



# **Architecture of ML Systems 10 Model Selection**

#### **Matthias Boehm**

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management



Last update: June 14, 2019



### Announcements/Org

- #1 Programming/Analysis Projects
  - #1 Auto Differentiation
  - #5 LLVM Code Generator
  - #12 Information Extraction from Unstructured PDF/HTML
  - → Keep code PRs / status updates in mind





### Recap: The Data Science Lifecycle

#### **Data-centric View:**

Application perspective
Workload perspective
System perspective



Data Scientist





Data Integration
Data Cleaning
Data Preparation

Model Selection
Training
Hyper-parameters

Validate & Debug
Deployment
Scoring & Feedback



#### **Exploratory Process**

(experimentation, refinements, ML pipelines)







### Agenda

- Data Augmentation [backlog last lecture]
- Model Selection Techniques
- Model Management



# Data Augmentation





### Motivation and Basic Data Augmentation

#### Motivation Data Augmentation

- Complex ML models / deep NNs need lots of labeled data to avoid overfitting → expensive
- Augment training data by synthetic labeled data

#### AlexNet

[Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012]



#### Translations & Reflections

- Random 224x224 patches and their reflections (from 256x256 images with known labels)
- Increased data by 2048x
- Test: corner/center patches+ reflections → prediction





#### Alternating Intensities

- Intuition: object identity is invariant to illumination and color intensity
- PCA on dataset → add eigenvalues times a random variable N(0,0.1)





### Basic Data Augmentation

#### Scaling and Normalization

- Standardization: subtract per-channel global pixel means
- Normalization: normalized to range [-1,1] (see min-max)

#### General Principles

- #1: Movement/selection (translation, rotation, reflection, cropping)
- #2: Distortions (stretching, shearing, lens distortions, color)
- In many different combinations → often trial & error / domain expertise

#### Excursus: Reducing Training Time

- Transfer learning: Use pre-trained model on ImageNet;
   freeze lower NN layers, fine-tune last layers w/ domain-specific data
- Multi-scale learning: Use cropping and scaling t o train 256 x 256 model as starting point for a more compute-intensive 384x384 model

[Karen Simonyan, Andrew Zisserman: Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR 2015]







### Basic Data Augmentation, cont.

#### Distortions

- Translations, rotations, skewing
- Compute for every pixel a new target location via rand displacement fields)



[Patrice Y. Simard, David Steinkraus, John C. Platt: Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis. ICDAR 2003]







#### Cutout

- Randomly masking out square regions of input images
- Size more important than shape



[Terrance Devries, Graham W. Taylor: Improved Regularization of Convolutional Neural Networks with Cutout. **Corr 2017**]







### **Domain Randomization**

#### Training on Simulated Images

- Random rendering of objects with non-realistic textures
- Large variability for generalization to real world objects



[Josh Tobin et al.: Domain randomization for transferring deep neural networks from simulation to the real world. **IROS 2017**]

### **Pre-Training on Simulated Images**

- Random 3D objects and flying distractors w/ random textures
- Random lights and rendered onto random background



[Jonathan Tremblay et al.: Training Deep Networks With Synthetic Data: Bridging the Reality Gap by Domain Randomization. **CVPR Workshops 2018**]

#### Training

**Test** 











### Learning Data Augmentation Policies

#### AutoAugment

- Search space of augmentation policies
- Goal: Find best augmentation policy (e.g., via reinforcement learning)
- #1: Image processing functions
   (translation, rotation, color normalization)
- #2: Probabilities of applying these functions

→ New state-of-the art top-1 error on

Quoc V. Le: AutoAugment: Learning Augmentation Policies from Data.

