

Architecture of ML Systems 09 Data Acquisition and Preparation

Matthias Boehm

Last update: June 07, 2019

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Announcements/Org

- #1 Programming/Analysis Projects
 - #1 Auto Differentiation
 - #5 LLVM Code Generator
 - #12 Information Extraction from Unstructured PDF/HTML
 - → Keep code PRs / status updates in mind

Recap: The Data Science Lifecycle

Data-centric View:

Application perspective
Workload perspective
System perspective

Data Scientist

Data Integration
Data Cleaning
Data Preparation

Model Selection
Training
Hyper-parameters

Validate & Debug
Deployment
Scoring & Feedback

Exploratory Process

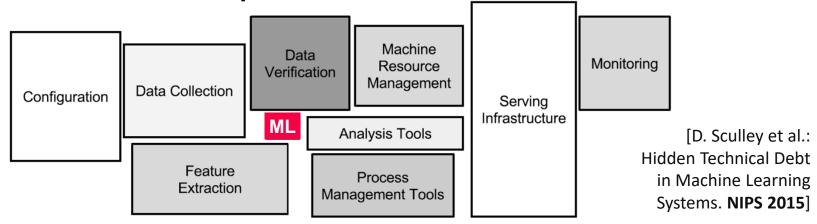
(experimentation, refinements, ML pipelines)

The 80% Argument

Data Sourcing Effort

 Data scientists spend 80-90% time on finding relevant datasets and data integration/cleaning. [Michael Stonebraker, Ihab F. Ilyas: Data Integration: The Current Status and the Way Forward. IEEE Data Eng. Bull. 41(2) (2018)]

Technical Debts in ML Systems



- Glue code, pipeline jungles, dead code paths
- Plain-old-data types, multiple languages, prototypes
- Abstraction and configuration debts
- Data testing, reproducibility, process management, and cultural debts

Agenda

- Data Acquisition and Integration
- Data Preparation and Feature Engineering
- Data Transformation and Cleaning
- Data Augmentation

"least enjoyable tasks in data science lifecycle"

Data Acquisition and Integration

Data Integration for ML and ML for Data Integration

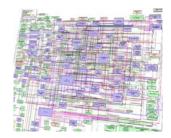
Data Sources and Heterogeneity

Terminology

- Integration (Latin integer = whole): consolidation of data objects / sources
- Homogeneity (Greek homo/homoios = same): similarity
- Heterogeneity: dissimilarity, different representation / meaning

Heterogeneous IT Infrastructure

- Common enterprise IT infrastructure contains >100s of heterogeneous systems and applications
- E.g., health care data management: 20 120 systems



Multi-Modal Data (example health care)

- Structured patient data, patient records incl. prescribed drugs
- Knowledge base drug APIs (active pharmaceutical ingredients) + interactions
- Doctor notes (text), diagnostic codes, outcomes
- Radiology images (e.g., MRI scans), patient videos
- Time series (e.g., EEG, ECoG, heart rate, blood pressure)

%MatrixMarket matrix coordinate real general

or more comment lines

1 1 1.000e+00 2 2 1.050e+01

3 3 1.500e-02 1 4 6.000e+00 4 2 2.505e+02

4 4 -2.800e+02 4 5 3.332e+01 5 5 1.200e+01

Types of Data Formats

General-Purpose Formats

- CSV (comma separated values), JSON (javascript object notation), XML, Protobuf
- CLI/API access to DBs, KV-stores, doc-stores, time series DBs, etc

Sparse Matrix Formats

- Matrix market: text IJV (row, col, value)
- Libsvm: text compressed sparse rows
- Scientific formats: NetCDF, HDF5

Large-Scale Data Format

- Parquet (columnar file format)
- Arrow (cross-platform columnar in-memory data)

