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Announcements/Org

= #1 Video Recording ﬂ TU be

= Link in TeachCenter & TUbe (lectures will be public)

= #2 Course Registrations (as of Mar 06)
= Architecture of Machine Learning Systems (AMLS): 34
= Bachelor/master/PhD ratio?

= #3 CS Talks x7 (Mar 10, 5pm, Aula Alte Technik)
= Claudia Muller-Birn (Freie Universitat of Berlin)

= Title: Collaboration is Key —
Human-Centered Design of Computational Systems
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Agenda

= Data Management Group
= Motivation and Goals

Course Organization

Course Outline, and Projects

Overview SystemDS
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Data Management Group -ErLa!.

About Me

= 09/2018 TU Graz, Austria

= BMVIT endowed chair for data management

TU

Grazm

= Data management for data science
(ML systems internals, end-to-end data science lifecycle)

p— . https://github.com/
(nfineon N\ MAGNA voestalpine

Center tugraz-isds/systemds

(know

= 2012-2018 IBM Research — Almaden, USA

= Declarative large-scale machine learning

4||Ii

= QOptimizer and runtime of Apache SystemML

= 2011 PhD TU Dresden, Germany

TECHNISCHE
= Cost-based optimization of integration flows @ UNIVERSITAT
DRESDEN

= Systems support for time series forecasting

: : : DB grou
u In-memory mdexmg and query processing g P
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Data Management Courses

ML syst
Architecture of DB system Architecture of : System
_ internals
DEIEEA G U internals ML Systems .
(ADBS, WS) + prog. project (AMLS, SS) ¥ prog. project
‘ ‘ in SystemDS

[github.com/tugraz-isds/systemds]

Master Data Integration and Distributed
——————————— Large-Scale Analysis Data Management
Bachelor (DIA, WS) (usage and internals)

Data Management /

Data management from
DEIELEES

user/application perspective

(DM, SS+WS)
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Example ML Applications (Past)

= Transportation / Space

= Lemon car detection and reacquisition (classification, seq. mining)

= Airport passenger flows from WiFi data (time series forecasting)
= Satellite senor analytics (regression and correlation)
= Data analysis for automated driving (various use cases)

= Finance
= Water cost index based on various influencing factors (regression)
= [nsurance claim cost per customer (model selection, regression)
= Financial analysts survey correlation (bivariate stats w/ new tests)

= Health Care
= Breast cancer cell grow from histopathology images (classification)
= Glucose trends and warnings (clustering, classification)
= Emergency room diagnosis / patient similarity (classification, clustering)
= Patient survival analysis and prediction (Cox regression, Kaplan-Meier)
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Motivation and Goals

ﬂ A Car Reacquisition Scenario
- Features Labels Machine e Class skew
== Learning * Low precision
Algorithm
Warranty
Claims
yi\/*%\ _/—>[ Algorithm ]
Sy
S
Repair
History [ Algorithm ]
e ‘0 -
Diagnostic [ Algorithm ]
Readouts =>» 25x
+ custom loss functions improved
+ hyper-parameter tuning |__@ccuracy
"ISDS
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Example ML Applications (Past), cont.

= Other Domains
= (bivariate stats, seq. mining)
= Smart grid: energy demand/RES supply, weather models (forecasting)
= Visualization: dimensionality reduction into 2D (auto encoder)
= (spring-mass system)

= Information Extraction
= (classification, error analysis)
= (NMF clustering, custom)
= QOCR: optical character recognition (preprocessing, classification)

= Algorithm Research (+ various state-of-the art algorithms)
= via various forms of NMF
= Localized, supervised metric learning (dim reduction and classification)
= Learning word embeddings via orthogonalized skip-gram
= Learning first-order rules for explainable classification
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What is an ML System?
r—-—"~—~~~>~—~"="=~" =" =7"=7"=7¥=7"=7”"¥7¥=7”¥7¥”7¥”¥7¥ 7~ =¥ = "= "= =/ ==/ -/-/-s/-s/-s/-s-s-sm-s-s-ssTsT=T===== 1

Classification

ML Applications Machine Relzsfnr re:;:wodners
(entire KDD/DS Learning .
Clustering

lifecycle) (ML)

Dim Reduction
Neural Networks

Rapidly Evolving
Runtime Techniques
(Execution, Data Access)

Techniques

Data Accelerators

Management

HW
Architecture

Operating
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Motivation and Goals -Erla'!l

What is an ML System?, cont.

