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Announcements/Org

= #1 Video Recording

= Since lecture 03, video/audio recording
= Link in TeachCenter & TUbe

= #2 Exercises
= Exercise 1 graded, feedback in TC, office hours
= Exercise 2 in progress of being graded
= Exercise 3 published, due Jun 04, 11.59pm

= #3 Exam Dates

" Jun 24, 4pm, HSi13 Exam starts +10min,
= Jun 27, 4pm, HSi13 working time: 90min
= Jun 27, 7.30pm, HS i13 (no lecture materials)

= Additional dates for repetition
(beginning of WS19)
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SQL vs NoSQL Motivation

= #1 Data Models/Schema

= Non-relational: key-value, graph, doc, time series
(logs, social media, documents/media, sensors) \ ]

* |mpedance mismatch / complexity HEEE
= Pay-as-you-go/schema-free (flexible/implicit)

= #2 Scalability
= Scale-up vs simple scale-out
= Horizontal partitioning (sharding) and scaling

= Commodity hardware, network, disks (S)

= NoSQL Evolution
= Late 2000s: Non-relational, distributed, open source DBMSs
= Early 2010s: NewSQL: modern, distributed, relational DBMSs
= Not Only SQL: combination with relational techniques

[Credit: http://nosql-

=» RDBMS and specialized systems (consistency/data models) database.org/]
INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019



TU

Grazm

Agenda

= Consistency and Data Models HOW TO WRITE A CV
= Key-Value Stores Lack of
= Document Stores standards
= Graph Processing and imprecise
classification

= Time Series Databases

geek & poke
=
-
'I
—/
=

DOESN'T
MATTER.
WRITE:
"EXPERT IN
NO s@L"

[Wolfram Wingerath, Felix Gessert, Norbert Ritter:
wasmsmonmeses | NOSQL & Real-Time Data Management in Research
P & Practice. BTW 2019]

Leverage the NoSQL boom

. -— Baliend
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Recap: ACID Properties

= Atomicity
= A transaction is executed atomically ( )

= |f the transaction fails/aborts no changes are made to the database (UNDO)

= Consistency

= A successful transaction ensures that all
(referential integrity, semantic/domain constraints)

= |solation

= Concurrent transactions are executed in isolation of each other

= Durability
= of all changes made by a successful transaction
= |n case of system failures, the database is recoverable (REDO)
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Two-Phase Commit (2PC) Protocol

= Distributed TX Processing

= N nodes with logically related but physically distributed data
(e.g., vertical data partitioning)

= Distributed TX processing to ensure consistent view (atomicity/durability)

= Two-Phase Commit (via 2N msgs)
= Phase 1 PREPARE: check for coordinator m
successful completion, logging

= Phase 2 COMMIT: release locks,
and other cleanups

= Problem: Blocking protocol

= Excursus: Wedding Analogy
= Coordinator: marriage registrar
= Phase 1: Ask for willingness
= Phase 2: If all willing, declare marriage
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Consistency and Data Models -ErLa!.

CAP Theorem

= Consistency
= Visibility of updates to distributed data (atomic or linearizable consistency)
= Different from ACIDs consistency in terms of integrity constraints

Availability

= Responsiveness of a services (clients reach available service, read/write)

Partition Tolerance
= Tolerance of temporarily unreachable network partitions
= System characteristics (e.g., latency) maintained

CAP Theorem “You can have AT MOST TWO of [Eric A. Brewer: Towards
these pr Operties for a networked robust distributed systems
shared-data systems ” (abstract). PODC 2000]

[Seth Gilbert, Nancy A. Lynch: Brewer's conjecture
and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News 2002]

Proof
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CAP Theorem, cont.

. L . write A —
= CA: Consistency & Availability (ACID single node)

= Network partitions cannot be tolerated

= Visibility of updates (consistency) in conflict
with availability = no distributed systems

= CP: Consistency & Partition Tolerance (ACID distributed)
= Availability cannot be guaranteed

read A

= On connection failure, unavailable
(wait for overall system to become consistent)

= AP: Availability & Partition Tolerance (BASE)
= Consistency cannot be guaranteed, use of optimistic strategies

= Simple to implement, main concern: availability to ensure revenue ($SS)
=» BASE consistency model
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Consistency and Data Models TU

BASE Properties

= Basically Available

= , potentially with outdated data
= No guarantee on global data consistency across entire system

= Soft State

= Even without explicit state updates, the data might change due to
asynchronous propagation of updates and nodes that become available

= Eventual Consistency

= Updates eventually propagated, system would reach consistent state if no
further updates, and network partitions fixed

= No temporal guarantees on changes are propagated
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Consistency and Data Models -ErLa!.