Domain-Specific Formats

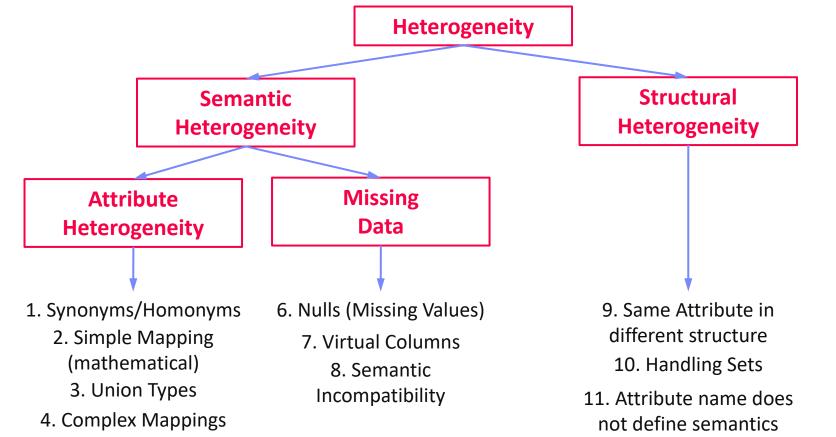
- Health care: DICOM images, HL7 message (health-level seven, XML)
- Automotive: MDF (measurements), CDF (calibrations), ADF (auto-lead XML)
- Smart production: OPC (open platform communications)

5. Language Expressions

Types of Heterogeneity

[J. Hammer, M. Stonebraker, and O. Topsakal: THALIA: Test Harness for the Assessment of Legacy Information Integration Approaches. U Florida, TR05-001, **2005**]

12. Attribute composition



Identification of Data Sources

Data Catalogs

- Data curation in repositories for finding relevant datasets in data lakes
- Augment data with open and linked data sources

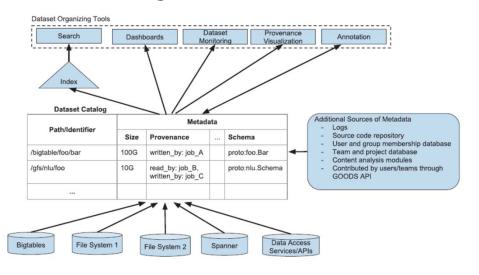
Examples

SAP Data Hub

[SAP Sapphire Now 2019]

[Alon Y. Halevy et al: Goods: Organizing Google's Datasets. **SIGMOD 2016**]

Google Data Search



Schema Detection and Integration

Schema Detection

■ Sample of the input dataset → infer the schema (e.g., data types)

Schema Matching

- Semi-automatic mapping of schema S1 to schema S2
- Approaches: Schema- vs instance-based;
 element- vs structure-based; linguistic vs rules
- Hybrid and composite matchers
- Global schema matching (one-to-one): stable marriage problem

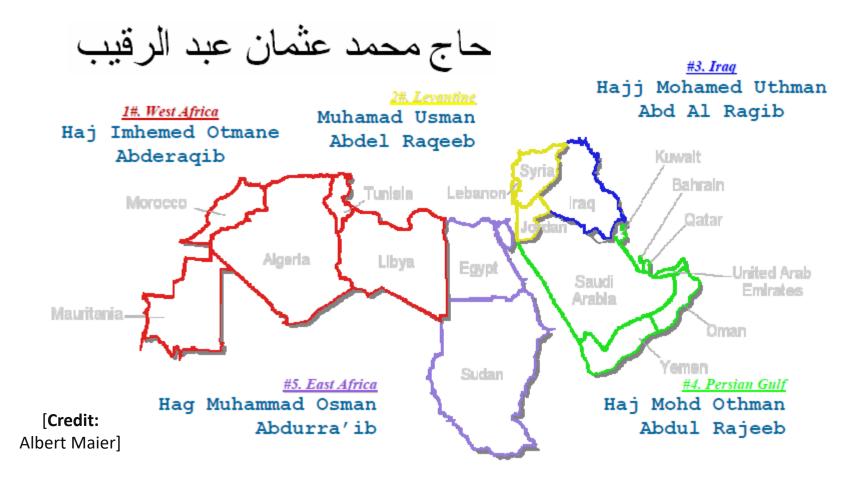
Schema Mapping

- Given two schemas and correspondences, generate transformation program
- Challenges: complex mappings (1:N cardinality), new values, PK-FK relations and nesting, creation of duplicates, different data types, sematic preserving



Excursus: Sources of Duplicates

A Name in Different Arabic Countries



Excursus: Sources of Duplicates, cont.

