Database Systems
13 Stream Processing

Matthias Boehm

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: Jun 03, 2019
Announcements/Org

- **#1 Video Recording**
 - Since lecture 03, video/audio recording
 - Link in TeachCenter & TUbe

- **#2 Exercises**
 - Exercise 1 graded, feedback in TC, office hours
 - **Exercise 2 in progress of being graded**
 - **Exercise 3 due Jun 04, 11.59pm**

- **#3 Course Evaluation**
 - Evaluation period: **Jun 18 – Aug 13**
 - Please, participate w/ honest feedback (pos/neg)

- **#4 Open Positions**
 - **ExDRa: Exploratory Data Science over Raw Data**
 - 2x PhDs / student assistants ➔ m.boehm@tugraz.at
Agenda

- Data Stream Processing
- Distributed Stream Processing
- Exercise 4: Large-Scale Data Analysis
Data Stream Processing
Stream Processing Terminology

- **Ubiquitous Data Streams**
 - *Event and message streams* (e.g., click stream, twitter, etc)
 - Sensor networks, IoT, and monitoring (traffic, env, networks)

- **Stream Processing Architecture**
 - *Infinite input streams*, often with window semantics
 - Continuous (aka standing) queries

Stream Processing Engines

- **Input Stream**
- **Queries**
- **Output Stream**

Stored Data

- "data at rest"

DBMS

- "data in motion"
Stream Processing Terminology, cont.

- **Use Cases**
 - Monitoring and alerting (notifications on events / patterns)
 - Real-time reporting (aggregate statistics for dashboards)
 - Real-time ETL and event-driven data updates
 - Real-time decision making (fraud detection)
 - Data stream mining (summary statistics w/ limited memory)

- **Data Stream**
 - Unbounded stream of data tuples $S = (s_1, s_2, \ldots)$ with $s_i = (t_i, d_i)$
 - See 08 NoSQL Systems (time series)

- **Real-time Latency Requirements**
 - Real-Time: guaranteed task completion by a given deadline (30 fps)
 - Near Real-Time: few milliseconds to seconds
 - In practice, used with much weaker meaning
History of Stream Processing Systems

- **2000s**
 - **Data stream management systems** (DSMS, mostly academic prototypes): STREAM (Stanford’01), Aurora (Brown/MIT/Brandeis’02) → Borealis ('05), NiagaraCQ (Wisconsin), TelegraphCQ (Berkeley’03), and many others
 - but mostly unsuccessful in industry/practice
 - **Message-oriented middleware** and **Enterprise Application Integration** (EAI): IBM Message Broker, SAP eXchange Infra., MS Biztalk Server, TransConnect

- **2010s**
 - **Distributed stream processing engines**, and “unified” batch/stream processing
 - **Proprietary systems**: Google Cloud Dataflow, MS StreamInsight / Azure Stream Analytics, IBM InfoSphere Streams / Streaming Analytics, AWS Kinesis
 - **Open-source systems**: Apache Spark Streaming (Databricks), Apache Flink (Data Artisans), Apache Kafka (Confluent), Apache Storm
System Architecture – Native Streaming

- **Basic System Architecture**
 - Data flow graphs (potentially w/ multiple consumers)
 - **Nodes**: asynchronous ops (w/ state) (e.g., separate threads)
 - **Edges**: data dependencies (tuple/message streams)
 - **Push model**: data production controlled by source

- **Operator Model**
 - Read from input queue
 - Write to potentially many output queues
 - Example Selection
 - \(\sigma_{A=7} \)

```java
while( !stopped ) {
    r = in.dequeue(); // blocking
    if( pred(r.A) ) // A==7
        for( Queue o : out )
            o.enqueue(r); // blocking
}
```
System Architecture – Sharing

- **Multi-Query Optimization**
 - Given *set of continuous queries* (deployed), compile minimal DAG w/o redundancy (see 08 Physical Design MV) ⇒ subexpression elimination

- **Operator and Queue Sharing**
 - **Operator sharing**: complex ops w/ multiple predicates for adaptive reordering
 - **Queue sharing**: avoid duplicates in output queues via masks
System Architecture – Handling Overload

#1 Back Pressure
- Graceful handling of overload w/o data loss
- Slow down sources
- E.g., blocking queues

#2 Load Shedding
- #1 Random-sampling-based load shedding
- #2 Relevance-based load shedding
- #3 Summary-based load shedding (synopses)
- Given SLA, select queries and shedding placement that minimize error and satisfy constraints