EVE nt U a I CO n S | Ste n Cy [Peter Bailis, Ali Ghodsi: Eventual

consistency today: limitations, extensions,

. and beyond. Commun. ACM 2013]
= Basic Concept

= Changes made to a copy eventually migrate to all

= |f update activity stops, replicas will

_ ) Amazon SimpleDB 500ms
converge to a logically equivalent state

Cassandra 200ms

= [Metric: time to reach consistency Amazon S3 12s

(probabilistic bounded staleness)

#1 Monotonic Read Consistency

= After reading data object A, the client never reads an older version

#2 Monotonic Write Consistency

= After writing data object A, it will never be replaced with an other version

#3 Read Your Own Writes / Session Consistency

= After writing data object A, a client never reads an older version

#4 Causal Consistency

= |f client 1 communicated to client 2 that data object A has been updated,
subsequent reads on client 2 return the new value
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Key-Value Stores
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Motivation and Terminology

= Motivation

= Basic key-value mapping via simple APl (more complex data models
can be mapped to key-value representations)

= Reliability at massive scale on commodity HW (cloud computing)

= System Architecture users:1:a “Inffeldgasse 13, Graz”

= Key-value maps, where values
can be of a variety of data types BEEEIERHY “[12, 34, 45, 67, 89]”

= APIs for CRUD operations @~~~ """~ ~~""""°"°"""°"°"""-"-"-""-""-"-CT"C
(create, read, update, delete) users:2:a “MandellstraBe 12, Graz”

= Scalability via sharding
(horizontal partitioning)

users:2:b “[12, 212, 3212, 43212]”

= Example Systems

al: Dynamo: amazon's

= Dynamo (2007, AP) > Amazon DynamoDB (2012)  [Giuseppe DeCandia et e
= Redis (2009, CP/AP) - highly available key- | .
é rEdlS . value store. SOSP 2007]
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Example Systems

= Redis Data Types a redis

= Redis is not a plain KV-store, but “data structure server” with
persistent log (appendfsync no/everysec/always)

= Key: ASCII string (max 512MB, common key schemes: comment:1234:reply.to)
= Values: strings, lists, sets, sorted sets, hashes (map of string-string), etc

= Redis APIs
= SET/GET/DEL: insert a key-value pair, lookup value by key, or delete by key
= MSET/MGET: insert or lookup multiple keys at once
= INCRBY/DECBY: increment/decrement counters
= QOthers: EXISTS, LPUSH, LPOP, LRANGE, LTRIM, LLEN, etc

= Other systems -ﬁridk

= Classic KV stores (AP): Riak, Aerospike, Voldemort, = seeeeei
LevelDB, RocksDB, FoundationDB, Memcached

= Wide-column stores: Google BigTable (CP),

Apache HBase (CP), Apache Cassandra (AP) a e o c e @ P 2 E;

cassandra

===
FOUNDATIONDB
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LOg-Stru Ctu rEd M e rge Trees [Patrick E. O'Neil, Edward Cheng,

Dieter Gawlick, Elizabeth J. O'Neil:
The Log-Structured Merge-Tree

= LSM Overview (LSM-Tree). Acta Inf. 1996]

= Many KV-stores rely on LSM-trees as their storage engine
(e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)

= Approach: Buffers writes in memory, flushes data as sorted runs to storage,
merges runs into larger runs of next level (compaction)

= System Architecture

= Writes in CO in-memory
. buffer (C0)

= Reads against max capacity T
C0 and C1 pactty

= Compaction
(rolling merge):
sort, merge,
including
deduplication

on-disk
storage (C1)

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems .ISDS
Matthias Boehm, Graz University of Technology, SS 2019



Key-Value Stores

= LSM Tiering

= Keep up to T-1 runs per level L

= Merge all runs of L, into 1 run of L,

||
v | | |G

" 13 ---

= LSM Leveling

= Keep 1 run per level L
= Merge run of Li with Li+1

=11 B

Log-structured Merge Trees, cont.

