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Announcements/Org

= #1 Video Recording

= Since lecture 03, video/audio recording
= Link in TeachCenter & TUbe

= #2 Exercises

= Exercise 1 graded, feedback in TC in next days

= Exercise 2 still open until May 14 11.50pm
(incl. 7 late days, no submission is a mistake)

= Exercise 3 published and introduced today

= #3 CS Talks x4 (Jun 17 2019, 5pm, Aula Alte Technik)

= Claudia Wagner (University Koblenz-Landau,
Leibnitz Institute for the Social Sciences)

= Title: Minorities in Social and Information Networks
= Dinner opportunity for interested female students!
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Announcements/Org, cont.

= #4 Infineon Summer School 2019
Sensor Systems

= Where: Infineon Technologies Austria,
Villach Carinthia, Austria

= \Who: BSc, MSc, PhD students from
different fields including business
informatics, computer science, and
electrical engineering

= \When: Aug 26 through 30, 2019
. . . SummerSchool 2019
[ App||cat|on deadline: Jun 16’ 2019 Sensor Systems - “Sense the World!” - August 26 to 30, 2019

Where? Infineon Technologies Austria AG - Villach, Carinthia (Austria)

Sensor Systems \

What?

» Unparalleled insights into the world of Infinean sensors - covering automotive, magnetic and consumer sensors

L] s
= }#5 Po"- Date of F|na| Exam S S B0 P S A D
o kits provided by Infineon

» Practice & theory with top experts from Infineon and world-class professors
» Boost your career: Network and find topics for BSc-, MSc- and PhD-theses, internships or even a job for after you graduate

u We’ I I m Ove EXe rcise 4 to J u n 2 5 » PhD Pitches: Pitch your research topic to peers, industry experts and professors

Who?
» BSc, MSc and PhD students enrolled at an European university within the field of Physics, Chemistry, Process Enginesring,
¢, Busines

Electrical Engineering, Materials Science, Mathematic a Science, Statistics, Computer Scienc iness Informatics,
.
= Current date: Jun 24, 6pm e oo N Tenaag

Application deadline: June 16, 2019 (Attention: limited number of pariicipants)

= Alternatives: Jun 27, 4pm / 7.30pm, :iﬁneon

» World-class speakers, “Hackathon-Light” with hardware provided by Infineon, Networking
between students and Infineon experts, Lab tours & PhD Pitches, Social activities

or week starting Jul 8 (Erasmus?) R
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Transaction (TX) Processing

User 2
User 1 User 3

#1 Multiple users
=» Correctness?

read/write TXs

#2 Various failures Deadlocks
(TX, system, media) Constraint
- REIiabIIItY? violations

-
(o)
n

Network
e_— - Crash/power ¢l re
Disk failure failure
= Goal: Basic Understanding of Transaction Processing
= Transaction processing from user perspective
= Locking and concurrency control to ensure #1 correctness
= |Logging and recovery to ensure #2 reliability
INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing .ISDS
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Agenda

= QOverview Transaction Processing

= Locking and Concurrency Control

= Logging and Recovery

= Exercise 3: Tuning and Transactions

Additional Literature:

[Jim Gray, Andreas Reuter: Transaction Processing: Concepts and
Techniques. Morgan Kaufmann 1993]

[Gerhard Weikum, Gottfried Vossen: Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann 2002]
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Overview Transaction Processing -ErLa!.

Terminology of Transactions

= Database Transaction

= A transaction (TX) is a series of steps that brings a database from
a consistent state into another (not necessarily different) consistent state

= ACID properties (atomicity, consistency, isolation, durability)

#1 Isolation level (defined

= Terminology #2 Start/begin of TX (BOT) by addressed anomalies)

by Example |
START TRANSACTION ISOLATION LEVEL SERIALIZABLE;
UPDATE Account SET Balance=Balance-100
#3 Reads and writes of WHERE AID = 107;
data objects =~ UPDATE Account SET Balance=Balance+100
WHERE AID = 999;

#6 Savepoints

SELECT Balance INTO lbalance (checkpoint for
FROM Account WHERE AID=107; ;
> artial rollback
#4 Abort/rollback TX IF lbalance < © THEN P )
(unsuccessful end of ROLLBACK TRANSACTION;
transaction, EOT) END IF #5 Commit TX
COMMIT TRANSACTION; (successful end of

transaction, EOT)



