Database Systems
08 Query Processing

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: June 24, 2019

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

"ISDS

TU

Grazm

Announcements/Org

= #1 Video Recording
= Since lecture 03, video/audio recording
= Link in TeachCenter & TUbe (video recorder fixed?)

= #2 Statistics Exercise 1
= All submissions accepted (submitted/draft)
= |n progress of grading, but understaffed

= #3 Exercise 2
= Submission is crucial (modified rule: 1 exercise 2%-50%)
= Modified deadline: May 07 11.59pm

= Please, submit correct file names
(avoid wrong IDs, wrong naming scheme)

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing
Matthias Boehm, Graz University of Technology, SS 2019

& TUbe

77.4%

"ISDS

TU

Grazm

Announcements/Org, cont.

= #4 Study Abroad Fair 2019

Lt

» Study Abroad Fair STUDY ABROAD
FAIR 2019

May 22, 2019

v Your opportunity to find out about
exchange programmes and
scholarships offered by TU Graz

v" Information booths

v Short presentations concerning
various study abroad possibilities

tu4u.tugraz.at/go/study-abroad-fair-2019

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Grazm

Query Optimization and Query Processing
SELECT * FROM TopScorer WHAT _ m

WHERE Count>=4

James Rodriguez 6

CREATE VIEW TopScorer AS Yes, but HOW to Thomas Muller 5

SELECT P.Name, Count(*) we get there Robin van Persie 4
FROM Players P, Goals G ffici |

WHERE P.Pid=G.Pid etficiently Neymar 4

AND G.GOwn=FALSE
GROUP BY P.Name
ORDER BY Count(*) DESC

= Goal: Basic Understanding of Internal Query Processing
= Query rewriting and query optimization
= Query processing and physical plan operators
=>» Performance debugging & reuse of concepts and techniques
=>» Overview, detailed techniques discussed in ADBS

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Grazm

Agenda

= Query Rewriting and Optimization
= Plan Execution Strategies
= Physical Plan Operators

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

Query Rewriting and Optimization

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Query Rewriting and Optimization -I(;rla!l

Overview Query Optimization
| Name | Count_

SELECT * FROM TopScorer
WHERE Count>=4

|
|
|

; James Rodriguez 6

l : Thomas Muller 5

Parsing : Robin van Persie 4
|

I N 4

AST/IR | eymar
|
Query Semantics :
|
IR I !
I
. l :
Query Rewrites I Plan Execution

|
IR l :
|

Plan Optimization @—» Plan Caching

Compile Time ! Runtime

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Grazm

Query Rewriting and Optimization

Query Rewrites

= Query Rewriting
= Rewrite query into semantically equivalent form that may be
processed more efficiently or give the optimizer more freedom

= #1 Same query can be expressed differently, prevent hand optimization

= #2 Complex queries may have redundancy

= ASimple Example SELECT DISTINCT custkey, name
= Catalog meta data: FROM TPCH.Customer
custkey IS unique ‘ rewrite

SELECT custkey, name
FROM TPCH.Customer

= 20+ years of experience [Hamid Pirahesh, T. Y. Cliff Leung, Wagar Hasan:
on query rewriting A Rule Engine for Query Transformation in
Starburst and IBM DB2 C/S DBMS. ICDE 1997]

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing B ISDS

Matthias Boehm, Graz University of Technology, SS 2019

Query Rewriting and Optimization

TU

Grazm

Standardization and Simplification

= Normal Forms of Boolean Expressions

= Conjunctive normal form (P;; OR ... OR P,) AND ... AND (P, OR... ORP)
® Disjunctive normal form (P;; AND ... AND P,,) OR ... OR (P,; AND ... AND P)

= Transformation Rules for Boolean Expressions

RuleName _______|Examples

Commutativity rules
Associativity rules
Distributivity rules
De Morgan’s rules

Double-negation rules
Idempotence rules

AORB o B OR A

A AND B < B AND A

(AOR B) OR C & A OR (B OR C)

(A AND B) AND C & A AND (B AND C)

A OR (B AND C) & (A OR B) AND (A OR C)

A AND (B OR C) < (A AND B) OR (A AND C)
NOT (A AND B) & NOT (A) OR NOT (B)

NOT (A OR B) & NOT (A) AND NOT (B)
NOT(NOT(A)) & A

AORA & A AAND A & A

A OR NOT(A) & TRUE A AND NOT (A) < FALSE
AAND (AORB) © A A OR (AAND B) & A
A OR FALSE & A A OR TRUE & TRUE

A AND FALSE & FALSE

Query Rewriting and Optimization -I(;rla'!l

Standardization and Simplification, cont.

