Architecture of ML Systems
08 Data Access Methods

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: May 24, 2019

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

"ISDS

TU

Grazm

Announcements/Org

= #1 Programming/Analysis Projects
= #1 Auto Differentiation
= #5 LLVM Code Generator
= #12 Information Extraction from Unstructured PDF/HTML
=>» Keep code PRs / status updates in mind

= #2 Open Positions (2x PhD/Student Assistant)

= ExDRa: Exploratory Data Science over Raw Data
(Siemens, DFKI, TU Berlin, TU Graz), starting June 1

» Federated ML + ML over raw data (integration/cleaning/preprocessing)

= #3 Open Master Thesis w/ AVL

= Topic: Anomaly Detection on Test beds (durability runs
on engine test bed with periodically repeating cycles)

= Contact: Dr. Christa Simon

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Grazm

Agenda

= Motivation, Background, and Overview
= Caching, Partitioning, and Indexing Iter?t've' |/0-bound ML
algorithms =» Data access

= Lossy and Lossless Compression crucial for performance

while(!converged) {
. g =X %*%6 v ..

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Grazm

Motivation, Background, and
Overview

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

TU

Motivation, Background, and Overview Graza

Motivation: Data Characteristics

Covtype ImageNet Mnist8m
= Tall and Skinny =M g™ = 6M -
S 5M — #Rows: .6M 5 .6M #Rows: 1.2M 2 anr— #Rows: 8.1M
(#rows >> #tcols) S S oM s
S AM T i C am
. b] L . w
= Non-Uniform 23w - e 2 3M -
o e o
Sparsity -2 g oM g A
S .IM S IM S IM
Column Rank [1,54] Column Rank [1,900] Column Rank [1,784]
Higgs Census
" Low Column T 0 2 = 8c-04 ~ -
. eg @ o 3= i - A
Cardinalities 5 15+ B A au &4
. = A 2 4e—04 - .
(e.g., categorical, E 1 . & §4e 08 <] 4 4 A W,
dummy-coded) £ 5 pg 8 ¥ 2004 | afa aa i
?3 = g Y VY v
@] 0 AdA AsdadAAAAAAAAAAL U 0e+00 —
O OMB — = 34 1MB OO0OMB — = 9.4M
= Column o
. 3 550
Correlations E 2 .
(on census: £ E 30
T S 20
12.8x = 35.7x) o S
0 " ['] & (T
Column Index [1,28] Column Index [1,68]
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B
ISDS

Matthias Boehm, Graz University of Technology, SS 2019

Motivation, Background, and Overview

TU

Grazm

Recap: Matrix Formats

= Matrix Block (m x n) Example
= A.k.a. tiles/chunks, most operations defined here 3x3 Matrix
= Local matrix: single block, different representations .7 .1
= Common Block Representations 2.4

= Dense (linearized arrays)
= MCSR (modified CSR)

N

= CSR (compressed sparse rows), CSC

= COO (Coordinate matrix)

Dense (row-major)

.70

.1

.2

4

%)

%)

.3

O(mn)

MCSR CSR
W > I
7.1
N RN b
4\ Y4 |.2
2.4
S5/\ER|.4
iN(.3
.3

O(m + nnz(X))

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2019

coo

NN IR|N

O(nnz(X))

"ISDS

Motivation, Background, and Overview

TU

Grazm

Recap: Distributed Matrices

= Collection of “Matrix Blocks” (and keys)
= Bag semantics (duplicates, unordered)
= Logical (Fixed-Size) Blocking

+ join processing / independence
- (sparsity skew)

= E.g., SystemML on Spark:

JavaPairRDD<MatrixIndexes,MatrixBlock>

= Blocks encoded independently (dense/sparse)

= Partitioning

Logical Blocking
3,400x2,700 Matrix
(w/ B.=1,000)

(1,1) || (1,2) ||(1,3)
(2,1) || (2,2) |[(2,3)
(3,1) || (3,2) ||(3,3)
(4,1) || (4,2) ||(4,3)

hash partitioned: e.g., hash(3,2) 2 99,994 % 2 = 0

» | ogical Partitioni (3,2 (23) (1) (1,2) (42) (4,1
ogical Partitioning . : =
(e.g., row-/column-wise) ~ Physical D [[s||s || D >
= Physical Partitionin Blocking and . partion 2
Y . & Partitioning (22 L1 13) (33) (31 (43)
(e.g., hash / grid) -
D US US S S
partition 1)

p.

