

Database Systems 10 NoSQL Systems

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science **BMVIT** endowed chair for Data Management

Last update: May 20, 2019

SCIENCE **PASSION**

Announcements/Org

#1 Video Recording

Since lecture 03, video/audio recording

Link in TeachCenter & TUbe

#2 Exercises

Exercise 1 graded, feedback in TC, office hours

Exercise 2 in progress of being graded

Exercise 3 published, due Jun 04, 11.59pm

#3 Exam Dates

Jun 24, 4pm, HS i13

Jun 27, 4pm, HS i13

Jun 27, 7.30pm, HS i13

 Additional dates for repetition (beginning of WS19)

77.4%

60.4%

Exam starts +10min, working time: 90min (no lecture materials)

SQL vs NoSQL Motivation

#1 Data Models/Schema

- Non-relational: key-value, graph, doc, time series (logs, social media, documents/media, sensors)
- Impedance mismatch / complexity
- Pay-as-you-go/schema-free (flexible/implicit)

#2 Scalability

- Scale-up vs simple scale-out
- Horizontal partitioning (sharding) and scaling
- Commodity hardware, network, disks (\$)

NoSQL Evolution

- Late 2000s: Non-relational, distributed, open source DBMSs
- Early 2010s: NewSQL: modern, distributed, relational DBMSs
- Not Only SQL: combination with relational techniques
- → RDBMS and specialized systems (consistency/data models)

[Credit: http://nosql-database.org/]

Agenda

- Consistency and Data Models
- Key-Value Stores
- Document Stores
- Graph Processing
- Time Series Databases

Lack of standards and imprecise classification

HOW TO WRITE A CV

Leverage the NoSQL boom

[Wolfram Wingerath, Felix Gessert, Norbert Ritter: NoSQL & Real-Time Data Management in Research & Practice. **BTW 2019**]

Consistency and Data Models

Recap: ACID Properties

Atomicity

- A transaction is executed atomically (completely or not at all)
- If the transaction fails/aborts no changes are made to the database (UNDO)

Consistency

 A successful transaction ensures that all consistency constraints are met (referential integrity, semantic/domain constraints)

Isolation

- Concurrent transactions are executed in isolation of each other
- Appearance of serial transaction execution

Durability

- Guaranteed persistence of all changes made by a successful transaction
- In case of system failures, the database is recoverable (REDO)

Two-Phase Commit (2PC) Protocol

Distributed TX Processing

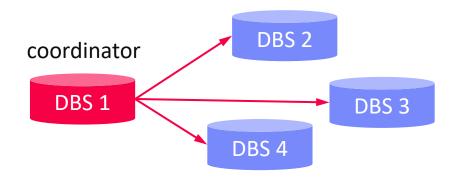
- N nodes with logically related but physically distributed data (e.g., vertical data partitioning)
- Distributed TX processing to ensure consistent view (atomicity/durability)

Two-Phase Commit (via 2N msgs)

- Phase 1 PREPARE: check for successful completion, logging
- Phase 2 COMMIT: release locks, and other cleanups
- Problem: Blocking protocol

Excursus: Wedding Analogy

- Coordinator: marriage registrar
- Phase 1: Ask for willingness
- Phase 2: If all willing, declare marriage



CAP Theorem

Consistency

- Visibility of updates to distributed data (atomic or linearizable consistency)
- Different from ACIDs consistency in terms of integrity constraints

Availability

Responsiveness of a services (clients reach available service, read/write)

Partition Tolerance

- Tolerance of temporarily unreachable network partitions
- System characteristics (e.g., latency) maintained
- CAP Theorem "You can have AT MOST TWO of these properties for a networked shared-data systems."

[Eric A. Brewer: Towards robust distributed systems (abstract). **PODC 2000**]

Proof

[Seth Gilbert, Nancy A. Lynch: Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services. **SIGACT News 2002**]

CAP Theorem, cont.

