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Announcements/Org

= #1 Programming/Analysis Projects
= #1 Auto Differentiation
= #5 LLVM Code Generator
= #12 Information Extraction from Unstructured PDF/HTML
=>» Keep code PRs / status updates in mind

= #2 Open Positions (2x PhD/Student Assistant)

= ExDRa: Exploratory Data Science over Raw Data
(Siemens, DFKI, TU Berlin, TU Graz), starting June 1

» Federated ML + ML over raw data (integration/cleaning/preprocessing)

= #3 Open Master Thesis w/ AVL

= Topic: Anomaly Detection on Test beds (durability runs
on engine test bed with periodically repeating cycles)

= Contact: Dr. Christa Simon
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Agenda

= Motivation, Background, and Overview
= Caching, Partitioning, and Indexing Iter?t've' |/0-bound ML
algorithms =» Data access

= Lossy and Lossless Compression crucial for performance

while(!converged) {
. g =X %*%6 v ..
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Motivation, Background, and
Overview
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Motivation, Background, and Overview Graza

Motivation: Data Characteristics
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Recap: Matrix Formats

= Matrix Block (m x n) Example
= A.k.a. tiles/chunks, most operations defined here 3x3 Matrix
= Local matrix: single block, different representations .7 .1
= Common Block Representations 2.4

= Dense (linearized arrays)
= MCSR (modified CSR)

N

= CSR (compressed sparse rows), CSC

= COO (Coordinate matrix)

Dense (row-major)
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Recap: Distributed Matrices

= Collection of “Matrix Blocks” (and keys)
= Bag semantics (duplicates, unordered)
= Logical (Fixed-Size) Blocking

+ join processing / independence
- (sparsity skew)

= E.g., SystemML on Spark:

JavaPairRDD<MatrixIndexes,MatrixBlock>

= Blocks encoded independently (dense/sparse)

= Partitioning

Logical Blocking
3,400x2,700 Matrix
(w/ B.=1,000)

(1,1) || (1,2) ||(1,3)
(2,1) || (2,2) |[(2,3)
(3,1) || (3,2) ||(3,3)
(4,1) || (4,2) ||(4,3)

hash partitioned: e.g., hash(3,2) 2 99,994 % 2 = 0

» | ogical Partitioni (3,2 (23) (1) (1,2) (42) (4,1
ogical Partitioning . : =
(e.g., row-/column-wise) ~ Physical D [[s||s || D >
= Physical Partitionin Blocking and . partion 2
Y . & Partitioning (22 L1 13) (33) (31 (43)
(e.g., hash / grid) -
D US US S S
partition 1)

p.
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Motivation, Background, and Overview -I(;rE!l

Overview Data Access Methods

Nodel Node2

= #1 (Distributed) Caching
= Keep read only feature matrix in (distributed) memory

#2 Buffer Pool Management

= Graceful eviction of intermediates, out-of-core ops

#3 Scan Sharing (and operator fusion)

= Reduce the number of scans as well as read/writes

#4 NUMA-Aware Partitioning and Replication Socketl  Socket2
= Matrix partitioning / replication = data locality M

#5 Index Structures
= Qut-of-core data, I/O-aware ops, updates

#6 Compression

= Fit larger datasets into available memory
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Caching, Partitioning, and
Indexing
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Buffer Pool Management

= #1 Classic Buffer Management

acquireRead

acquireModify
= Hybrid plans of in-memory and distributed ops )

release

= Graceful eviction of intermediate variables

~

RDDObject
Spark . - BroadcastObject
Cluster parallelize/ [MatrixBlock]
- collect - - lazy I, O and GPUObjects
transfer
. . . ‘broadcast ]

agg memory h

exportData

A

o
L

Buffer Pool @ -
CPU Driver | €Vict

A

B e
GPU Device

export 1

v evict

HDFS , ObjectStore Local F'S

= #2 Algorithm-Specific Buffer Management

= QOperations/algorithms over out-of-core matrices and factor graphs

= Examples: RIOT (op-aware 1/0), Elementary (out-of-core factor graphs)
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Scan Sharing