Elimination of Common Subexpressions
= (A;=a,; OR A;=a,,) AND (A,=a,, OR A;=a,;) = A;=a,; OR A ;=a,,

Propagation of Constants
= A>2BANDB =7 2> A 2 AND B =

Detection of Contradictions
= A>BANDB>CANDC>A—-> A>A - FALSE

Use of Constraints

= Ais primary key/unique: 1t, = no duplicate elimination necessary

* Rule MAR_STATUS = ‘married’ —> TAX_CLASS 2> 3:
(MAR_STATUS = ‘married’ AND TAX_CLASS = 1) - FALSE

Elimination of Redundancy
= RWR 2> R, RUR > R, R-R=> 0
" Rx(o,R) 2 o,R, RU(oO,R) > R, R-(o,R) > o_R
" (°p1R)N(°sz) > Op1rp2R > (Ole)U(Osz) 2 Op1vp2R

Query Rewriting and Optimization TU

Query Unnesting

[Won Kim: On Optimizing an
SQL-like Nested Query. ACM
= Case 1: Type-A Nesting Trans. Database Syst. 1982]

= |Inner block is not correlated and computes an aggregate
= Solution: Compute the aggregate once and insert into outer query

SELECT OrderNo FROM Order $X = SELECT MAX(ProdNo)

WHERE ProdNo = » FROM Product WHERE Price<100
(SELECT MAX(ProdNo)

. SELECT OrderNo FROM Order
FROM Product WHERE Price<100)

WHERE ProdNo = $X

= Case 2: Type-N Nesting

= |nner block is not correlated and returns a set of tuples
= Solution: Transform into a symmetric form (via join)

SELECT OrderNo FROM Order SELECT OrderNo
WHERE ProdNo IN » FROM Order 0O, Product P
(SELECT ProdNo WHERE O.ProdNo = P.ProdNo
FROM Product WHERE Price<100) AND P.Price < 100

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Query Rewriting and Optimization Graza

Que ry U nn eSti ng) coO nt’ [Won Kim: On Optimizing an

SQL-like Nested Query. ACM

= Case 3: Type-J Nesting Trans. Database Syst. 1982]

= Un-nesting of correlated sub-queries w/o aggregation

SELECT OrderNo FROM Order O SELECT OrderNo
WHERE ProdNo IN FROM Order O, Project P
(SELECT ProdNo FROM Project P WHERE O.ProdNo = P.ProdNo
WHERE P.ProjNo = 0.0OrderNo AND P.ProjNo = 0.0OrderNo
AND P.Budget > 100,000) AND P.Budget > 100,000

= Case 4: Type-JA Nesting
= Un-nesting of correlated sub-queries w/ aggregation

SELECT OrderNo FROM Order O SELECT OrderNo FROM Order O
WHERE ProdNo IN WHERE ProdNo IN
(SELECT MAX(ProdNo) (SELECT ProdNo FROM
FROM Project P (SELECT ProjNo, MAX(ProdNo)
WHERE P.ProjNo = 0.0rderNo FROM Project
AND P.Budget > 100,000) GROUP BY ProjNo) P
= Further un-nesting via case 3 and 2 WHERE P.ProjNo = 0.OrderNo
AND P.Budget > 100.000)
INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing .ISDS

Matthias Boehm, Graz University of Technology, SS 2019

TU

Query Rewriting and Optimization Graza

Selections and Projections

= Example Transformation Rules

1) Grouping of 2) Grouping of 3) Pushdown of 4) Pushdown of
Selections Projections Selections Projections
Oy> Ty Op(R) Ma-B % %
17 Ooynp=g | ”IA | PaN | |
O,_ 18 X, O S N M \-p
P=q A,B A=B p(R) A=B
| R | R AN 2 NN
R R R S R R S T[AIJC nﬁ,c
R S
= Restructuring Algorithm
= #1 Split n-ary joins into binary joins Input: Standardized,
= #2 Split multi-term selections simplified, and unr;nested
uery gra
= #3 Push-down selections as far as possible auery grap
= #4 Group adjacent selections again Restrucl::ured
uery gra
= #5 Push-down projections as far as possible auery grap
INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing .ISDS

Matthias Boehm, Graz University of Technology, SS 2019

Query Rewriting and Optimization

TU

Grazm

Example Query Restructuring

SELECT * FROM TopScorer !