- CA: Consistency & Availability (ACID single node)
 - Network partitions cannot be tolerated
 - Visibility of updates (consistency) in conflict with availability → no distributed systems

- write A 1 2 3 4 5 d) read A
- CP: Consistency & Partition Tolerance (ACID distributed)
 - Availability cannot be guaranteed
 - On connection failure, unavailable (wait for overall system to become consistent)
- AP: Availability & Partition Tolerance (BASE)
 - Consistency cannot be guaranteed, use of optimistic strategies
 - Simple to implement, main concern: availability to ensure revenue (\$\$\$)
 - **→** BASE consistency model

BASE Properties

Basically Available

- Major focus on availability, potentially with outdated data
- No guarantee on global data consistency across entire system

Soft State

 Even without explicit state updates, the data might change due to asynchronous propagation of updates and nodes that become available

Eventual Consistency

- Updates eventually propagated, system would reach consistent state if no further updates, and network partitions fixed
- No temporal guarantees on changes are propagated

Eventual Consistency

[Peter Bailis, Ali Ghodsi: Eventual consistency today: limitations, extensions, and beyond. **Commun. ACM 2013**]

Basic Concept

- Changes made to a copy eventually migrate to all
- If update activity stops, replicas will converge to a logically equivalent state
- Metric: time to reach consistency (probabilistic bounded staleness)

Amazon SimpleDB	500ms
Cassandra	200ms
Amazon S3	12s

#1 Monotonic Read Consistency

After reading data object A, the client never reads an older version

#2 Monotonic Write Consistency

After writing data object A, it will never be replaced with an other version

#3 Read Your Own Writes / Session Consistency

After writing data object A, a client never reads an older version

#4 Causal Consistency

If client 1 communicated to client 2 that data object A has been updated, subsequent reads on client 2 return the new value

Key-Value Stores

Motivation and Terminology

Motivation

- Basic key-value mapping via simple API (more complex data models can be mapped to key-value representations)
- Reliability at massive scale on commodity HW (cloud computing)

System Architecture

Key-value maps, where values can be of a variety of data types

 APIs for CRUD operations (create, read, update, delete)

Scalability via sharding (horizontal partitioning) users:1:a "Inffeldgasse 13, Graz"

users:1:b "[12, 34, 45, 67, 89]"

users:2:a "Mandellstraße 12, Graz"

users:2:b "[12, 212, 3212, 43212]"

Example Systems

- **Dynamo** (2007, AP) → **Amazon DynamoDB** (2012)
- Redis (2009, CP/AP)

[Giuseppe DeCandia et al: Dynamo: amazon's highly available key-value store. SOSP 2007]

Example Systems

Redis Data Types

- Redis is not a plain KV-store, but "data structure server" with persistent log (appendfsync no/everysec/always)
- Key: ASCII string (max 512MB, common key schemes: comment:1234:reply.to)
- Values: strings, lists, sets, sorted sets, hashes (map of string-string), etc

Redis APIs

- SET/GET/DEL: insert a key-value pair, lookup value by key, or delete by key
- MSET/MGET: insert or lookup multiple keys at once
- INCRBY/DECBY: increment/decrement counters
- Others: EXISTS, LPUSH, LPOP, LRANGE, LTRIM, LLEN, etc.

Other systems

 Classic KV stores (AP): Riak, Aerospike, Voldemort, LevelDB, RocksDB, FoundationDB, Memcached

Wide-column stores: Google BigTable (CP),
 Apache HBase (CP), Apache Cassandra (AP)

Log-structured Merge Trees

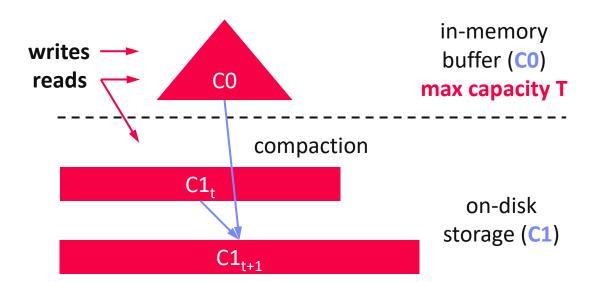
[Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth J. O'Neil: The Log-Structured Merge-Tree (LSM-Tree). **Acta Inf. 1996**]

LSM Overview

- Many KV-stores rely on LSM-trees as their storage engine
 (e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)
- Approach: Buffers writes in memory, flushes data as sorted runs to storage, merges runs into larger runs of next level (compaction)

System Architecture

- Writes in C0
- Reads againstC0 and C1
- Compaction (rolling merge): sort, merge, including deduplication



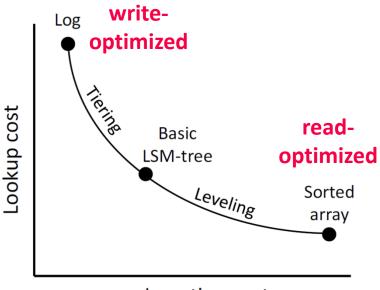
Log-structured Merge Trees, cont.

