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Announcements/Org

= #1 Programming/Analysis Projects
= #1 Auto Differentiation
= #5 LLVM Code Generator
= #12 Information Extraction from Unstructured PDF/HTML
=>» Keep code PRs / status updates in mind
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Data Science Lifecycle -Erla!.

Recap: The Data Science Lifecycle pata-centric view:

Application perspective
Workload perspective

@ Data System perspective
L\l Scientist

Data Integration Model Selection Validate & Debug

Data Cleaning Training Deployment
Data Preparation Hyper-parameters Scoring & Feedback

Exploratory Process
(experimentation, refinements, ML pipelines)

Data/SW DevOps
Engineer Engineer
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Agenda

= Data Augmentation [backlog last lecture]
= Model Selection Techniques
= Model Management
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Data Augmentation
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Motivation and Basic Data Augmentation

AlexNet

= Motivation Data Augmentation [Alex Krizhevsky, Ilya
Sutskever, Geoffrey E. Hinton:
ImageNet Classification with

= Complex ML models / deep NNs need lots of

labeled data to avoid overfitting =» expensive Deep Convolutional Neural
Networks. NIPS 2012]

= Augment training data by synthetic labeled data

= Translations & Reflections

= Random 224x224 patches
and their reflections
(from 256x256 images
with known labels)

= |ncreased data by 2048x

= Test: corner/center patches
+ reflections = prediction

= Alternating Intensities
= [ntuition: object identity is invariant to illumination and color intensity
= PCA on dataset = add eigenvalues times a random variable N(0,0.1)
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Basic Data Augmentation

= Scaling and Normalization
= Standardization: subtract per-channel global pixel means
= Normalization: normalized to range [-1,1] (see min-max)

= General Principles
= #1: (translation, rotation, reflection, cropping)
= #2: (stretching, shearing, lens distortions, color)
= |n many different combinations =» often trial & error / domain expertise

= Excursus: Reducing Training Time

= Transfer learning: Use pre-trained model on ImageNet;
freeze lower NN layers, fine-tune last layers w/ domain-specific data

= Multi-scale learning: Use cropping and scaling t [Karen Simonyan, Andrew

o train 256 x 256 model as starting point fora  Zisserman: Very Deep Convolu-
tional Networks for Large-Scale

more compute-intensive 384x384 model Image Recognition. ICLR 2015]
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Basic Data Augmentation, cont.

= Distortions
® Translations, rotations, skewing

= Compute for every pixel a new target
location via rand displacement fields)

[Patrice Y. Simard, David Steinkraus, John
C. Platt: Best Practices for Convolutional
Neural Networks Applied to Visual
Document Analysis. ICDAR 2003]

= Cutout

= Randomly masking out square
regions of input images

= Size more important than shape

[Terrance Devries, Graham W. Taylor:
Improved Regularization of Convolutional
Neural Networks with Cutout. CoRR 2017]
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Domain Randomization

= Training on Simulated Images

= Random rendering of objects
with non-realistic textures

= Large variability for generalization
to real world objects

[Josh Tobin et al.: Domain
®2: | randomization for transferring deep
neural networks from simulation to
the real world. IROS 2017]

= Pre-Training on Simulated Images

= Random 3D objects and flying
distractors w/ random textures

= Random lights and rendered
onto random background

[Jonathan Tremblay et al.: Training Deep
Networks With Synthetic Data: Bridging
the Reality Gap by Domain

Randomization. CVPR Workshops 2018]




TU

Data Augmentation Graza

Learning Data Augmentation Policies

n AutoAugment [Ekin Dogus Cubuk, Barret Zoph,
] o Dandelion Mané, Vijay Vasudevan,
= Search space of augmentation policies Quoc V. Le: AutoAugment: Learning
» Goal: Find best augmentation policy Augmentation Po“desc‘i;‘;:;alt;j
(e.g., via reinforcement learning)
= #1: Image processing functions =>» New state-of-the
(translation, rotation, color normalization) art top-1 error on
= #2: Probabilities of applying these functions ImageNet and CIFAR10

= Data Augmentation GAN (DAGAN)

= |mage-conditional generative model for
creating within-class images from inputs

= No need for known invariants

[Antreas Antoniou, Amos J. Storkey, Harrison Edwards:
Augmenting Image Classifiers Using Data Augmentation
Generative Adversarial Networks. ICANN 2018]
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Wea k S u pe rV| S i O n [Alex Ratner, Paroma Varma, Braden Hancock,

Chris Ré, and others: Weak Supervision: A New
Programming Paradigm for Machine Learning,

. Heuristically Generated Training Data ai.stanford.edu/blog/weak-supervision/, 2019]

= Hand labeling expensive and time consuming, but abundant unlabeled data
= Changing labeling guidelines =» labeling heuristics

How to get more labeled training data?