WHERE count>=4 0count>=|4/\Pos=Fw

AND Pos=°‘FW’ -~
count DESC

CREATE VIEW TopScorer AS
SELECT P.Name, P.Pos, count(*) » YName, Pos , count (*)

FROM Players P, Goals G
WHERE P.Pid=G.Pid

AND G.GOwn=FALSE OGown=F
GROUP BY P.Name, P.Pos
ORDER BY count(*) DESC Xoig
Additional metadata: Players Goals

P.Name is unique

|
Ccount DESC

ocount>=4

VName, count(*)

» T[Nlame

Mpig

nPid[Name T[Plid

Opos=Fu OGown=F

nPid,Name,Pos T[Pierown

Players Goals

TU

Query Rewriting and Optimization Graza

Plan Optimization Overview

= Plan Generation

Selection of physical access path and plan operators

Selection of execution order of plan operators

Input: logical query plan = Output: optimal physical query plan
Costs of query optimization should not exceed yielded improvements

= Different Cost Models

Relies on statistics (cardinalities, selectivities via histograms + estimators)
Operator-specific and general-purpose cost models

Cont(T) = 0 if T is a single relation _

‘out — |T‘ + Oyt (Tl) + Cout.(TQ) ifT=T) XT, (estlmated) (real)
I/0 costs (number of read pages, tuples) | 10 590
Computation costs (CPU costs, path lengths) OModel= ‘Golf"

Memory (temporary memory requirements) 1,000 5,000

. L OMake="vw*
Beware assumptions of optimizers I

(no skew, independence, no correlation) cars 10000 10000

Query Rewriting and Optimization TU

Grazm

Join Ordering Problem

= Join Ordering
= Given a join query graph, find the optimal join ordering
= |n general, NP-hard; but polynomial algorithms exist for special cases

® ® [—-\\
= Query Types e—o o oo '\,/ YA L TiT
eo— 9o — 90— 90— o l ./ \. o — e \._.

Chains Stars Cliques

= Search Space

- Chain (no CP) Star (no CP) Clique / CP (cross product)

left- zig-zag bushy left- zig-zag/ left- zig-zag bushy
deep deep bushy deep
A 2203 2m1C(p-1) 2(n-1)! 2™1(n-1)! n! 2"2n]! n! C(n-1)
16 128 224 48 384 120 960 1,680

512 ~131K ~2.4M ~726K ~186M ~3.6M ~929M ~17.6G

C(n) ... Catalan Numbers

[Guido Moerkotte, Building Query Compilers (Under Construction), 2019,
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf]

TU

Grazm

Query Rewriting and Optimization

Join Order Search Strategies

Actual

Tradeoff: Optimal (or good) plan vs compilation time

Explored

#1 Naive Full Enumeration

= |nfeasible for reasonably large queries (long tail up to 1000s of joins)

#2 Exact Dynamic Programming
= Guarantees optimal plan, often too expensive (beyond 20 relations)
= Bottom-up vs top-down approaches 100000

—t—LSe|

#3 Greedy / Heuristic Algorithms o DP Enum i

1000

—p=—BSel+

g =—=L5T

#4 Approximate Algorithms

Elapsed time (milliseconds)
[
8

— LsT+
= E.g., Genetic algorithms, 10 Heuristics e
simulated annealing : sz
= Example POStgreSQL D ! mﬂumbero:hksﬁoin:o B ’ BE
- ExaCF optimization (DPSize) if < 12 [Nicolas Bruno, César A. Galindo-Legaria,
relations (geqo_threshold) Milind Joshi: Polynomial heuristics for

guery optimization. ICDE 2010]

= Genetic algorithm for larger queries

= Join methods: NLJ, SMJ, HJ

Query Rewriting and Optimization TU

Greedy Join Ordering Star Schema

Benchmark

il

o] [

L

= Example

= Part X Lineorder < Supplier & o(Customer) > o(Date), left-deep plans

H-_ H-_

Lineorder < Part ((Lineorder x o(Date)) 120K

D
Lineorder > Supplier 20M SHEEETIE) BN

: ((Lineorder x o(Date)) 105M
Lineorder x o(Customer) 90K o(Customer)) x Supplier

