Database Systems
09 Transaction Processing

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: May 13, 2019

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

"ISDS

TU

Grazm

Announcements/Org

= #1 Video Recording

= Since lecture 03, video/audio recording
= Link in TeachCenter & TUbe

= #2 Exercises

= Exercise 1 graded, feedback in TC in next days

= Exercise 2 still open until May 14 11.50pm
(incl. 7 late days, no submission is a mistake)

= Exercise 3 published and introduced today

= #3 CS Talks x4 (Jun 17 2019, 5pm, Aula Alte Technik)

= Claudia Wagner (University Koblenz-Landau,
Leibnitz Institute for the Social Sciences)

= Title: Minorities in Social and Information Networks
= Dinner opportunity for interested female students!

INF.01014UF Databases / 706.004 Databases 1 — 09 Transaction Processing
Matthias Boehm, Graz University of Technology, SS 2019

& TUbe

77.4%
53.7%

TU

Grazm

Announcements/Org, cont.

= #4 Infineon Summer School 2019
Sensor Systems

= Where: Infineon Technologies Austria,
Villach Carinthia, Austria

= \Who: BSc, MSc, PhD students from
different fields including business
informatics, computer science, and
electrical engineering

= \When: Aug 26 through 30, 2019
. . . SummerSchool 2019
[App||cat|on deadline: Jun 16’ 2019 Sensor Systems - “Sense the World!” - August 26 to 30, 2019

Where? Infineon Technologies Austria AG - Villach, Carinthia (Austria)

Sensor Systems \

What?

» Unparalleled insights into the world of Infinean sensors - covering automotive, magnetic and consumer sensors

L] s
= }#5 Po"- Date of F|na| Exam S S B0 P S A D
o kits provided by Infineon

» Practice & theory with top experts from Infineon and world-class professors
» Boost your career: Network and find topics for BSc-, MSc- and PhD-theses, internships or even a job for after you graduate

u We’ I I m Ove EXe rcise 4 to J u n 2 5 » PhD Pitches: Pitch your research topic to peers, industry experts and professors

Who?
» BSc, MSc and PhD students enrolled at an European university within the field of Physics, Chemistry, Process Enginesring,
¢, Busines

Electrical Engineering, Materials Science, Mathematic a Science, Statistics, Computer Scienc iness Informatics,
.
= Current date: Jun 24, 6pm e oo N Tenaag

Application deadline: June 16, 2019 (Attention: limited number of pariicipants)

= Alternatives: Jun 27, 4pm / 7.30pm, :iﬁneon

» World-class speakers, “Hackathon-Light” with hardware provided by Infineon, Networking
between students and Infineon experts, Lab tours & PhD Pitches, Social activities

or week starting Jul 8 (Erasmus?) R

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Grazm

Transaction (TX) Processing

User 2
User 1 User 3

#1 Multiple users
=» Correctness?

read/write TXs

#2 Various failures Deadlocks
(TX, system, media) Constraint
- REIiabIIItY? violations

-
(o)
n

Network
e_— - Crash/power ¢l re
Disk failure failure
= Goal: Basic Understanding of Transaction Processing
= Transaction processing from user perspective
= Locking and concurrency control to ensure #1 correctness
= |Logging and recovery to ensure #2 reliability
INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing .ISDS

Matthias Boehm, Graz University of Technology, SS 2019

TU

Grazm

Agenda

= QOverview Transaction Processing

= Locking and Concurrency Control

= Logging and Recovery

= Exercise 3: Tuning and Transactions

Additional Literature:

[Jim Gray, Andreas Reuter: Transaction Processing: Concepts and
Techniques. Morgan Kaufmann 1993]

[Gerhard Weikum, Gottfried Vossen: Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann 2002]

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Overview Transaction Processing

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Overview Transaction Processing -ErLa!.