Overview Transaction Processing -Erla'!l

Example OLTP Benchmarks

= Online Transaction Processing (OLTP)

= Write-heavy database workloads, primarily with point lookups/accesses

= financial, commercial, travel, medical, and governmental ops
= e.g., TPC-C, TPC-E, AuctionMark, SEATS (Airline), Voter
= Example TPC-C New Order Transaction:

1) Get records describing a

= 45% New-Ord i i
o New-Lrder warehouse (tax), customer, district

" 43% Payment 2) Update the district to increment

= 4% Order Status next available order number

= 4% Delivery 3) Insert record into Order and NewOrder
= 49 Stock Level 4) For All Items

a) Get item record (and price)

b) Get/update stock record
Eigzgfxﬂxffzgzé$ c) Insert OrderlLine record
odf/tpc-c v5.11.0.pdf] 5) Update total amount of order
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Overview Transaction Processing -I(;rla'!l

ACID Properties

= Atomicity
= A transaction is executed atomically ( )

= |f the transaction fails/aborts no changes are made to the database (UNDO)

= Consistency

= A successful transaction ensures that all
(referential integrity, semantic/domain constraints)

= |solation

= Concurrent transactions are executed in isolation of each other

= Durability
= of all changes made by a successful transaction
= |n case of system failures, the database is recoverable (REDO)

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
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Anomalies — Lost Update

TA1 updates points for TA2 updates points for
Exercise 1 Exercise 2

SELECT Pts INTO :points
FROM Students WHERE Sid=789; SELECT Pts INTO :points

FROM Students WHERE Sid=789;

points += 23.5;

points += 24.0;

UPDATE Students SET Pts=:points
WHERE Sid=789; UPDATE Students SET Pts=:points

COMMIT TRANSACTION; WHERE Sid=789;

COMMIT TRANSACTION;

y
_ % Student received 24
Time . .
instead of 47.5 points
= Problem: Write-write dependency (lost update 23.5)
. Exclusive lock on write
INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing .ISDS
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Anomalies — Dirty Read

TA1 updates points for TA2 updates points for
Exercise 1 Exercise 2

UPDATE Students SET Pts=100
WHERE Sid=789;

\\\\\\\\\_>SELECT Pts INTO :points
FROM Students WHERE Sid=789;

ROLLBACK TRANSACTION; points += 24.0;
= 24.0;

UPDATE Students SET Pts=:points
WHERE Sid=789;
COMMIT TRANSACTION;

\J

_ % Student received 124
Time

instead of 24 points
= Problem: Write-read dependency

= Solution: Read only committed changes; otherwise, cascading abort

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
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Anomalies — Unrepeatable Read

TA1 updates points for TA2 runs statistics for
Exercise 1 Exercise 1

SELECT Pts INTO :pl
FROM Students WHERE Sid=789;

START TRANSACTION;
UPDATE Students SET Pts=Pts+23.5

WHERE Sid=789;

COMMIT TRANSACTION;

SELECT Pts INTO :p2

modified FROM Students WHERE Sid=789;
value e
COMMIT TRANSACTION;
y
_ TA2 sees only committed
Time data but analysis corrupted
= Problem: Read-write dependency as pll=p2

= Solution: TA works on consistent snapshot of touched records
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Anomalies — Phantom

TA1l inserts missing
student

TA2 runs statistics for
Exercise 1

SELECT Avg(Pts) INTO :pl
FROM Students WHERE Sid<1000;

START TRANSACTION;
INSERT INTO Students
VALUES (999, ..., 0);
COMMIT TRANSACTION;

 \>

added row
(harder to track because
new database object)

\J

Time

SELECT Avg(Pts) INTO :p2
FROM Students WHERE Sid<1000;

COMMIT TRANSACTION;

TA2 sees only committed
data but analysis corrupted
as pll=p2

= Similar to non-repeatable read but at set level
(snapshot of accessed data objects not sufficient)
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Isolation Levels

= Different Isolation Levels SET TRANSACTION
ISOLATION LEVEL

n i i
Tradeoff Isolation vs performance per session/TX READ COMMITTED

= SQL standard requires guarantee against lost updates for all

= SQL Standard Isolation Levels

Isolation Level Lost Dirty Unrepeatable | Phantom
Update Read Read Read

READ UNCOMMITTED

READ COMMITTED No No Yes Yes
REPEATABLE READ No No No Yes
[SERIALIZABLE] No No No No

= Serializable w/ highest guarantees (pseudo-serial execution)

= How can we enforce these isolation levels?