. Lineorder x4 o(Date) m

- - N/A (((Lineorder x o(Date)) x 135M
o(Customer)) < Supplier) 4 Part

2 (Lineorder » o(Date)) b4 Part 150K Note: Simple O(n?) algorithm
for left-deep trees;

O(n3) algorithms for bushy trees
(Lineorder > o(Date)) 4 o(Customer) existing (e.g., GOO)

(Lineorder > o(Date)) > Supplier 100K

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2019 -

Query Rewriting and Optimization -ErLa!.

Dynamic Programming Join Ordering

= Exact Enumeration via Dynamic Programming
= #1: Optimal substructure (Bellman’s Principle of Optimality)
= #2: Overlapping subproblems allow for memoization

=>» Approach DPSize: Split in independent subproblems (optimal plan per set of
qguantifiers and interesting properties), solve subproblems, combine solutions

= Example Q1+Q3, Q2+Q2, Q3+Q1l

Q1+Q1 mQ“1+Q2' e Q4 | Plan

m mm [C,D,L} (LMC)XD, Dkl {C,D,L,P} {{L=C)<D}<P

P>a((LxC)xD)
C,L} LxC, Coak {LeD)

{C} Thl, IX e i {C,D,L,S}
e e {D,L} LxD,Bst {CL,P} {€C}<R P(LC),

"7 {LP} kR PxL (Poal)sag, Coafpat) {GLPS}
i LS} kxS, sl {GLS} DLRS)
tP} ©p3 NnA {DLP) Q1+Q4, Q2+Q3,
{S} {D,L.S} Q3+Q2, Q4+Q1

LpS) Q5 | Plan___

{C,D,L,PS}

TU

Grazm

Plan Execution Strategies

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

Plan Execution Strategies -I(;rla!l

Overview Query Processing
| Name | Count_

SELECT * FROM TopScorer
WHERE Count>=4

|
1
|

; James Rodriguez 6

¢ : Thomas Miiller 5

Parsing : Robin van Persie 4
1

I N 4

AST/IR | eymar
1
Query Semantics :
|
IR I :
I
c 1 a
Query Rewrites - Plan Execution

|
IR I |
1

Plan Optimization @—» Plan Caching

Compile Time ! Runtime

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Plan Execution Strategies Graza

Overview Execution Strategies

Different execution strategies (processing models) with different
pros/cons (e.g., memory requirements, DAGs, efficiency, reuse)

#1 Iterator Model (mostly row stores)

= #2 Materialized Intermediates (mostly column stores)
High-level
. . overview,
= #3 Vectorized (Batched) Execution (row/column stores) details in
ADBS
= #4 Query Compilation (row/column stores)
INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing .ISDS

Matthias Boehm, Graz University of Technology, SS 2019

Plan Execution Strategies

TU

Grazm

lterator Model

= Volcano Iterator Model

= Pipelined & no global knowledge
= Open-Next-Close (ONC) interface
= Query execution from root node (pull-based)

= Example 0,_,(R)

void open() { R.open(); }
void close() { R.close(); }

Record next() {

while((r = R.next()) != EOF)

if(p(r)) //A==7
return r;
return EOF;

}

= Blocking Operators

= Sorting, grouping/aggregation,
build-phase of (simple) hash joins

Scalable (small memory)
High CPl measures

[Goetz Graefe: Volcano - An Extensible
and Parallel Query Evaluation System.
IEEE Trans. Knowl. Data Eng. 1994

open()
next()
next() - EOF
close()
opin()
ngi)‘é(()) Op-7 > EorF
close() I
open()
t
ngi)’é(()) R
next()
next() - EOF
close()

GetNext(), ReScan(), MarkPos(),

PostgreSQL: ITnit(),

RestorePos (), End()

Plan Execution Strategies -I(;rE!l

lterator Model — Predicate Evaluation

= Operator Predicates
= Examples: arbitrary selection predicates and join conditions
= QOperators parameterized with in-memory expression trees/DAGs
= Expression evaluation engine (interpretation)

