

Architecture of ML Systems 07 Hardware Accelerators

Matthias Boehm

Last update: May 10, 2019

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Driving Factors for ML

Improved Algorithms and Models

- Success across data and application domains
 (e.g., health care, finance, transport, production)
- More complex models which leverage large data

Availability of Large Data Collections

- Increasing automation and monitoring → data (simplified by cloud computing & services)
- Feedback loops, data programming/augmentation

[Credit: Andrew Ng'14]

Feedback Loop

HW & SW Advancements

- Higher performance of hardware and infrastructure (cloud)
- Open-source large-scale computation frameworks,
 ML systems, and vendor-provides libraries

DNN Challenges

#1 Larger Models and Scoring Time **IMAGE RECOGNITION**

SPEECH RECOGNITION

#2 Training Time

- ResNet18: 10.76% error, 2.5 days training
- ResNet50: 7.02% error, 5 days training
- ResNet101: 6.21% error, 1 week training
- ResNet152: 6.16% error, 1.5 weeks training

#3 Energy Efficiency

[Song Han: Efficient Methods and Hardware for Deep Learning, Stanford cs231n, 2017]

Excursus: Roofline Analysis

- Setup: 2x6 E5-2440 @2.4GHz-2.9GHz, DDR3 RAM @1.3GHz (ECC)
 - Max mem bandwidth (local): 2 sock x 3 chan x 8B x 1.3G trans/s \rightarrow 2 x 32GB/s
 - Max mem bandwidth (QPI, full duplex) → 2 x 12.8GB/s
 - Max floating point ops: 12 cores x 2*4dFP-units x $2.4GHz \rightarrow 2 \times 115.2GFlops/s$

Roofline Analysis

- Off-chip memory traffic
- Peak compute

[S. Williams, A. Waterman, D. A. Patterson: Roofline: An Insightful Visual Performance Model for Multicore Architectures. **Commun. ACM 2009**]

Operational Intensity (Flops/Byte)

Towards Specialized Hardware

Additional specialization

- Data Transfer and Types: e.g., low-precision, quantization, sparsification
- Sparsity Exploitation: e.g., defer weight decompression just before instruction execution

Agenda

- GPUs in ML Systems
- FPGAs in ML Systems
- ASICs and other HW Accelerators

Graphics Processing Units (GPUs) in ML Systems

NVIDIA Volta V100 – Specifications

Tesla V100 NVLink

FP64: 7.8 TFLOPs, FP32: 15.7 TFLOPs

DL FP16: 125 TFLOPs

NVLink: 300GB/s

Device HBM: 32 GB (900 GB/s)

■ Power: 300 W

Tesla V100 PCIe

■ FP64: 7 TFLOPs, FP32: 14 TFLOPs

DL FP16: 112 TFLOPs

PCIe: 32 GB/s

Device HBM: 16 GB (900 GB/s)

Power: 250 W

[Credit: https://nvidia.com/de-de/data-center/tesla-v100/]

NVIDIA Volta V100 – Architecture

- 6 GPU Processing Clusters (GPCs)
 - 7 Texture Processing Clusters (TPC)
 - 14 Streaming Multiprocessors (SM)

[NVIDIA Tesla V100 GPU Architecture, Whitepaper, Aug 2017]

NVIDIA Volta V100 – SM Architecture

FP64 cores: 32

FP32 cores: 64

INT32 cores: 64

"Tensor cores": 8

Max warps /SM: 64

Threads/warp: 32

Single Instruction Multiple Threads (SIMT)

- 32 Threads grouped to warps and execute in SIMT model
- Pascal P100Execution Model
 - Warps use a single program counter + active mask

```
if (threadIdx.x < 4) {
        A;
        B;
} else {
        X;
        Y;
}</pre>
```


- Volta V100Execution Model
 - Independent thread scheduling
 - Per-thread program counters and call stacks

```
if (threadIdx.x < 4) {
        A;
        B;
} else {
        X;
        Y;
}
Z;
__syncwarp()</pre>
```