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

Motivation, Background, and Overview -I(;rE!l

Overview Data Access Methods

Nodel Node2

= #1 (Distributed) Caching
= Keep read only feature matrix in (distributed) memory

#2 Buffer Pool Management

= Graceful eviction of intermediates, out-of-core ops

#3 Scan Sharing (and operator fusion)

= Reduce the number of scans as well as read/writes

#4 NUMA-Aware Partitioning and Replication Socketl Socket2
= Matrix partitioning / replication = data locality M

#5 Index Structures
= Qut-of-core data, I/O-aware ops, updates

#6 Compression

= Fit larger datasets into available memory

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Grazm

Caching, Partitioning, and
Indexing

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Caching, Partitioning, and Indexing

TU

Grazm

Buffer Pool Management

= #1 Classic Buffer Management

acquireRead

acquireModify
= Hybrid plans of in-memory and distributed ops)

release

= Graceful eviction of intermediate variables

~

RDDObject
Spark . - BroadcastObject
Cluster parallelize/ [MatrixBlock]
- collect - - lazy I, O and GPUObjects
transfer
. . . ‘broadcast]

agg memory h

exportData

A

o
L

Buffer Pool @ -
CPU Driver | €Vict

A

B e
GPU Device

export 1

v evict

HDFS , ObjectStore Local F'S

= #2 Algorithm-Specific Buffer Management

= QOperations/algorithms over out-of-core matrices and factor graphs

= Examples: RIOT (op-aware 1/0), Elementary (out-of-core factor graphs)

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Caching, Partitioning, and Indexing TU

Grazm

Scan Sharing

= #1 Batching

n
= One-pass evaluation of multiple configurations O(m*n)
= Use cases: EL, CV, feature selection, . I read
hyper parameter tuning m O(m*n*k)
= E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14] compute
m >>n >>k

= #2 Fused Operator DAGs

= Avoid unnecessary scans, (e.g., mmchain)

Multi-Aggregate
sum sum sum

= Avoid unnecessary writes / reads A § 4
= Multi-aggregates, redundancy a = sum(X*2) | u(*2) b(*) u(*2)
= E.g.: SystemML codegen b = sum(X*Y) A VAN
c = sum(Y"2) X Y
= #3 Runtime Piggybacking

= Merge concurrent data-parallel jobs parfor(i in 1:numModels)
= “Wait-Merge-Submit-Return”-loop while(!converged)
= E.g.: SystemML parfor [PVLDB’14] q = X %*% v;

O ten soctn st gy G "ISDS

Caching, Partitioning, and Indexing

TU

Grazm

In-Memory Partitioning (NUMA-aware)

= NUMA-Aware Model and Data Replication (Ce Zhang, Christopher Ré:
= Model Replication (06 Parameter Servers) DimmWitted: A Study of
- Main-Memory Statistical
= PerCore (BSP epoch), PerMachine Analytics. PVLDB 2014]
(Hogwild!), PerNode (hybrid)
= Data Replication Machine
= Partitioning (sharding) Node 1 Node 2

= Full replication

= AT MATRIX (Adaptive Tile Matrix)

= Recursive NUMA-aware partitioning
into dense/sparse tiles

B

= |nter-tile (worker teams) and intra-tile

(threads in team) parallelization

gueues with task-stealing)