Misspellings are Very Common

3 britiv spears 488941 britney spears 29 britent spears 9 brinttany spears 5 brney spears 29 brittnany spears 5 broitney spears 40134 brittany spears 9 britanay spears 3 britmeny spear 36315 brittney spears 29 britttany spears 9 britinany spears 5 brotny spears 3 britneeey spea 24342 britany spears 29 btiney spears 9 britn spears 5 bruteny spears 3 britnehy spear 7331 brithy spears 26 birttney spears 9 britnew spears 5 btivney spears 3 britnely spear 6633 briteny spears 26 breitney spears 9 britnevn spears 5 btrittney spears 3 britnesy spear 2696 britteny spears 26 brinity spears 9 britrney spears 5 gritney spears 3 britnetty spea 5 spritney spears 1807 briney spears 9 brtiny spears 3 britnex spears 26 britenay spears 1635 brittny spears 26 britneyt spears 9 brtittney spears 4 bittny spears 3 britnevxxx ape 26 brittan spears 4 bnritney spears 1479 brintey spears 9 brtny spears 3 britnity spear 1479 britanny spears 26 brittne spears 9 brytny spears 4 brandy spears 3 brithtey spear 1338 britiny spears 26 btittany spears 9 rbitney spears 4 brbritney spears 3 britnyey spear 1211 britnet spears 24 beitney spears 8 birtiny spears 4 breatiny spears 3 britterny spea 1096 britiney apears 24 birteny spears 8 bithney spears 4 breetney spears 3 brittnesv spea 991 britaney spears 24 brightney spears 8 brattany spears 4 bretiney spears 3 brittnney spea 24 brintiny spears 8 breitny spears 3 brittnyev spea 991 britnav spears 4 brfitney spears 811 brithney spears 24 britanty spears 8 breteny spears 4 briattany spears 3 britven spears 811 brtinev spears 24 britenny spears 8 brightny spears 4 brieteny spears 3 brivtney spear 664 birtney spears 24 britini spears 8 brintay spears 4 briety spears 3 britney spears 664 brintney spears 24 britnwy spears 8 brinttey spears 4 briitny spears 3 broteny spears 664 briteney spears 24 brittni spears 8 briotney spears 4 briittany spears 3 brtaney spears 8 britanys spears 3 brtiiany spear 601 bitney spears 24 brittnie spears 4 brinie spears 8 britley spears 601 brinty spears 21 biritney spears 4 brinteney spears 3 brtinay spears 544 brittaney spears 21 birtany spears 8 britneyb spears 4 brintne spears 3 brtinney spear 544 brittnay apears 21 biteny spears 8 britnrey spears 4 britaby spears 3 brtitany spear 364 britey spears 21 bratney spears 8 britnty spears 4 britaey spears 3 brtiteny spear 364 brittiny apears 21 britani spears 8 brittner spears 4 britainey spears 3 brtnet spears 21 britanie spears 4 britinie spears 3 brytiny spears 329 brtney spears 8 brottany spears 269 bretney spears 21 briteany spears 7 baritney spears 4 britinney spears 3 btney spears 269 britneys spears 21 brittay spears 7 birntev spears 4 britmney spears 3 drittney spear 211 britme spears 21 brittinay spears 1 britnear spears 7 bitchey spears 3 pretney spears 244 brytney spears 21 brtany spears 7 bitiny spears 4 britnel spears 3 rbritney spear 220 breatney spears 21 brtiany spears 7 breateny spears 4 britneuy spears 2 barittany spea 220 britiany spears 19 birnev apears 7 brianty spears 4 britnewy spears 2 bbbritney spea 199 britnney spears 19 brirtney spears 7 brintye spears 4 britnmey spears 2 bbitney spears 19 britnaey spears 163 britnry spears 4 brittaby spears 7 britianny spears 2 bbritny spears