= User: set default/transaction isolation level (mixed TX workloads possible)
= System: dedicated concurrency control strategies + scheduler
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Excursus: A Critique of SQL Isolation Levels

- Summary [Hal Berenson, Philip A. Bernstein,
o - - Jim Gray, Jim Melton, Elizabeth J.
= Critique: SQL standard isolation levels are O'Neil, Patrick E. O'Neil: A Critique

ambiguous (strict/broad interpretations) of ANSI SQL Isolation Levels.
- : : . SIGMOD 1995]
= Additional anomalies: dirty write, cursor lost update,

fuzzy read, read skew, write skew
= Additional isolation levels: and

= Snapshot Isolation (< Serializable)
u via multi-version concurrency control
= TXs reads data from a snapshot of committed data when TX started
= TXs never blocked on reads, other TXs data invisible

= TX T1 only commits if no other TX wrote the same data items
in the time interval of T1

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
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= Default and Maximum
Isolation Levels for “ACID”
and “NewSQL” DBs
[as of 2013]

= 3/18 SERIALIZABLE
by default

= 8/18 did not provide
SERIALIZABLE at all

[Peter Bailis, Alan Fekete, Ali Ghodsi,
Joseph M. Hellerstein, lon Stoica: HAT,
Not CAP: Towards Highly Available

Transactions. HotOS 2013]

Beware of defaults, even though
the SQL standard says
SERIALIZABLE is the default

INF.01014UF Databases / 706.004 Databases 1 — 09 Transaction Processing

Excursus: Isolation Levels in Practice

Database Default Maximum
Actian Ingres 10.0/10S [1] S S
Aerospike [2] RC RC
Akiban Persistit [3] SI SI
Clustrix CLX 4100 [4] RR RR
Greenplum 4.1 [8] RC S
IBM DB2 10 for z/OS [5] CS S
IBM Informix 11.50 [9] Depends S
MySQL 5.6 [12] RR S
MemSQL 1b [10] RC RC
MS SQL Server 2012 [11] RC S
NuoDB [13] CR CR
Oracle 11g [14] RC SI
Oracle Berkeley DB [7] S S
Oracle Berkeley DB JE [6] RR S
Postgres 9.2.2 [15] RC S
SAP HANA [16] RC SI
ScaleDB 1.02 [17] RC RC
VoltDB [18] S S

RC: read committed, RR: repeatable read, SI: snapshot isola-
tion, S: serializability, CS: cursor stability, CR: consistent read

Matthias Boehm, Graz University of Technology, SS 2019
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Locking and Concurrency Control

(Consistency and Isolation)
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Locking and Concurrency Control -ErE!l

Overview Concurrency Control

= Terminology
= Lock: logical synchronization of TXs access to database objects (row, table, etc)
= Latch: physical synchronization of access to shared data structures

= #1 Pessimistic Concurrency Control
= Locking schemes (lock-based database scheduler)
= Full serialization of transactions

= #2 Optimistic Concurrency Control (OCC)
= QOptimistic execution of operations, check of conflicts (validation)
= QOptimistic and timestamp-based database schedulers

= #3 Mixed Concurrency Control (e.g., PostgreSQL)

= Combines locking and OCC ERROR: could not serialize access
due to concurrent update

u Mlght return synchronlzatlon errors ERROR: deadlock detected

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
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Locking and Concurrency Control -ErLa!.