TU
Grazm
optimized
A
2 &
8 & Basic read'
Q LSM-tree optimized
Y
@]
L ) Sorted
S eve/”’g array

Insertion cost

[Niv Dayan: Log-Structured-

Log-Structured-Merge Trees
Merge Trees, Comp115 | =~ ~o--

guest lecture, 2017]
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Document Stores
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18 . . .
. Recap: JSON (JavaScript Object Notation)
= JSON Data Model {“students:”[
{“id”: 1, “courses”:[
= Data exchange format for (“id“:“INF.01014UF”, “name®:“Databases”},
semi-structured data {id“:“706.550”, “name“:“AMLS”}]},

{“1d”: 5, “courses”:|[

| |
Not as verbose as XML {“1d“:706.004, “name“:“Databases 1”}]},

(especially for arrays) 1}
= Popular format (e.g., Twitter)

* Query Languages JSONiq Example:
= Most common: libraries for declare option jsonig-version “..”;
tree traversal and data extraction for $x in collection(“students”)
. . : where $x.id 1t 10
JSONig: XQuery-like query language let $c := count($x.courses)

= JSONPath: XPath-like query language return {“sid”:$x.id, “count”:$c}

[http://www.jsonig.org/docs/JSONig/html-single/index.html]

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
Matthias Boehm, Graz University of Technology, SS 2019



TU

Document Stores Graza

Motivation and Terminology

= Motivation

= Application-oriented management of structured, semi-structured, and
unstructured information (pay-as-you-go, schema evolution)

= Scalability via parallelization on commodity HW (cloud computing)

{customer:”Jane Smith”,
items:[{name:”P1”,price:49},
{name:”P2”,price:19}]}

= System Architecture 1234

= Collections of (key, document)

= Scalability via sharding

(horizontal partitioning) {customer:”John Smith”, ...}
= Custom SQL-likeor @ === --------mmmo oo —mmmm—————-
functional query languages {customer:”Jane Smith”, ...}
= Example Systems
= MongoDB (C++, 2007, CP) - RethinkDB, Espresso, . IIlOIlgODB

Amazon DocumentDB (Jan 2019) K: ;.‘ elastic

= CouchDB (Erlang, 2005, AP) - CouchBase
CouchDB



Document Stores -ErLa!.

Exa m p I e M O ngo D B [Credit: https://api.mongodb.com/
python/current]
= Creating import pymongo as m
a Collection conn = m.MongoClient(“mongodb://localhost:123/")

db = conn[“dbs19”] # database dbs19
cust = db[“customers”] # collection customers

= Inserting into mdict = {
a Collection “name®: “Jane Smith”,
“address”: “Inffeldgasse 13, Graz”
}

id = cust.insert_one(mdict).inserted_id
# ids = cust.insert_many(mlist).inserted_ids

= Querying print(cust.find one({" _id": id}))

a Collection : :
ret = cust.find({"name": "Jane Smith"})
for x in ret:

print(x)
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Graph Processing
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Motivation and Terminology

= Ubiquitous Graphs
= Domains: social networks, open/linked data, knowledge bases, bioinformatics
= Applications: influencer analysis, ranking, topology analysis . #:.

= Terminology

= Graph G = (V, E) of vertices V (set of nodes)
and edges E (set of links between nodes)

= Different types of graphs

Undirected Directed Multi Labeled Data/Property
Graph Graph Graph Graph Graph
kl=v1
o\. ® \Q\;\.J k2=v2
;S \ o :
Gene Inter k2=v3
acts
INF.01014UF Datab / 706.004 Datab 1-10 NoSQL Syst
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Terminology and Graph Characteristics

= Terminology, cont.
n Sequence of edges and vertices ( allows repeated edges/vertices)
= Closed walk, i.e., a walk that starts and ends at the same vertex
= Subgraph of vertices where every two distinct vertices are adjacent

= Metrics
= Degree (in/out-degree): number of 4
incoming/outgoing edges of that vertex out-

= Diameter: Maximum distance of pairs of vertices degree 2
(longest shortest-path)