Corrupted Data

Heterogeneity of Data Sources

- Update anomalies on denormalized data / eventual consistency
- Changes of app/preprocessing over time (US vs us) → inconsistencies

Human Error

Uniqueness &

duplicates

Errors in semi-manual data collection, laziness (see default values), bias

Missing

Values

Ref. Integrity

Errors in data labeling (especially if large-scale: crowd workers / users)

Measurement/Processing Errors

- Unreliable HW/SW and measurement equipment (e.g., batteries)
- Harsh environments (temperature, movement) → aging

	•	•				
<u>ID</u>	Name	BDay	Age	Sex	Phone	Zip _
3	Smith, Jane	05/06/1975	44	F	999-9999	98120
3	John Smith	38/12/1963	55	М	867-4511	11111
7	Jane Smith	05/06/1975	24	F	567-3211	98120

Contradictions &

wrong values

Zip	City
98120	San Jose
90001	Lost Angeles

[Credit: Felix

Naumann]

Typos

Sanity Checks before Training First Model

- Check a feature's min, max, and most common value
 - Ex: Latitude values must be within the range [-90, 90] or $[-\pi/2, \pi/2]$
- The histograms of continuous or categorical values are as expected
 - Ex: There are similar numbers of positive and negative labels
- Whether a feature is present in enough examples
 - Ex: Country code must be in at least 70% of the examples
- Whether a feature has the right number of values (i.e., cardinality)
 - Ex: There cannot be more than one age of a person

[Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, Martin Zinkevich: Data Management Challenges in Production Machine Learning. **SIGMOD 2017**]

Data Integration for ML and ML for DI

#1 Data Extraction

- Extracting structured data from un/semi-structured data
- Rule- and ML-based extractors, combination w/ CNN

[Xin Luna Dong, Theodoros Rekatsinas: Data Integration and Machine Learning: A Natural Synergy. **SIGMOD 2018**]

■ #2 Schema Alignment

- Schema matching for consolidating data from heterogeneous systems
- Spatial and Temporal alignment via provenance and query processing (e.g., sensor readings for object along a production pipeline)

#3 Entity Linking

- Linking records to entities (deduplication)
- Blocking, pairwise matching, clustering, ML, Deep ML (via entity embedding)

#4 Data Fusion

- Resolve conflicts, necessary in presence of erroneous data
- Rule- and ML-based, probabilistic GM, Deep ML (RBMs, graph embeddings)

Data Preparation and Feature Engineering

Overview Feature Engineering

Terminology

- Matrix X of m observations (rows) and n features (columns)
- Continuous features: numerical values (aka scale features)
- Categorical features: non-numerical values, represent groups
- Ordinal features: non-numerical values, associated ranking
- Feature space: multi-dimensional space of features → curse of dimensionality

Feature Engineering

- Bringing multi-modal data and features into numeric representation
- Use domain expertise to expose potentially predictive features to the ML model training algorithm

Excursus: Representation Learning

- Neural networks can be viewed as combined representation learning and model training (pros and cons: learned, repeated)
- Mostly homogeneous inputs (e.g., image), research on multi-modal learning
- → Principle: If same accuracy, prefer simple model (cheap, robust, explainable)

Recoding

Summary

- Numerical encoding of categorical features (arbitrary strings)
- Map distinct values to integer domain (potentially combined w/ one-hot)