= #1 Batching

n
= One-pass evaluation of multiple configurations O(m*n)
= Use cases: EL, CV, feature selection, . I read
hyper parameter tuning m O(m*n*k)
= E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14] compute
m >>n >>k

= #2 Fused Operator DAGs

= Avoid unnecessary scans, (e.g., mmchain)

Multi-Aggregate
sum sum sum

= Avoid unnecessary writes / reads A § 4
= Multi-aggregates, redundancy a = sum(X*2) | u(*2) b(*) u(*2)
= E.g.: SystemML codegen b = sum(X*Y) A VAN
c = sum(Y"2) X Y
= #3 Runtime Piggybacking

= Merge concurrent data-parallel jobs parfor( i in 1:numModels )
= “Wait-Merge-Submit-Return”-loop while( !converged )
= E.g.: SystemML parfor [PVLDB’14] q = X %*% v;

O ten soctn st gy G "ISDS
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In-Memory Partitioning (NUMA-aware)

= NUMA-Aware Model and Data Replication (Ce Zhang, Christopher Ré:
= Model Replication (06 Parameter Servers) DimmWitted: A Study of
- Main-Memory Statistical
= PerCore (BSP epoch), PerMachine Analytics. PVLDB 2014]
(Hogwild!), PerNode (hybrid)
= Data Replication Machine
= Partitioning (sharding) Node 1 Node 2

= Full replication

= AT MATRIX (Adaptive Tile Matrix)

= Recursive NUMA-aware partitioning
into dense/sparse tiles

B

= |nter-tile (worker teams) and intra-tile

(threads in team) parallelization

gueues with task-stealing)
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[David Kernert, Wolfgang Lehner,
= Job scheduling framework from SAP HANA Frank Kohler: Topology-aware
(horizontal range partitioning, socket-local ~ optimization of big sparse matrices
and matrix multiplications on main-
memory systems. ICDE 2016]

"ISDS



Caching, Partitioning, and Indexing -I(;rE!l

Distributed Partitioning

Spark RDD Partitioning Example Hash Partitioning:

= Implicitly on every data shuffling For all (k,v) of R:
hash(k) % numPartitions = pid

% 3 0:3,6 0:6,3

= Explicitly viaR.repartition(n)

Distributed Joins

2:2,5,8 2:5,2
1:4,7,1 1:4,1

»

Single-Key Lookups v = C.lookup(k)
= Without partitioning: scan all keys (reads/deserializes out-of-core data)
= With partitioning: lookup partition, scan keys of partition

= Multi-Key Lookups //build hashset of required partition ids

. : e HashSet<Integer> flags = new HashSet<>();
Without partitioning: for( MatrixIndexes key : filter )
scan all keys flags.add(partitioner.getPartition(key));

= With partitioning: //create partition pruning rdd

new PartitionPruningFunction(flags));
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Caching, Partitioning, and Indexing

Recap: B-Trees

= History B-Tree
= Bayer and McCreight 1972 (multiple papers), Block-based, Balanced, Boeing

= Multiway tree (node size = page size); designed for DBMS

= Definition B-Tree k
= Balanced tree: All paths from root to leafs have equal length h

= All nodes (except root=leaf) have [k, 2k] key entries
= All nodes (except root, leafs) have [k+1, 2k+1] successors
= Datais a record or a reference to the record (RID)

m Key K, 'Data D; il Key K, '‘Data D, gi¢y Key K, 'Data D; :™ Key K, [Data D,

Subtree w/ Subtree w/
keys < K; K, < keys < K,
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
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Recap: B-Trees, cont.