#3 Distributed Stream Processing (part of today’s lecture)
- Data flow partitioning (distribute the query)
- Key range partitioning (distribute the data stream)
Time (Event, System, Processing)

- **Event Time**
 - Real time when the event/data item was created

- **Ingestion Time**
 - System time when the data item was received

- **Processing Time**
 - System time when the data item is processed

- **In Practice**
 - Delayed and unordered data items
 - Use of heuristics (e.g., *water marks = delay threshold*)
 - Use of more complex triggers (*speculative and late results*)
Durability and Consistency Guarantees

- **#1 At Most Once**
 - “Send and forget”, ensure data is never counted twice
 - Might cause data loss on failures

- **#2 At Least Once**
 - “Store and forward” or acknowledgements from receiver, replay stream from a checkpoint on failures
 - Might create incorrect state (processed multiple times)

- **#3 Exactly Once**
 - “Store and forward” w/ guarantees regarding state updates and sent msgs
 - Often via dedicated transaction mechanisms
Window Semantics

- **Windowing Approach**
 - Many operations like joins/aggregation are **undefined over unbounded streams**
 - Compute operations over **windows of time or elements**

- **#1 Tumbling Window**
 - Every data item is only part of a single window
 - Aka Jumping window

- **#2 Sliding Window**
 - Time- or tuple-based sliding windows
 - Insert new and expire old data items

![Tumbling Window Diagram](image)

![Sliding Window Diagram](image)
Stream Joins

- **Basic Stream Join**
 - **Tumbling window:** use classic join methods
 - **Sliding window** (symmetric for both R and S)
 - Applies to arbitrary join pred
 - See 08 Query Processing (NLJ)

- **Excursus: How Soccer Players Would do Stream Joins**
 - **Handshake-join** w/ 2-phase forwarding

For each new \(r \) in \(R \):
1. **Scan** window of stream \(S \) to find match tuples
2. **Insert** new \(r \) into window of stream \(R \)
3. **Invalidate** expired tuples in window of stream \(R \)

[Image of soccer players]

[Jens Teubner, René Müller: How soccer players would do stream joins. SIGMOD 2011]
Stream joins, cont.

- **Double-Pipelined Hash Join**
 - Join of bounded streams (or unbounded w/ invalidation)
 - **Equi join predicate**, symmetric and non-blocking
 - For every incoming tuple (e.g. left): probe (right)+emit, and build (left)

Distributed Stream Processing
Query-Aware Stream Partitioning

- **Example Use Case**
 - **AT&T network monitoring** with Gigascope (e.g., OC768 network)
 - 2x40 Gbit/s traffic → 112M packets/s → **26 cycles/tuple** on 3Ghz CPU
 - Complex query sets (apps w/ ~50 queries) and massive data rates

- **Baseline Query Execution Plan**

 ![Diagram of query execution plan]

 Query **flow_pairs**:
  ```sql
  SELECT S1.tb, S1.srcIP, S1.max, S2.max
  FROM heavy_flows S1, heavy_flows S2
  WHERE S1.srcIP = S2.srcIP
  and S1.tb = S2.tb+1
  ```

 Query **heavy_flows**:
  ```sql
  SELECT tb, srcIP, max(cnt) as max_cnt
  FROM flows
  GROUP BY tb, srcIP
  ```

 Query **flows**:
  ```sql
  SELECT tb, srcIP, destIP, COUNT(*) AS cnt
  FROM TCP WHERE ...
  GROUP BY time/60 AS tb,srcIP,destIP
  ```
Query-Aware Stream Partitioning, cont.

- Optimized Query Execution Plan
 - Distributed plan operators
 - Pipeline and task parallelism

\[
\begin{align*}
\gamma_1 & \leftarrow \sigma \leftarrow \text{TCP} \\
\gamma_2 & \leftarrow \left(\sigma \leftarrow \text{TCP} \right) \left(\gamma_1 \leftarrow \left(\gamma_2 \leftarrow \left(\text{tb} = \text{tb} + 1 \right) \right) \right)
\end{align*}
\]
Stream Group Partitioning

- **Large-Scale Stream Processing**
 - Limited pipeline parallelism and task parallelism (independent subqueries)
 - Combine with *data-parallelism over stream groups*

- **#1 Shuffle Grouping**
 - Tuples are randomly distributed across consumer tasks
 - Good load balance