Serializability Theory

= Operations of Transaction T,
" Read and write operations of A by T;: r;(A) w;(A)
= Abort of transaction T;: a; (unsuccessful termination of T))
= Commit of transaction T;: ¢; (successful termination of T))

= Schedule S
= Qperations of a transaction T, are executed in order i j
= Multiple transactions may be executed concurrently \ /
=» Schedule describes the total ordering of operations >

= Equivalence of Schedules S1 and S2
= Read-write, write-read, and write-write dependencies on data object A
executed in same order: ri(A) <o wi(A) & ri(A) < w;(A)
wi(4) <51 75(4) © wi(A) <sz 75(A)
w;i(4) <s; w;(4) © w;i(4) <g2 w;j(4)

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
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Locking and Concurrency Control -ErLa!.

Serializability Theory, cont.

= Example Serializable Schedules
" Input TXs T1l: BOT r;(A)  w;(A) ry(B) w(B) ¢
T2: BOT r,(C) w,(C) 15(A) w,(A) ¢,
= Serial

execution r (A) wy(A) ri(B) wi(B) ¢y ry(C) wy(C) ry(A) wy(A) ¢,

= Equivalent r (A) r,(C) w,(A) W(C) ry(B) ry(A) wy(B) wy(A) c,
schedules
ry(A) w,(A) ry(C) wy,(C) ry(B) w,(B) ry(A) wy,(A) ¢, c,

o

= Serializability Graph (conflict graph)
= QOperation dependencies (read-write, write-read, write-write) aggregated
= Nodes: transactions; edges: transaction dependencies
= Transactions are serializable (via topological sort) if the graph is acyclic

= Beware: In < SERIALIZABLE, many equivalent schedules that give different
results than true serial execution (dirty read, unrepeatable read, phantom)

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
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Locking and Concurrency Control -ErLa!.

Locking Schemes

= Compatibility of Locks Existing Lock
= X-Lock (exclusive/write lock) -m““
= S-Lock (shared/read lock) Requested S Yes Yes No
Lock X Yes No No
= Multi-Granularity Locking IS
= Hierarchy of DB objects DE/\A IS
= Additional intentional IX and IS locks Table

A 1
SANA A

Row @ @ @ @ TN

 [Nome| s | X | IS | IX_
S Yes Yes No Yes No
X Yes No No No No

IS Yes Yes No Yes Yes
IX Yes No No Yes Yes

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing .ISDS
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Locking and Concurrency Control -ErLa!.

Two-Phase Locking (2PL)

= Overview
= 2PLis a concurrency protocol that guarantees SERIALIZABLE
= Expanding phase: acquire locks needed by the TX

= Shrinking phase: release locks acquired by the TX
(can only start if all needed locks acquired)

Phase 1 Phase 2
Expanding Shrinking

# of locks

| —> Time
BOT EOT

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
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Locking and Concurrency Control -ErLa!.

Two-Phase Locking, cont.

= Strict 2PL (S2PL) and Strong Strict 2PL (SS2PL)
= Problem: Transaction rollback can cause (Dirty Read)
= Release all X-locks (S2PL) or X/S-locks (SSPL) at end of transaction (EOT)

I\
Strict 2PL prevents
# of dirty reads and thus
locks cascading abort
| > Time
BOT EOT

= Strict 2PL w/ pre-claiming (aka conservative 2PL)
= Problem: incremental expanding can cause deadlocks for interleaved TXs

= Pre-claim all necessary locks (only possible if entire TX known)
I\

# of Strict 2PL w/ preclaiming
locks prevents deadlocks

> Time
BOT EOT



Locking and Concurrency Control -Erla'!l

Deadlocks TX1 X2
= Deadlock Scenario lock R lock S
= Deadlocks of concurrent transactions lock S lock R
= Deadlocks happen due to cyclic blocks until TX2 | blocks until TX1
dependencies without pre-claiming releases S | releases R
(wait for exclusive locks) Time
= #1 Deadlock Prevention DEADLOCK, as this

v

= Guarantee that deadlocks can’t happen will never happen

= E.g, (but overhead and not always possible)

= #2 Deadlock Avoidance
= Attempts to avoid deadlocks before acquiring locks via timestamps per TX
| (T1 locks something hold by T2 = if T1<T2, restart T2)
| (T1 locks something hold by T2 = if T1>T2, abort T1 but keep TS)

= #3 Deadlock Detection
= Maintain a wait-for graph of blocked TX (similar to serializability graph)
= Detection of cycles in graph (on timeout) = abort one or many TXs
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Timestamp Ordering Great,
(no hot spots)