= B-Tree Search

= Scan/binary search

with nodes 156 allac
= Descend along
matching
key ranges : bl b il s
/ Q 3
= B-Tree Insertion / s 2

= |nsert into leaf nodes
= Split the 2k+1 entries into two leaf nodes

= B-Tree Deletion
= Lookup key and delete if existing

= Move entry from fullest successor; if underflow merge with sibling

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS
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Linearized Array B-Tree (LAB-Tree)

[Yi Zhang, Kamesh Munagala,
Jun Yang: Storing Matrices on

= B-tree over linearized array representation Disk: Theory and Practice

= Basic Ideas

(e.g., row-/col-major, Z-order, UDF) Revisited. PVLDB 2011]
= New leaf splitting strategies; dynamic leaf storage format (sparse and dense)

= Various flushing policies for update batching (all, LRU, smallest page, largest
page, largest page probabilistically, largest group)

#1 Example linearized #2 Example linearized
storage order iterator order
| matrix A: range query A[4:9,3:5]
s | 4 x 4 blocking with column-major
A row-major block order iterator order

row-major cell order
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Caching, Partitioning, and Indexing -ErLa!.

Adaptive Tile (AT) Matrix

[David Kernert, Wolfgang Lehner,
Frank Kohler: Topology-aware

= Two-level blocking and NUMA-aware optimization of big sparse matrices

e . and matrix multiplications on main-
range partitioning (tiles, blocks) memory ssstems ICDE 2016

= Basic Ideas

= Z-order linearization, and recursive
guad-tree partitioning to find var-sized tiles (tile contains N blocks)

Density Map

Input Matrix Z-ordering (see sparsity est.)
e o o ° : } ! ; i : o
. . | 0.75+0.25 1 0.25+-0.00
___________ | ="
L e o | : 1 :
| ' 0.25-+1.00 ' 0.00--0.25
o o ° ! ! I : : : ®
o o o ____4___ — —-—-?‘-—- : _—_?---‘ \
| : Z. ) 0.25--0.00 | 0.75-1.00 \
* ® oo (@Ol SR e lR s el .
e oo | 00 .p—)\o.om.oo ' 0.50--1.00 D
7 ¥ / I.I / ¥ /
R N
block tiles
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Caching, Partitioning, and Indexing -Erla!.

TileDB Storage Manager

. [Stavros Papadopoulos, Kushal Datta,
= Basic Ideas Samuel Madden, Timothy G.

» Storage manager for 2D arrays of Mattson: The TileDB Array Data
. . Storage Manager. PVLDB 2016]
different data types (incl. vector, 3D)

= Two-level blocking (space/data tiles), update batching via fragments

space tile extents: 4x2 space tile extents; 2x2 space tile extents; 2x2
tile order: row-major tile order; row-major tileorder;: column-major
cellorder: row-major cell order; row-major cell order: row-major
-jlce‘
Fragment #1 Fragment #2 Fragment #3 Collective logical array view
(dense) (dense) (sparse)

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

12 || 113
M | NN

114 | 115
000 PPPP
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Pipelining for Mini-batch Algorithms

= Motivation
= Qverlap data access and computation in mini-batch algorithms (e.g., DNN)
= Specify approach and configuration at level of linear algebra program
= Simple pipelining of I/O and compute via queueing / prefetching

= Example TensorFlow - |

= #1: Queueing
and threading

= #2: Dataset API

prefetching dataset
dataset

time

dataset.batch(batch_size=32)
dataset.prefetch(buffer_size=1)

[Credit:
https://www.tensorflow.org/ = .
guide/performance/datasets ]
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Lossy and Lossless Compression Graze

Overview Lossless Compression Techniques

= #1 Block-Level General-Purpose Compression
" Heavyweight or lightweight compression schemes decompress
: : : & deserialize
= Decompress matrices block-wise for each operation - - - - - - __

|
= E.g.: Spark RDD compression (Snappy/LZ4), | Storage
SciDB SM [SSDBM’11], TileDB SM [PVLDB’16],  Manager [ .
scientific formats NetCDF, HDF5 at chunk granularity

= #2 Block-Level Matrix Compression
= Compress matrix block with homogeneous encoding scheme

= Perform LA ops over compressed representation

= E.g.: CSR-VI (dict) [CF'08], cPLS (grammar) [KDD’16],
TOC (LZW w/ trie) [CoRR’17]

= #3 Column-Group-Level Matrix Compression
= Compress column groups w/ heterogeneous schemes

= Perform LA ops over compressed representation
= E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB’16]