Terminology of Transactions

= Database Transaction

= A transaction (TX) is a series of steps that brings a database from
a consistent state into another (not necessarily different) consistent state

= ACID properties (atomicity, consistency, isolation, durability)

#1 Isolation level (defined

= Terminology #2 Start/begin of TX (BOT) by addressed anomalies)

by Example |
START TRANSACTION ISOLATION LEVEL SERIALIZABLE;
UPDATE Account SET Balance=Balance-100
#3 Reads and writes of WHERE AID = 107;
data objects =~ UPDATE Account SET Balance=Balance+100
WHERE AID = 999;

#6 Savepoints

SELECT Balance INTO lbalance (checkpoint for
FROM Account WHERE AID=107; ;
> artial rollback
#4 Abort/rollback TX IF lbalance < © THEN P)
(unsuccessful end of ROLLBACK TRANSACTION;
transaction, EOT) END IF #5 Commit TX
COMMIT TRANSACTION; (successful end of

transaction, EOT)

Overview Transaction Processing -Erla'!l

Example OLTP Benchmarks

= Online Transaction Processing (OLTP)

= Write-heavy database workloads, primarily with point lookups/accesses

= financial, commercial, travel, medical, and governmental ops
= e.g., TPC-C, TPC-E, AuctionMark, SEATS (Airline), Voter
= Example TPC-C New Order Transaction:

1) Get records describing a

= 45% New-Ord i i
o New-Lrder warehouse (tax), customer, district

" 43% Payment 2) Update the district to increment

= 4% Order Status next available order number

= 4% Delivery 3) Insert record into Order and NewOrder
= 49 Stock Level 4) For All Items

a) Get item record (and price)

b) Get/update stock record
Eigzgfxﬂxffzgzé$ c) Insert OrderlLine record
odf/tpc-c v5.11.0.pdf] 5) Update total amount of order

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Overview Transaction Processing -I(;rla'!l

ACID Properties

= Atomicity
= A transaction is executed atomically ()

= |f the transaction fails/aborts no changes are made to the database (UNDO)

= Consistency

= A successful transaction ensures that all
(referential integrity, semantic/domain constraints)

= |solation

= Concurrent transactions are executed in isolation of each other

= Durability
= of all changes made by a successful transaction
= |n case of system failures, the database is recoverable (REDO)

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Overview Transaction Processing Grazm

Anomalies — Lost Update

TA1 updates points for TA2 updates points for
Exercise 1 Exercise 2

SELECT Pts INTO :points
FROM Students WHERE Sid=789; SELECT Pts INTO :points

FROM Students WHERE Sid=789;

points += 23.5;

points += 24.0;

UPDATE Students SET Pts=:points
WHERE Sid=789; UPDATE Students SET Pts=:points

COMMIT TRANSACTION; WHERE Sid=789;

COMMIT TRANSACTION;

y
_ % Student received 24
Time . .
instead of 47.5 points
= Problem: Write-write dependency (lost update 23.5)
. Exclusive lock on write
INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing .ISDS

Matthias Boehm, Graz University of Technology, SS 2019

TU

Overview Transaction Processing Grazm

Anomalies — Dirty Read

TA1 updates points for TA2 updates points for
Exercise 1 Exercise 2

UPDATE Students SET Pts=100
WHERE Sid=789;

_>SELECT Pts INTO :points
FROM Students WHERE Sid=789;

ROLLBACK TRANSACTION; points += 24.0;
= 24.0;

UPDATE Students SET Pts=:points
WHERE Sid=789;
COMMIT TRANSACTION;

\J

_ % Student received 124
Time

instead of 24 points
= Problem: Write-read dependency

= Solution: Read only committed changes; otherwise, cascading abort

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Overview Transaction Processing Grazm

Anomalies — Unrepeatable Read

TA1 updates points for TA2 runs statistics for
Exercise 1 Exercise 1

SELECT Pts INTO :pl
FROM Students WHERE Sid=789;

START TRANSACTION;
UPDATE Students SET Pts=Pts+23.5

WHERE Sid=789;

COMMIT TRANSACTION;

SELECT Pts INTO :p2

modified FROM Students WHERE Sid=789;
value e
COMMIT TRANSACTION;
y
_ TA2 sees only committed
Time data but analysis corrupted
= Problem: Read-write dependency as pll=p2

= Solution: TA works on consistent snapshot of touched records

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Overview Transaction Processing

TU

Grazm

Anomalies — Phantom

TA1l inserts missing
student

TA2 runs statistics for
Exercise 1

SELECT Avg(Pts) INTO :pl
FROM Students WHERE Sid<1000;

START TRANSACTION;
INSERT INTO Students
VALUES (999, ..., 0);
COMMIT TRANSACTION;

 \>

added row
(harder to track because
new database object)

\J

Time

SELECT Avg(Pts) INTO :p2
FROM Students WHERE Sid<1000;

COMMIT TRANSACTION;