= ML System
= SW system that executes ML applications
u Entire system (HW, compiler/runtime, ML application)

=>» Trade-off runtime/resources vs accuracy

=>» Early days: no standardizations (except some exchange formats), lots of
different languages and system architectures, but many shared concepts

= Course Objectives
= Architecture and internals of modern (large-scale) ML systems
= Microscopic view of ML system internals
= Macroscopic view of ML pipelines and data science lifecycle
= #1 Understanding of characteristics
= #2 Understanding of effective techniques
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Basic Course Organization

= Staff

= Lecturer: Univ.-Prof. Dr.-Ing. Matthias Boehm, ISDS e
= Assistant: M.Sc. Sebastian Baunsgaard, ISDS N\

= Language
= Lectures and slides: English

= Communication and examination: English/German

= Course Format

= VU 2/1, 5 ECTS (2x 1.5 ECTS + 1x 2 ECTS), bachelor/master

= Weekly lectures (start 12.15pm, including Q&A), attendance optional
= Mandatory programming project (2 ECTS)

= Recommended papers for additional reading on your own

706.550 Architecture of Machine Learning Systems — 01 Introduction and Overview .ISDS
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Course Logistics

= Exam
= Completed project (merged PRs)
= Final oral exam (via doodle slot pocking)
= Grading (40% project, 60% exam)

= Communication
= Informal language (first name is fine)
= Please, immediate feedback (unclear content, missing background)

= Newsgroup: news://news.tugraz.at/tu-graz.lv.amls (email for private issues)
= Office hours: by appointment or after lecture

= Website

= https://mboehm?7.github.io/teaching/ss20 amls/index.htm
= All course material (lecture slides, list of projects) and dates

706.550 Architecture of Machine Learning Systems — 01 Introduction and Overview B ISDS
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Course Logistics, cont.

= Open Source Projects
= Programming project in context of open source projects
= SystemDS: https://github.com/tugraz-isds/systemds
= QOther open source projects possible, but harder to merge PRs

= Commitment to
(discussion on PRs, mailing list, etc)

= Remark: Don’t be afraid to ask questions / develop code in public

= Objectives
= Non-trivial feature in an open source ML system (2 ECTS = 50 hours)

= Break down into subtasks, code/tests/docs, PR per project,
code review, incorporate review comments, etc

" Team

» |ndividuals or two-person teams (w/ clearly separated responsibilities)
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Course Outline and Projects

Partially based on

[Matthias Boehm, Arun Kumar, Jun Yang: Data Management
____ in Machine Learning Systems. Synthesis Lectures on Data
_ Management, Morgan & Claypool Publishers 2019]

Major updates coming (compared to SS19)
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Part A: Overview and ML System Internals

01 Introduction and Overview [Mar 06]
02 Languages, Architectures, and System Landscape [Mar 13]

03 Size Inference, Rewrites, and Operator Selection [Mar 20]
04 Operator Fusion and Runtime Adaptation [Mar 27]

05 Data- and Task-Parallel Execution [Apr 03]

06 Parameter Servers [Apr 24]

07 Hybrid Execution and HW Accelerators [May 08]
08 Caching, Partitioning, Indexing, and Compression [May 15]
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Part B: ML Lifecycle Systems

09 Data Acquisition, Cleaning, and Preparation [May 29]

10 Model Selection and Management [Jun 05]

11 Model Debugging Techniques [Jun 12]

12 Model Serving Systems and Techniques [Jun 19]

13 Trends and Research Directions 2020 [Jun 26]
14 Q&A and Exam Preparation

706.550 Architecture of Machine Learning Systems — 01 Introduction and Overview
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Preliminary Example Projects

= #1 Extended Python and Java Language Bindings

= #2 Auto Differentiation (builtin function and compiler)

= #3 Built-in Functions for Regression, Classification, Clustering

= #4 Built-in Functions for Time Series Missing Value Imputation

= #5 DL-based Entity Resolution Primitives (baseline implementation)
= #6 Model Selection Primitives (BO, multi-armed bandit, hyperband)

= #7 Documentation and Tutorials (for different target users)

= #8 Extended Test Framework (comparisons, caching, remove redundancy)
= #9 Performance Testsuite (extend algorithm-level suite)

= #10 ONNX Graph Importer (DML script / HOP DAG generation)

706.550 Architecture of Machine Learning Systems — 01 Introduction and Overview .ISDS
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Preliminary Example Projects, cont.