Lossy and Lossless Compression TU

CLA: Compressed Linear Algebra _ ahmedlgohary etal

Compressed Linear Algebra
for Large-Scale Machine

n Key Idea Learning. PVLDB 2016]
= Use lightweight database compression techniques
= Perform LA operations on compressed matrices “
= Goals of CLA while(!converged) {
. _ 0/ %0,
= QOperations performance close to uncompressed w q =X %%V ..
= Good compression ratios }
A : 1 GB/s per node
Uncompressed | Uncompressed
data fits in |
| .
memory o Time
Execution (operations performance) Compressed
Time e Space |
(compression ratio) ¢ |
per node Compressed data :
[SIGMOD Record'17, b= fits in memory | .
VLDBJ'18, CACM’19] Data Size

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS
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Lossy and Lossless Compression -ErLa!.

CLA: Compressed Linear Algebra, cont. (2)

= Overview Compression Framework
= Column-wise matrix compression (values + compressed offsets / references)
= Column co-coding (column groups, encoded as single unit)
= Heterogeneous column encoding formats (w/ dedicated physical encodings)

= Column Encoding Uncompress'ed Compressed Column Groups
Formats Input Matrix (RLE(2))( OLE(1,3) (DDC(4))( UC(5) )
79 6 21 0.99 (9) (8.2) ||(76) (84) (75)|| (2.1)} 1 0.99
= Offset-List (OLE) |3 9 4 3 073 1 6 7 4| (32 0.73
7 9 6 21 005 4 1 |3 5 0);1 0.05
= Run-Length (RLE) |7 9 5 3 042 7 9 7 2 0.42
o J3 0 421 061 3 8 1 0.61
®= Dense Dictionary 70 82 0 3 0.89 ':D T 10 2 0.89
- * 3 9 4 3 0.07 2 0.07
Coding (DDC) 30 4 0 09 3 || 092
" Uncompressed |3 o § %0 o > )| 015
Columns (UC) - o . N I\ I
* DDC1/2
= Automatic Compression Planning (sampling-based) in VLDBJ'17
= Select column groups and formats per group (data dependent)
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B S S
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Lossy and Lossless Compression -ErLa!.

CLA: Compressed Linear Algebra, cont. (3)

= Matrix-Vector Multiplication

= Naive: for each tuple, pre-aggregate values, add values at offsets to g
Example: g=Xv, withv=(7,11, 1, 3, 2)

9*11=99.2 55 25 54 6.3 9 1603 > cache unfriendly
N\ (OLE{1,3} ) (UC{5}) 1345 on output (q)
JK7 6}H3+ 0.99 160.4
g'éf 162.8 e - :ﬁ
0. 43 32.5 value preagg LI v
0.61 155 ({76H{34}{75}) -7
0.89 133.1 i S segment
o 125.8
0?2 161.4 cache
8;61 . > bucket
\ P I AN 34.3 J (output)
= Cache-conscious: Horizontal,
segment-aligned scans, maintain positions q

= Vector-Matrix Multiplication
= Naive: cache-unfriendly on input (v)
= Cache-conscious: again use horizontal, segment-aligned scans



Lossy and Lossless Compression -ErLa!.

CLA: Compressed Linear Algebra, cont. (4)

= Estimating Compressed Size: S¢ = min(SO&, SRLE, SPDC)
= # of distinct tuples d.: “Hybrid generalized jackknife” estimator [JASA’98]
" # of OLE segments b;: Expected value under maximum-entropy model
= # of non-zero tuples z;: Scale from sample with “coverage” adjustment
= # of runs r;: maxEnt model + independent-interval approx. ( ~ Ising-Stevens)

RLE unseen border interval 4 (n,=5)
@)
: : 9|9|9|9|o 2005 00 > DOHDE 9 B0
- ComprESSIOn Plannlng offsets: 1 2 3 A—0 A—1

= #1 Classify compressible columns
= Draw random sample of rows (from transposed X)
= Classify C¢ and CYC based on estimate compression ratio
= #2 Group compressible columns (exhaustive O(m™), greedy O(m3))
= Bin-packing-based column partitioning
= Greedy grouping per bin w/ pruning and memoization O(m?)
= #3 Compression
= Extract uncompressed offset lists and exact compression ratio
= Graceful corrections and UC group creation