TA2 sees only committed
data but analysis corrupted
as pll=p2

= Similar to non-repeatable read but at set level
(snapshot of accessed data objects not sufficient)

INF.01014UF Databases / 706.004 Databases 1 — 09 Transaction Processing
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

Overview Transaction Processing TU

Grazm

Isolation Levels

= Different Isolation Levels SET TRANSACTION
ISOLATION LEVEL

n i i
Tradeoff Isolation vs performance per session/TX READ COMMITTED

= SQL standard requires guarantee against lost updates for all

= SQL Standard Isolation Levels

Isolation Level Lost Dirty Unrepeatable | Phantom
Update Read Read Read

READ UNCOMMITTED

READ COMMITTED No No Yes Yes
REPEATABLE READ No No No Yes
[SERIALIZABLE] No No No No

= Serializable w/ highest guarantees (pseudo-serial execution)

= How can we enforce these isolation levels?

= User: set default/transaction isolation level (mixed TX workloads possible)
= System: dedicated concurrency control strategies + scheduler

TU

Overview Transaction Processing Grazm

Excursus: A Critique of SQL Isolation Levels

- Summary [Hal Berenson, Philip A. Bernstein,
o - - Jim Gray, Jim Melton, Elizabeth J.
= Critique: SQL standard isolation levels are O'Neil, Patrick E. O'Neil: A Critique

ambiguous (strict/broad interpretations) of ANSI SQL Isolation Levels.
- : : . SIGMOD 1995]
= Additional anomalies: dirty write, cursor lost update,

fuzzy read, read skew, write skew
= Additional isolation levels: and

= Snapshot Isolation (< Serializable)
u via multi-version concurrency control
= TXs reads data from a snapshot of committed data when TX started
= TXs never blocked on reads, other TXs data invisible

= TX T1 only commits if no other TX wrote the same data items
in the time interval of T1

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Overview Transaction Processing

TU

Grazm

= Default and Maximum
Isolation Levels for “ACID”
and “NewSQL” DBs
[as of 2013]

= 3/18 SERIALIZABLE
by default

= 8/18 did not provide
SERIALIZABLE at all

[Peter Bailis, Alan Fekete, Ali Ghodsi,
Joseph M. Hellerstein, lon Stoica: HAT,
Not CAP: Towards Highly Available

Transactions. HotOS 2013]

Beware of defaults, even though
the SQL standard says
SERIALIZABLE is the default

INF.01014UF Databases / 706.004 Databases 1 — 09 Transaction Processing

Excursus: Isolation Levels in Practice

Database Default Maximum
Actian Ingres 10.0/10S [1] S S
Aerospike [2] RC RC
Akiban Persistit [3] SI SI
Clustrix CLX 4100 [4] RR RR
Greenplum 4.1 [8] RC S
IBM DB2 10 for z/OS [5] CS S
IBM Informix 11.50 [9] Depends S
MySQL 5.6 [12] RR S
MemSQL 1b [10] RC RC
MS SQL Server 2012 [11] RC S
NuoDB [13] CR CR
Oracle 11g [14] RC SI
Oracle Berkeley DB [7] S S
Oracle Berkeley DB JE [6] RR S
Postgres 9.2.2 [15] RC S
SAP HANA [16] RC SI
ScaleDB 1.02 [17] RC RC
VoltDB [18] S S

RC: read committed, RR: repeatable read, SI: snapshot isola-
tion, S: serializability, CS: cursor stability, CR: consistent read

Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

Locking and Concurrency Control

(Consistency and Isolation)

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Locking and Concurrency Control -ErE!l

Overview Concurrency Control

= Terminology
= Lock: logical synchronization of TXs access to database objects (row, table, etc)
= Latch: physical synchronization of access to shared data structures

= #1 Pessimistic Concurrency Control
= Locking schemes (lock-based database scheduler)
= Full serialization of transactions

= #2 Optimistic Concurrency Control (OCC)
= QOptimistic execution of operations, check of conflicts (validation)
= QOptimistic and timestamp-based database schedulers

= #3 Mixed Concurrency Control (e.g., PostgreSQL)

= Combines locking and OCC ERROR: could not serialize access
due to concurrent update

u Mlght return synchronlzatlon errors ERROR: deadlock detected

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Locking and Concurrency Control -ErLa!.