#11 Loop Vectorization Rewrites (more general framework)

#12 Canonicalization Rewrite Framework (refactoring, new rewrites)
#13 Extended CSE & Constant Folding (commutativity, one-shot)
#14 Extended Matrix Multiplication Chain Opt (sparsity, rewrites)
#15 Extended Update In-Place Framework (reference counting)

#16 SLIDE Operators and Runtime Integration (Sub-Linear DL Engine)

#17 Compression Planning Extensions (co-coding search algorithm)

#18 Feature Transform: Equi-Height/Custom Binning (local, distributed)

#19 Extended Intel MKL-DNN Runtime Operations (beyond conv2d)

#20 Extended 1/O Framework for Other Formats (e.g., NetCDF, HDF5, Arrow)
#21 Protobuf reader/writer into Data Tensor (local, distributed)

706.550 Architecture of Machine Learning Systems — 01 Introduction and Overview .ISDS
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SystemDS: A Declarative ML System for
the End-to-End Data Science Lifecycle

Matthias Boehm?-?, lulian Antonov?, Sebastian Baunsgaard?!, Mark Dokter?, Robert
Ginthor?, Kevin Innerebner?, Florijan Klezin?, Stefanie Lindstaedt!?, Arnab Phanil,
Benjamin Rath?, Berthold Reinwald3, Shafaq Siddigi', Sebastian Benjamin Wrede?

! Graz University of Technology; Graz, Austria
2 Know-Center GmbH; Graz, Austria
3 IBM Research — Almaden; San Jose, CA, USA

TU Graz, Institute of Interactive Systems and Data Science ®*I|SDS
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Motivation SystemDS

| 7/ DASK .
= Existing ML Systems %Numpy julia
= #1 Numerical computing frameworks Q@ e Spaﬁ(\: R
= #2 VL Algorithm libraries (local, large-scale) & MA;;':T soacre

#3 Linear algebra ML systems (large-scale)

PYTORCH [mleety
#4 Deep neural network (DNN) frameworks )
Keras TensorFlow
#5 Model management, and deployment 14

= Exploratory Data-Science Lifecycle “Take these datasets

= Open-ended problems w/ underspecified objectives and show value or
= Hypotheses, data integration, run analytics competitive advantage”

= Unknown value - lack of system infrastructure
- Redundancy of manual efforts and computation

= Data Preparation Problem
= 80% Argument: 80-90% time for finding, integrating, cleaning data

= Diversity of tools = boundary crossing, lack of optimization

= In-DBMS ML toolkits largely unsuccessful (stateful, data loading, verbose)
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Motivation SystemDS, cont.

. [Xin Luna Dong, Theodoros Rekatsinas:
" Key Observation Data Integration and Machine Learning:

= SotA data integration based on ML A Natural Synergy. SIGMOD 2018]
(e.g., data extraction, schema alignment, entity linking)

= Similar: data cleaning, outlier detection, missing value imputation,
semantic type detection, data augmentation, feature selection,
hyper parameter optimization, model debugging

= A Case for Declarative Data Science

= High-level abstractions (R/Python, stateless) for lifecycle tasks,
implemented in DSL for ML training/scoring

= Avoid boundary crossing and optimizations across lifecycle
= Control compiler and runtime of utmost importance

Apache SystemML - SystemDS

Architecture and Preliminary Results

706.550 Architecture of Machine Learning Systems — 01 Introduction and Overview B ISDS
Matthias Boehm, Graz University of Technology, SS 2020
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Apache
sl SystemML™
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Example: Linear Regression Conjugate Gradient

Note:

#1 Data Independence
#2 Implementation-
Agnostic Operations

Compute
conjugate
gradient

Update
model and -

residuals

WooONGOTUVTLA,WDNER

NRRRRBRRRRRR
Q\Dmﬂmu’lthHQQQoooooooooooooooo

: write(w, $4, format="text");

X = read($1); # n x m matrix Read matrices
y = read($2); # n x 1 vector from HDFS/S3
maxi = 50; lambda = 0.001;

intercept = $3;

- -(8(X) %*% y); Compute initial

- F

P o

norm_r2 = sum(r * r); p = gradient
w = matrix(@, ncol(X), 1); i = 0;
while(i<maxi & norm_r2>norm_r2 trgt)
g = (t(X) %*% (X %*% p))+lambda*p;
alpha = norm_r2 / sum(p * q); Conu%ﬂe
w = w + alpha * p; step size
old norm_r2 = norm_r2;
r=r + alpha * q;
norm_r2 = sum(r * r);
beta = norm_r2 / old _norm_r2;
- * « 3 _ 3 .
} p = -r + beta p; 1 =1+ 1; > “Separation

of Concerns”



Apache SystemML Background -I(;rE!l

High-Level SystemML Architecture

DML Scripts : 2 .
APIs: Command line, JMLC, * — -

Spark MLContext, Spark ML,
(20+ scalable algorithms)

