOther: Efficient FPGA implementations

1st bit asimrvi0

of specific operations and algorithms vt bfinsx10 | Tg
e bit cgkoty01
4th bit dhipuz01

(b) BWeaving memory layout



Application-Specific Integrated Circuit
(ASICs) and other HW Accelerators
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Overview ASICs

= Motivation

= Additional improvements of performance, power/energy
=» Additional specialization via custom hardware

= #1 General ASIC DL Accelerators

= HW support for matrix multiply, convolution and activation functions
= Examples: Google TPU, NVIDIA DLA (in NVIDIA Xavier SoC), Intel Nervana NNP

= #2 Specialized ASIC Accelerators

= Custom instructions for specific domains such as computer vision
= Example: Tensilica Vision processor (image processing)

= #3 Other Accelerators/Technologies

= a) Neuromorphic computing / spiking neural networks
(e.g., SYNAPSE = IBM TrueNorth, HP memristor for computation storage)

= b) Analog computing (especially for ultra-low prevision/quantization)
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Tensor Processing Unit (TPU v1)

. . L.
Motivation [Norman P. Jouppi et al:

= Cost-effective ML scoring (no training) In-Datacenter Performance
Analysis of a Tensor Processing

= Latency- and throughput-oriented Unit. ISCA 2017]

= Improve cost-performance over GPUs by 10x

= Architecture . — | DDR3 DRAM Chips | |

= 256x256 8bit o wmf:f‘“’s 008 [ iemE
matrix multiply unit :> Mhm;h;:,,s
(systolic array - G
- pipelining) e a \ |
- Unified 167 Matrix Multiply
= 64K MAC per cycle — %g — E % R systolic (GiB/e | Y
(92 TOPs at 8 bit) | = 8 el [ |
= 50% if one input 16bit g ) AN || (o)
= 25% if all inputs 16 bit T [ actvaten |
__ “ 197 GBS [ Normalize / Pool ]
o 5
e L =




ASICs and other HW Accelerators -I(;rE!l

Tensor Processing Unit (TPU v2)

= Motivation

= Cost effective ML training (not scoring)
because edge device w/ custom inference
but training in data centers

= Unveiled at Google 1/0 2017
= Board w/ 4 TPU chips

= Pod w/ 64 boards
and custom
high-speed network

= Shelf w/ 2 boards or
1 processor

= Cloud Offering (beta)
= Min 32 cores

= Max 512 cores TPU v2-32 28  TPUV2-256
| (32 cores, 4x4 slice) (256 cores, 8x16 slice)
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[TOP 500 Supercomputers:
Summit @ Oak Ridge NL (‘18):

ASICs and other HW Accelerators -I(;rla!l

Tensor Processing Unit (TPU v3)

= Motivation

= Competitive cost-performance compared
to state-of-the-art GPUs

Unveiled at Google I/0 2018
Added liquid cooling

= Twice as many racks per pod, twice as many TPUs per rack
=>» TPUv3 promoted as 8x higher performance than TPUv2

= Cloud Offering P ER e it Tl i .-.;_"."‘

(beta) L::;Mﬂ'.';;;é:‘wlz Al ma:] 'n " it

= Min 32 cores

= Max 2048 cores
(~100PFLOPs)

TPU v3-32 TPU v3-512

200.7 PFLOP/S (2.4|V| COI‘ES)] (32 cores, 4x4 slice) (512 cores, 16x16 slice)
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Recap: Operator Fusion and Code Generation

= TVM: Code Generation for HW Accelerators (Tiangi Chen et al: TVM:

= Graph- /operator-level optimizations for ~ An A}Utimated End-to-End Optimizing
Compi Deep Learning. OSDI 2018
embedded and HW accelerators ompiler for Deep Learning ]

= Lack of low-level instruction set!
= Schedule Primitives

g™ ) P
= Loop Frameworks  “B~ O ;g; Q K ]
Transform Computational Graph |
v
= Thread Section 3 High Level Graph Rewriting
.- v
Bmdmg Optimized Computational Graph \
= Compute !
] Operator-level Optimization and Code Generation
Local |ty Bekied Declarative Hardware-Aware
. . ection Tensor Expressions Optimization Primitives
= Tensorization ~y e
Section 5 Machine Learning Based
= |Latency BN Automateci Optimizer
Hiding Optimized Low Level Loop Program
=
Accelerator Backend | LLVMIR | CUDA/Metal/OpenCL

v
Deployable Module



ASICs and other HW Accelerators -ErLa!.

Excursus: Quantum Machine Learning

= Background:
= Concepts: superposition, entanglement, de-coherence / uncertainty

= Early ML Work ==

[Bob Ricks, Dan Ventura: Training a

= Training quantum neural networks Quantum Neural Network. NIPS 2003]
(relied on quantum search in O(VN)
= SVM classification via quantum state [Vojtech Havlicek et al: Supervised

learning with quantum-enhanced

Spaces as feature Space feature spaces. Nature 2019]

= IBM Q
= Hardware and software stack for cloud computing

= Qiskit: An Open-source Framework for Quantum
Computing, https://giskit.org/

= Experiment w/ quantum computers up to 20 qubit

= (Gates: Hadamard, NOT, Phases, Pauli, barriers
transposed conjugate, if, measurement
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ASICs and other HW Accelerators -ErLa!.

ML Hardware Fallacies and Pitfalls

= Recommended Reading

= [Jeff Dean, David A. Patterson, Cliff Young: A New Golden Age
in Computer Architecture: Empowering the Machine-Learning
Revolution. IEEE Micro 2018]

#1 Fallacy: Throughput over Latency

= Given the large size of the ML problems, the hardware focus should be
operations per second (throughput) rather than time to solution (latency)

#2 Fallacy: Runtime over Accuracy

= Given a sufficiently large speedup, ML researchers would be willing to sacrifice
a little accuracy

#3 Pitfall: Designing hardware using last year’s models

#4 Pitfall: Designing ML hardware assuming
the ML software is untouchable
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Summary and Conclusions

= Different Levels of Hardware Specialization
= General-purpose CPUs and GPUs
= FPGAs, custom DNN ASICs, and other technologies

= Next Lectures
.- 02F Caching, Partitioning, and ndexineMay17]

= 09 Lossy and Lossless Compression [May 24]
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Use the time to
work on your
projects!
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