Serializability Theory

= Operations of Transaction T,
" Read and write operations of A by T;: r;(A) w;(A)
= Abort of transaction T;: a; (unsuccessful termination of T))
= Commit of transaction T;: ¢; (successful termination of T))

= Schedule S
= Qperations of a transaction T, are executed in order i j
= Multiple transactions may be executed concurrently \ /
=» Schedule describes the total ordering of operations >

= Equivalence of Schedules S1 and S2
= Read-write, write-read, and write-write dependencies on data object A
executed in same order: ri(A) <o wi(A) & ri(A) < w;(A)
wi(4) <51 75(4) © wi(A) <sz 75(A)
w;i(4) <s; w;(4) © w;i(4) <g2 w;j(4)

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Locking and Concurrency Control -ErLa!.

Serializability Theory, cont.

= Example Serializable Schedules
" Input TXs T1l: BOT r;(A) w;(A) ry(B) w(B) ¢
T2: BOT r,(C) w,(C) 15(A) w,(A) ¢,
= Serial

execution r (A) wy(A) ri(B) wi(B) ¢y ry(C) wy(C) ry(A) wy(A) ¢,

= Equivalent r (A) r,(C) w,(A) W(C) ry(B) ry(A) wy(B) wy(A) c,
schedules
ry(A) w,(A) ry(C) wy,(C) ry(B) w,(B) ry(A) wy,(A) ¢, c,

o

= Serializability Graph (conflict graph)
= QOperation dependencies (read-write, write-read, write-write) aggregated
= Nodes: transactions; edges: transaction dependencies
= Transactions are serializable (via topological sort) if the graph is acyclic

= Beware: In < SERIALIZABLE, many equivalent schedules that give different
results than true serial execution (dirty read, unrepeatable read, phantom)

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Locking and Concurrency Control -ErLa!.

Locking Schemes

= Compatibility of Locks Existing Lock
= X-Lock (exclusive/write lock) -m““
= S-Lock (shared/read lock) Requested S Yes Yes No
Lock X Yes No No
= Multi-Granularity Locking IS
= Hierarchy of DB objects DE/\A IS
= Additional intentional IX and IS locks Table

A 1
SANA A

Row @ @ @ @ TN

 [Nome| s | X | IS | IX_
S Yes Yes No Yes No
X Yes No No No No

IS Yes Yes No Yes Yes
IX Yes No No Yes Yes

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Locking and Concurrency Control -ErLa!.

Two-Phase Locking (2PL)

= Overview
= 2PLis a concurrency protocol that guarantees SERIALIZABLE
= Expanding phase: acquire locks needed by the TX

= Shrinking phase: release locks acquired by the TX
(can only start if all needed locks acquired)

Phase 1 Phase 2
Expanding Shrinking

of locks

| —> Time
BOT EOT

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Locking and Concurrency Control -ErLa!.

Two-Phase Locking, cont.

= Strict 2PL (S2PL) and Strong Strict 2PL (SS2PL)
= Problem: Transaction rollback can cause (Dirty Read)
= Release all X-locks (S2PL) or X/S-locks (SSPL) at end of transaction (EOT)

I\
Strict 2PL prevents
of dirty reads and thus
locks cascading abort
| > Time
BOT EOT

= Strict 2PL w/ pre-claiming (aka conservative 2PL)
= Problem: incremental expanding can cause deadlocks for interleaved TXs

= Pre-claim all necessary locks (only possible if entire TX known)
I\

of Strict 2PL w/ preclaiming
locks prevents deadlocks

> Time
BOT EOT

Locking and Concurrency Control -Erla'!l

Deadlocks TX1 X2
= Deadlock Scenario lock R lock S
= Deadlocks of concurrent transactions lock S lock R
= Deadlocks happen due to cyclic blocks until TX2 | blocks until TX1
dependencies without pre-claiming releases S | releases R
(wait for exclusive locks) Time
= #1 Deadlock Prevention DEADLOCK, as this

v

= Guarantee that deadlocks can’t happen will never happen

= E.g, (but overhead and not always possible)

= #2 Deadlock Avoidance
= Attempts to avoid deadlocks before acquiring locks via timestamps per TX
| (T1 locks something hold by T2 = if T1<T2, restart T2)
| (T1 locks something hold by T2 = if T1>T2, abort T1 but keep TS)

= #3 Deadlock Detection
= Maintain a wait-for graph of blocked TX (similar to serializability graph)
= Detection of cycles in graph (on timeout) = abort one or many TXs