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2019

[David Kernert, Wolfgang Lehner,
= Job scheduling framework from SAP HANA Frank Kohler: Topology-aware
(horizontal range partitioning, socket-local ~ optimization of big sparse matrices
and matrix multiplications on main-
memory systems. ICDE 2016]

"ISDS

Caching, Partitioning, and Indexing -I(;rE!l

Distributed Partitioning

Spark RDD Partitioning Example Hash Partitioning:

= Implicitly on every data shuffling For all (k,v) of R:
hash(k) % numPartitions = pid

% 3 0:3,6 0:6,3

= Explicitly viaR.repartition(n)

Distributed Joins

2:2,5,8 2:5,2
1:4,7,1 1:4,1

»

Single-Key Lookups v = C.lookup(k)
= Without partitioning: scan all keys (reads/deserializes out-of-core data)
= With partitioning: lookup partition, scan keys of partition

= Multi-Key Lookups //build hashset of required partition ids

. : e HashSet<Integer> flags = new HashSet<>();
Without partitioning: for(MatrixIndexes key : filter)
scan all keys flags.add(partitioner.getPartition(key));

= With partitioning: //create partition pruning rdd

new PartitionPruningFunction(flags));

TU

Grazm

Caching, Partitioning, and Indexing

Recap: B-Trees

= History B-Tree
= Bayer and McCreight 1972 (multiple papers), Block-based, Balanced, Boeing

= Multiway tree (node size = page size); designed for DBMS

= Definition B-Tree k
= Balanced tree: All paths from root to leafs have equal length h

= All nodes (except root=leaf) have [k, 2k] key entries
= All nodes (except root, leafs) have [k+1, 2k+1] successors
= Datais a record or a reference to the record (RID)

m Key K, 'Data D; il Key K, '‘Data D, gi¢y Key K, 'Data D; :™ Key K, [Data D,

Subtree w/ Subtree w/
keys < K; K, < keys < K,
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS

Matthias Boehm, Graz University of Technology, SS 2019

Caching, Partitioning, and Indexing TU

Grazm

Recap: B-Trees, cont.

= B-Tree Search

= Scan/binary search

with nodes 156 allac
= Descend along
matching
key ranges : bl b il s
/ Q 3
= B-Tree Insertion / s 2

= |nsert into leaf nodes
= Split the 2k+1 entries into two leaf nodes

= B-Tree Deletion
= Lookup key and delete if existing

= Move entry from fullest successor; if underflow merge with sibling

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Caching, Partitioning, and Indexing Graza

Linearized Array B-Tree (LAB-Tree)

[Yi Zhang, Kamesh Munagala,
Jun Yang: Storing Matrices on

= B-tree over linearized array representation Disk: Theory and Practice

= Basic Ideas

(e.g., row-/col-major, Z-order, UDF) Revisited. PVLDB 2011]
= New leaf splitting strategies; dynamic leaf storage format (sparse and dense)

= Various flushing policies for update batching (all, LRU, smallest page, largest
page, largest page probabilistically, largest group)

#1 Example linearized #2 Example linearized
storage order iterator order
| matrix A: range query A[4:9,3:5]
s | 4 x 4 blocking with column-major
A row-major block order iterator order

row-major cell order

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Caching, Partitioning, and Indexing -ErLa!.

Adaptive Tile (AT) Matrix

[David Kernert, Wolfgang Lehner,
Frank Kohler: Topology-aware

= Two-level blocking and NUMA-aware optimization of big sparse matrices

e . and matrix multiplications on main-
range partitioning (tiles, blocks) memory ssstems ICDE 2016

= Basic Ideas

= Z-order linearization, and recursive
guad-tree partitioning to find var-sized tiles (tile contains N blocks)

Density Map

Input Matrix Z-ordering (see sparsity est.)
e o o ° : } ! ; i : o
. . | 0.75+0.25 1 0.25+-0.00
___________ | ="
L e o | : 1 :
| ' 0.25-+1.00 ' 0.00--0.25
o o ° ! ! I : : : ®
o o o ____4___ — —-—-?‘-—- : _—_?---‘ \
| : Z.) 0.25--0.00 | 0.75-1.00 \
* ® oo (@Ol SR e lR s el .
e oo | 00 .p—)\o.om.oo ' 0.50--1.00 D
7 ¥ / I.I / ¥ /
R N
block tiles
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B
Matthias Boehm, Graz University of Technology, SS 2019 ISDS

Caching, Partitioning, and Indexing -Erla!.