= Power Law Distribution Tall  e.g., 80-20
= Degree of most real graphs follows head rule
a power law distribution .
Long tail
INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems .ISDS
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Vertex-Centric Processing

= Google Pregel

= Name: Seven Bridges of Koenigsberg (Euler 1736)

= “Think-like-a-vertex” computation model

= |terative processing in super steps, comm.: message passing

*= Programming Model

= Represent graph as collection of
vertices w/ edge (adjacency) lists

= |mplement algorithms via Vertex API

= Terminate if all vertices halted / no more msgs

public abstract class Vertex {

public
public
public

public
public
public

String getID();
long superstep();
VertexValue getValue();

compute(Iterator<Message> msgs);
sendMsgTo(String v, Message msg);
void voteToHalt();

[Grzegorz Malewicz et al: Pregel:

a system for large-scale graph
processing. SIGMOD 2010]

@000

Worker

[2]

Q00



Graph Processing -ErLa!.

Vertex-Centric Processing, cont.

= Examplel: Connected Components
= Determine connected components of a graph (subgraphs of connected nodes)

= Propagate max(current, msgs) if != current to neighbors, terminate if no msgs

Step 0 Step 1 Step 2 Step 3
9 converged

o0 e  oe

= Example 2: Page Rank y W C--- N
= Ranking of webpages by importance / impact 5“3) j\. B, e as
= #1: Initialize vertices to 1/numVertices() T / i

= #2: In each super step -i'ag“\

" Compute current vertex value:

value = 0.15/numVertices()+0.85*sum(msg) "':_'T-E\J/,;-',,@ Al &
= Send to all neighbors: [Credit: https://en.

value/numOutgoingEdges() wikipedia.org/wiki/PageRank ]




Graph Processing -ErLa!.

Graph-Centric Processing

= Motivation

= Exploit graph structure for algorithm-specific optimizations
(number of network messages, scheduling overhead for super steps)

= Large diameter / average vertex degree

= Programming Model vg_g

= Partition graph into subgraphs (block/graph)
= |Implement algorithm directly against

subgraphs (internal and boundary nodes) ‘
= Exchange messages in super steps only
between boundary nodes =» faster convergence Worker Worker
1 2

|
|
|
|
[Yuanyuan Tian, Andrey Balmin, Severin Andreas :
Corsten, Shirish Tatikonda, John McPherson: From "Think :

Like a Vertex" to "Think Like a Graph". PVLDB 2013]

| [DaYan, James Cheng, Yi Lu, Wilfred Ng: Blogel: A Block- Worker
Centric Framework for Distributed Computation on Real- 3
World Graphs. PVLDB 2014]
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Resource Description Framework (RDF)

uril:Bayern
* RDF Data

= Data and meta data description via triples uria#tworksFor

Triple: (subject, predicate, object)

Triple components can be URIs or literals
Formats: e.g., RDF/XML, RDF/JSON, Turtle
RDF graph is a directed, labeled multigraph

rdffitype uri4#age

" Querying RDF Data SELECT ‘person
= SPARQL (SPARQL WHERE {
Protocol And RDF ’person rdf:type uri3:Player ;
Query Language) uri4:worksFor uril:”Bayern Munich” .

= Subgraph matching

= Selected aWs Amazon Neptune AIIegroGra ph *Spa rksee

Example Systems S ( )\
& %As;m “Yena
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Example Systems

= Understanding Use in Practice
= Types of graphs user have
= Graph computations run
= Types of graph systems used
[Siddhartha Sahu, Amine Mhedhbi,
Semih Salihoglu, Jimmy Lin, M.
Tamer Ozsu: The Ubiquity of Large

Graphs and Surprising Challenges of
Graph Processing. PVLDB 2017]

