Database Systems
01 Introduction and Overview

Matthias Boehm

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: Mar 04, 2019
Agenda

- Motivation and Goals
- Data Management Group
- Course Organization
- Course Outline
- History of Data Management
- Announcements
Definition and Impact

Def: Database System
- Overall system of DBMS + DBs
- DBMS: Database Management System (SW to handle DBs)
- DBs: Database (data/metadata of conceptual mini-world)
- Note: DB also a short for DBS/DBMS

Importance in Practice
- Market Volume: **10-100B $US**
- Foundation of many applications in various domains

“Relational databases are the foundation of western civilization”

[M. Winslett: Bruce Lindsay speaks out: [...] SIGMOD Record 34(2), 2005]
Motivation Database Systems

- Application development and maintenance costs
 - Declarative queries (what not how) and data independence
 - Efficient, correct, and independent data organization, size, access

- Multi-user operations and access control
 - Synchronization of concurrent user queries and updates
 - Enforce access control (e.g., permissions on tables, views)

- Consistency and data integrity
 - Eliminates redundancy and thus, enforces consistency
 - Enforces integrity constraints (e.g., semantic rules)

- Logging and Recovery
 - Recovery of consistent state after HW or SW failure

- Performance and Scalability
 - High performance for large datasets or high transaction throughput
 - Scale to large datasets with low memory requirements
Data Independence

- **Three Layer ANSI-SPARC Architecture**
 - **External schemas** (external level)
 - **Conceptual schema** (logical level)
 - **Internal schema** (physical level)

- **Types of Data Independence**
 - **Logical data independence** (external views and applications independent of logical data model)
 - **Physical data independence** (logical data model independent of underlying data organization)
Goals

- **Course Goals**
 - Understanding of database systems *from user perspective* (conceptual design, relational model, physical design and tuning, query and transaction execution, APIs)
 - Understanding of modern means of data management *from user perspective* (NoSQL, distributed file systems, data-parallel frameworks, data streaming)

- **Meta Goals**
 - Understand, use, debug, and evaluate data management tools / systems
 - Awareness of system alternatives and their tradeoffs
 - Fundamental concepts as basis for advanced courses and other areas
Data Management Group
About Me

- **09/2018 TU Graz**, Austria
 - BMVIT endowed chair for data management
 - **Data management** for data science
 (ML systems internals, end-to-end data science lifecycle)

- **2012-2018 IBM Research – Almaden**, USA
 - Declarative large-scale machine learning
 - Optimizer and runtime of **Apache SystemML**

- **2011 PhD TU Dresden**, Germany
 - Cost-based optimization of integration flows
 - Systems support for time series forecasting
 - In-memory indexing and query processing

[GitHub link](https://github.com/tugraz-isds/systemds)
Data Management Courses

- **SS: Databases / Databases 1 (DM)**
 - Data management from user/application perspective
 - VU 1.5/1.5 (4 ECTS), and VU 1/1 (3 ECTS)

- **SS: Architecture of ML Systems (AMLS)**
 - Internals of machine learning systems
 - VU 2/1 (5 ECTS), master, github.com/tugraz-isds/systemds

- **WS: Data Integration and Large-Scale Analysis (DIA)**
 - Distributed data and information systems
 - VU 2/1 (5 ECTS), bachelor/master

- **WS: Architecture of Database Systems (ADBS)**
 - Internals of database management systems
 - VU 2/1 (5 ECTS), master
Course Organization
Basic Course Organization

▪ Staff
 ▪ Lecturer: Univ.-Prof. Dr.-Ing. Matthias Boehm, ISDS
 ▪ Teaching Assistants: Dardan Dermaku, Ermal Gashi

▪ Language
 ▪ Lectures and slides: English
 ▪ Communication and examination: English/German

▪ Course Format
 ▪ DB VU 1.5/1.5 (4 ECTS), DB1 VU 1/1 (2/3 ECTS)
 ▪ Weekly lectures (start 4.10pm, including Q&A), attendance optional
 ▪ 4/3 exercises (introduced in lecture)
 ▪ Recommended papers for additional reading on your own
Course Logistics

- **Exam**
 - Completed mandatory exercises (Apr 02, Apr 30, May 28, Jun 18)
 - Final written exam (Jun 24, 4.15pm-5.45pm – time/rooms TBD)
 - Grading (30% exercises, 70% final)

- **Communication**
 - Informal language (first name is fine)
 - Please, immediate feedback (unclear content, missing background)
 - Newsgroup: news://news.tugraz.at/tu-graz.lv.dbase (email for private issues)
 - Office hours: by appointment or after lecture

- **Website**
 - https://mboehm7.github.io/teaching/ss19_dbs/index.htm
 - All course material (lecture slides, exercises) and dates
Course Organization