Traditional Supervision: Semi-supervised Learning: Weak Supervision: Get Transfer Learning: Use
Have subject matter Use structural assumptions lower-guality labels more models already trained
xpert s) hand-labe to automatically leverage efficiently and/or at a on a different task

training data unlabeled data higher abstraction level

Too expensivel

Active Learni E ¥
Get cheaper, lower-guality Get higher-level supervision Use ane or maore (noisy /
labels from non-experts over unlabeled data from SMEs  biased) pre-trained models

7T to provide supervision

& Tl

Hew;t.fcs Distant r.‘r:ms:r'air:ts Expected Inva:r'ances ba SIC d ata
d ugmentatlon

Supervisian distributions
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Weak Supervision, cont.

(coverage a,, accuracy B,)

u Data Input: Labeling Functions, Generative Model Noise-Aware
. Unlabeled data Discriminative Model
Programming - N
b — hys

Overview

X11

X12

‘ Output: Probabilistic hes
Training Labels

[Alexander J. Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, Christopher Ré:
Data Programming: Creating Large Training Sets, Quickly. NIPS 2016]

[Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan Fries, Sen Wu,
Christopher Ré: Snorkel: Rapid Training Data Creation with Weak Supervision.
PVLDB 2017]

—r=Y [Paroma Varma, Christopher Ré: Snuba: Automating Weak Supervision to Label
Training Data. PVLDB 2018]

[Stephen H. Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao,
Cassandra Xia, Souvik Sen, Alexander Ratner, Braden Hancock, Houman Alborzi,
Rahul Kuchhal, Christopher Ré, Rob Malkin: Snorkel DryBell: A Case Study in
Deploying Weak Supervision at Industrial Scale. SIGMOD 2019]
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Model Selection Techniques
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. [Chris Thornton, Frank Hutter, Holger H. Hoos,
AUtO M I— Ove rVI ew Kevin Leyton-Brown: Auto-WEKA: combined
selection and hyperparameter optimization of

= Model Selection classification algorithms. KDD 2013]

= Givena da.tz?\set-and ML task | Jep— Z[: (A4, D
(e.g., classification or regression) AcA

11 ain? " v: 111(1)

= Select the model (type) that performs best
(e.g.: LogReg, Naive Bayes, SVM, Decision Tree, Random Forest, DNN)

. k
]
Hyper Parameter Tunlng A"y« €  argmin %Z A(J Dt(: ain’ Dizl)hl)'

= Given a model and dataset, ADeA XA
find best hyper parameter values

(e.g., learning rate, regularization, kernels, kernel parameters, tree params)

= Validation: Generalization Error
= Goodness of fit to held-out data (e.g., 80-20 train/test)
= Cross validation (e.g., leave one out = k=5 runs w/ 80-20 train/test)

=>» AutoML Systems/Services
= Often providing both
* |ntegrated ML system, often in distributed/cloud environments
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Basic Grid Search

= Basic Approach

= Given n hyper parameters A1, ..., A\n with domains Al, ..., An

*= Enumerate and evaluate parameter space A € A; X ... X Ay,
(often strict subset due to dependency structure of parameters)

= Continuous hyper parameters = discretization
= Equi-width Non-convex or unknown
= Exponential parameter space

(e.g., regularization 1 ? o
0.1, 0.01, 0.001, etc) o— ®

= Note: Only applicable ‘

O—O—O——0

SRERE

. . @
with small domains P
O—1Q 5
- — o o~

= Heuristic: Monte-Carlo

(random search) 0 a 1
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Basic Iterative Algorithms

= Simulated Annealing Exploration vs
* Decaying temperature schedules: T,,, =a - T, exploitation
= #1 Generate neighbor in €-env of old point

1
1+ exp((f' = f)/Tk)

= #2 Accept better points and worse pointsw/ P(Ty) =

= Recursive Random Search
= Repeated restart

= Sample and evaluate points

= Determine best and shrink
area if optimum unchanged

= Realign area if new *
optimum found

[Tao Ye, Shivkumar Kalyanaraman: A *
recursive random search algorithm for
large-scale network parameter Parameter Space
configuration. SIGMETRICS 2003]
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BayeS|a N O pti m izatio N [Chris Thornton, Frank Hutter, Holger H. Hoos,