LSM Tiering

- Keep up to T-1 runs per level L
- Merge all runs of L_i into 1 run of L_{i+1}
 - L1 🔢
 - L2
 - L3

LSM Leveling

- Keep 1 run per level L
- Merge run of Li with Li+1
 - L1
 - L2
 - L3



Insertion cost

[Niv Dayan: Log-Structured-Merge Trees, Comp115 guest lecture, 2017]

Document Stores

Recap: JSON (JavaScript Object Notation)

JSON Data Model

- Data exchange format for semi-structured data
- Not as verbose as XML (especially for arrays)

Popular format (e.g., Twitter)

Query Languages

- Most common: libraries for tree traversal and data extraction
- JSONig: XQuery-like query language
- JSONPath: XPath-like query language

JSONiq Example:

```
declare option jsoniq-version "...";
for $x in collection("students")
  where $x.id lt 10
  let $c := count($x.courses)
  return {"sid":$x.id, "count":$c}
```

[http://www.jsoniq.org/docs/JSONiq/html-single/index.html]

Motivation and Terminology

Motivation

- Application-oriented management of structured, semi-structured, and unstructured information (pay-as-you-go, schema evolution)
- Scalability via parallelization on commodity HW (cloud computing)

System Architecture

- Collections of (key, document)
- Scalability via sharding (horizontal partitioning)
- Custom SQL-like or functional query languages

Example Systems

- MongoDB (C++, 2007, CP) → RethinkDB, Espresso,
 Amazon DocumentDB (Jan 2019)
- CouchDB (Erlang, 2005, AP) → CouchBase

Example MongoDB

[Credit: https://api.mongodb.com/
python/current]

Creating a Collection

```
import pymongo as m
conn = m.MongoClient("mongodb://localhost:123/")
db = conn["dbs19"]  # database dbs19
cust = db["customers"] # collection customers
```

Inserting into a Collection

```
mdict = {
    "name": "Jane Smith",
    "address": "Inffeldgasse 13, Graz"
}
id = cust.insert_one(mdict).inserted_id
# ids = cust.insert_many(mlist).inserted_ids
```

Querying a Collection

```
print(cust.find_one({"_id": id}))

ret = cust.find({"name": "Jane Smith"})
for x in ret:
    print(x)
```


Graph Processing

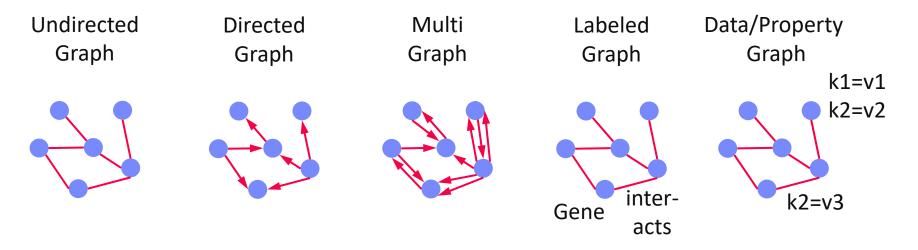
Motivation and Terminology

Ubiquitous Graphs

- Domains: social networks, open/linked data, knowledge bases, bioinformatics
- Applications: influencer analysis, ranking, topology analysis

Terminology

- Graph G = (V, E) of vertices V (set of nodes)
 and edges E (set of links between nodes)
- Different types of graphs



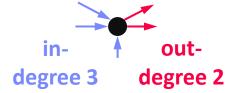
Terminology and Graph Characteristics

Terminology, cont.

- Path: Sequence of edges and vertices (walk: allows repeated edges/vertices)
- Cycle: Closed walk, i.e., a walk that starts and ends at the same vertex
- Clique: Subgraph of vertices where every two distinct vertices are adjacent

Metrics

- Degree (in/out-degree): number of incoming/outgoing edges of that vertex
- Diameter: Maximum distance of pairs of vertices (longest shortest-path)



Power Law Distribution

 Degree of most real graphs follows a power law distribution

Vertex-Centric Processing

[Grzegorz Malewicz et al: Pregel: a system for large-scale graph processing. SIGMOD 2010]

Google Pregel

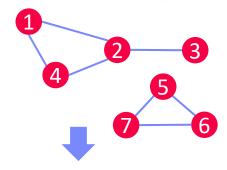
- Name: Seven Bridges of Koenigsberg (Euler 1736)
- "Think-like-a-vertex" computation model
- Iterative processing in super steps, comm.: message passing

Programming Model

- Represent graph as collection of vertices w/ edge (adjacency) lists
- Implement algorithms via Vertex API
- Terminate if all vertices halted / no more msgs

```
public abstract class Vertex {
  public String getID();
  public long superstep();
  public VertexValue getValue();

  public compute(Iterator<Message> msgs);
  public sendMsgTo(String v, Message msg);
  public void voteToHalt();
}
```