= Example Selection o
« A=7AB£8) VD=9 |

“ﬂ—ﬂ & ==
Product 1 /\ [)/"\9

Product 3 __ I =
-- Product 7 - S T
Product 2 A 7 B 8
INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Plan Execution Strategies Graza

Materialized Intermediates (column-at-a-time)

SELECT COUﬂt(DISTINCT o Or'der‘key) function user.s_;1_2,('AO:”d?’t§:,A1:da}e!:A2:int,A3:s'ycrr):void;
. . - X5 := sql.bind("sys"," lineitem”,” |_returnflag”,0);
FROM Or\der\s, lineitem X11 := algebra.uselect(X5,A3);
X14 := algebra.markT(X11,0Q0);
WHERE 1 orderkey = o_orderkey §15 = bar-g“;{jeg“(”: | orderkey.fkey’)
16 := sql.bindldxbat("sys"," lineitem”,” |_orderkey _fkey");
AND o orderdate >= date ’1996-07-01’ X18 := algebra.join(X15,X16);
X19 := sql.bind("sys",” orders”," o_orderdate” ,0);
AND o orderdate < date ’1996-07-01° O i e e Ay Crdate”0)
. P X26 := algebra.select(X19,A0,X25,true,false);
+ interval ’3’ month X30 := algebra.markT(X26,0Q0);
— YR’ . X31 := bat.reverse(X30);
AND l_r'etur'n'Flag R > X32 := sql.bind("sys"," orders”," o_orderkey" ,0);
X34 := bat.mirror(X32);
s1.2(A0,A1,A2.A3) X35 := algebra.join(X31,X34); H
. s X36 := bat.reverse(X35); Bln_arY
Column-oriented storage X37 := algebra.join(X18,X36); Association
X38 := bat.reverse(X37); Tabl
HaH 1 X40 := algebra.markT(X38,0Q@0); ables
Efficient array operations XAL = b renareaXA0), (BATs:=0IDNVal)
: X45 := algebra.join(X31,X32); =
DAG processing X46 := algebra.join(X41,X45);
: : X49 := algebra.selectNotNil(X46);
Reuse of intermediates X50 ‘= bat.reverse(X49);
X51 := algebra.kunique(X50);

Memory requirements
Unnecessary read/write
from and to memory

X52 := bat.reverse(X51);

X53 := aggr.count(X52);

sql.exportValue(1,”sys.orders”,"L1" ,"wrd” ,32,0,6,X53);
end s1.2;

[Milena Ivanova, Martin L. Kersten, Niels [———
J. Nes, Romulo Goncalves: An
architecture for recycling intermediates
in a column-store. SIGMOD 2009]

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Plan Execution Strategies TU

Grazm

Vectorized Execution (vector-at-a-time)

= |dea: Pipelining of vectors (sub columns) s.t. vectors fit in CPU cache

100 i
: Column-oriented storage
"tuple at a time” Workload: TPCH Q1 Efficient array operations
28.11 _DBMS "X" ' Memory/cache efficiency
26.6"NMySQL 4.1 DAG processing
interpretation " . N . .
= 10t dominates column at a time" | Reuse of intermediates
o) ; - MonetDB/MIL
g main-memory
8 interpretation materialization overhead ~-3.7
0 overhead '
o decreases query without selection —#-2.4
£
i I]
TF . vectors start to exceed
0601 - " CPU cache, causing
- MonetDB/X100 extra memory traffic
P "vector at a time" [Peter A. Boncz, Marcin Zukowski,
Sl ¢ low interpretation overhead Niels Nes: M tDB/X100: H -
Hand-Coded in—cache materialization €15 e.s' .O.ne / ' yr:)er
C Program Pipelining Query Execution.
0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CIDR 2005]

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 6M
Vector Size (# Tuples)

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Plan Execution Strategies

TU
Grazm
27 ° °
. Query Compilation
= |dea: Data-centric, not op-centric processing + LLVM code generation
Operator Trees Compiled Query
(w/o and w/ pipeline boundaries) (conceptual, not LLVM)
5 _initialize memory of M,—p, M.—., and I".
s for each tuple t in R;
/ \ iftx="T
Oy=7 M, i materialize ¢ in hash table of X,—;
/ for each tuple t in R»
R, N ifty=3
l L aggregate t in hash table of I',
$/=3 in I
R, R, materialize ¢t in hash