New __syncwarp() primitive

NVIDIA Volta V100 – Tensor Cores

"Tensor Core"

Specialized instruction for 4x4 by 4x4 fused matrix multiply

[Bill Dally: Hardware for Deep Learning. SysML 2018]

- Two FP16 inputs and FP32 accumulator
- Exposed as warp-level matrix operations w/ special load, mm, acc, and store

Excursus: Amdahl's Law

Amdahl's law

- Given a fixed problem size, Amdahl's law gives the maximum speedup
- T is the execution time, s is the serial fraction, and p the number of processors

Execution Time
$$T_p = \frac{(1-s)T}{p} + sT$$
 Speedup $S_p = \frac{T}{T_p}$

Upper-Bound
$$\overline{S_p} = \lim_{p \to \infty} S_p = \frac{1}{s}$$

Examples

- Serial fraction $s = 0.01 \rightarrow max S_p = 100$
- Serial fraction $s = 0.05 \rightarrow max S_p = 20$
- Serial fraction $s = 0.1 \rightarrow max S_p = 10$
- Serial fraction $s = 0.5 \rightarrow max S_p = 2$

GPUs for DNN Training

- GPUs for DNN Training (2009)
 - Deep belief networks
 - Sparse coding

[Rajat Raina, Anand Madhavan, Andrew Y. Ng: Large-scale deep unsupervised learning using graphics processors. ICML 2009]

Multi-GPU Learning

- Exploit multiple GPUs with a mix of data- and model-parallel parameter servers
- Dedicated ML systems for multi-GPU learning
- Dedicated HW: e.g., NVIDIA DGX-1 (8xP100), NVIDIA DGX-2 (16xV100, NVSwitch)

DNN Framework support

- All specialized DNN frameworks have very good support for GPU training
- Most of them also support multi-GPU training

GPU Link Technologies

Classic PCI Express

- Peripheral Component Interconnect Express (default)
- v3 x16 lanes: 16GB/s, v4 (2017) x16 lanes: 32GB/s, v5 (2019) x16 lanes: 64GB/s

#1 NVLink

- Proprietary technology
- Requires NVLink-enabled CPU (e.g., IBM Power 8/9)
- Connect GPU-GPU and GPU-CPU
- NVLink 1: 80+80 GB/s
- NVLink 2: 150+150 GB/s

#1 NVSwitch

Fully connected GPUs, each communicating at 300GB/s

GPU Link Technologies, cont.

- Recap: Amdahl's Law
- Experimental Setup
 - SnapML, 4 IBM Power x 4 V100 GPUs, NVLink 2.0
 - 200 million training examples of the Criteo dataset (> GPU mem)
 - Train a logistic regression model

[Celestine Dünner et al.: Snap ML: A Hierarchical Framework for Machine Learning. NeurIPS 2018]

PCIe v3 Interconnect

12ms 90ms 12ms 90ms Init Train chunk (i) Copy chunk (i+1) Copy chunk (i+2) 318ms 318ms 330ms 330ms

NVLink Interconnect

Handling GPU Memory Constraints

- Problem: Limited Device Memory
 - Large models and activations during training

[Linnan Wang et al: Superneurons: dynamic GPU memory management for training deep neural networks. **PPOPP 2018**]

#1 Live Variable Analysis

- Remove intermediates that are no longer needed
- Examples: SystemML, TensorFlow, MXNet, Superneurons

#2 GPU-CPU Eviction

- Evict variables from GPU to CPU memory under memory pressure
- Examples: SystemML, Superneurons, GeePS, (TensorFlow)

#3 Recomputation

- Recompute inexpensive operations (e.g., activations of forward pass)
- Examples: MXNet, Superneurons

#4 Reuse Allocations

- Reuse allocated matrices and tensors via free lists, but fragmentation
- Examples: SystemML, Superneurons