= Synchronization Scheme
= Transactions get timestamp (or version number) at BOT
= Each data object A has readTS(A) and writeTS(A)
= Use timestamp comparison to validate access, otherwise abort
= No locks but latches (physical synchronization)

" Read Protocol T;(A)
= If TS(T;) >= writeTS(A): , set readTS(A) = max(TS(T), readTS(A))
= If TS(T)) < writeTS(A): abort T; (older than last modifying TX)

= Write Protocol T;(A)

= If TS(T)) >= readTS(A) AND TS(T;) >= writeTS(A):
set writeTS(A)=TS(T;)

= If TS(T)) < readTS(A): abort T; (older than last reading TX)
= If TS(T)) < writeTS(A): abort T; (older than last modifying TX)

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
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Locking and Concurrency Control -Erla'!l

Optimistic Concurrency Control (OCC)

= Read Phase

= |nitial reads from DB,
" Maintain ReadSet(T;) and WriteSet(T;) per transaction T,
= TX seen as read-only transaction on database

= Validation Phase
= Check read/write and write/write conflicts, abort on conflicts
= BOCC (Backward-oriented concurrency control) — check all older TXs Ti

g if EOT(T;) < BOT(T}) or WSet(T;) N RSet(T;) = @
: EOT(T;) < BOT(T;) or WSet(T;) n WSet(T;) = @

= FOCC (Forward-oriented concurrency control) — check running TXs

= Write Phase

= Successful TXs with write operations propagate their local buffer
into the database and log

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
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Logging and Recovery

(Atomicity and Durability)
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Logging and Recovery -Erla'!l

Failure Types and Recovery

= Transaction Failures
= E.g., Violated integrity constraints, abort
partial UNDO of this uncommitted TX

= System Failures (soft crash)
= E.g., HW or operating system crash, power outage
= Kills all in-flight transactions, but does not lose persistent data
partial REDO of all committed TXs
global UNDO of all uncommitted TXs

= Media Failures (hard crash)
= E.g., disk hard errors (non-restorable)
= Loses persistent data =2 need backup data (checkpoint)
global REDO of all committed TXs

INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5 ISDS
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Database (Transaction) Log

= Database Architecture

= Write-Ahead Logging (WAL)

User 2

Page-oriented storage on disk and
in memory (DB buffer) DBMS

Dedicated eviction algorithms

DB Buffer Log

Modified in-memory pages marked as
dirty, flushed by cleaner thread P7  P3

Log: append-only TX changes

Buffer

Data/log often placed on different devices
and periodically archived (backup + truncate) P18 p7 B P3 ‘

Data Log

The log records representing changes to some (dirty)
data page must be on stable storage before the data page (UNDO - atomicity)

Force-log on commit or full buffer (REDO - durability)

Recovery: forward (REDO) and [C. Mohan, Donald J. Haderle, Bruce G. Lindsay,

backward (UNDO) processing of Hamid Pirahesh, Peter M. Schwarz: ARIES: A
Transaction Recovery Method Supporting Fine-
the Iog records Granularity Locking and Partial Rollbacks Using

Write-Ahead Logging. TODS 1992]
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Logging Types and Recovery

= #1 Logical (Operation) Logging
= REDO: log operation (not data) to construct after state
= UNDO: inverse operations (e.g., increment/decrement), not stored
= Non-determinism cannot be handled, more flexibility on locking

= #2 Physical (Value) Logging UPDATE Emp

= REDO: log REDO (after) image of record or page SET Salary=Salary+100
WHERE Dep=‘R&D’;
= UNDO: log UNDO (before) image of record or page P

= Larger space overhead (despite page diff) for set-oriented updates

= Restart Recovery (ARIES)

= Conceptually: take database checkpoint and replay log since checkpoint

Operation and value locking; stores log seq. number (LSN, PagelD, PrevLSN)

Phase 1 Analysis: determine winner and loser transactions
Phase 2 Redo: replay all TXs in order [repeating history] = state at crash
Phase 3 Undo: replay uncommitted TXs (losers) in reverse order



Logging and Recovery -Erla!.