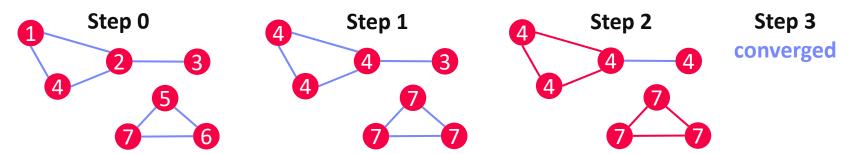


- **2** [1, 3, 4]
- **7** [5, 6] Worker
- **4** [1, 2]
- 1 [1, 2, 4]
- **6**, 7]
- 3 [2] Worker 2
- **6** [5, 7]

Vertex-Centric Processing, cont.

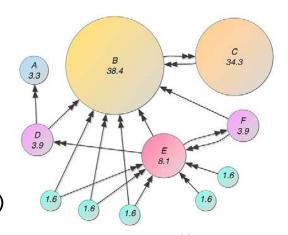
Example1: Connected Components

- Determine connected components of a graph (subgraphs of connected nodes)
- Propagate max(current, msgs) if != current to neighbors, terminate if no msgs



Example 2: Page Rank

- Ranking of webpages by importance / impact
- #1: Initialize vertices to 1/numVertices()
- #2: In each super step
 - Compute current vertex value: value = 0.15/numVertices()+0.85*sum(msg)
 - Send to all neighbors: value/numOutgoingEdges()



[Credit: https://en. wikipedia.org/wiki/PageRank]

Graph-Centric Processing

Motivation

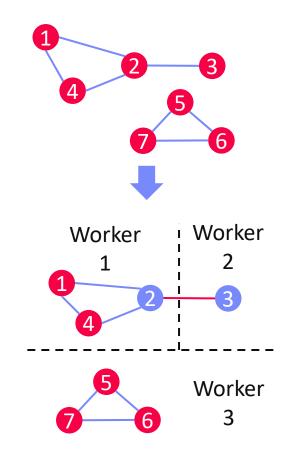
- Exploit graph structure for algorithm-specific optimizations (number of network messages, scheduling overhead for super steps)
- Large diameter / average vertex degree

Programming Model

- Partition graph into subgraphs (block/graph)
- Implement algorithm directly against subgraphs (internal and boundary nodes)
- Exchange messages in super steps only between boundary nodes → faster convergence

[Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, John McPherson: From "Think Like a Vertex" to "Think Like a Graph". **PVLDB 2013**]

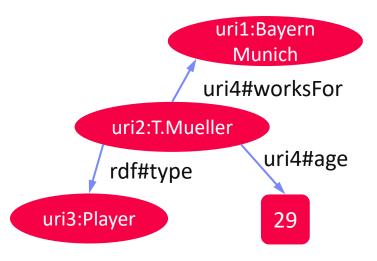
[Da Yan, James Cheng, Yi Lu, Wilfred Ng: Blogel: A Block-Centric Framework for Distributed Computation on Real-World Graphs. **PVLDB 2014**]



Resource Description Framework (RDF)

RDF Data

- Data and meta data description via triples
- Triple: (subject, predicate, object)
- Triple components can be URIs or literals
- Formats: e.g., RDF/XML, RDF/JSON, Turtle
- RDF graph is a directed, labeled multigraph



Querying RDF Data

- SPARQL (SPARQL Protocol And RDF Query Language)
- Subgraph matching

SelectedExample Systems

Example Systems

- Understanding Use in Practice
 - Types of graphs user have
 - Graph computations run
 - Types of graph systems used

No Stephen	,474	and put	-	-
Salario de	200	1000		
-				
\$10,905				
			586	A110
				经 .
		123		92

[Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, M. Tamer Özsu: The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing. **PVLDB 2017**]

Technology	Software		# Users	
Graph Database System	ArrangoDB [3]	40		
	Caley [8]	14		
	DGraph [14]	33	233	
	JanusGraph [35]	32		
	Neo4j [48]	69		
	OrientDB [53]	45		
RDF Engine	Apache Jena [38]	87		
	Sparksee [64]	5	115	
	Virtuoso [67]	23	1	
Distributed Graph	Apache Flink (Gelly) [17]	24		
	Apache Giraph [21]	8	39	
Processing Engine	Apache Spark (GraphX) [27]	7		
Query Language	Gremlin [28]	82	82	
Graph Library	Graph for Scala [22]	4		
	GraphStream [24]	8	97	
	Graphtool [25]	28		
	NetworKit [50]	10		
	NetworkX [51]	27		
	SNAP [62]	20		
Graph Visualization	Cytoscape [13]	93 116		
Graph visualization	Elasticsearch	23	110	
	(X-Pack Graph) [16]	23		
Graph Representation	Conceptual Graphs [11]	6	6	