- **#2 Fields Grouping**
 - Tuples partitioned by grouping attributes
 - Guarantees order within keys, but load imbalance if skew

- **#3 Partial Key Grouping**
 - Apply “*power of two choices*” to streaming
 - **Key splitting**: select among 2 candidates per key (works for all associative aggregation functions)

- **#4 Others: Global, None, Direct, Local**

Example Apache Storm

- **Example Topology DAG**
 - **Spouts:** sources of streams
 - **Bolts:** UDF compute ops
 - Tasks mapped to worker processes and executors (threads)

```
Config conf = new Config();
conf.setNumWorkers(3);

topBuilder.setSpout("Spout1", new FooS1(), 2);
topBuilder.setBolt("Bolt1", new FooB1(), 3).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt2", new FooB2(), 2).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt3", new FooB3(), 2)
    .shuffleGrouping("Bolt1").shuffleGrouping("Bolt2");

StormSubmitter.submitTopology(..., topBuilder.createTopology());
```
Example Twitter Heron

Motivation
- **Heavy use of Apache Storm at Twitter**
- Issues: **debugging, performance, shared cluster resources**, back pressure mechanism

Twitter Heron
- API-compatible distributed streaming engine
- **De-facto streaming engine at Twitter** since 2014

Dhalion (Heron Extension)
- Automatically reconfigure Heron topologies to meet throughput SLO

Now back pressure implemented in Apache Storm 2.0 (May 2019)
Discretized Stream (Batch) Computation

- **Motivation**
 - Fault tolerance (low overhead, fast recovery)
 - Combination w/ distributed batch analytics

- **Discretized Streams (DStream)**
 - Batching of input tuples (100ms – 1s) based on ingest time
 - Periodically run distributed jobs of stateless, deterministic tasks → DStreams
 - State of all tasks materialized as RDDs, recovery via lineage

- **Criticism:** High latency, required for batching

[Matei Zaharia et al: Discretized streams: fault-tolerant streaming computation at scale. SOSP 2013]
Unified Batch/Streaming Engines

- **Apache Spark Streaming (Databricks)**
 - **Micro-batch computation** with exactly-once guarantee
 - Back-pressure and water mark mechanisms
 - **Structured streaming** via SQL (2.0), **continuous streaming** (2.3)

- **Apache Flink (Data Artisans, now Alibaba)**
 - **Tuple-at-a-time** with exactly-once guarantee
 - Back-pressure and water mark mechanisms
 - Batch processing viewed as special case of streaming

- **Google Cloud Dataflow**
 - **Tuple-at-a-time** with exactly-once guarantee
 - **MR → FlumeJava → MillWheel → Dataflow**
 - Google’s fully managed batch and stream service

- **Apache Beam (API+SDK from Dataflow)**
 - Abstraction for Spark, Flink, Dataflow w/ common API, etc
 - Individual runners for the different runtime frameworks

Exercise 4:
Large-Scale Data Analysis

Published: Jun 03
Deadline: Jun 25
Task 4.1 Apache Spark Setup

- **#1 Pick your Spark language binding**
 - Java, Scala, Python

- **#2 Install Dependencies**
 - Java: Maven
 - `spark-core`, `spark-sql`
 - Python:
 - `pip install pyspark`

- **(#3 Win Environment)**
 - Download https://github.com/steveloughran/winutils/tree/master/hadoop-2.7.1/bin/winutils.exe
 - Create environment variable HADOOP_HOME="<some-path>/hadoop"
Task 4.2 SQL Query Processing

- **Q11: Clubs of German Players**
 - Distinct clubs of players from team Germany 2014
 - Return (Club Name, Number of Players)
 - Sorted in descending order of the number of players

- **Q12: Length of World Cups**
 - World cup tournament lengths (difference first and last match)
 - Return (TYear, Host Name, Length)
 - Sorted by (Length, Year) in ascending order
 - Tournaments with multiple hosts → multiple tuples
Task 4.2 SQL Query Processing, cont.