Kevin Leyton-Brown: Auto-WEKA: combined
selection and hyperparameter optimization of
= Overview BO classification algorithms. KDD 2013]

= Sequential Model-Based Optimization Aizorithm 1 SMBO

. N l: initialise model Mypr: H + ()
" Fita prObab”lStlc mOdeI based on the 2: while time budget for optimization has not been ex-

hausted do

fl rst n-l evaluated hyper parameters 3: A — candidate ('()nﬁglujarim] f'_rmn My,
| Compute ¢ = L(Ax, D)., DY

train \‘:\|ic|)

= Use model to select next candidate HeHU{A)

o
6:  Update My, given ‘H
= models, or 7: end while

. .. . 8: return A from H with minimal ¢
tree-based Baye5|an Optlmlzatlon

= Underlying Foundations
= The posterior probability of a model M given  P(M|E) = P(E|M)P(M)/P(E)
evidence E is proportional to the likelihood of >
E given M multiplied by prior probability of M P(M|E) < P(E|M)P(M)
= Prior knowledge: e.g., smoothness, noise-free

GP high objective (exploitation) and high prediction uncertainty (exploration)
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Bayesian Optimization, cont

= Example 1D Problem
= Gaussian Process
= 4 jterations

[Eric Brochu, Vlad M. Cora, Nando de
Freitas: A Tutorial on Bayesian
Optimization of Expensive Cost
Functions, with Application to Active
User Modeling and Hierarchical
Reinforcement Learning. CoRR 2010]
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B —==— objective fn (f(-))
observation (x)

¥ acquisition max

acquisition function (u(-))

posterior mean (u(-))

posterior uncertainty
(u(+) £a(-) v

a0 ..
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Multi-armed Bandits and Hyperband

[Credit:
blogs.mathworks.com]

= Overview Multi-armed Bandits o e
= Motivation: model types have different quality "
= Select among k model types =

= Running score for each arm -

[Sébastien Bubeck, Nicolo Cesa-Bianchi: Regret Analysis of -
Stochastic and Nonstochastic Multi-armed Bandit Problems.
Foundations and Trends in Machine Learning 2012]

= Hyperband
= Non-stochastic setting, without parametric assumptions
= Pure exploration algorithm for

= Based on Successive Halving [Lisha Li, Kevin G. Jamieson, Giulia

= Syccessivelv discardine the DeSalvo, Afshin Rostamizadeh, Ameet
y g Talwalkar: Hyperband: A Novel Bandit-

worst-performing half of arms Based Approach to Hyperparameter

= Extended by doubling budget of arms Optimization. JMLR 2017]
in each iteration (no need to configure k, random search included)
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Selected AutoML Systems

[Chris Thornton et al: Auto-WEKA: combined | —
Auto Weka selection and hyperparameter optimization of
classification algorithms. KDD 2013]

= Bayesian optimization with

[Lars Kotthoffet al: Auto-WEKA 2.0:
Automatic model selection and hyper-
parameter optimization in WEKA. JMLR 2017]

28 learners, 11 ensemble/meta methods

Auto Sklearn
. o ] [Matthias Feurer et al: Auto-sklearn:
= Bayesian optimization with Efficient and Robust Automated
15 classifiers, 14 feature prep, 4 data prep Machine Learning. Automated
Machine Learning 2019]
TuPaQ [Evan R. Sparks, Ameet Talwalkar, Daniel

Haas, Michael J. Franklin, Michael |. Jordan,
Tim Kraska: Automating model search for
large scale machine learning. SoCC 2015]

= Multi-armed bandit and large-scale

TPOT

= Genetic programming

[Randal S. Olson, Jason H. Moore: TPOT: A Tree-Based
Pipeline Optimization Tool for Automating Machine
Learning. Automated Machine Learning 2019]

Other Services
[Hantian Zhang, Luyuan Zeng, Wentao
" Azure ML, Amazon ML Wu, Ce Zhang: How Good Are Machine

= Google AutoML, H20 AutoML Learning Clouds for Binary Classification
with Good Features? CoRR 2017]
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Neural Architecture Search

= Motivation
= Design neural networks (type of layers / network) is often trial & error process
= Accuracy vs necessary computation characterizes an architecture
=» Automatic neural architecture search

avg sep
3x3 3x3
i ?indexé iindex{ {op i | op |
i A i ¢ B i I A i i B i

id 3 1

= #1 Search Space of Building Blocks

= Define possible operations e
(e.g., identity, 3x3/5x5 separable
convolution, avg/max pooling) Exploration of cell

= Define approach for connecting designs
operations (pick 2 inputs, apply op,
and add results)

[Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V.
Le, Jeff Dean: Efficient Neural Architecture Search
via Parameter Sharing. ICML 2018]
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Neural Architecture Search, cont.