Locking and Concurrency Control TU

Grazm

Timestamp Ordering Great,
(no hot spots)

= Synchronization Scheme
= Transactions get timestamp (or version number) at BOT
= Each data object A has readTS(A) and writeTS(A)
= Use timestamp comparison to validate access, otherwise abort
= No locks but latches (physical synchronization)

" Read Protocol T;(A)
= If TS(T;) >= writeTS(A): , set readTS(A) = max(TS(T), readTS(A))
= If TS(T)) < writeTS(A): abort T; (older than last modifying TX)

= Write Protocol T;(A)

= If TS(T)) >= readTS(A) AND TS(T;) >= writeTS(A):
set writeTS(A)=TS(T;)

= If TS(T)) < readTS(A): abort T; (older than last reading TX)
= If TS(T)) < writeTS(A): abort T; (older than last modifying TX)

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Locking and Concurrency Control -Erla'!l

Optimistic Concurrency Control (OCC)

= Read Phase

= |nitial reads from DB,
" Maintain ReadSet(T;) and WriteSet(T;) per transaction T,
= TX seen as read-only transaction on database

= Validation Phase
= Check read/write and write/write conflicts, abort on conflicts
= BOCC (Backward-oriented concurrency control) — check all older TXs Ti

g if EOT(T;) < BOT(T}) or WSet(T;) N RSet(T;) = @
: EOT(T;) < BOT(T;) or WSet(T;) n WSet(T;) = @

= FOCC (Forward-oriented concurrency control) — check running TXs

= Write Phase

= Successful TXs with write operations propagate their local buffer
into the database and log

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Logging and Recovery

(Atomicity and Durability)

INF.01014UF Databases / 706.004 Databases 1 — 09 Transaction Processing
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

Logging and Recovery -Erla'!l

Failure Types and Recovery

= Transaction Failures
= E.g., Violated integrity constraints, abort
partial UNDO of this uncommitted TX

= System Failures (soft crash)
= E.g., HW or operating system crash, power outage
= Kills all in-flight transactions, but does not lose persistent data
partial REDO of all committed TXs
global UNDO of all uncommitted TXs

= Media Failures (hard crash)
= E.g., disk hard errors (non-restorable)
= Loses persistent data =2 need backup data (checkpoint)
global REDO of all committed TXs

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Logging and Recovery TU

Grazm

Database (Transaction) Log

= Database Architecture

= Write-Ahead Logging (WAL)

User 2

Page-oriented storage on disk and
in memory (DB buffer) DBMS

Dedicated eviction algorithms

DB Buffer Log

Modified in-memory pages marked as
dirty, flushed by cleaner thread P7 P3

Log: append-only TX changes

Buffer

Data/log often placed on different devices
and periodically archived (backup + truncate) P18 p7 B P3 ‘

Data Log

The log records representing changes to some (dirty)
data page must be on stable storage before the data page (UNDO - atomicity)

Force-log on commit or full buffer (REDO - durability)

Recovery: forward (REDO) and [C. Mohan, Donald J. Haderle, Bruce G. Lindsay,

backward (UNDO) processing of Hamid Pirahesh, Peter M. Schwarz: ARIES: A
Transaction Recovery Method Supporting Fine-
the Iog records Granularity Locking and Partial Rollbacks Using

Write-Ahead Logging. TODS 1992]

Logging and Recovery TU

Grazm

Logging Types and Recovery

= #1 Logical (Operation) Logging
= REDO: log operation (not data) to construct after state
= UNDO: inverse operations (e.g., increment/decrement), not stored
= Non-determinism cannot be handled, more flexibility on locking

= #2 Physical (Value) Logging UPDATE Emp

= REDO: log REDO (after) image of record or page SET Salary=Salary+100
WHERE Dep=‘R&D’;
= UNDO: log UNDO (before) image of record or page P

= Larger space overhead (despite page diff) for set-oriented updates

= Restart Recovery (ARIES)

= Conceptually: take database checkpoint and replay log since checkpoint

Operation and value locking; stores log seq. number (LSN, PagelD, PrevLSN)

Phase 1 Analysis: determine winner and loser transactions
Phase 2 Redo: replay all TXs in order [repeating history] = state at crash
Phase 3 Undo: replay uncommitted TXs (losers) in reverse order

Logging and Recovery -Erla!.