Summary of State of the Art Runtime Techniques

[Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, James Cheng: Big Graph Analytics Systems. SIGMOD 2016]

Time Series Databases

Motivation and Terminology

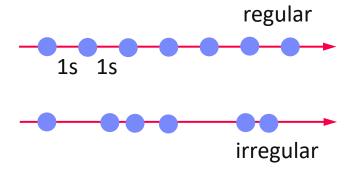
Ubiquitous Time Series

- Domains: Internet-of-Things (IoT), sensor networks, smart production/planet, telemetry, stock trading, server/application metrics, event/log streams
- Applications: monitoring, anomaly detection, time series forecasting
- Dedicated storage and analysis techniques → Specialized systems

Terminology

 Time series X is a sequence of data points x_i for a specific measurement identity (e.g., sensor) and time granularity

Regular (equidistant) time series (x_i)
 vs irregular time series (t_i, x_i)



Example InfluxDB

Measurement

Time

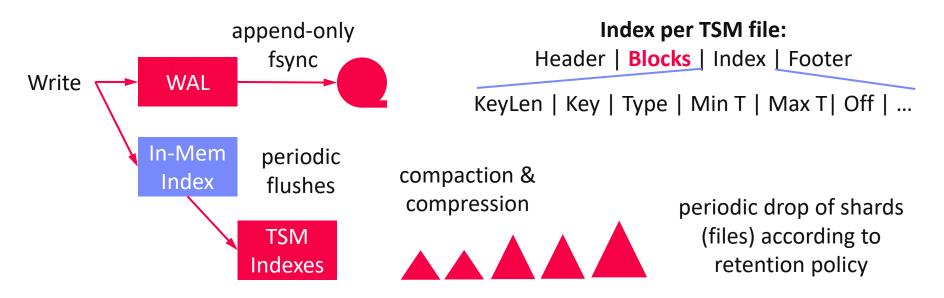
 [Paul Dix: InfluxDB Storage Engine Internals, CMU Seminar, 09/2017]

System Architecture

Written Go, originally key-value store, now dedicated storage engine

Attributes (values)

- Time Structured Merge Tree (TSM), similar to LSM
- Organized in shards, TSM indexes and inverted index for reads



Example InfluxDB, cont.

- Compression (of blocks)
 - Compress up to 1000 values per block (Type | Len | Timestamps | Values)
 - Timestamps: Run-length encoding for regular time series;
 Simple8B or uncompressed for irregular
 - Values: double delta for FP64, bits for Bool, double delta + zig zag for INT64,
 Snappy for strings

Query Processing

 SQL-like and functional APIs for filtering (e.g., range) and aggregation FROM cpu WHERE time>now()-12h
AND "region"='west'
GROUP BY time(10m), host

Inverted indexes

Posting lists:

Measurement to fields: cpu
$$\rightarrow$$
 [1,2,3,4,5,6]
cpu \rightarrow [user,sys,idle] host=A \rightarrow [1,2,3]
host \rightarrow [A, B] host=B \rightarrow [4,5,6]
Region \rightarrow [west, east] region=west \rightarrow [1,2,3]

Other Systems

Prometheus

 Metrics, high-dim data model, sharding and federation custom storage and query engine, implemented in Go

OpenTSDB

TSDB on top of HBase or Google BigTable, Hadoop

TimescaleDB

TSDB on top of PostgreSQL, standard SQL and reliability

Druid

Column-oriented storage for time series, OLAP, and search

IBM Event Store

- HTAP system for high data ingest rates, and data-parallel analytics via Spark
- Shard-local logs → groomed data

[Ronald Barber et al: Evolving Databases for New-Gen Big Data Applications. **CIDR 2017**]

Conclusions and Q&A

- Summary 10 NoSQL Systems
 - Consistency and Data Models
 - Key-Value and Document Stores
 - Graph and Time Series Databases
- Next Lectures (Part B: Modern Data Management)
 - 11 Distributed file systems and object storage [May 27]
 - 12 Data-parallel computation (MapReduce, Spark) [May 27]
 - 13 Data stream processing systems [Jun 03]
 - Jun 17: Q&A and exam preparation