= #2 Search Strategy

= (Classical evolutionary algorithms
Reinforcement Learning. ICLR 2017]

= Recurrent neural networks (e.g., LSTM)
= Bayesian optimization (with
special distance metric) Schneider, Barnabds Pdczos, Eric P. Xing: Neural
Architecture Search with Bayesian Optimisation

o . ) ) and Optimal Transport. NeurlPS 2018]
= #3 Optimization Objective

= Max accuracy (min error)

[Barret Zoph, Quoc V. Le: Neural
Architecture Search with

[Kirthevasan Kandasamy, Willie Neiswanger, Jeff

H H H H 34 EfficientNet-B6
= Multi-objective (accuracy and runtime) “ clentie Amoebalet-C
AmeobaNet-A _ mm===="""
~d e
- _»7 NASNetA .. SENet
- g ST
= Excursus: Model Scaling = ST :
8 | P T e ResNeXt-101
: 3 801 - S
= Automatically scale-up small g o inception Resnetv2
- .~*Xception
model for better accuracy g, 3
= 784 eResNet-152
.. @ o _ Topl Acc. FLOPS
= EfficientNet A i -
T ResNeXt-101 (Xie etal, 2017) | S09% 328
=7 Pesersn T MR O
[Mingxing Tan, Quoc V. Le: EfficientNet: T NASNetA (Zophetal 2018) | §07%  24B
o ) i nception-v EfficientNet-B4 82.6%  4.2B
Rethinking Model Scaling for Convolutional T']_‘NASNetAA AmeobaNet-C (Cubuk et al 2019)| 83.5%  41B
4 EfficientNet-B5 83.3% 9.9B
Neural Networks. ICML 2019] ResNet-34_ : : : : : :
0 5 10 15 20 25 30 35 40 45

FLOPS (Billions)
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Model Management
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Overview Model Management

How did you create

= Motivation that model?

= Exploratory data science process = trial and error Did you consider X?

(preparation, feature engineering, models, model selection) 8

= Different personas (data engineer, ML expert, devops)

= Problems
= No record of experiments, insights lost along the way

1B
ModelDB: A system
to manage machine
learning models

= Difficult to reproduce results oo

DBg:

= Cannot search for or query models
[Manasi Vartak: ModelDB: A system

. P
Difficult to collaborate to manage machine learning models,

Spark Summit 2017]
= Overview
= Experiment tracking and visualization
= Coarse-grained ML pipeline provenance and versioning
» Fine-grained data provenance (data-/ops-oriented)
706.550 Architecture of Machine Learning Systems — 10 Model Selection and Management .ISDS
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Background: Data Provenance and Lineage

= Overview
= Base query Q(D) = O with database D ={R, ..., R,}}

. L(R.”, O’) from subset of input relation to output

= L,(O’, R,) from subset of outputs to base tables

= #1 Lazy Lineage Query Evaluation
= Rewrite lineage queries as relational queries over input relations
= No runtime overhead but slow lineage query processing

= #2 Eager Lineage Query Evaluation
= Materialize data structures during base query evaluation

= Runtime overhead but fast

) ) [Fotis Psallidas, Eugene Wu:
lineage query processing

Smoke: Fine-grained Lineage at
] Logical/physical |ineage Capture Interactive Speed. PVLDB 2018]
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Model Management Systems

= ModelHub

= Versioning system for DNN models, [Hui Miao, Ang Li, Larry S.

including provenance tracking MDSV:: Abmg' Des{‘pa”‘_je:
odaelnup: Deep Learning

= DSL for model exploration and enumeration Lifecycle Management.
queries (model selection + hyper parameters) ICDE 2017]

= Model versions stored as deltas

= ModelDB
= Model and provenance logging for ML
pipelines via programmatic APIs [Manasi Vartak, Samuel Madden:
= Support for different ML systems MODELDB: Opportunities and Challenges

in Managing Machine Learning Models.

(e.g., spark.ml, scikit-learn, others) |EEE Data Eng. Bull, 2018]

= GUIs for capturing meta data and
metric visualization
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Model Management Systems, cont.

= MLflow mlje
= An open source platform for Ten;érFiow O PyTorch Keras
the machine learning lifecycle
= Use of existing ML systems .S'p(:u"i‘(\Z O learn Hipisl

and various language bindings

MLflow Tracking: logging and querying experiments

MIflow Projects: packaging/reproduction of ML pipeline results
MLflow models: deployment of models in various services/tools

706.550 Architecture of Machine Learning Systems — 10 Model Selection and Management .ISDS
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Experiment Tracking

= TensorFlow: TensorBoard
= Suite of visualization tools

= Explicitly track and write
summary statistics

= Visualize behavior over
time and across experiments

= Different folders for
model versioning?