TileDB Storage Manager

. [Stavros Papadopoulos, Kushal Datta,
= Basic Ideas Samuel Madden, Timothy G.

» Storage manager for 2D arrays of Mattson: The TileDB Array Data
. . Storage Manager. PVLDB 2016]
different data types (incl. vector, 3D)

= Two-level blocking (space/data tiles), update batching via fragments

space tile extents: 4x2 space tile extents; 2x2 space tile extents; 2x2
tile order: row-major tile order; row-major tileorder;: column-major
cellorder: row-major cell order; row-major cell order: row-major
-jlce‘
Fragment #1 Fragment #2 Fragment #3 Collective logical array view
(dense) (dense) (sparse)

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

12 || 113
M | NN

114 | 115
000 PPPP

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2019 u

TU

Caching, Partitioning, and Indexing Graza

Pipelining for Mini-batch Algorithms

= Motivation
= Qverlap data access and computation in mini-batch algorithms (e.g., DNN)
= Specify approach and configuration at level of linear algebra program
= Simple pipelining of I/O and compute via queueing / prefetching

= Example TensorFlow - |

= #1: Queueing
and threading

= #2: Dataset API

prefetching dataset
dataset

time

dataset.batch(batch_size=32)
dataset.prefetch(buffer_size=1)

[Credit:
https://www.tensorflow.org/ = .
guide/performance/datasets]

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2019 .

Lossy and Lossless Compression

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

TU

Lossy and Lossless Compression Graze

Overview Lossless Compression Techniques

= #1 Block-Level General-Purpose Compression
" Heavyweight or lightweight compression schemes decompress
: : : & deserialize
= Decompress matrices block-wise for each operation - - - - - - __

|
= E.g.: Spark RDD compression (Snappy/LZ4), | Storage
SciDB SM [SSDBM’11], TileDB SM [PVLDB’16], Manager [.
scientific formats NetCDF, HDF5 at chunk granularity

= #2 Block-Level Matrix Compression
= Compress matrix block with homogeneous encoding scheme

= Perform LA ops over compressed representation

= E.g.: CSR-VI (dict) [CF'08], cPLS (grammar) [KDD’16],
TOC (LZW w/ trie) [CoRR’17]

= #3 Column-Group-Level Matrix Compression
= Compress column groups w/ heterogeneous schemes

= Perform LA ops over compressed representation
= E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB’16]

Lossy and Lossless Compression TU

CLA: Compressed Linear Algebra _ ahmedlgohary etal

Compressed Linear Algebra
for Large-Scale Machine

n Key Idea Learning. PVLDB 2016]
= Use lightweight database compression techniques
= Perform LA operations on compressed matrices “
= Goals of CLA while(!converged) {
. _ 0/ %0,
= QOperations performance close to uncompressed w q =X %%V ..
= Good compression ratios }
A : 1 GB/s per node
Uncompressed | Uncompressed
data fits in |
| .
memory o Time
Execution (operations performance) Compressed
Time e Space |
(compression ratio) ¢ |
per node Compressed data :
[SIGMOD Record'17, b= fits in memory | .
VLDBJ'18, CACM’19] Data Size

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Lossy and Lossless Compression -ErLa!.