City	State
San Jose	CA
New York	NY
San Francisco	CA
Seattle	WA
New York	NY
Boston	MA
San Francisco	CA
Los Angeles	CA
Seattle	WA

N	ew	Yo	rk	:	2,	
San	Fr	and	is	СО	:	3,
	_		_		4	

Dictionaries

{San Jose : 1,

Seattle : 4,
Boston : 5,
Los Angeles : 6}

{CA : 1, NY : 2, WA : 3, MA : 4}

City	State
1	1
2	2
3	1
4	3
2	2
5	4
3	1
6	1
4	3

Feature Hashing

Summary

- Numerical encoding of categorical features (arbitrary strings)
- Hash input to k buckets via hash(value) % k (often combined w/ one-hot)

City			City
San Jose	for	1993955031 % 5 → 1	1
New York	k = 5:	1382994575 % 5 → 0	0
San Francisco		1540367136 % 5 → 1	1
Seattle	_	-661909336 % 5 → 1	1
New York		1993955031 % 5 → 1	1
Boston		1995575789 % 5 → 4	4
San Francisco	Efficient, but	1540367136 % 5 → 1	1
Los Angeles	collisions	-425347233 % 5 → 3	3
Seattle		-661909336 % 5 → 1	1

Binning (see also Quantization, Binarization)

Summary

- Encode of numerical features to integer domain (often combined w/ one-hot)
- Equi-width: split (max-min)-range into k equal-sized buckets
- Equi-height: compute data-driven ranges for k balanced buckets

Sqft	Equal-sized	Sqft-Bins
928.5	numerical buckets	2
451	(with k=3)	1
570.3	min = 451 [451, 725) \rightarrow 1 max = 1,273 [725, 999) \rightarrow 2	1
1,273	range = 822 [999, 1,273] \rightarrow 3	3
1,239	Allows modelling	3
711.3	Allows modelling small, medium,	1
1,114	large apartments	3
867		2

One-hot Encoding

Summary

- Encode integer feature of cardinality d into sparse 0/1 vector of length d
- Feature vectors of input features concatenated in sequence

City	State
1	1
2	2
3	1
4	3
2	2
5	4
3	1
6	1
4	3

C1	C2	С3	C4	C 5	C6	S1	S2	S3	S4
1	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	1	0	0
0	0	1	0	0	0	1	0	0	0
0	0	0	1	0	0	0	0	1	0
0	1	0	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0	0	1
0	0	1	0	0	0	1	0	0	0
0	0	0	0	0	1	1	0	0	0
0	0	0	1	0	0	0	0	1	0

Derived Features

Intercept Computation

- Add a column of ones to X for computing the intercept as a weight
- Applies to regression and classification

X = cbind(X, matrix(1, nrow(X), 1));

 $// y \sim b1*X1 + b2*X1^2$

 $X = cbind(X, X^2);$

Non-Linear Relationships

- Can be explicitly materialized as feature combinations
- Example: Assumptions of underlying physical system
- Arbitrary complex feature interactions: e.g., X₁^2 * X₂

NLP Features

Basic NLP Feature Extraction

- Sentence/word tokenization: split into sentences/words (e.g., via stop words)
- Part of Speech (PoS) tagging: label words verb, noun, adjectives (syntactic)
- Semantic role labeling: label entities with their roles in actions (semantic)

Bag of Words and N-Grams

Represent sentences as bag (multisets)

> A B C A B E. A D E D E D.

Α	В	С	D	Е
2	2	1	0	1
1	0	0	3	2

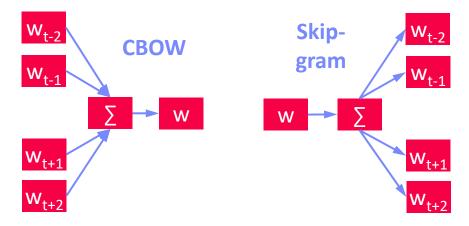
- Bi-grams: bag-of-words for 2-sequences of words (order preserving)
- N-grams: generalization of bi-grams to arbitrary-length sequences

NLP Features, cont.