Course Logistics (2)

- **Exercises**
 - Written and programming assignments, submitted through TeachCenter
 - Weekly office hours, in addition to newsgroup
 - Assignment completed if >50% points
 - Deadlines are important (at most 7 late days in total)
 - Individual assignments (academic honesty / no plagiarism)

- **SW Tools and Languages**
 - Open Source PostgreSQL DBMS (setup on your own)
 - Distributed FS / object storage and Apache Spark for distributed computation
 - Languages for local/distributed programs: e.g., C, C++, Java, Scala or Python
Literature

- **Not needed for lectures / exercises** (course is self-contained), but second perspective on covered topics of first part

Course Outline
Part A: Database System Fundamentals

- **01 Introduction and Overview** [Mar 04]
- **02 Conceptual Architecture and Design** [Mar 11]
- **03 Data Models and Normalization** [Mar 18]
- **04 Relational Algebra and Tuple Calculus** [Mar 25]
- **05 Query Languages (SQL)** [Apr 01]
- **06 APIs (ODBC, JDBC, OR frameworks)** [Apr 08]
- **07 Physical Design and Tuning** [Apr 29]
- **08 Query Processing** [May 06]
- **09 Transaction Processing and Concurrency** [May 13]
Course Outline

Part B: Modern Data Management

- **10 NoSQL (key-value, document, graph)** [May 20]
- **11 Distributed file systems and object storage** [May 27]
- **12 Data-parallel computation (MapReduce, Spark)** [Jun 03]
- **13 Data stream processing systems** [Jun 17]

- **Final Exam** [Jun 24] (room(s) and date(s) TBD)

Exercise 4: Spark
[Jun 18]
Exercises: Soccer World Cup 1954-2014

- **Dataset**
 - Public-domain, derived (parsed, cleaned) from Openfootball Worldcup Dataset
 - Clone or download your copy from https://github.com/tugraz-isds/datasets.git

- **Exercises**
 - 01 Data modeling (relational schema)
 - 02 Data ingestion and SQL query processing
 - 03 Tuning, query processing, and transaction processing
 - 04 Large-scale data analysis (distributed data ingestions and query processing)
History of Data Management
History 1960/70s (pre-relational)

- **Hierarchical Model**
 - Tree of records
 - E.g., IBM Information Management System (IMS) – IMS 15 (Oct 2017)

- **Network Model**
 - CODASYL (COBOL, DB interfaces)
 - Graph of records
 - Charles Bachman *(Turing Award ’73)*
 - E.g., Integrated Data Store (IDS)

- **Pros and Cons** (see **NoSQL Doc-Stores**)
 - Performance by *directly traversing static links*
 - Duplicates → inconsistencies on updates, *data dependence*
History of Data Management

History 1970/80s (relational)

SQL Standard (SQL-86)
- Oracle, IBM DB2
- Informix, Sybase
 → MS SQL

System R @ IBM Research – Almaden
(Stonebraker et al., Turing Award ‘14)

Ingres @ UC Berkeley
(Stonebraker et al., Turing Award ‘14)

EDGAR F. “Ted” Codd @ IBM Research
(Turing Award ‘81)

Goal: Data Independence (physical data independence)
- Ordering Dependence
- Indexing Dependence
- Access Path Depend.

[“E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. ACM 13(6), 1970”](#)
Success of SQL / Relational Model

Query:
SELECT O_OID, sum(O_Price)
FROM Orders, Lineitem, Customer
WHERE O_OID = L_OID AND O_CID = C_CID
AND O_Odate >= '2018-11-14'
AND C_Msegment = 'AUTOMOBILE'
GROUP BY O_OID

#1 Declarative: what not how

#2 Flexibility: closure property → composability

Logical Query Plans

#3 Automatic Optimization

#4 Physical Data Independence
Excurus: PostgreSQL

- **History of PostgreSQL** (used in the exercises)
 - Postgres is the successor project of commercialized Ingres
 - Focus on abstract data types, commercialized as Illustra
 - Prototype w/ SQL open sourced as Postgres95 → PostgreSQL
 - Heavily used as basis for research projects / startups

- **Recommended Reading**
 - Video: http://www.youtube.com/watch?v=sEPTZVGk3WY
History 1980/90/2000s

- **Enterprise DBMS**
 - Heavy investment in research and development ➔ adoption
 - Oracle, IBM DB2, Informix, Sybase, MS SQL, PostgreSQL, MySQL
 - **Other technologies**: OODBMS, Multimedia, Spatiotemporal, Web, XML

- **Information/Data Warehousing (DWH)**
 - Workload separation into OLTP and OLAP
 - Classical DWH architecture: operational, staging, DWH, data marts + mining
 - **ETL Process** (Extract, Transform, Load)

