Database Systems
10 NoSQL Systems

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: May 20, 2019

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

"ISDS

TU

Grazm

Announcements/Org

= #1 Video Recording

= Since lecture 03, video/audio recording
= Link in TeachCenter & TUbe

= #2 Exercises
= Exercise 1 graded, feedback in TC, office hours
= Exercise 2 in progress of being graded
= Exercise 3 published, due Jun 04, 11.59pm

= #3 Exam Dates

" Jun 24, 4pm, HSi13 Exam starts +10min,
= Jun 27, 4pm, HSi13 working time: 90min
= Jun 27, 7.30pm, HS i13 (no lecture materials)

= Additional dates for repetition
(beginning of WS19)

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, SS 2019

& TUbe

77.4%
60.4%

"ISDS

TU

Grazm

SQL vs NoSQL Motivation

= #1 Data Models/Schema

= Non-relational: key-value, graph, doc, time series
(logs, social media, documents/media, sensors) \]

* |mpedance mismatch / complexity HEEE
= Pay-as-you-go/schema-free (flexible/implicit)

= #2 Scalability
= Scale-up vs simple scale-out
= Horizontal partitioning (sharding) and scaling

= Commodity hardware, network, disks (S)

= NoSQL Evolution
= Late 2000s: Non-relational, distributed, open source DBMSs
= Early 2010s: NewSQL: modern, distributed, relational DBMSs
= Not Only SQL: combination with relational techniques

[Credit: http://nosql-

=» RDBMS and specialized systems (consistency/data models) database.org/]
INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Grazm

Agenda

= Consistency and Data Models HOW TO WRITE A CV
= Key-Value Stores Lack of
= Document Stores standards
= Graph Processing and imprecise
classification

= Time Series Databases

geek & poke
=
-
'I
—/
=

DOESN'T
MATTER.
WRITE:
"EXPERT IN
NO s@L"

[Wolfram Wingerath, Felix Gessert, Norbert Ritter:
wasmsmonmeses | NOSQL & Real-Time Data Management in Research
P & Practice. BTW 2019]

Leverage the NoSQL boom

. -— Baliend

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Consistency and Data Models

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

Consistency and Data Models TU

Grazm

Recap: ACID Properties

= Atomicity
= A transaction is executed atomically ()

= |f the transaction fails/aborts no changes are made to the database (UNDO)

= Consistency

= A successful transaction ensures that all
(referential integrity, semantic/domain constraints)

= |solation

= Concurrent transactions are executed in isolation of each other

= Durability
= of all changes made by a successful transaction
= |n case of system failures, the database is recoverable (REDO)

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Consistency and Data Models Graza

Two-Phase Commit (2PC) Protocol

= Distributed TX Processing

= N nodes with logically related but physically distributed data
(e.g., vertical data partitioning)

= Distributed TX processing to ensure consistent view (atomicity/durability)

= Two-Phase Commit (via 2N msgs)
= Phase 1 PREPARE: check for coordinator m
successful completion, logging

= Phase 2 COMMIT: release locks,
and other cleanups

= Problem: Blocking protocol

= Excursus: Wedding Analogy
= Coordinator: marriage registrar
= Phase 1: Ask for willingness
= Phase 2: If all willing, declare marriage

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Consistency and Data Models -ErLa!.

CAP Theorem

= Consistency
= Visibility of updates to distributed data (atomic or linearizable consistency)
= Different from ACIDs consistency in terms of integrity constraints

Availability

= Responsiveness of a services (clients reach available service, read/write)

Partition Tolerance
= Tolerance of temporarily unreachable network partitions
= System characteristics (e.g., latency) maintained

CAP Theorem “You can have AT MOST TWO of [Eric A. Brewer: Towards
these pr Operties for a networked robust distributed systems
shared-data systems ” (abstract). PODC 2000]

[Seth Gilbert, Nancy A. Lynch: Brewer's conjecture
and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News 2002]

Proof

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Consistency and Data Models TU

Grazm

CAP Theorem, cont.

