Univ.-Prof. Dr.-Ing. Matthias Boehm

Graz University of Technology

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

3 Database Systems SS19: Exercise 03 — Tuning and Transactions

Published: May 13, 2019
Deadline: Jun 04, 2019, 11.59pm CET

This exercise on tuning and transactions aims to provide practical experience with physical
design tuning such as indexing and materialized views, as well as aspects of query and transac-
tion processing. The expected result is a zip archive named DB_Exercise03_<student_ID>.zip,
submitted in TeachCenter.

3.1 Indexing, Partitioning, MatViews in SQL (5/25 points)

In order to understand the effects of physical design tuning, this task aims to compare query
plans with and without existing data access structures that can be exploited for more efficient
query processing. For all sub tasks, create or copy the SQL query, obtain the plan via text-based
EXPLAIN, create the access structure, re-run and obtain the modified plan, and finally describe
the plan differences.

e Indexing: Create a query that returns the distinct club names of players with jersey
numbers less than or equal 3. Now, create a secondary index on attribute jersey number
and compare the new resulting plans.

e Materialized Views: Recall Q10 from Task 2.3 and create a materialized view that
could speed up the computation of final tables for arbitrary groups. Compare the plans.

Partial Results: SQL script Tuning.sql with queries, DDL, and plan comparison.

3.2 B-Tree Insertion and Deletion (6/25 points)

As a preparation step, let x = 0.0<student_ID> and generate a sequence of 16 numbers via
SET seed TO <x>; SELECT * FROM generate_series(1,16) ORDER BY random();. Now, as-
sume an empty B-tree with k = 2 (max 2k = 4 keys, 2k + 1 = 5 pointers), insert the sequence
of numbers, and draw the resulting B-tree structure. Subsequently, delete all keys in the range
[8,14) (lower inclusive, upper exclusive) in order, and draw the resulting B-tree again.

Partial Results: PDF B-Tree.pdf with the two B-trees.

3.3 Join Implementations (10/25 points)

To understand query processing and important join implementations, the task is to implement a
table scan and two join operators: a nested loop join and a hash join (in your favorite program-
ming language such as C, C++, Java, or Python). All three operators should implement the



open(), next (), close() iterator model. The table scan should be created with a collection of
type Collection<Tuple> as input, where a Tuple has an ID and a list of other attributes. In con-
trast, the join operators should be created with two iterators as input (left and right join input),
realize a natural join (equi-join, join attribute appears just once in the output), and be able to
handle multisets (i.e., collections where the same ID appears multiple times). In your own inter-
est, you should test your operators with synthetic data, but it is unnecessary to submit the tests.

Partial Results: All source code files for the three operators, including custom Tuple im-
plementations (no build/run scripts necessary).

3.4 Transaction Processing (4/25 points)

The final task explores key concepts of transaction processing. First, create two tables R(a INT,
b INT) and S(a INT, b INT). Second, write a SQL transaction that atomically inserts two
tuples into R and three tuples into S. Third, create two SQL transactions that can be executed
interactively (annotate in comments in which order the transactions should be interleaved) to
create a deadlock and explain the reason of the deadlock.

Partial Results: SQL script Transactions.sql for the three sub tasks, including the nec-
essary explanations as comments.



	3 Database Systems SS19: Exercise 03 – Tuning and Transactions
	3.1 Indexing, Partitioning, MatViews in SQL (5/25 points)
	3.2 B-Tree Insertion and Deletion (6/25 points)
	3.3 Join Implementations (10/25 points)
	3.4 Transaction Processing (4/25 points)