Lossy and Lossless Compression
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CLA: Compressed Linear Algebra, cont. (5)

= Experimental Setup

= LinregCG, 10 iterations (incl. compression), InfiMNIST data generator

= 1+6 node cluster (216GB aggregate memory), Spark 2.3, SystemML 1.1

Compression Ratios

End-to-End Performance [sec]

Higgs 1.93 1.38 2.17 6000 m Snappy (RDD Compression)
5000 ®=CLA
Census 17.11 6.04 35.69
4000
Covtype 1040 613 1819 2796 3148
ImageNet 5.54 3.35 7.34 2000
Mnist8m 412 | 2.60 732 | .o 831 .. 1085
- 93 147 98 -
Airline78 7.07 4.28 7.44 0 — — [ [
Mnist40m Mnist240m Mnist480m
= Ultra-sparse datasets, tensors, automatic operator fusion
= QOperations beyond matrix-vector/unary, applicability to deep learning?
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
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Block-level Compression w/ D-VI, CSR-VI, CSX

[Kornilios Kourtis, Georgios |. Goumas, | ————

= CSR-VI (CSR-V&'UE Indexed) / D-Vi Nectarios Koziris: Optimizing sparse matrix-

= Create dictionary for distinct values vector multiplication using index and value
compression. CF 2008]

= Encode 8 byte values as 1, 2, or 4-byte codes Vasileios Karakasis et al.: An

(positions in the dictionary) Extended Compression Format for
the Optimization of Sparse Matrix-

Vector Multiplication. IEEE Trans.
= Example CSR-VI matrix-vector multiply Parallel Distrib. Syst. 2013]

c=A%*%Db

= Extensions w/ delta coding of indexes

for(int i=0; i<a.nrow; i++) { CSR
int pos = A.rptr[i];
int end = A.rptr[i+l]; 0
for(int k=pos; k<end; k++) 2
b[i] += dict[A.val[k]] * b[A.ix[k]]; 4
}
value decoding >
(MV over compressed
representation)
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
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Lossy and Lossless Compression Graza
28 . °
. Tuple-oriented Compression (TOC)
. . [Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
" Motivation Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
= DNN and ML often trained oriented Compression for Large-scale Mini-batch
. . . Stochastic Gradient Descent, SIGMOD 2019]
with mini-batch SGD
= Effective compression for small batches (#rows)
Original Table (A) Prefix Tree (C) Column_index:value pairs in the
; first layer of the prefix tree (1)
1 2 3 4
|11 | 2 | 3 | 14 sT1] (214 T2] fndenes
R2 11 2 3 0
[
R3 0 1.1 3 1.4 ',V """ 5 ]1] |°|1|2|3,°| ;’:d:ies
R4 11 2 0 o |/ Step3 :Physical
i ] E i 112 [3]1.4 | values
Step1: Sparse | |" ooing FEEACIEER
Encoding ¥ l| Encoded Table (D) (# of integers, # of bytes per integer)
Sparse Encoded Table (B) 1
RL | 111 22 | 33 |414] [/ RL | 1 | 2 | 3
R2 |1:1.1| 2:2 | 3:3 g R2 | 6 | 3 frasnocle
i - - - g R3 5 3 indexes
R3 |2:1.1| 33 (414 Step2 :Logical =1 & Step3 :Physical tuple start
R4 | 1:1.1| 2:2 Encoding Encoding indexes

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
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Lossy and Lossless Compression -ErLa!.

Lossy Compression

= Overview
= Extensively used in DNN (runtime vs accuracy) =» data format + compute
= Careful manual application regarding data and model
= Note: ML algorithms approximate by nature + noise generalization effect

= Background Floating Point Numbers (IEEE 754)
= Sign's, Mantissa m, Exponent e: value = s * m * 2¢(simplified)

Double (FP64) 1 [bits]
Single (FP32) 1 23 8
Half (FP16) 1 10 5
Quarter (FP8) 1 3 4
Half-Quarter (FP4) 1 1 2
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods 5 ISDS
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Lossy and Lossless Compression Graze

