

SCIENCE PASSION TECHNOLOGY

Database Systems 01 Introduction and Overview

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMVIT endowed chair for Data Management

Agenda

- Motivation and Goals
- Data Management Group
- Course Organization
- Course Outline
- History of Data Management
- Announcements

Definition and Impact

- Def: Database System
 - Overall system of DBMS + DBs
 - DBMS: Database Management System (SW to handle DBs)
 - DBs: Database (data/metadata of conceptual mini-world)
 - Note: DB also a short for DBS/DBMS
- Importance in Practice
 - Market Volume: 10-100B \$US
 - Foundation of many applications in various domains

"Relational databases are the foundation of western civilization"

[M. Winslett: Bruce Lindsay speaks out: [...]. SIGMOD Record 34(2), **2005**]

Bruce Lindsay

Motivation Database Systems

- Application development and maintenance costs
 - Declarative queries (what not how) and data independence
 - Efficient, correct, and independent data organization, size, access
- Multi-user operations and access control
 - Synchronization of concurrent user queries and updates
 - Enforce access control (e.g., permissions on tables, views)
- Consistency and data integrity
 - Eliminates redundancy and thus, enforces consistency
 - Enforces integrity constraints (e.g., semantic rules)
- Logging and Recovery
 - Recovery of consistent state after HW or SW failure
- Performance and Scalability
 - High performance for large datasets or high transaction throughput
 - Scale to large datasets with low memory requirements

Types of Data Independence

- Logical data independence (external views and applications independent of logical data model)
- Physical data independence (logical data model independent of underlying data organization)

Goals

6

Course Goals

- Understanding of database systems from user perspective (conceptual design, relational model, physical design and tuning, query and transaction execution, APIs)
- Understanding of modern means of data management from user perspective (NoSQL, distributed file systems, data-parallel frameworks, data streaming)

Meta Goals

- Understand, use, debug, and evaluate data management tools / systems
- Awareness of system alternatives and their tradeoffs
- Fundamental concepts as basis for advanced courses and other areas

Data Management Group

About Me

8

- 09/2018 TU Graz, Austria
 - BMVIT endowed chair for data management
 - Data management for data science (ML systems internals, end-to-end data science lifecycle)

- 2012-2018 IBM Research Almaden, USA
 - Declarative large-scale machine learning
 - Optimizer and runtime of Apache SystemML
- 2011 PhD TU Dresden, Germany
 - Cost-based optimization of integration flows
 - Systems support for time series forecasting
 - In-memory indexing and query processing

https://github.com/ tugraz-isds/systemds

Data Management Courses

- SS: Databases / Databases 1 (DM)
 - Data management from user/application perspective
 - VU 1.5/1.5 (4 ECTS), and VU 1/1 (3 ECTS)
- SS: Architecture of ML Systems (AMLS)
 - Internals of machine learning systems
 - VU 2/1 (5 ECTS), master, <u>github.com/tugraz-isds/systemds</u>

WS: Data Integration and Large-Scale Analysis (DIA)

- Distributed data and information systems
- VU 2/1 (5 ECTS), bachelor/master
- WS: Architecture of Database Systems (ADBS)
 - Internals of database management systems
 - VU 2/1 (5 ECTS), master

Course Organization

Basic Course Organization

Staff

11

- Lecturer: Univ.-Prof. Dr.-Ing. Matthias Boehm, ISDS
- Teaching Assistants: Dardan Dermaku, Ermal Gashi

Language

- Lectures and slides: English
- Communication and examination: English/German

Course Format

- DB VU 1.5/1.5 (4 ECTS), DB1 VU 1/1 (2/3 ECTS)
- Weekly lectures (start 4.10pm, including Q&A), attendance optional
- 4/3 exercises (introduced in lecture)
- Recommended papers for additional reading on your own

Course Logistics

Exam

12

- Completed mandatory exercises (Apr 02, Apr 30, May 28, Jun 18)
- Final written exam (Jun 24, 4.15pm-5.45pm time/rooms TBD)
- Grading (30% exercises, 70% final)

Communication

- Informal language (first name is fine)
- Please, immediate feedback (unclear content, missing background)
- Newsgroup: <u>news://news.tugraz.at/tu-graz.lv.dbase</u> (email for private issues)
- Office hours: by appointment or after lecture

Website

- https://mboehm7.github.io/teaching/ss19_dbs/index.htm
- All course material (lecture slides, exercises) and dates

Course Logistics (2)

Exercises

13

- Written and programming assignments, submitted through TeachCenter
 - DB: <u>https://tc.tugraz.at/main/course/view.php?id=1821</u>
 - DB1: <u>https://tc.tugraz.at/main/course/view.php?id=1822</u>
- Weekly office hours, in addition to newsgroup
- Assignment completed if >50% points
- Deadlines are important (at most 7 late days in total)
- Individual assignments (academic honesty / no plagiarism)

SW Tools and Languages

- Open Source PostgreSQL DBMS (setup on your own)
- Distributed FS / object storage and Apache Spark for distributed computation
- Languages for local/distributed programs: e.g., C, C++, Java, Scala or Python