- **Different Personas**
 - Domain Experts (e.g., BI Tools, SAP R/3)
 - DB Application Developers (e.g., ABAP)
 - DB Developers and DB Admins
History of Data Management

History 2000s / Early 2010s

- **Specialized Systems**
 - Column stores + compression for OLAP
 - Main memory systems for OLTP and OLAP
 - Data streaming, scientific and graph databases
 - Information extraction / retrieval, RDF, and XML

- **Other Research Trends**
 - Approximate QP / Adaptive QP / tuning tools
 - Large-scale data management (DFS, MR) / cloud computing

- **Toward Flexible, Large-Scale Data Management (DWH ... a bygone era)**
 - MAD Skills (magnetic, agile, deep), MADlib
 - Integration of R, Python in data analysis
 - Open data and its integration
 - Query processing over raw data files

History 2010s – Present

- **Two Key Drivers of DB Research**
 - **New analysis workloads** (NLP, key/value, RDF/graphs, documents, time series, ML) and applications
 - **New HW/infrastructure** (multi-/many-core, cloud, scale-up/scale-out, NUMA/HBM, RDMA, SSD/NVM, FPGA/GPU/ASIC)

- **Excursus: A retrospective view of specialized systems**
 - **Goal #1**: Avoid boundary crossing → General-purpose
 - **Goal #2**: New workload + Performance → Specialized systems
 - Some Examples

History of Data Management

- RDBMS
- OODBMS
- XML
- Docs
- OLAP
- OR
- Hybrid
- JSON Datatype
- HTAP
- MR/Spark
- RDF/graphs
- NLP
- Time
- In-DB alternatives
- SQL on Hadoop
- RDBMS
- Hybrid
- JSON Datatype
- HTAP
- MR/Spark
- RDF/ graphs
- NLP
- Time
- In-DB alternatives
- SQL on Hadoop
- RDBMS

New Workloads

DBMS

New HW
History 2010s – Present (2)

- **Motivation NoSQL Systems**
 - Flexible schema (no upfront costs), scalability, or specific data types
 - Relaxed ACID (atomicity, consistency, isolation, durability) requirements
 - BASE (basically available, soft state, eventual consistency)

- **Example NoSQL Systems** (local and distributed):
 - **Key/Value-Stores:** simple put/get/delete, massive scalability
 - **Document-Stores:** store nested documents (tree)
 - **RDF Stores:** store subject-predicate-object triples
 - **Graph DBs:** store nodes/edges/attributes, vertex-centric
 - **Time Series DBs:** store sequences of observations
History 2010s – Present (3)

- **Motivation Large-Scale Data Management**
 - Massive scalability (data/compute) on demand, fault tolerance, flexibility
 - Example Facebook 2014: 300PB DWH, 600TB daily ingest
 - Cost-effective commodity hardware
 - Error rate increases with increasing scale

- **Examples Large-Scale Data Management**
 - Distributed file systems w/ replication (e.g., GPFS, HDFS)
 - Cloud object storage (e.g., Amazon s3, OpenStack Swift)
 - Data-parallel data analysis with MapReduce and Spark, incl streaming
 - Automatic cloud resource elasticity (pay as you go)
Summary and Q&A

- **Database Systems**
 - Mature and established technology ➔ broadly applicable & eco system
 - **General concepts**: abstraction, data modeling, query optimization & processing, transaction processing, logging & recovery, storage schemes and index structures, physical design and tuning

- **Modern Data Management**
 - Multiple specialized systems for specific scale / data types
 - General trend toward less upfront cost, flexibility, and higher scalability

➡ **Variety of data management tools** ➔ **Course meta goals**
 - **Understand, use, debug**, and evaluate data management tools / systems
 - Awareness of **system alternatives and their tradeoffs**
 - **Fundamental concepts** as basis for advanced courses and other areas
Announcements
SIGMOD Programming Contest 2019

- **SIGMOD Programming Contest**
 - Since 2009, student teams of degree-granting institutions
 - Yearly contest, see last year http://sigmod18contest.db.in.tum.de/
 - Opportunity to compete and learn DB internals
 - Usually *prizes between $3,000-$7,000*
 - Current contest *not announced yet* (~ End Feb – End May)

- **Interested Students**
 - Should contact Matthias Boehm for mentoring
 - **Finalists** attend SIGMOD 2019 in Amsterdam, NL
 (we pay whatever is not covered by travel stipend)
 - Could be a great start into a research career
 and opportunity for networking
Experimentalphilosophische Studie zur moralischen Intuition

Mitterer Andreas, BA
Mag. iur. Galler Benjamin

andreas.mitterer@edu.uni-graz.at

Dauer: ~15 Minuten