CVPR 2019

[Ekin Dogus Cubuk, Barret Zoph,

Dandelion Mané, Vijay Vasudevan,

#### Data Augmentation GAN (DAGAN)

- Image-conditional generative model for creating within-class images from inputs
- No need for known invariants



[Antreas Antoniou, Amos J. Storkey, Harrison Edwards: Augmenting Image Classifiers Using Data Augmentation Generative Adversarial Networks. **ICANN 2018**]



ImageNet and CIFAR10





### Weak Supervision

#### Heuristically Generated Training Data

- [Alex Ratner, Paroma Varma, Braden Hancock, Chris Ré, and others: Weak Supervision: A New Programming Paradigm for Machine Learning, ai.stanford.edu/blog/weak-supervision/, 2019]
- Hand labeling expensive and time consuming, but abundant unlabeled data
- Changing labeling guidelines labeling heuristics







### Weak Supervision, cont.

DataProgrammingOverview





[Alexander J. Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, Christopher Ré: Data Programming: Creating Large Training Sets, Quickly. NIPS 2016]



[Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan Fries, Sen Wu, Christopher Ré: **Snorkel:** Rapid Training Data Creation with Weak Supervision. **PVLDB 2017**]



[Paroma Varma, Christopher Ré: Snuba: Automating Weak Supervision to Label Training Data. PVLDB 2018]



[Stephen H. Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, Cassandra Xia, Souvik Sen, Alexander Ratner, Braden Hancock, Houman Alborzi, Rahul Kuchhal, Christopher Ré, Rob Malkin: **Snorkel DryBell:** A Case Study in Deploying Weak Supervision at Industrial Scale. **SIGMOD 2019**]



# Model Selection Techniques





#### **AutoML Overview**

[Chris Thornton, Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. **KDD 2013**]



#### Model Selection

 Given a dataset and ML task (e.g., classification or regression)

$$A^* \in \underset{A \in \mathcal{A}}{\operatorname{argmin}} \frac{1}{k} \sum_{i=1}^k \mathcal{L}(A, \mathcal{D}_{\operatorname{train}}^{(i)}, \mathcal{D}_{\operatorname{valid}}^{(i)}),$$

Select the model (type) that performs best
 (e.g.: LogReg, Naïve Bayes, SVM, Decision Tree, Random Forest, DNN)

#### Hyper Parameter Tuning

• Given a model and dataset,  $A^{(j)} \in \mathcal{A}, \lambda \in \Lambda^{(j)} \stackrel{k}{=} 1$  find best hyper parameter values (e.g., learning rate, regularization, kernels, kernel parameters, tree params)

$$A^*_{\lambda^*} \in \operatorname*{argmin}_{A^{(j)} \in \mathcal{A}, \lambda \in \mathbf{\Lambda}^{(j)}} \frac{1}{k} \sum_{i=1}^k \mathcal{L}(A^{(j)}_{\lambda}, \mathcal{D}^{(i)}_{\text{train}}, \mathcal{D}^{(i)}_{\text{valid}}).$$

#### Validation: Generalization Error

- Goodness of fit to held-out data (e.g., 80-20 train/test)
- Cross validation (e.g., leave one out  $\rightarrow$  k=5 runs w/ 80-20 train/test)

#### **→** AutoML Systems/Services

- Often providing both model selection and hyper parameter search
- Integrated ML system, often in distributed/cloud environments



### **Basic Grid Search**

#### Basic Approach

- Given n hyper parameters  $\lambda 1$ , ...,  $\lambda n$  with domains  $\Lambda 1$ , ...,  $\Lambda n$
- Enumerate and evaluate parameter space  $\Lambda \subseteq \Lambda_1 \times ... \times \Lambda_n$  (often strict subset due to dependency structure of parameters)
- Continuous hyper parameters → discretization
  - Equi-width
  - Exponential (e.g., regularization 0.1, 0.01, 0.001, etc)
- Note: Only applicable with small domains
- Heuristic: Monte-Carlo (random search)







### **Basic Iterative Algorithms**

#### Simulated Annealing

- Decaying temperature schedules:  $T_{k+1} = \alpha \cdot T_k$
- #1 Generate neighbor in ε-env of old point