= Summary of State of the Art
Runtime Techniques

turs yx -c:>

create intelligence™

rientDB

An SAP Company

Technology Software # Users
ArrangoDB [3] 40
Caley [8] 14
Graph Database DGraph [14] 33 533
System JanusGraph [33] 327
Neodj [48] 69
OrientDB [53] 45
Apache Jena [38] 87
RDF Engine Sparksee [64] 51115
Virtuoso [67] 23
N Apache Flink (Gelly) [17] 24
E;;iﬁ?:i’f EC:: ll:lpnhc Apache Giraph [21] 8 39
e e Apache Spark (GraphX) [27] | 7
Query Language Gremlin [28] 82| 82
Graph for Scala [22] 4
GraphStream [24] 8
. . Graphtool [25] 28
Graph Library NetworKit [30] o] 7’
NetworkX [51] 27
SNAP [62] 20
Graph Visualization gly toscape [13] % 116
asticsearch 73
(X-Pack Graph) [16] =
Graph Representation | Conceptual Graphs [11] 6 6

[Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande,

James Cheng: Big Graph Analytics Systems.
SIGMOD 2016]
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Time Series Databases
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Motivation and Terminology

= Ubiquitous Time Series

= Domains: Internet-of-Things (loT), sensor networks, smart production/planet,
telemetry, stock trading, server/application metrics, event/log streams

= Applications: monitoring, anomaly detection, time series forecasting
= Dedicated storage and analysis techniques = Specialized systems

= Terminology

regular
= Time series X is a sequence of data 00000
points x; for a specific measurement 1s 1s
identity (e.g., sensor) and time granularity
= Regular (equidistant) time series (x,) ——00 @ e >
vs irregular time series (t;, x.) irregular

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, SS 2019




Time Series Databases -I(;rE!l

Example InfluxDB @ influxdb

Measurement

[Paul Dix: InfluxDB
Storage Engine Internals,
CMU Seminar, 09/2017]

= Input Data cpu,region=west, host=A — Tags
user=85,sys=2,idle=10 1443782126

T Attribut lues) ™~ Ti
= System Architecture ributes (values) Time

= Written Go, originally key-value store, now dedicated storage engine
= Time Structured Merge Tree (TSM), similar to LSM
= QOrganized in shards, TSM indexes and inverted index for reads

append-only Index per TSM file:
fsync Header | Blocks | Index |Foote\r
KeyLen | Key | Type | Min T | Max T| Off | ...

periodic
flushes compaction &
compression periodic drop of shards
TSM A (files) according to
Indexes AA AA retention policy
INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems .ISDS
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Example InfluxDB, cont.

= Compression (of blocks)

= (Type | Len | Timestamps | Values)
= Timestamps: Run-length encoding for regular time series;
Simple8B or uncompressed for irregular

= Values: double delta for FP64, bits for Bool, double delta + zig zag for INT64,
Snappy for strings

= Query Processing SELECT percentile(90, user)
= SQL-like and functional APIs for FROM cpu WHERE time>now()-12h

g 4 , AND “region”=‘west’
iltering (e.g., range) and aggregation GROUP BY time(16m), host
" |nverted indexes

Posting lists:
Measurement to fields: cpu —2 [1,2,3,4,5,6]
cpu =2 [user,sys,idle] host=A 2 [1,2,3]
host 2 [A, B] host=B = [4,5,6]
Region = [west, east] region=west =2 [1,2,3]

INF.01014UF Databases / 706.004 Databases 1 — 10 NoSQL Systems 5 ISDS
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Other Systems

Prometheus

= Metrics, high-dim data model, sharding and federation 9 Prometheus
custom storage and query engine, implemented in Go

= OpenTSDB EEES
| L
= TSDB on top of HBase or Google BigTable, Hadoop rn OPEN
= TimescaleDB

&) TIMESCALE

= TSDB on top of PostgreSQL, standard SQL and reliability

= Druid _
. . . ") druid
= Column-oriented storage for time series, OLAP, and search -

IBM Event Store

= HTAP system for high data ingest rates, [Ronald Barber et al: Evolving
. . Databases for New-Gen Big
and data-parallel analytics via Spark

Data Applications. CIDR 2017]
= Shard-local logs =2 groomed data
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Conclusions and Q&A

= Summary 10 NoSQL Systems
= Consistency and Data Models
= Key-Value and Document Stores
= Graph and Time Series Databases

= Next Lectures (Part B: Modern Data Management)
= 11 Distributed file systems and object storage [May 27]
= 12 Data-parallel computation (MapReduce, Spark) [May 27]
= 13 Data stream processing systems [Jun 03]
= Jun 17: Q&A and exam preparation
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