Excursus: Recovery on Storage Class Memory

3D XPoint
Memory

»
™,

= Background: Storage Class Memory (SCM)

= Byte-addressable, persistent memory with
higher capacity, but latency close to DRAM

= Examples: Resistive RAM, Magnetic RAM,
Phase-Change Memory (e.g., Intel 3D XPoint)

“', Electricity

B~ Selectors

ir—— Memory cells

= SOFORT: DB Recovery on SCM [Credit: https://computerhope.com]
= Simulated DBMS prototype on SCM
= |nstant recovery by trading TX throughput vs recovery time

= Configured: % of transient

data structures on SCM . T e .
- ﬂg, log Bl detabase £ 9
g = buffer 2 c < BB
@ G ® o BB
) A © T S Wt Y T = S T
——— [Ismail Oukid, Wolfgang Lehner, == > z 3],
| Thomas Kissinger, Thomas = & MR <
Willhalm, Peter Bumbulis: £ S < NEFTEES 2o
= o
’ : 3 > T s
Instant Recovery for Main g & < 5 g
Memory Databases. CIDR 2015] g 2 z2

a) Traditional Architecture b) SCM-enabled Architecture

Exercise 3:
Tuning and Transactions

Published: May 13
Deadline: Jun 4

INF.01014UF Databases / 706.004 Databases 1 — 09 Transaction Processing
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

Exercise 3: Tuning and Transactions -I(;rla'!l

Task 3.1 Indexing and Materialized Views

5/25

= Setup (help by) points

= We'll provide csv files for individual tables
= We'll provide the query for Q10

= #1 Indexing (Q: distinct club names for players w/ jnum<=3)
= Create and run the SQL query, obtain the text explain
= Create a secondary index on jersey number
= Re-run the SQL query, obtain the text explain, and describe the difference

= #2 Materialized Views (Q10)
= Create a materialized view that could speed up Q10

= Rewrite the SQL query to use the materialized view, obtain text explain, and
describe difference

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Exercise 3: Tuning and Transactions -I(;rla'!l

Task 3.2 B-Tree Insertion and Deletion

6/25

" Setup points

= SET seed TO 0.0<student_id>
SELECT * FROM generateseries(1,16) ORDER BY random();

= #3 B-Tree Insertion

= Draw the final b-tree after inserting your sequence in order
(e.g., with you favorite tool, by hand, or ASCI art)

= #4 B-Tree Deletion

= Draw the final b-tree after taking #3 and deleting the sequence
[8,14) in order of their values

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Exercise 3: Tuning and Transactions -I(;rla'!l

Task 3.3 Join Implementation

10/25

" Setup points

= Pick your favorite programming language
= Use existing/your own Tuple representation (int ID, other attributes)

= #5 Table Scan
= Created via Collection<Tuple> (or similar) as input
= |mplements a simple table scan via open(), next(), close()

= #6 Hash Join
= Created via two iterators (left and right) as input
= |mplement a hash join for multisets via open(), next(), close()

= #7 Nested Loop Join
= Created via two iterators (left and right) as input

= Implement a nested loop join for multisets
via open(), next(), close()

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Exercise 3: Tuning and Transactions -I(;rla'!l

Task 3.4 Transaction Processing

4/25
" Setup points
" Create tablesR(a INT, b INT) andS(a INT, b INT)
= #8 Simple Transaction
= Create a SQL transaction that atomically inserts
two tuples into R and three tuples into S
= #9 Deadlock
= Create two SQL transactions that can be execute interactively
to create a deadlock; annotate the order as comments
= Explain the reason for the deadlock
INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5
Matthias Boehm, Graz University of Technology, SS 2019 ISDS

TU

Grazm

Conclusions and Q&A

= Summary 09 Transaction Processing
= Qverview transaction processing
= Locking and concurrency control
= Logging and recovery

= Summary Part A: Database Systems
= Databases systems primarily from user perspective
= End of lectures for Databases 1 (but +1 ECTS if you attend entire course)
= Exercise 3 published, submission deadline June 4, 11.59pm

= Next Lectures (Part B: Modern Data Management)
= 10 NoSQL (key-value, document, graph) [May 20]
= 11 Distributed file systems and object storage [May 27]
= 12 Data-parallel computation (MapReduce, Spark) [Jun 03]
= 13 Data stream processing systems [Jun 17]

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