#### **Exploration vs** exploitation

■ #2 Accept better points and worse points w/  $P(T_k) = \frac{1}{1 + \exp((f' - f)/T_k)}$ 

#### **Recursive Random Search**

- Repeated restart
- Sample and evaluate points
- Determine best and shrink area if optimum unchanged
- Realign area if new optimum found



[Tao Ye, Shivkumar Kalyanaraman: A recursive random search algorithm for large-scale network parameter configuration. SIGMETRICS 2003]







### **Bayesian Optimization**

### **Overview BO**

- Sequential Model-Based Optimization
- Fit a probabilistic model based on the first n-1 evaluated hyper parameters
- Use model to select next candidate
- Gaussian process (GP) models, or tree-based Bayesian Optimization

[Chris Thornton, Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. KDD 2013]



#### Algorithm 1 SMBO

- 1: initialise model  $\mathcal{M}_L$ ;  $\mathcal{H} \leftarrow \emptyset$
- 2: while time budget for optimization has not been exhausted do
- $\lambda \leftarrow$  candidate configuration from  $\mathcal{M}_L$
- Compute  $c = \mathcal{L}(A_{\lambda}, \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)})$
- $\mathcal{H} \leftarrow \mathcal{H} \cup \{(\boldsymbol{\lambda}, c)\}$ Update  $\mathcal{M}_L$  given  $\mathcal{H}$
- 7: end while
- 8: **return**  $\lambda$  from  $\mathcal{H}$  with minimal c

#### Underlying Foundations

The posterior probability of a model M given evidence E is proportional to the likelihood of E given M multiplied by prior probability of M

$$P(M|E) = P(E|M)P(M)/P(E)$$

$$\Rightarrow$$

$$P(M|E) \propto P(E|M)P(M)$$

- Prior knowledge: e.g., smoothness, noise-free
- Maximize acquisition function: GP high objective (exploitation) and high prediction uncertainty (exploration)





### Bayesian Optimization, cont

#### Example 1D Problem

- Gaussian Process
- 4 iterations







[Eric Brochu, Vlad M. Cora, Nando de Freitas: A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. **CoRR 2010**]







### Multi-armed Bandits and Hyperband

#### **Overview Multi-armed Bandits**

- Motivation: model types have different quality
- Select among k model types → k-armed bandit problem
- Running score for each arm → scheduling policy

[Credit: blogs.mathworks.com



[Sébastien Bubeck, Nicolò Cesa-Bianchi: Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in Machine Learning 2012]



#### Hyperband

- Non-stochastic setting, without parametric assumptions
- Pure exploration algorithm for infinite-armed bandits
- Based on Successive Halving
  - Successively discarding the worst-performing half of arms

Based Approach to Hyperparameter Optimization. JMLR 2017

[Lisha Li, Kevin G. Jamieson, Giulia



Extended by doubling budget of arms in each iteration (no need to configure k, random search included)





### Selected AutoML Systems

#### Auto Weka

Bayesian optimization with

[Chris Thornton et al: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. KDD 2013]



[Lars Kotthoffet al: Auto-WEKA 2.0: 28 learners, 11 ensemble/meta methods Automatic model selection and hyperparameter optimization in WEKA. JMLR 2017]



#### Auto Sklearn

Bayesian optimization with 15 classifiers, 14 feature prep, 4 data prep [Matthias Feurer et al: Auto-sklearn: Efficient and Robust Automated Machine Learning. Automated **Machine Learning 2019** 



#### TuPaQ

Multi-armed bandit and large-scale

[Evan R. Sparks, Ameet Talwalkar, Daniel Haas, Michael J. Franklin, Michael I. Jordan, Tim Kraska: Automating model search for large scale machine learning. **SoCC 2015**]



#### **TPOT**

Genetic programming

[Randal S. Olson, Jason H. Moore: TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning. Automated Machine Learning 2019]