= Other Tools:

* |ntegration w/ TensorBoard

= Lots of custom logging
and plotting tools
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TensorBoard SCALARS IMAGES GRAPHS >

INACTVE ~ & & @

Show data download links Q, Filter tags (regular expressions supported)

Ignore outliers in chart scaling

accuracy
Tooltip sorting default ~
method: - cross entropy
Smoothing cross entropy
— o 0.6 0.0550
0.0450
0.0350

Horizontal Axis
0.0250

S RELATIVE  WALL 0.0150

5.000e-3

Runs -5.000e-3

: 0.000 3000 600.0  900.0
Write a regex to filter runs

= EI run to download - CSV JSON
() train
Name Smoothed Value Step Time Relative
|
Q eva eval  0.02591 0.02550 170.0 Mon Sep 12, 15:40:41 8s
. @ tain 002851 003362 166.0 MonSep12,15:40:40 7s

/tmp/mnist-logs

mean

[Credit: https://www.tensorflow.org/guide/
summaries and tensorboard]
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Coarse-Grained Provenance

[Credit: https://databricks.com/
blog/2018/06/05 ]

= MLflow import mlflow
mlflow.log param("num_dimensions", 8)
mlflow.log param(“"regularization”, 0.1)
mlflow.log metric("accuracy", 0.1)
mlflow.log artifact("roc.png")

= Programmatic API for
tracking parameters,
experiments, and results

" Flor (on Ground) [Credit: https://rise.cs.berkeley.edu/
= DSL embedded in python for managing the projects/jarvis/ |
workflow development phase of the ML lifecycle

[Joseph M. Hellerstein et al:

= DAGs of Actions, Artifacts, and Literals Ground: A Data Context

o Service. CIDR 2017
= Data context generated by activities in Ground ervice ]

= Dataset Relationship Management

. [Zachary G. lves, Yi Zhang,
! ! ! ! Soonbo Han, Nan Zheng,:
= Code-to-data relationships (data provenance) Dataset Relationship

= Data-to-code relationships (potential transforms) ~ 'anagement. CIDR 2019]
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Fine-grained Lineage

= DEX: Dataset Versioning [Amit Chavan, Amol

Deshpande: DEX: Query
Execution in a Delta-
= Checkout, intersection, union queries over deltas based Storage System.

= Versioning of datasets, stored with delta encoding

= Query optimization for finding efficient plans SIGMOD 2017]

= MISTIQUE: Intermediates of ML Pipelines [Manasi Vartak et al: MISTIQUE:
A System to Store and Query

= Capturing, storage, querying of intermediates Model Intermediates for Model

= Lossy deduplication and compression Diagnosis. SIGMOD 2018]

= Adaptive querying/materialization for finding efficient plans

= Linear Algebra Provenance

A
= Provenance propagation by decomposition

= Annotate parts w/ provenance polynomials
(identifiers of contributing inputs + impact)

A = SyBT, + S,CT, + S,DT, + S,ET,

N

[Zhepeng Yan, Val Tannen, Zachary G.

Ives: Fine-grained Provenance for Linear T
Algebra Operators. TaPP 2016] v
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Fine-grained Lineage in SystemDS

= Problem
= Exploratory data science (data preprocessing, model configurations)
= Reproducibility and explanability of trained models (data, parameters, prep)

#1 Efficient Lineage Tracing

® Tracing of inputs, literals, and non-determinism Ex: Stepwise LinregDS
= Deduplication of lineage traces for loops while( continue ) {
parfor( i in 1:n ) {
= #2 Reuse of Intermediates if( fixed[1,i]==0 ) {

X = cbind(Xg, Xorig[,i])

_ .
Feature and model selection workloads AIC[1,i] = linregDS(X,y)

with lots of redundancy }
= Reuse intermediates w/ compensations }
#select & append best to Xg
= #3 Query Processing over Lineage Traces }

= Analyze convergence behavior and branching behavior
= Compare lineage traces of different runs

Use cases: Model versioning, reuse, auto differentiation, debugging
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Summary and Conclusions

= Model Selection and Management
= Data Augmentation (last lecture)
= Model Selection Techniques
= Model Management

= Next Lectures
= 11 Model Deployment and Serving [Jun 21 2 Jun 28]

- . .
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