. L . write A —
= CA: Consistency & Availability (ACID single node)

= Network partitions cannot be tolerated

= Visibility of updates (consistency) in conflict
with availability = no distributed systems

= CP: Consistency & Partition Tolerance (ACID distributed)
= Availability cannot be guaranteed

read A

= On connection failure, unavailable
(wait for overall system to become consistent)

= AP: Availability & Partition Tolerance (BASE)
= Consistency cannot be guaranteed, use of optimistic strategies

= Simple to implement, main concern: availability to ensure revenue ($SS)
=» BASE consistency model

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Consistency and Data Models TU

BASE Properties

= Basically Available

= , potentially with outdated data
= No guarantee on global data consistency across entire system

= Soft State

= Even without explicit state updates, the data might change due to
asynchronous propagation of updates and nodes that become available

= Eventual Consistency

= Updates eventually propagated, system would reach consistent state if no
further updates, and network partitions fixed

= No temporal guarantees on changes are propagated

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Consistency and Data Models -ErLa!.

EVE nt U a I CO n S | Ste n Cy [Peter Bailis, Ali Ghodsi: Eventual

consistency today: limitations, extensions,

. and beyond. Commun. ACM 2013]
= Basic Concept

= Changes made to a copy eventually migrate to all

= |f update activity stops, replicas will

_) Amazon SimpleDB 500ms
converge to a logically equivalent state

Cassandra 200ms

= [Metric: time to reach consistency Amazon S3 12s

(probabilistic bounded staleness)

#1 Monotonic Read Consistency

= After reading data object A, the client never reads an older version

#2 Monotonic Write Consistency

= After writing data object A, it will never be replaced with an other version

#3 Read Your Own Writes / Session Consistency

= After writing data object A, a client never reads an older version

#4 Causal Consistency

= |f client 1 communicated to client 2 that data object A has been updated,
subsequent reads on client 2 return the new value

TU

Grazm

Key-Value Stores

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

TU

Key-Value Stores Graza

Motivation and Terminology

= Motivation

= Basic key-value mapping via simple APl (more complex data models
can be mapped to key-value representations)

= Reliability at massive scale on commodity HW (cloud computing)

= System Architecture users:1:a “Inffeldgasse 13, Graz”

= Key-value maps, where values
can be of a variety of data types BEEEIERHY “[12, 34, 45, 67, 89]”

= APIs for CRUD operations @~~~ """~ ~~""""°"°"""°"°"""-"-"-""-""-"-CT"C
(create, read, update, delete) users:2:a “MandellstraBe 12, Graz”

= Scalability via sharding
(horizontal partitioning)

users:2:b “[12, 212, 3212, 43212]”

= Example Systems

al: Dynamo: amazon's

= Dynamo (2007, AP) > Amazon DynamoDB (2012) [Giuseppe DeCandia et e
= Redis (2009, CP/AP) - highly available key- | .
é rEdlS . value store. SOSP 2007]

TU

Key-Value Stores Graza

Example Systems

= Redis Data Types a redis

= Redis is not a plain KV-store, but “data structure server” with
persistent log (appendfsync no/everysec/always)

= Key: ASCII string (max 512MB, common key schemes: comment:1234:reply.to)
= Values: strings, lists, sets, sorted sets, hashes (map of string-string), etc

= Redis APIs
= SET/GET/DEL: insert a key-value pair, lookup value by key, or delete by key
= MSET/MGET: insert or lookup multiple keys at once
= INCRBY/DECBY: increment/decrement counters
= QOthers: EXISTS, LPUSH, LPOP, LRANGE, LTRIM, LLEN, etc

= Other systems -ﬁridk

= Classic KV stores (AP): Riak, Aerospike, Voldemort, = seeeeei
LevelDB, RocksDB, FoundationDB, Memcached

= Wide-column stores: Google BigTable (CP),

Apache HBase (CP), Apache Cassandra (AP) a e o c e @ P 2 E;

cassandra

===
FOUNDATIONDB

Key-Value Stores TU

Grazm

LOg-Stru Ctu rEd M e rge Trees [Patrick E. O'Neil, Edward Cheng,

Dieter Gawlick, Elizabeth J. O'Neil:
The Log-Structured Merge-Tree

= LSM Overview (LSM-Tree). Acta Inf. 1996]

= Many KV-stores rely on LSM-trees as their storage engine
(e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)

= Approach: Buffers writes in memory, flushes data as sorted runs to storage,
merges runs into larger runs of next level (compaction)

= System Architecture

= Writes in CO in-memory
. buffer (C0)

= Reads against max capacity T
C0 and C1 pactty

= Compaction
(rolling merge):
sort, merge,
including
deduplication

on-disk
storage (C1)

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Key-Value Stores

= LSM Tiering

= Keep up to T-1 runs per level L

= Merge all runs of L, into 1 run of L,

||
v | | |G

" 13 ---

= LSM Leveling

= Keep 1 run per level L
= Merge run of Li with Li+1

=11 B

Log-structured Merge Trees, cont.