#### Other Services

- Azure ML, Amazon ML
- Google AutoML, H20 AutoML

[Hantian Zhang, Luyuan Zeng, Wentao Wu, Ce Zhang: How Good Are Machine Learning Clouds for Binary Classification with Good Features? CoRR 2017







### Neural Architecture Search

#### Motivation

- Design neural networks (type of layers / network) is often trial & error process
- Accuracy vs necessary computation characterizes an architecture
- → Automatic neural architecture search

#### #1 Search Space of Building Blocks

- Define possible operations (e.g., identity, 3x3/5x5 separable convolution, avg/max pooling)
- Define approach for connecting operations (pick 2 inputs, apply op, and add results)



[Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, Jeff Dean: Efficient Neural Architecture Search via Parameter Sharing. ICML 2018]





### Neural Architecture Search, cont.

#### #2 Search Strategy

- Classical evolutionary algorithms
- Recurrent neural networks (e.g., LSTM)
- Bayesian optimization (with special distance metric)

[Barret Zoph, Quoc V. Le: Neural Architecture Search with Reinforcement Learning. ICLR 2017]



[Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, Eric P. Xing: Neural Architecture Search with Bayesian Optimisation and Optimal Transport. **NeurIPS 2018**]



#### #3 Optimization Objective

- Max accuracy (min error)
- Multi-objective (accuracy and runtime)

#### Excursus: Model Scaling

- Automatically scale-up small model for better accuracy
- EfficientNet



[Mingxing Tan, Quoc V. Le: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. **ICML 2019**]





# Model Management





### Overview Model Management

#### Motivation

- Exploratory data science process → trial and error (preparation, feature engineering, models, model selection)
- Different personas (data engineer, ML expert, devops)

# How did you create that model? Did you consider X?





#### Problems

- No record of experiments, insights lost along the way
- Difficult to reproduce results
- Cannot search for or query models
- Difficult to collaborate



[Manasi Vartak: ModelDB: A system to manage machine learning models, Spark Summit 2017]

#### Overview

- Experiment tracking and visualization
- Coarse-grained ML pipeline provenance and versioning
- Fine-grained data provenance (data-/ops-oriented)





### Background: Data Provenance and Lineage

#### Overview

- Base query Q(D) = O with database D =  $\{R_1, ..., R_n\}$
- Forward lineage query: L<sub>f</sub>(R<sub>i</sub>", O') from subset of input relation to output
- Backward lineage query: L<sub>b</sub>(O', R<sub>i</sub>) from subset of outputs to base tables

#### #1 Lazy Lineage Query Evaluation

- Rewrite lineage queries as relational queries over input relations
- No runtime overhead but slow lineage query processing

#### #2 Eager Lineage Query Evaluation

- Materialize data structures during base query evaluation
- Runtime overhead but fast lineage query processing
- Logical/physical lineage capture

[Fotis Psallidas, Eugene Wu: Smoke: Fine-grained Lineage at Interactive Speed. **PVLDB 2018**]







### Model Management Systems

#### ModelHub

- Versioning system for DNN models, including provenance tracking
- DSL for model exploration and enumeration queries (model selection + hyper parameters)
- Model versions stored as deltas

[Hui Miao, Ang Li, Larry S. Davis, Amol Deshpande: ModelHub: Deep Learning Lifecycle Management. ICDE 2017]



#### ModelDB

- Model and provenance logging for ML pipelines via programmatic APIs
- Support for different ML systems (e.g., spark.ml, scikit-learn, others)
- GUIs for capturing meta data and metric visualization

[Manasi Vartak, Samuel Madden: MODELDB: Opportunities and Challenges in Managing Machine Learning Models.

IEEE Data Eng. Bull. 2018]







### Model Management Systems, cont.

#### MLflow



- An open source platform for the machine learning lifecycle
- Use of existing ML systems and various language bindings













- MLflow Tracking: logging and querying experiments
- Mlflow Projects: packaging/reproduction of ML pipeline results
- MLflow models: deployment of models in various services/tools





### **Experiment Tracking**

#### TensorFlow: TensorBoard

- Suite of visualization tools
- Explicitly track and write summary statistics
- Visualize behavior over time and across experiments
- Different folders for model versioning?