Hybrid CPU/GPU Execution

Manual Placement

- Most DNN frameworks allow manual placement of variables and operations on individual CPU/GPU devices
- Heuristics and intuition of human experts

Automatic Placement

 Sequence-to-sequence model for to predict which operations should run on which device [Azalia Mirhoseini et al: Device Placement Optimization with Reinforcement Learning. ICML 2017]

Examples:

Neural MT graph

Inception V3

Sparsity in DNN

State-of-the-art

- Very limited support of sparse tensors in TensorFlow, PyTorch, etc.
- GPU operations for basic linera algebra (cuSparse), early support in ASICs
- Research on specific operations and code generation

cuBLAS

Problem: Irregular structures of sparse matrices/tensors

Common Techniques

- #1: Blocking/clustering of rows/columns by number of non-zeros
- #2: Padding rows/columns to common number of non-zeros

Open Problem

- Many sources of sparsity (inputs, transformations, selections)
- Broader support for efficient sparsity exploitation required

Field-Programmable Gate Arrays (FPGAs) in ML Systems

FPGA Overview

FPGA Definition

- Integrated circuit that allows configuring custom hardware designs
- Reconfiguration in <1s</p>
- HW description language: e.g., VHDL, Verilog

FPGA Components

- #1 lookup table (LUT) as logic gates
- #2 flip-flops (registers)
- #3 interconnect network
- Additional memory and DSP blocks

Example FPGA Characteristics

Intel Stratix 10 SoC FPGA

- 64bit quad-core ARM
- 10 TFLOPs FP32
- 80GFLOPs/W
- Other configurations w/ HBM2

Xilinx Virtex UltraSCALE+

- DSP: 21.2 TMACs
- 64MB on-chip memory
- 8GB HBM2 w/ 460GB/s

FPGAs in Microsoft's Data Centers

Microsoft Catapult

[Adrian M. Caulfield et al.: A cloudscale acceleration architecture.

et al.: A cloudn architecture. MICRO 2016]

Dual-socket Xeon w/ PCIe-attached FPGA

Pre-filtering neural networks, compression, and other workloads

Traditional sw (CPU) server plane

FPGAs in Microsoft's Data Centers, cont.

Microsoft Brainwave

- ML serving w/ low latency (e.g., Bing)
- Intel Stratix 10 FPGA
- Distributed model parallelism, precision-adaptable
- Peak 39.5 TFLOPs

Brainwave NPU

- Neural processing unit
- Dense matrix-vector multiplication

[Eric S. Chung et al: Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. **IEEE Micro 2018**]

FPGAs in other ML Systems

- In-DB Acceleration of Advanced Analytics (DAnA)
 - Compilation of python DSL into micro instructions for multi-threaded FPGA-execution engine
 - Striders to directly interact with the buffer pool

[Divya Mahajan et al: In-RDBMS Hardware Acceleration of Advanced Analytics. **PVLDB 2018**]

MLWeaving

- Adapted BitWeaving to numeric matrices
- Data layout basis for Any-Precision Learning
- Related FPGA implementation of SGD, matrix-vector multiplication for GLM

 Other: Efficient FPGA implementations of specific operations and algorithms [Zeke Wang et al: Accelerating Generalized Linear Models with MLWeaving. **PVLDB 2019**]

Application-Specific Integrated Circuit (ASICs) and other HW Accelerators

Overview ASICs

Motivation

- Additional improvements of performance, power/energy
- → Additional specialization via custom hardware

#1 General ASIC DL Accelerators

- HW support for matrix multiply, convolution and activation functions
- Examples: Google TPU, NVIDIA DLA (in NVIDIA Xavier SoC), Intel Nervana NNP

#2 Specialized ASIC Accelerators

- Custom instructions for specific domains such as computer vision
- Example: Tensilica Vision processor (image processing)