Excursus: Recovery on Storage Class Memory

3D XPoint
Memory

»
™,

= Background: Storage Class Memory (SCM)

= Byte-addressable, persistent memory with
higher capacity, but latency close to DRAM

= Examples: Resistive RAM, Magnetic RAM,
Phase-Change Memory (e.g., Intel 3D XPoint)

“', Electricity

B~ Selectors

ir—— Memory cells

= SOFORT: DB Recovery on SCM [Credit: https://computerhope.com]
= Simulated DBMS prototype on SCM
= |nstant recovery by trading TX throughput vs recovery time

= Configured: % of transient

data structures on SCM . T e .
- ﬂg, log Bl  detabase £ 9
g = buffer 2 c < BB
@ G ® o BB
) A © T S Wt Y T = S T
——— [Ismail Oukid, Wolfgang Lehner, == > z 3],
| Thomas Kissinger, Thomas = & MR <
Willhalm, Peter Bumbulis: £ S < NEFTEES 2o
= o
’ : 3 > T s
Instant Recovery for Main g & < 5 g
Memory Databases. CIDR 2015] g 2 z2

a) Traditional Architecture b) SCM-enabled Architecture



Exercise 3:
Tuning and Transactions

Published: May 13
Deadline: Jun 4

INF.01014UF Databases / 706.004 Databases 1 — 09 Transaction Processing
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS



Exercise 3: Tuning and Transactions -I(;rla'!l

Task 3.1 Indexing and Materialized Views

5/25

= Setup (help by ) points

= We'll provide csv files for individual tables
= We'll provide the query for Q10

= #1 Indexing (Q: distinct club names for players w/ jnum<=3)
= Create and run the SQL query, obtain the text explain
= Create a secondary index on jersey number
= Re-run the SQL query, obtain the text explain, and describe the difference

= #2 Materialized Views (Q10)
= Create a materialized view that could speed up Q10

= Rewrite the SQL query to use the materialized view, obtain text explain, and
describe difference
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Exercise 3: Tuning and Transactions -I(;rla'!l

Task 3.2 B-Tree Insertion and Deletion

6/25

" Setup points

= SET seed TO 0.0<student_id>
SELECT * FROM generateseries(1,16) ORDER BY random();

= #3 B-Tree Insertion

= Draw the final b-tree after inserting your sequence in order
(e.g., with you favorite tool, by hand, or ASCI art)

= #4 B-Tree Deletion

= Draw the final b-tree after taking #3 and deleting the sequence
[8,14) in order of their values
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Exercise 3: Tuning and Transactions -I(;rla'!l

Task 3.3 Join Implementation

10/25

" Setup points

= Pick your favorite programming language
= Use existing/your own Tuple representation (int ID, other attributes)

= #5 Table Scan
= Created via Collection<Tuple> (or similar) as input
= |mplements a simple table scan via open(), next(), close()

= #6 Hash Join
= Created via two iterators (left and right) as input
= |mplement a hash join for multisets via open(), next(), close()

= #7 Nested Loop Join
= Created via two iterators (left and right) as input

= Implement a nested loop join for multisets
via open(), next(), close()
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Exercise 3: Tuning and Transactions -I(;rla'!l

Task 3.4 Transaction Processing

4/25
" Setup points
" Create tablesR(a INT, b INT) andS(a INT, b INT)
= #8 Simple Transaction
= Create a SQL transaction that atomically inserts
two tuples into R and three tuples into S
= #9 Deadlock
= Create two SQL transactions that can be execute interactively
to create a deadlock; annotate the order as comments
= Explain the reason for the deadlock
INF.01014UF Databases / 706.004 Databases 1 —09 Transaction Processing 5
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Conclusions and Q&A

= Summary 09 Transaction Processing
= Qverview transaction processing
= Locking and concurrency control
= Logging and recovery

= Summary Part A: Database Systems
= Databases systems primarily from user perspective
= End of lectures for Databases 1 (but +1 ECTS if you attend entire course)
= Exercise 3 published, submission deadline June 4, 11.59pm

= Next Lectures (Part B: Modern Data Management)
= 10 NoSQL (key-value, document, graph) [May 20]
= 11 Distributed file systems and object storage [May 27]
= 12 Data-parallel computation (MapReduce, Spark) [Jun 03]
= 13 Data stream processing systems [Jun 17]
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