TU
Grazm
optimized
A
2 &
8 & Basic read'
Q LSM-tree optimized
Y
@]
L) Sorted
S eve/”’g array

Insertion cost

[Niv Dayan: Log-Structured-

Log-Structured-Merge Trees
Merge Trees, Comp115 | =~ ~o--

guest lecture, 2017]

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

TU

Grazm

Document Stores

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

TU

Document Stores Graza
18 . . .
. Recap: JSON (JavaScript Object Notation)
= JSON Data Model {“students:”[
{“id”: 1, “courses”:[
= Data exchange format for (“id“:“INF.01014UF”, “name®:“Databases”},
semi-structured data {id“:“706.550”, “name“:“AMLS”}]},

{“1d”: 5, “courses”:|[

| |
Not as verbose as XML {“1d“:706.004, “name“:“Databases 1”}]},

(especially for arrays) 1}
= Popular format (e.g., Twitter)

* Query Languages JSONiq Example:
= Most common: libraries for declare option jsonig-version “..”;
tree traversal and data extraction for $x in collection(“students”)
. . : where $x.id 1t 10
JSONig: XQuery-like query language let $c := count($x.courses)

= JSONPath: XPath-like query language return {“sid”:$x.id, “count”:$c}

[http://www.jsonig.org/docs/JSONig/html-single/index.html]

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Document Stores Graza

Motivation and Terminology

= Motivation

= Application-oriented management of structured, semi-structured, and
unstructured information (pay-as-you-go, schema evolution)

= Scalability via parallelization on commodity HW (cloud computing)

{customer:”Jane Smith”,
items:[{name:”P1”,price:49},
{name:”P2”,price:19}]}

= System Architecture 1234

= Collections of (key, document)

= Scalability via sharding

(horizontal partitioning) {customer:”John Smith”, ...}
= Custom SQL-likeor @ === --------mmmo oo —mmmm—————-
functional query languages {customer:”Jane Smith”, ...}
= Example Systems
= MongoDB (C++, 2007, CP) - RethinkDB, Espresso, . IIlOIlgODB

Amazon DocumentDB (Jan 2019) K: ;.‘ elastic

= CouchDB (Erlang, 2005, AP) - CouchBase
CouchDB

Document Stores -ErLa!.

Exa m p I e M O ngo D B [Credit: https://api.mongodb.com/
python/current]
= Creating import pymongo as m
a Collection conn = m.MongoClient(“mongodb://localhost:123/")

db = conn[“dbs19”] # database dbs19
cust = db[“customers”] # collection customers

= Inserting into mdict = {
a Collection “name®: “Jane Smith”,
“address”: “Inffeldgasse 13, Graz”
}

id = cust.insert_one(mdict).inserted_id
ids = cust.insert_many(mlist).inserted_ids

= Querying print(cust.find one({" _id": id}))

a Collection : :
ret = cust.find({"name": "Jane Smith"})
for x in ret:

print(x)

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Grazm

Graph Processing

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

Graph Processing TU

Grazm

Motivation and Terminology

= Ubiquitous Graphs
= Domains: social networks, open/linked data, knowledge bases, bioinformatics
= Applications: influencer analysis, ranking, topology analysis . #:.

= Terminology

= Graph G = (V, E) of vertices V (set of nodes)
and edges E (set of links between nodes)

= Different types of graphs

Undirected Directed Multi Labeled Data/Property
Graph Graph Graph Graph Graph
kl=v1
o\. ® \Q\;\.J k2=v2
;S \ o :
Gene Inter k2=v3
acts
INF.01014UF Datab / 706.004 Datab 1-10 NoSQL Syst

Matthias Zjei?;iSGraz Universialc;o?f'l'(:::hnology, C;S 201»53S o IISDS

Graph Processing -Erla'!l

Terminology and Graph Characteristics

= Terminology, cont.
n Sequence of edges and vertices (allows repeated edges/vertices)
= Closed walk, i.e., a walk that starts and ends at the same vertex
= Subgraph of vertices where every two distinct vertices are adjacent

= Metrics
= Degree (in/out-degree): number of 4
incoming/outgoing edges of that vertex out-

= Diameter: Maximum distance of pairs of vertices degree 2
(longest shortest-path)

= Power Law Distribution Tall e.g., 80-20
= Degree of most real graphs follows head rule
a power law distribution .
Long tail
INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Graph Processing