- Expected Results

Q11: Clubs of German Players in World Cup 2014

<table>
<thead>
<tr>
<th>name character varying (256)</th>
<th>count bigint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayern Munich</td>
<td>7</td>
</tr>
<tr>
<td>Borussia Dortmund</td>
<td>5</td>
</tr>
<tr>
<td>Arsenal</td>
<td>3</td>
</tr>
<tr>
<td>Schalke 04</td>
<td>2</td>
</tr>
<tr>
<td>Chelsea</td>
<td>1</td>
</tr>
<tr>
<td>Hannover 96</td>
<td>1</td>
</tr>
<tr>
<td>Lazio</td>
<td>1</td>
</tr>
<tr>
<td>Real Madrid</td>
<td>1</td>
</tr>
<tr>
<td>SC Freiburg</td>
<td>1</td>
</tr>
<tr>
<td>Borussia Mönchengladbach</td>
<td>1</td>
</tr>
</tbody>
</table>

Q12: Length of World Cups

<table>
<thead>
<tr>
<th>year smallint</th>
<th>name character varying (256)</th>
<th>length integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954</td>
<td>Switzerland</td>
<td>18</td>
</tr>
<tr>
<td>1962</td>
<td>Chile</td>
<td>18</td>
</tr>
<tr>
<td>1966</td>
<td>England</td>
<td>19</td>
</tr>
<tr>
<td>1958</td>
<td>Sweden</td>
<td>21</td>
</tr>
<tr>
<td>1970</td>
<td>Mexico</td>
<td>21</td>
</tr>
<tr>
<td>1974</td>
<td>West Germany</td>
<td>24</td>
</tr>
<tr>
<td>1978</td>
<td>Argentina</td>
<td>24</td>
</tr>
<tr>
<td>1982</td>
<td>Spain</td>
<td>28</td>
</tr>
<tr>
<td>1986</td>
<td>Mexico</td>
<td>29</td>
</tr>
<tr>
<td>1990</td>
<td>Italy</td>
<td>30</td>
</tr>
<tr>
<td>1994</td>
<td>United States</td>
<td>30</td>
</tr>
<tr>
<td>2002</td>
<td>South Korea</td>
<td>30</td>
</tr>
<tr>
<td>2002</td>
<td>Japan</td>
<td>30</td>
</tr>
<tr>
<td>2006</td>
<td>Germany</td>
<td>30</td>
</tr>
<tr>
<td>2010</td>
<td>South Africa</td>
<td>30</td>
</tr>
<tr>
<td>2014</td>
<td>Brazil</td>
<td>31</td>
</tr>
<tr>
<td>1998</td>
<td>France</td>
<td>32</td>
</tr>
</tbody>
</table>
Task 4.3 Query Processing via Spark RDDs

- **#1 Spark Context Creation**
 - Create a spark context `sc` with local master (`local[*]`) (10/25 points)

- **#2 Implement Q11 via RDD Operations**
 - Implement Q11 self-contained in `executeQ11RDD()`
 - All reads should use `sc.textFile(fname)`
 - RDD operations only → stdout

- **#3 Implement Q12 via RDD Operations**
 - Implement Q12 self-contained in `executeQ12RDD()`
 - All reads should use `sc.textFile(fname)`
 - RDD operations only → stdout

See Spark online documentation for details.
Query Processing via Spark SQL

#1 Spark Session Creation
- Create a spark session via a spark session builder and with local master (`local[*]`)

#2 Implement Q11 via Dataset Operations
- Implement Q11 self-contained in `executeQ11Dataset()`
- All reads should use `sc.read().format("csv")`
- SQL or Dataset operations only → JSON

#3 Implement Q12 via Dataset Operations
- Implement Q12 self-contained in `executeQ12Dataset()`
- All reads should use `sc.read().format("csv")`
- SQL or Dataset operations only → JSON

Exercise 4: Large-Scale Data Analysis

See Spark online documentation for details

SQL processing of high importance in modern data management
Query Processing via Spark SQL, cont.

- Optional: Explore Spark Web UI
 - Web UI started even in local mode
 - Explore distributed jobs and stages
 - Explore effects of caching on repeated query processing
 - Explore statistics

INFO Utils: Successfully started service 'SparkUI' on port 4040.
INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://192.168.108.220:4040
Conclusions and Q&A

- **Summary** 13 Data stream processing systems
 - Data Stream Processing
 - Distributed Stream Processing
 - Exercise 4: Large-Scale Data Analysis

- **Next Lectures/Exams**
 - Jun 17: Q&A and exam preparation
 - Jun 24, 4pm Exam DB / DB1, HS i13
 - Jun 27, 4pm Exam DB / DB1, HS i13
 - Jun 27, 7.30pm Exam DB / DB1, HS i13