Literature

14

- Not needed for lectures / exercises (course is self-contained), but second perspective on covered topics of first part
- Raghu Ramakrishnan, Johannes Gehrke: Database Management Systems (3. ed.). McGraw-Hill 2003, ISBN 978-0-07-115110-8, pp. I-XXXII, 1-1065
- Jeffrey D. Ullman, Jennifer Widom: A first course in database systems (2. ed.). Prentice Hall 2002, ISBN 978-0-13-035300-9, pp. I-XVI, 1-511
- Gerhard Weikum, Gottfried Vossen: Transactional Information Systems: Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan Kaufmann 2002, ISBN 1-55860-508-8
- Ramez Elmasri, Shamkant B. Navathe: Fundamentals of Database Systems, 3rd Edition. Addison-Wesley-Longman 2000, ISBN 978-0-8053-1755-8, pp. I-XXVII, 1-955

Course Outline

Part A: Database System Fundamentals

- 01 Introduction and Overview [Mar 04]
- 02 Conceptual Architecture and Design [Mar 11]
- 03 Data Models and Normalization [Mar 18]
- 04 Relational Algebra and Tuple Calculus [Mar 25]
- 05 Query Languages (SQL) [Apr 01]
- 06 APIs (ODBC, JDBC, OR frameworks) [Apr 08]
- 07 Physical Design and Tuning [Apr 29]
- 08 Query Processing [May 06]
- 09 Transaction Processing and Concurrency [May 13]

Exercise 2: Queries [Apr 30]

Exercise 3: Tuning [May 28]

Part B: Modern Data Management

- 10 NoSQL (key-value, document, graph) [May 20]
- **11 Distributed file systems and object storage** [May 27]
- 12 Data-parallel computation (MapReduce, Spark) [Jun 03]
- 13 Data stream processing systems [Jun 17]

Exercise 4: Spark [Jun 18]

Final Exam [Jun 24] (room(s) and date(s) TBD)

Exercises: Soccer World Cup 1954-2014

Dataset

18

- Public-domain, derived (parsed, cleaned) from Openfootball Worldcup Dataset
- Clone or download your copy from <u>https://github.com/tugraz-isds/datasets.git</u>

Exercises

- 01 Data modeling (relational schema)
- O2 Data ingestion and SQL query processing
- 03 Tuning, query processing, and transaction processing
- 04 Large-scale data analysis (distributed data ingestions and query processing)

1954_2014_Squads.csv: The Squads file contains the structure and examples look as follows.

#Year, Host_Country, Country, Jersey_Number, 1998,France,Austria,14,FW,Hannes Reinmayr,Stu 2014,Brazil,Germany,1,GK,Manuel Neuer,Bayern 2014,Brazil,Germany,11,FW,Miroslav Klose,Lazi

1954_2014_Matches.csv: The Matches file contains and examples look as follows.

#Year, Host_Country, Match_ID, Type, Date, Lc 2006,Germany,572,Group A,Wed Jun/14,Signal Id 2010,South Africa,684,Round of 16,Sun Jun/27 2014,Brazil,761,Final,Sun Jul/13 16:00,Estádi

1954_2014_Goals.csv: The Goals file contains the <u>c</u> time of the game. It's detailed structure and exam

#Year, Host_Country, Match_ID, Team, Player, 2014,Brazil,760,Netherlands,Daley Blind,17 2014,Brazil,760,Netherlands,Georginio Wijnald 2014,Brazil,761,Germany,Mario Götze,113

History of Data Management

History 1960/70s (pre-relational)

CODASYL ... Conference on Data Systems Languages

Hierarchical Model

- Tree of records
- E.g., IBM Information Management System (IMS) – IMS 15 (Oct 2017)

Network Model

- CODASYL (COBOL, DB interfaces)
- Graph of records
- Charles Bachman (Turing Award '73)
- E.g., Integrated Data Store (IDS)
- Pros and Cons (see NoSQL Doc-Stores)
 - Performance by directly traversing static links
 - Duplicates → inconsistencies on updates, data dependence

- **Indexing Dependence**
- Access Path Depend.

[E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. ACM 13(6), 1970]

History of Data Management

22

Success of SQL / Relational Model

Excursus: PostgreSQL

- History of PostgreSQL (used in the exercises)
 - Postgres is the successor project of commercialized Ingres
 - Focus on abstract data types, commercialized as Illustra
 - Prototype w/ SQL open sourced as Postgres95 → PostgreSQL
 - Heavily used as basis for research projects / startups

Recommended Reading

- Michael Stonebraker: The land sharks are on the squawk box. Commun. ACM 59(2): 74-83 (2016), Turing Award Lecture, <u>https://dl.acm.org/citation.cfm?doid=2886013.2869958</u>
- Video: <u>http://www.youtube.com/watch?v=sEPTZVGk3WY</u>
- Slides: <u>http://vldb.org/2015/wp-content/uploads/2015/09/stonebraker.pdf</u>