CLA: Compressed Linear Algebra, cont. (2)

= Overview Compression Framework
= Column-wise matrix compression (values + compressed offsets / references)
= Column co-coding (column groups, encoded as single unit)
= Heterogeneous column encoding formats (w/ dedicated physical encodings)

= Column Encoding Uncompress'ed Compressed Column Groups
Formats Input Matrix (RLE(2))(OLE(1,3) (DDC(4))(UC(5))
79 6 21 0.99 (9) (8.2) ||(76) (84) (75)|| (2.1)} 1 0.99
= Offset-List (OLE) |3 9 4 3 073 1 6 7 4| (32 0.73
7 9 6 21 005 4 1 |3 5 0);1 0.05
= Run-Length (RLE) |7 9 5 3 042 7 9 7 2 0.42
o J3 0 421 061 3 8 1 0.61
®= Dense Dictionary 70 82 0 3 0.89 ':D T 10 2 0.89
- * 3 9 4 3 0.07 2 0.07
Coding (DDC) 30 4 0 09 3 || 092
" Uncompressed |3 o § %0 o >)| 015
Columns (UC) - o . N I\ I
* DDC1/2
= Automatic Compression Planning (sampling-based) in VLDBJ'17
= Select column groups and formats per group (data dependent)
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B S S
Matthias Boehm, Graz University of Technology, SS 2019 I D

Lossy and Lossless Compression -ErLa!.

CLA: Compressed Linear Algebra, cont. (3)

= Matrix-Vector Multiplication

= Naive: for each tuple, pre-aggregate values, add values at offsets to g
Example: g=Xv, withv=(7,11, 1, 3, 2)

9*11=99.2 55 25 54 6.3 9 1603 > cache unfriendly
N\ (OLE{1,3}) (UC{5}) 1345 on output (q)
JK7 6}H3+ 0.99 160.4
g'éf 162.8 e - :ﬁ
0. 43 32.5 value preagg LI v
0.61 155 ({76H{34}{75}) -7
0.89 133.1 i S segment
o 125.8
0?2 161.4 cache
8;61 . > bucket
\ P I AN 34.3 J (output)
= Cache-conscious: Horizontal,
segment-aligned scans, maintain positions q

= Vector-Matrix Multiplication
= Naive: cache-unfriendly on input (v)
= Cache-conscious: again use horizontal, segment-aligned scans

Lossy and Lossless Compression -ErLa!.

CLA: Compressed Linear Algebra, cont. (4)

= Estimating Compressed Size: S¢ = min(SO&, SRLE, SPDC)
= # of distinct tuples d.: “Hybrid generalized jackknife” estimator [JASA’98]
" # of OLE segments b;: Expected value under maximum-entropy model
= # of non-zero tuples z;: Scale from sample with “coverage” adjustment
= # of runs r;: maxEnt model + independent-interval approx. (~ Ising-Stevens)

RLE unseen border interval 4 (n,=5)
@)
: : 9|9|9|9|o 2005 00 > DOHDE 9 B0
- ComprESSIOn Plannlng offsets: 1 2 3 A—0 A—1

= #1 Classify compressible columns
= Draw random sample of rows (from transposed X)
= Classify C¢ and CYC based on estimate compression ratio
= #2 Group compressible columns (exhaustive O(m™), greedy O(m3))
= Bin-packing-based column partitioning
= Greedy grouping per bin w/ pruning and memoization O(m?)
= #3 Compression
= Extract uncompressed offset lists and exact compression ratio
= Graceful corrections and UC group creation

Lossy and Lossless Compression

TU

Grazm

CLA: Compressed Linear Algebra, cont. (5)

= Experimental Setup

= LinregCG, 10 iterations (incl. compression), InfiMNIST data generator

= 1+6 node cluster (216GB aggregate memory), Spark 2.3, SystemML 1.1

Compression Ratios

End-to-End Performance [sec]

Higgs 1.93 1.38 2.17 6000 m Snappy (RDD Compression)
5000 ®=CLA
Census 17.11 6.04 35.69
4000
Covtype 1040 613 1819 2796 3148
ImageNet 5.54 3.35 7.34 2000
Mnist8m 412 | 2.60 732 | .o 831 .. 1085
- 93 147 98 -
Airline78 7.07 4.28 7.44 0 — — [[
Mnist40m Mnist240m Mnist480m
= Ultra-sparse datasets, tensors, automatic operator fusion
= QOperations beyond matrix-vector/unary, applicability to deep learning?
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS

Matthias Boehm, Graz University of Technology, SS 2019

TU

Lossy and Lossless Compression Graze

Block-level Compression w/ D-VI, CSR-VI, CSX

[Kornilios Kourtis, Georgios |. Goumas, | ————

= CSR-VI (CSR-V&'UE Indexed) / D-Vi Nectarios Koziris: Optimizing sparse matrix-

= Create dictionary for distinct values vector multiplication using index and value
compression. CF 2008]

= Encode 8 byte values as 1, 2, or 4-byte codes Vasileios Karakasis et al.: An

(positions in the dictionary) Extended Compression Format for
the Optimization of Sparse Matrix-

Vector Multiplication. IEEE Trans.
= Example CSR-VI matrix-vector multiply Parallel Distrib. Syst. 2013]

c=A%*%Db

= Extensions w/ delta coding of indexes

for(int i=0; i<a.nrow; i++) { CSR
int pos = A.rptr[i];
int end = A.rptr[i+l]; 0
for(int k=pos; k<end; k++) 2
b[i] += dict[A.val[k]] * b[A.ix[k]]; 4
}
value decoding >
(MV over compressed
representation)
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS

Matthias Boehm, Graz University of Technology, SS 2019

TU

Lossy and Lossless Compression Graza
28 . °
. Tuple-oriented Compression (TOC)
. . [Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
" Motivation Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
= DNN and ML often trained oriented Compression for Large-scale Mini-batch
. . . Stochastic Gradient Descent, SIGMOD 2019]
with mini-batch SGD
= Effective compression for small batches (#rows)
Original Table (A) Prefix Tree (C) Column_index:value pairs in the
; first layer of the prefix tree (1)
1 2 3 4
|11 | 2 | 3 | 14 sT1] (214 T2] fndenes
R2 11 2 3 0
[
R3 0 1.1 3 1.4 ',V """ 5]1] |°|1|2|3,°| ;’:d:ies
R4 11 2 0 o |/ Step3 :Physical
i] E i 112 [3]1.4 | values
Step1: Sparse | |" ooing FEEACIEER
Encoding ¥ l| Encoded Table (D) (# of integers, # of bytes per integer)
Sparse Encoded Table (B) 1
RL | 111 22 | 33 |414] [/ RL | 1 | 2 | 3
R2 |1:1.1| 2:2 | 3:3 g R2 | 6 | 3 frasnocle
i - - - g R3 5 3 indexes
R3 |2:1.1| 33 (414 Step2 :Logical =1 & Step3 :Physical tuple start
R4 | 1:1.1| 2:2 Encoding Encoding indexes

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods

Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

Lossy and Lossless Compression -ErLa!.

Lossy Compression

= Overview
= Extensively used in DNN (runtime vs accuracy) =» data format + compute
= Careful manual application regarding data and model
= Note: ML algorithms approximate by nature + noise generalization effect

= Background Floating Point Numbers (IEEE 754)
= Sign's, Mantissa m, Exponent e: value = s * m * 2¢(simplified)

Double (FP64) 1 [bits]
Single (FP32) 1 23 8
Half (FP16) 1 10 5
Quarter (FP8) 1 3 4
Half-Quarter (FP4) 1 1 2
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods 5 ISDS

Matthias Boehm, Graz University of Technology, SS 2019

Test Error (%)

TU

Lossy and Lossless Compression Graze

Low and Ultra-low FP Precision

see 05 Execution Strategies, SIMD

= Model Training w/ low FP Precision > speedup/reduced energy

= Trend: from FP32/FP16 to FP8

= #1: Precision of intermediates (weights, act, errors, grad) = loss in accuracy
= #2: Precision of accumulation = impact on convergence (swamping s+L)