Word Embeddings

- Trained (word → vector) mappings (~ 50-300 dims)
- Word2vec: continuous bag-of-words (CBOW) or continuous skip-gram (github.com/dav/word2vec)
- Subsampling frequent words
- Semantic preserving arithmetic operations (+ ~ * of context distributions)

[Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean: Efficient Estimation of Word Representations in Vector Space. ICLR (Workshop) 2013]



Use in Practice

- Often pre-trained word embeddings used in an application-agnostic way
- If necessary, fine-tuning or training for task / domain
- Various extensions: Sentence2Vec, Doc2Vec, Node2Vec

Example Spark ML

API Design

- Transformers: Feature transformations and learned models
- Estimators: Algorithm that can be fit to produce a transformer
- Compose ML pipelines from chains of transformers and estimators

Example Pipeline

Example SystemML/SystemDS

Feature Transformation during Training

```
FX transformencode X Y

| Training | MX - MY - - - B - - -
```

```
# read tokenized words
FX = read("./input/FX", data_type=FRAME); # sentence id, word, count
FY = read("./input/FY", data_type=FRAME); # sentence id, labels

# encode and one-hot encoding
[X0, MX] = transformencode(target=FX, spec="{recode:[2]}");
[Y0, MY] = transformencode(target=FY, spec="{recode:[2]}");
X = table(X0[,1], X0[,2], X0[,3]); # bag of words
Y = table(Y0[,1], Y0[,2]); # bag of words

# model training via multi-label, multi-nominal logical regression
B = mlogreg(X, Y);
```


Example SystemML/SystemDS, cont.

Feature Transformation during Scoring

```
# read tokenized words of test sentences
dFX = read("./input/dFX", data_type=FRAME); # sentence id, word, count
# encode and one-hot encoding
dX0 = transformapply(target=dFX, spec="{recode:[2]}", meta=MX);
dX = table(dX0[,1], dX0[,2], dX0[,3]); # bag of words
# model scoring and postprocessing (reshape, attach sentence ID, etc)
dYhat = (X %*% B) >= theta; ...;
# decode output labels: sentence id, label word
dFYhat = transformdecode(target=dYhat, spec="{recode:[2]}", meta=MY);
```


Data Transformation and Cleaning

Standardization and Normalization

#1 Standardization

- Centering and scaling to mean 0 and variance 1
- Ensures well-behaved training
- Densifying operation
- Awareness of NaNs
- Batch normalization in DNN: standardization of activations

#2 Normalization

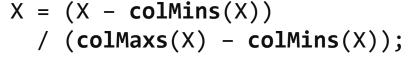
- Rescale values into common range [0,1]
- Avoid bias to large-scale features
- Aka min-max normalization
- Does not handle outliers.

```
replacement=0); #robustness
```

X = X - colMeans(X);

X = X / sqrt(colVars(X));

X = replace(X, pattern=NaN,



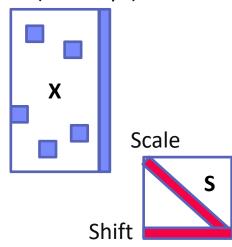
Standardization and Normalization, cont.

#3 Deferred Standardization

- Avoid densifying dataset upfront by pushing standardization into inner loop iterations (use of dataset)
- Let matrix-multiplication chain optimization + rewrites do the rest

Example

Input w/ column of ones (intercept)



```
# operation w/ early standardized X
q = t(X) %*% diag(w) %*% X %*% B;
```


Substitute X with X %*% S

Outlier Detection and Removal

Winsorizing

- Replace tails of data distribution at userspecified threshold
- Quantiles / std-dev
- → Reduce skew

Truncation/Trimming

 See winsorizing, but remove data outside lower / upper thresholds

Largest Difference from Mean

```
# compute quantiles for lower and upper
q = quantile(X, matrix("0.05 0.95", 2, 1));

# replace values outside [ql,qu] w/ ql and qu
Y = ifelse(X < q[1,1], q[1,1], X);
Y = ifelse(Y > q[2,1], q[2,1], Y);
```

```
# remove values outside [ql,qu]
I = X < q[1,1] | X > q[1,1];
Y = removeEmpty(X, "rows", select = I);
```


Outlier Detection and Removal, cont.