TU

Grazm

Vertex-Centric Processing

= Google Pregel

= Name: Seven Bridges of Koenigsberg (Euler 1736)

= “Think-like-a-vertex” computation model

= |terative processing in super steps, comm.: message passing

*= Programming Model

= Represent graph as collection of
vertices w/ edge (adjacency) lists

= |mplement algorithms via Vertex API

= Terminate if all vertices halted / no more msgs

public abstract class Vertex {

public
public
public

public
public
public

String getID();
long superstep();
VertexValue getValue();

compute(Iterator<Message> msgs);
sendMsgTo(String v, Message msg);
void voteToHalt();

[Grzegorz Malewicz et al: Pregel:

a system for large-scale graph
processing. SIGMOD 2010]

@000

Worker

[2]

Q00

Graph Processing -ErLa!.

Vertex-Centric Processing, cont.

= Examplel: Connected Components
= Determine connected components of a graph (subgraphs of connected nodes)

= Propagate max(current, msgs) if != current to neighbors, terminate if no msgs

Step 0 Step 1 Step 2 Step 3
9 converged

o0 e oe

= Example 2: Page Rank y W C--- N
= Ranking of webpages by importance / impact 5“3) j\. B, e as
= #1: Initialize vertices to 1/numVertices() T / i

= #2: In each super step -i'ag“\

" Compute current vertex value:

value = 0.15/numVertices()+0.85*sum(msg) "':_'T-E\J/,;-',,@ Al &
= Send to all neighbors: [Credit: https://en.

value/numOutgoingEdges() wikipedia.org/wiki/PageRank]

Graph Processing -ErLa!.

Graph-Centric Processing

= Motivation

= Exploit graph structure for algorithm-specific optimizations
(number of network messages, scheduling overhead for super steps)

= Large diameter / average vertex degree

= Programming Model vg_g

= Partition graph into subgraphs (block/graph)
= |Implement algorithm directly against

subgraphs (internal and boundary nodes) ‘
= Exchange messages in super steps only
between boundary nodes =» faster convergence Worker Worker
1 2

|
|
|
|
[Yuanyuan Tian, Andrey Balmin, Severin Andreas :
Corsten, Shirish Tatikonda, John McPherson: From "Think :

Like a Vertex" to "Think Like a Graph". PVLDB 2013]

| [DaYan, James Cheng, Yi Lu, Wilfred Ng: Blogel: A Block- Worker
Centric Framework for Distributed Computation on Real- 3
World Graphs. PVLDB 2014]

Graph Processing -ErLa!.

Resource Description Framework (RDF)

uril:Bayern
* RDF Data

= Data and meta data description via triples uria#tworksFor

Triple: (subject, predicate, object)

Triple components can be URIs or literals
Formats: e.g., RDF/XML, RDF/JSON, Turtle
RDF graph is a directed, labeled multigraph

rdffitype uri4#age

" Querying RDF Data SELECT ‘person
= SPARQL (SPARQL WHERE {
Protocol And RDF ’person rdf:type uri3:Player ;
Query Language) uri4:worksFor uril:”Bayern Munich” .

= Subgraph matching

= Selected aWs Amazon Neptune AIIegroGra ph *Spa rksee

Example Systems S ()\
& %As;m “Yena

Graph Processing

TU

Grazm

Example Systems

= Understanding Use in Practice
= Types of graphs user have
= Graph computations run
= Types of graph systems used
[Siddhartha Sahu, Amine Mhedhbi,
Semih Salihoglu, Jimmy Lin, M.
Tamer Ozsu: The Ubiquity of Large

Graphs and Surprising Challenges of
Graph Processing. PVLDB 2017]

= Summary of State of the Art
Runtime Techniques

turs yx -c:>

create intelligence™

rientDB

An SAP Company

Technology Software # Users
ArrangoDB [3] 40
Caley [8] 14
Graph Database DGraph [14] 33 533
System JanusGraph [33] 327
Neodj [48] 69
OrientDB [53] 45
Apache Jena [38] 87
RDF Engine Sparksee [64] 51115
Virtuoso [67] 23
N Apache Flink (Gelly) [17] 24
E;;iﬁ?:i’f EC:: ll:lpnhc Apache Giraph [21] 8 39
e e Apache Spark (GraphX) [27] | 7
Query Language Gremlin [28] 82| 82
Graph for Scala [22] 4
GraphStream [24] 8
. . Graphtool [25] 28
Graph Library NetworKit [30] o] 7’
NetworkX [51] 27
SNAP [62] 20
Graph Visualization gly toscape [13] % 116
asticsearch 73
(X-Pack Graph) [16] =
Graph Representation | Conceptual Graphs [11] 6 6

[Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande,

James Cheng: Big Graph Analytics Systems.
SIGMOD 2016]

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, SS 2019

®
»
®
O
I~

e
"l A

- §ubge BTae
"v,"..'n‘.‘
-
‘s
»,

@)

)
(ne]

J

e,
o
7
[[3
-
[4
ap
(]
v

Spa
Graph X

'»‘u--

d
Couchbase

Big Graph Analytics Systems

e

TU

Grazm

Time Series Databases

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, SS 2019

"ISDS

Time Series Databases TU

Grazm

Motivation and Terminology

= Ubiquitous Time Series

= Domains: Internet-of-Things (loT), sensor networks, smart production/planet,
telemetry, stock trading, server/application metrics, event/log streams

= Applications: monitoring, anomaly detection, time series forecasting
= Dedicated storage and analysis techniques = Specialized systems

= Terminology

regular
= Time series X is a sequence of data 00000
points x; for a specific measurement 1s 1s
identity (e.g., sensor) and time granularity
= Regular (equidistant) time series (x,) ——00 @ e >
vs irregular time series (t;, x.) irregular

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, SS 2019

Time Series Databases -I(;rE!l

Example InfluxDB @ influxdb

Measurement

[Paul Dix: InfluxDB
Storage Engine Internals,
CMU Seminar, 09/2017]

= Input Data cpu,region=west, host=A — Tags
user=85,sys=2,idle=10 1443782126

T Attribut lues) ™~ Ti
= System Architecture ributes (values) Time

= Written Go, originally key-value store, now dedicated storage engine
= Time Structured Merge Tree (TSM), similar to LSM
= QOrganized in shards, TSM indexes and inverted index for reads

append-only Index per TSM file:
fsync Header | Blocks | Index |Foote\r
KeyLen | Key | Type | Min T | Max T| Off | ...

periodic
flushes compaction &
compression periodic drop of shards
TSM A (files) according to
Indexes AA AA retention policy
INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems .ISDS

Matthias Boehm, Graz University of Technology, SS 2019

Time Series Databases TU

Example InfluxDB, cont.

= Compression (of blocks)

= (Type | Len | Timestamps | Values)
= Timestamps: Run-length encoding for regular time series;
Simple8B or uncompressed for irregular

= Values: double delta for FP64, bits for Bool, double delta + zig zag for INT64,
Snappy for strings

= Query Processing SELECT percentile(90, user)
= SQL-like and functional APIs for FROM cpu WHERE time>now()-12h

g 4 , AND “region”=‘west’
iltering (e.g., range) and aggregation GROUP BY time(16m), host
" |nverted indexes

Posting lists:
Measurement to fields: cpu —2 [1,2,3,4,5,6]
cpu =2 [user,sys,idle] host=A 2 [1,2,3]
host 2 [A, B] host=B = [4,5,6]
Region = [west, east] region=west =2 [1,2,3]

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

Time Series Databases TU

Grazm

Other Systems

Prometheus

= Metrics, high-dim data model, sharding and federation 9 Prometheus
custom storage and query engine, implemented in Go

= OpenTSDB EEES
| L
= TSDB on top of HBase or Google BigTable, Hadoop rn OPEN
= TimescaleDB

&) TIMESCALE

= TSDB on top of PostgreSQL, standard SQL and reliability

= Druid _
. . . ") druid
= Column-oriented storage for time series, OLAP, and search -

IBM Event Store

= HTAP system for high data ingest rates, [Ronald Barber et al: Evolving
. . Databases for New-Gen Big
and data-parallel analytics via Spark

Data Applications. CIDR 2017]
= Shard-local logs =2 groomed data

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019

TU

Grazm

Conclusions and Q&A

= Summary 10 NoSQL Systems
= Consistency and Data Models
= Key-Value and Document Stores
= Graph and Time Series Databases

= Next Lectures (Part B: Modern Data Management)
= 11 Distributed file systems and object storage [May 27]
= 12 Data-parallel computation (MapReduce, Spark) [May 27]
= 13 Data stream processing systems [Jun 03]
= Jun 17: Q&A and exam preparation

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems .ISDS
Matthias Boehm, Graz University of Technology, SS 2019