[Thomas Neumann: Efficiently Compiling Efficient
Query Plans for Modern Hardware. PVLDB 2011]

ta

[for each tuple t3 in Rj
for each match to in X._.[ts.c]
for each match t1 in X,—p[t3.0]

i output t1 ota ots

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing

Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

TU

Grazm

Physical Plan Operators

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

Physical Plan Operators

TU

Grazm

Overview Plan Operators

= Multiple Physical Operators

= Different physical operators for different data and query characteristics

= Physical operators can have vastly different costs

= Examples (supported in most DBMS)

= Logical Plan Selection Projection Grouping
Operators o, (R) T4(R) Y6:aggca)(R)

\ ¢ ¥ ¥

= Physical Plan TableScan ALL SortGB
Operators IndexScan HashGB
ALL
Lecture 07

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing
Matthias Boehm, Graz University of Technology, SS 2019

Join
R ™pa-sp S

¥

NestedLoopIN
SortMergelN
HashJN

This Lecture
Exercise 3

"ISDS

Physical Plan Operators -ErLa!.

Nested Loop Join

= Overview
= Most general join operator (no order, no indexes, arbitrary predicates 0)
= Poor asymptotic behavior (very slow)

= Algorithm (pseudo code) DIG RID=STD |\Ij| = ||I;:
. _—
o e tin w0 T 5o |5
if(r.RID 6 s.SID) 9 7
emit concat(r, s) 1 3
How to implement next()? 7 1
9
= Complexity 7
= Complexity: Time: O(N * M), Space: O(1)
= Pick smaller table as inner if it fits entirely in memory (buffer pool)
R e AL L "ISDS

Physical Plan Operators TU

Grazm

Block Nested Loop / Index Nested Loop Joins

= Block Nested Loop Join for each block by in R
= Avoid 1/0 by blocked data access for each block bs in S
for each r in bg
for each s in bg
if(r.RID 6 s.SID)
emit concat(r, s)

" Read blocks of b, and bg R and S pages

= Complexity unchanged but
potentially much fewer

= Index Nested Loop Join for each r in R
= Use index to locate qualifying tuples for each s in S.IX(6,r.RID)
(==, >=, >, <=, <) emit concat(r,s)

= Complexity (for equivalence predicates):
Time: O(N * log M), Space:

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing B ISDS
Matthias Boehm, Graz University of Technology, SS 2019

II%!I

TU

Physical Plan Operators Graza

Sort-Merge Join

= Overview
= Sort Phase: sort the input tables R and S (w/ external sort algorithm)
= Merge Phase: step-wise merge with lineage scan

= Algorithm (Merge, PK-FK) produced sorted | N =|R|

Record next() { output X
while(curR!=EOF && curS!=EOF) {

. / \
o S oo T o
curR = R.next();

RID=SID

else if(curR.RID > curS.SID) 1 1
curS = S.next();
else if(curR.RID == curS.SID) { 7 3
t = concat(curR, curS);
curS = S.next(); //FK side 9 7
return t;
}o) !
return EOF; 9

}

= Complexity
= Time (unsorted vs sorted): O(N log N + M log M) vs O(N + M)
= Space (unsorted vs sorted): O(N + M) vs O(1)

II%!I

Physical Plan Operators -ErLa!.

Hash Join

= Overview
* Build Phase: read table S and build a hash table H over join key
" Probe Phase: read table R and probe Hq with the join key
= Algorithm (Build+Probe, PK-FK) | N = |R]

Record next() { X M= |S]
// build phase (first call)

/
while((r = R.next()) != EOF) ﬁ
Hr.put(r.RID, r); .m n
9 7

// probe phase
while((s = S.next()) != EOF) 1 ey
if(Hr.containsKey(s.SID)) 7
return concat(Hr.get(s.SID), s);

RID=SID

return EOF;

}

N O 2 W

= Complexity
= Time: O(N + M), Space: O(N)
= Classic hashing: p in-memory partitions of Hr w/ p scans of Rand S

TU

Grazm

Conclusions and Q&A

= Summary
= Query rewriting and query optimization
= Query processing and physical operators

= Exercise 2 Reminder
= Submission deadline: May 07 11.59pm (+ max 7 late days)
= Modified submission rules, but crucial to submit

= Next Lectures

= May 13: 09 Transaction Processing and Concurrency

INF.01014UF Databases / 706.004 Databases 1 — 08 Query Processing
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