#3 Other Accelerators/Technologies

- a) Neuromorphic computing / spiking neural networks
 (e.g., SyNAPSE → IBM TrueNorth, HP memristor for computation storage)
- b) Analog computing (especially for ultra-low prevision/quantization)

Tensor Processing Unit (TPU v1)

Motivation

- Cost-effective ML scoring (no training)
- Latency- and throughput-oriented
- Improve cost-performance over GPUs by 10x

[Norman P. Jouppi et al: In-Datacenter Performance Analysis of a Tensor Processing Unit. ISCA 2017]

Architecture

- 256x256 8bit
 matrix multiply unit
 (systolic array

 → pipelining)
- 64K MAC per cycle (92 TOPs at 8 bit)
- 50% if one input 16bit
- 25% if all inputs 16 bit

Tensor Processing Unit (TPU v2)

Motivation

- Cost effective ML training (not scoring)
 because edge device w/ custom inference
 but training in data centers
- Unveiled at Google I/O 2017
- Board w/ 4 TPU chips
- Pod w/ 64 boards and custom high-speed network
- Shelf w/ 2 boards or 1 processor

Cloud Offering (beta)

- Min 32 cores
- Max 512 cores

Tensor Processing Unit (TPU v3)

Motivation

- Competitive cost-performance compared to state-of-the-art GPUs
- Unveiled at Google I/O 2018
- Added liquid cooling
- Twice as many racks per pod, twice as many TPUs per rack
- → TPUv3 promoted as 8x higher performance than TPUv2

Cloud Offering (beta)

- Min 32 cores
- Max 2048 cores (~100PFLOPs)

[TOP 500 Supercomputers:

Summit @ Oak Ridge NL ('18): 200.7 PFLOP/s (2.4M cores)]

Recap: Operator Fusion and Code Generation

TVM: Code Generation for HW Accelerators

Graph- /operator-level optimizations for

[Tianqi Chen et al: TVM:

An Automated End-to-End Optimizing Compiler for Deep Learning. **OSDI 2018**]

Lack of low-level instruction set!

embedded and HW accelerators

- Schedule Primitives
 - LoopTransform
 - Thread Binding
 - Compute Locality
 - Tensorization
 - Latency Hiding

Excursus: Quantum Machine Learning

Background:

Concepts: superposition, entanglement, de-coherence / uncertainty

Early ML Work

- Training quantum neural networks (relied on quantum search in O(√N)
- SVM classification via quantum state spaces as feature space

[Bob Ricks, Dan Ventura: Training a Quantum Neural Network. **NIPS 2003**]

[Vojtěch Havlíček et al: Supervised learning with quantum-enhanced feature spaces. **Nature 2019**]

IBM Q

- Hardware and software stack for cloud computing
- Qiskit: An Open-source Framework for Quantum Computing, https://qiskit.org/
- Experiment w/ quantum computers up to 20 qubit
- Gates: Hadamard, NOT, Phases, Pauli, barriers transposed conjugate, if, measurement

ML Hardware Fallacies and Pitfalls

- Recommended Reading
 - [Jeff Dean, David A. Patterson, Cliff Young: A New Golden Age in Computer Architecture: Empowering the Machine-Learning Revolution. IEEE Micro 2018]

- #1 Fallacy: Throughput over Latency
 - Given the large size of the ML problems, the hardware focus should be operations per second (throughput) rather than time to solution (latency)
- #2 Fallacy: Runtime over Accuracy
 - Given a sufficiently large speedup, ML researchers would be willing to sacrifice a little accuracy
- #3 Pitfall: Designing hardware using last year's models
- #4 Pitfall: Designing ML hardware assuming the ML software is untouchable

Summary and Conclusions

- Different Levels of Hardware Specialization
 - General-purpose CPUs and GPUs
 - FPGAs, custom DNN ASICs, and other technologies
- Next Lectures
 - 08 Formats, Caching, Partitioning, and Indexing [May 17]
 - 09 Lossy and Lossless Compression [May 24]

Use the time to work on your projects!