#### Other Tools:

- Integration w/ TensorBoard
- Lots of custom logging and plotting tools



[Credit: <a href="https://www.tensorflow.org/guide/">https://www.tensorflow.org/guide/</a>
summaries\_and\_tensorboard]





### Coarse-Grained Provenance

#### MLflow

Programmatic API for tracking parameters, experiments, and results

blog/2018/06/05] mlflow.log param("num dimensions", 8) mlflow.log\_param("regularization", 0.1)

[Credit: https://databricks.com/

mlflow.log\_artifact("roc.png")

mlflow.log metric("accuracy", 0.1)

import mlflow

#### Flor (on Ground)

- DSL embedded in python for managing the workflow development phase of the ML lifecycle
- DAGs of Actions, Artifacts, and Literals
- Data context generated by activities in Ground

[Credit: https://rise.cs.berkeley.edu/ projects/jarvis/ ]

[Joseph M. Hellerstein et al: Ground: A Data Context Service. CIDR 2017



#### Dataset Relationship Management

- Reuse, reveal, revise, retarget, reward
- Code-to-data relationships (data provenance)
- Data-to-code relationships (potential transforms)

[Zachary G. Ives, Yi Zhang, Soonbo Han, Nan Zheng,: **Dataset Relationship** Management. CIDR 2019]







### Fine-grained Lineage

#### DEX: Dataset Versioning

- Versioning of datasets, stored with delta encoding
- Checkout, intersection, union queries over deltas
- Query optimization for finding efficient plans

[Amit Chavan, Amol Deshpande: DEX: Query Execution in a Deltabased Storage System.

SIGMOD 2017]



#### MISTIQUE: Intermediates of ML Pipelines

- Capturing, storage, querying of intermediates
- Lossy deduplication and compression
- Adaptive querying/materialization for finding efficient plans

#### Linear Algebra Provenance

- Provenance propagation by decomposition
- Annotate parts w/ provenance polynomials (identifiers of contributing inputs + impact)

$$A = S_x B T_u + S_x C T_v + S_y D T_u + S_y E T_v$$



[Zhepeng Yan, Val Tannen, Zachary G. Ives: Fine-grained Provenance for Linear Algebra Operators. **TaPP 2016**]

[Manasi Vartak et al: MISTIQUE: A System to Store and Query Model Intermediates for Model Diagnosis. **SIGMOD 2018**]







### Fine-grained Lineage in SystemDS

#### Problem

- Exploratory data science (data preprocessing, model configurations)
- Reproducibility and explanability of trained models (data, parameters, prep)

#### #1 Efficient Lineage Tracing

- Tracing of inputs, literals, and non-determinism
- Deduplication of lineage traces for loops

#### #2 Reuse of Intermediates

- Feature and model selection workloads with lots of redundancy
- Reuse intermediates w/ compensations

#### #3 Query Processing over Lineage Traces

- Analyze convergence behavior and branching behavior
- Compare lineage traces of different runs
- Use cases: Model versioning, reuse, auto differentiation, debugging

#### **Ex: Stepwise LinregDS**

```
while( continue ) {
    parfor( i in 1:n ) {
        if( fixed[1,i]==0 ) {
            X = cbind(Xg, Xorig[,i])
            AIC[1,i] = linregDS(X,y)
        }
    }
    #select & append best to Xg
}
```



### **Summary and Conclusions**

#### Model Selection and Management

- Data Augmentation (last lecture)
- Model Selection Techniques
- Model Management

#### Next Lectures

- 11 Model Deployment and Serving [Jun 21 → Jun 28]
- 12 Project Presentations, Conclusions, Q&A [Jun 28]