²⁴ History 1980/90/2000s

OLTP ... Online Transaction Processing OLAP ... Online Analytical Processing ETL ... Extract, Transform, Load

- Enterprise DBMS
 - Heavy investment in research and development

 adoption
 - Oracle, IBM DB2, Informix, Sybase, MS SQL, PostgreSQL, MySQL
 - Other technologies: OODBMS, Multimedia, Spatiotemporal, Web, XML

Information/Data Warehousing (DWH)

- Workload separation into OLTP and OLAP
- Classical DWH architecture: operational, staging, DWH, data marts + mining
- ETL Process (Extract, Transform, Load)

Different Personas

- Domain Experts (e.g., BI Tools, SAP R/3)
- DB Application Developers (e.g., ABAP)
- DB Developers and DB Admins

transactional

SOL

History 2000s / Early 2010s

Specialized Systems

- [M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, P. Helland: **The End of an Architectural Era** (It's Time for a Complete Rewrite). **VLDB 2007**]
- Column stores + compression for OLAP
- Main memory systems for OLTP and OLAP
- Data streaming, scientific and graph databases
- Information extraction / retrieval, RDF, and XML

Other Research Trends

- Approximate QP / Adaptive QP / tuning tools
- Large-scale data management (DFS, MR) / cloud computing
- Toward Flexible, Large-Scale
 Data Management (DWH ... a bygone era)
 - MAD Skills (magnetic, agile, deep), MADlib
 - Integration of R, Python in data analysis
 - Open data and its integration
 - Query processing over raw data files

[J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, C. Welton: MAD Skills: New Analysis Practices for Big Data. PVLDB 2(2) 2009]

RDF ... Resource Description Framework

a Complete Rewrite). VLDB 2007]

ISDS

History 2010s – Present

Two Key Drivers of DB Research

- New analysis workloads (NLP, key/value, RDF/graphs, documents, time series, ML) and applications
- New HW/infrastructure (multi-/many-core, cloud, scale-up/ scale-out, NUMA/HBM, RDMA, SSD/NVM, FPGA/GPU/ASIC)

Excursus: A retrospective view of specialized systems

- Goal #1: Avoid boundary crossing → General-purpose
- Goal #2: New workload + Performance → Specialized systems

History 2010s – Present (2)

Motivation NoSQL Systems

- Flexible schema (no upfront costs), scalability, or specific data types
- Relaxed ACID (atomicity, consistency, isolation, durability) requirements
 BASE (basically available, soft state, eventual consistency)
- Example NoSQL Systems (local and distributed):
 - Key/Value-Stores: simple put/get/delete, massive scalability
 - Document-Stores: store nested documents (tree)
 - RDF Stores: store subject-predicate-object triples
 - Graph DBs: store nodes/edges/attributes, vertex-centric
 - Time Series DBs: store sequences of observations

History 2010s – Present (3)

Motivation Large-Scale Data Management

- Massive scalability (data/compute) on demand, fault tolerance, flexibility
- Example Facebook 2014:
 300PB DWH, 600TB daily ingest
- Cost-effective commodity hardware
- Error rate increases with increasing scale

P(err) = 0.01

P(err)=0.001

1.0

Examples Large-Scale Data Management

- Distributed file systems w/ replication (e.g., GPFS, HDFS)
- Cloud object storage (e.g., Amazon s3, OpenStack Swift)
- Data-parallel data analysis with MapReduce and Spark, incl streaming
- Automatic cloud resource elasticity (pay as you go)

Data

Lake

Summary and Q&A

- Database Systems
 - Mature and established technology → broadly applicable & eco system
 - General concepts: abstraction, data modeling, query optimization & processing, transaction processing, logging & recovery, storage schemes and index structures, physical design and tuning

Modern Data Management

- Multiple specialized systems for specific scale / data types
- General trend toward less upfront cost, flexibility, and higher scalability

\rightarrow Variety of data management tools \rightarrow Course meta goals

- Understand, use, debug, and evaluate data management tools / systems
- Awareness of system alternatives and their tradeoffs
- Fundamental concepts as basis for advanced courses and other areas

Announcements

Extracurricular

Activity

31

SIGMOD Programming Contest 2019

SIGMOD Programming Contest

- Since 2009, student teams of degree-granting institutions
- Yearly contest, see last year <u>http://sigmod18contest.db.in.tum.de/</u>
- Opportunity to compete and learn DB internals
- Usually prizes between \$3.000-\$7.000
- Current contest not announced yet (~ End Feb End May)

Interested Students

- Should contact Matthias Boehm for mentoring
- Finalists attend SIGMOD 2019 in Amsterdam, NL (we pay whatever is not covered by travel stipend)
- Could be a great start into a research career and opportunity for networking

ISDS

Experimentalphilosophische Studie zur moralischen Intuition

Mitterer Andreas, BA Mag. iur. Galler Benjamin <u>andreas.mitterer@edu.uni-graz.at</u>

Dauer: ~15 Minuten