Types of Outliers

- Point outliers: single data points far from the data distribution
- Contextual outliers: noise or other systematic anomalies in data
- Sequence outliers: sequence of values shows abnormal shape / aggregate
- Univariate vs multivariate analysis
- Beware of underlying assumptions (distributions)

Iterative Algorithms

- Iterative winsoring/trimming to X std-devs of mean
- Various clustering algorithms (partitioning and density-based models)
- Frequent itemset mining → rare itemset mining / sequence mining
- Probabilistic and statistical modeling

Missing Value Imputation

Missing Value

- Application context defines if 0 is missing value or not
- If differences between 0 and missing values, use NA or NaN

Basic Value Imputation

- General-purpose: replace by user-specified constant
- Continuous variables: replace by mean
- Categorical variables: replace by median or mode (most frequent category)

Iterative Algorithms (chained-equation imputation methods)

- Train ML model on available data to predict missing information (feature k → label, split data into training: observed, and scoring: missing)
- Noise reduction: train models over feature subsets + averaging

Dynamic Imputation

- Data exploration w/ on-the-fly imputation
- Optimal placement of imputation operations

[Jose Cambronero, John K. Feser, Micah Smith, Samuel Madden: Query Optimization for Dynamic Imputation. **PVLDB 2017**]

Excursus: Time Series Recovery

Motivating Use Case

- Given overlapping weekly aggregates y (daily moving average)
- Reconstruct the original time series X

Problem Formulation

- Aggregates y
- Original time series X (unknown)
- Mapping O of subsets of X to y
- → Least squares regression problem

$$\underbrace{\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}}_{\mathbf{O}} \times \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}}_{\mathbf{y}}$$

Advanced Method

- Discrete Cosine Transform (DCT) (sparsest spectral representation)
- Non-negativity and smoothness constraints

[Faisal M. Almutairi et al: HomeRun: Scalable Sparse-Spectrum Reconstruction of Aggregated Historical Data. **PVLDB 2018**]

Selected Research Prototypes

ActiveClean (SampleClean)

 Suggest sample of data for manual cleaning (rule/ML-based detectors, Simpson's paradox) [Sanjay Krishnan et al: ActiveClean: Interactive Data Cleaning For Statistical Modeling. **PVLDB 2016**]

Update dirty model with gradients of cleaned data
 (weighted gradients of previous clean data and newly cleaned data)

HoloClean

- Clean and enrich based on quality rules, value correlations, and reference data
- Probabilistic models for capturing data generation
- HoloDetect
 - Learn data representations of errors
 - Data augmentation w/ erroneous data from sample of clean data

[Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, Theodoros Rekatsinas: HoloDetect: Few-Shot Learning for Error Detection, **SIGMOD 2019**]

Other Systems

- AlphaClean (generate data cleaning pipelines) [preprint]
- BoostClean (generate repairs for domain value violations) [preprint]
- Automated verification of data quality rules/constraints [PVLDB'18]

Data Augmentation

Next Week

Summary and Conclusions

Data Acquisition, Cleaning and Preparation

- Data Collection and Integration
- Data Preparation and Feature Engineering
- Data Transformation and Cleaning
- Data Augmentation → Next Week

Next Lectures

- 10 Model Selection and Management [Jun 14]
 - Including feature and model selection techniques
- 11 Model Deployment and Serving [Jun 21]
- 12 Project Presentations, Conclusions, Q&A [Jun 28]
 - Discussion current status