Low and Ultra-low FP Precision

see 05 Execution Strategies, SIMD

= Model Training w/ low FP Precision > speedup/reduced energy

= Trend: from FP32/FP16 to FP8

= #1: Precision of intermediates (weights, act, errors, grad) = loss in accuracy
= #2: Precision of accumulation = impact on convergence (swamping s+L)

= #3: Precision of weight updates = loss in accuracy

[Naigang Wang et al.: Training Deep
Neural Networks with 8-bit Floating

[ ] .
Example ResNet18 over ImageNet Point Numbers. NeurIP$ 2018]
1 11 11
10 —Single precision baseline 10 —Single pre.cision base!ine _ 10 —Single Pre_cision Base_line _
—Mult: 8 bit, Acc: 32 bit, Update: 32 bit =—Mult: 1%?{, Acc: 16 bit, Update: 32 bit =—Mult: 32 bit, Acc: 32 bit, Update: 16 bit
9 9 9
: #1 |2, #2| g, #3
70 g 7 2 70
w w
- 2.0% degradation | 8 °© 1.0% 7 60 1.7%
50) F 5 radation] = 5 degradation
40 4 \ 40
30 3 sop  (€)
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Epoch Epoch Epoch
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS
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Lossy and Lossless Compression -Erla'!l

Low and Ultra-low FP Precision, cont.

= Numerical Stable Accumulation

= #1 (accumulate small values first)
" {2 sumOld = sum;
w/ error independent = sum + (input + corr);
of number of values n = (input + corr) - (sum - sumOld);

= #3 Chunk-based Accumulation

= Divide long dot products into smaller chunks

= Hierarchy of partial sums = FP16 accumulators [N. Wang et al.: Training
Deep Neural Networks with
= #4 Stochastic Rounding 8-bit Floating Point Numbers.

. (e as . NeurlPS 2018]
= Replace nearest with probabilistic rounding

= Probability accounts for number of bits

Shared Maximum absolute
f\} nent value deque (on host)

= #5 Intel FlexPoint \IIIHIIIIIIHIIIHH }
[

= Blocks of values w/ shared exponent : \||m||||||m||[[ [l -

(16bit w/ 5bit shared exponent) [Cré'a','{'i'r';'t‘gi"@",{,’i',;g"i‘d‘i}j

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS
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Low Fixed-Point Precision

= Motivation
= Forward-pass for model scoring (inference) can be done in UINT8 and below

= Static, dynamic, and learned quantization schemes

= #1 Quantization (reduce value domain)
= Split value domain into N buckets such that k = log, N can encode the data
= Static quantization very simple but inefficient on skewed data

= Learned quantization schemes Optimal Quantization Points

= Dynamic programming
= Various heuristics

= Example systems:
ZipML, SketchML

[Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce
Zhang: ZipML: Training Linear Models with End-to-End Low LI
Precision, and a Little Bit of Deep Learning. ICML 2017]
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Lossy and Lossless Compression Graze

Other Lossy Compression Techniques

= #2 Mantissa Truncation
= Mantissa truncation of FP32 from 23bit to 16bit for remote transfers

= E.g, ,

= #3 Sparsification (reduce #non-zeros)
= zero-out very small values below a threshold

= #4 No FK-PK joins in Factorized Learning

= View the foreign key as lossy compressed representation of
the joined attributes

" #5 Samplmg [Yongjoo Park, Jingyi Qing, Xiaoyang
= User specifies for Shen, Barzan Mozafari: BlinkML:
Efficient Maximum Likelihood
Estimation with Probabilistic

= Estimate minimum necessary sample size Guarantees. SIGMOD 2019]
for maximum likelihood estimators

error (regression/classification) and scale
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Grazm

Summary and Conclusions

= Data Access Methods = High Performance Impact
= Caching, Partitioning, and Indexing
= Lossy and Lossless Compression

= Next Lectures

= 09 Data Acquisition, Cleaning, and Preparation [Jun 07]
= 10 Model Selection and Management [Jun 14]

= 11 Model Deployment and Serving [Jun 21]

= 12 Project Presentations, Conclusions, Q&A [Jun 28]
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