= #3: Precision of weight updates = loss in accuracy

[Naigang Wang et al.: Training Deep
Neural Networks with 8-bit Floating

[] .
Example ResNet18 over ImageNet Point Numbers. NeurIP$ 2018]
1 11 11
10 —Single precision baseline 10 —Single pre.cision base!ine _ 10 —Single Pre_cision Base_line _
—Mult: 8 bit, Acc: 32 bit, Update: 32 bit =—Mult: 1%?{, Acc: 16 bit, Update: 32 bit =—Mult: 32 bit, Acc: 32 bit, Update: 16 bit
9 9 9
: #1 |2, #2| g, #3
70 g 7 2 70
w w
- 2.0% degradation | 8 °© 1.0% 7 60 1.7%
50) F 5 radation] = 5 degradation
40 4 \ 40
30 3 sop (€)
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Epoch Epoch Epoch
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS

Matthias Boehm, Graz University of Technology, SS 2019

Lossy and Lossless Compression -Erla'!l

Low and Ultra-low FP Precision, cont.

= Numerical Stable Accumulation

= #1 (accumulate small values first)
" {2 sumOld = sum;
w/ error independent = sum + (input + corr);
of number of values n = (input + corr) - (sum - sumOld);

= #3 Chunk-based Accumulation

= Divide long dot products into smaller chunks

= Hierarchy of partial sums = FP16 accumulators [N. Wang et al.: Training
Deep Neural Networks with
= #4 Stochastic Rounding 8-bit Floating Point Numbers.

. (e as . NeurlPS 2018]
= Replace nearest with probabilistic rounding

= Probability accounts for number of bits

Shared Maximum absolute
f\} nent value deque (on host)

= #5 Intel FlexPoint \IIIHIIIIIIHIIIHH }
[

= Blocks of values w/ shared exponent : \||m||||||m||[[[l -

(16bit w/ 5bit shared exponent) [Cré'a','{'i'r';'t‘gi"@",{,’i',;g"i‘d‘i}j

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Lossy and Lossless Compression Graze

Low Fixed-Point Precision

= Motivation
= Forward-pass for model scoring (inference) can be done in UINT8 and below

= Static, dynamic, and learned quantization schemes

= #1 Quantization (reduce value domain)
= Split value domain into N buckets such that k = log, N can encode the data
= Static quantization very simple but inefficient on skewed data

= Learned quantization schemes Optimal Quantization Points

= Dynamic programming
= Various heuristics

= Example systems:
ZipML, SketchML

[Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce
Zhang: ZipML: Training Linear Models with End-to-End Low LI
Precision, and a Little Bit of Deep Learning. ICML 2017]

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Lossy and Lossless Compression Graze

Other Lossy Compression Techniques

= #2 Mantissa Truncation
= Mantissa truncation of FP32 from 23bit to 16bit for remote transfers

= E.g, ,

= #3 Sparsification (reduce #non-zeros)
= zero-out very small values below a threshold

= #4 No FK-PK joins in Factorized Learning

= View the foreign key as lossy compressed representation of
the joined attributes

" #5 Samplmg [Yongjoo Park, Jingyi Qing, Xiaoyang
= User specifies for Shen, Barzan Mozafari: BlinkML:
Efficient Maximum Likelihood
Estimation with Probabilistic

= Estimate minimum necessary sample size Guarantees. SIGMOD 2019]
for maximum likelihood estimators

error (regression/classification) and scale

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Grazm

Summary and Conclusions

= Data Access Methods = High Performance Impact
= Caching, Partitioning, and Indexing
= Lossy and Lossless Compression

= Next Lectures

= 09 Data Acquisition, Cleaning, and Preparation [Jun 07]
= 10 Model Selection and Management [Jun 14]

= 11 Model Deployment and Serving [Jun 21]

= 12 Project Presentations, Conclusions, Q&A [Jun 28]

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