[SIGMOD’15,’17,'19] Compiler

{:)c\:)l.g?:'i’zl'i?]lsb' 18] 05/2017 Apache Top-Level Project

11/2015 Apache Incubator Project
[CIDR’17]

[VLDBJ'18] 08/2015 Open Source Release
[DEBull’'14] \

slablish Spark Technology Center:

Language

Apache
SystemML"™

[PPoPP’15] In-Memory Single Node Hadoop or Spark Cluster
(scale-up) (scale-out)

In-Progress: & ‘;hadamp SpC]tf’l(\Z

GPU [ TNE,

since 2014/16 since 2012 since 2010/11 since 2015
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28 . ° .
. Basic HOP and LOP DAG Compilation
LinregDS (Direct Solve) - Cluster Config:
| X = read($1); Scenario: HOP DAG, CP write * driver mem: 20 GB
: y = read($2); X: 108 x 103, 10" (after rewrites) amp 4 e exec mem: 60 GB
 intercept = $3; NIRRT 2 16MB CP  b(solve) '
 lambda = 0.001; : ’ /I p o) solve
... | , +
C LS L Lo TT o TTTo T TTTTT T T 172KB_—" = “~—_1.6TB
Mif( intercept =="1 ) { | ! T, mm===s wxen T T P arnea T :
: I_oﬁe_s_; rHaEr—i)—((—l,— ?“:o"—\,(—xy’— ]T)—; - : II Ccp r‘(dlag) : ba(+ )SP ba(+ )SPSOOGB I
I :X = append(X, ones); :I N I :
T 1y, .
_______________________ . sp i r(t) '
TT = matrix(i, neol(X), 1); K 8KB l |
|
|

A = t(X) %% X + diag(I)*lambda; / CP dg(rand) ! x 800GB y 800MB
L b = t(X) %*% y; N (1e°x1,10%) | (1e°x1e’,10™) (1e°x1,1e°) ¢ |
: beta = solve(A, b); ": :
I e 1 |
weite(beta, $4); : LOP DAG o e v
(after rewrites) 4 4
=>» Hybrid Runtime Plans: mapmm(SP) tsmm(SP)
* Size propagation / memory estimates Soo“y ~_.
* Integrated CP / Spark runtime 1'66,.%(@) X
* Dynamic recompilation during runtime T (persisted in X1,1
= Distributed Matrices y MIEMLDIBIO
* Fixed-size (squared) matrix blocks .
* Data-parallel operations Xn,1
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Static and Dynamic Rewrites

= Example Static Rewrites (size-indep.)

trace(X%*%Y) =2 sum(X*t(Y))
Common Subexpression Elimination

Constant Folding / Branch Removal / X )
Block Sequence Merge O(n) 0(n?)

sum(A*X) > A*sum(X)
sum(X+Y) 2> sum(X)+sum(Y)

Static Simplification Rewrites

Right/Left Indexing Vectorization
For Loop Vectorization
Spark checkpoint/repartition injection

= Example Dynamic Rewrites (size-dep.)

t(X) X V4
1kx1k M 1kx1k 1

Dynamic Simplification Rewrites rowSums (X) 2> X, iff ncol(X)=1
Matrix Mult Chain Optimization ~ sum(X*2) > X%*%t(X), iff ncol(X)=1

t(X) X p Size propagation
1kx1k B 1kx1k @ 1 and sparsity

estimation
2,002 MFLOPs 4 MFLOPs
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Selected Research Results

#3 Resource Optimization
What-If for automatic resource

[ provisioning

(SIGMOD’15)

Apache

#2 Task-Parallel Parfor Loops SystemML"™

hybrid parallelization Fusion Plans
strategies (PPoPP’15, CIDR’17,
(PVLDB’14) PVLDB’18)

#6 Advanced Optimization
sum-product (CIDR’17),
sparsity estimation (SIGMOD’19)

#1 SystemML’s Optimizer

rewrites, operator selectlon size "

propagation, memory estimates,
dynamic recompilation (DEBull’14)

-

W S

Google
Summer of Code

#4 Compressed Linear Algebra

(PVLDB’16,
SIGMOD Record’17,

VLDB Journal’18, CACM’19)

&

#5 Optlmizing Operator

GPU, meta, numerical stability,

parameter servers, etc
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Lessons Learned from SystemML Why was SystemML

not adopted
i 5
L1 Data Independence & Logical Operations 'n practice:
* |Independence of evolving technology stack (MR - Spark, GPUs)
= Simplifies development (libs) and deployment (large-scale vs. embedded)

= Enables adaptation to cluster/data characteristics (dense/spare/compressed)

L2 User Categories (| Alg. Users| >> | Alg. Developers|)
= Focus on ML researchers and algorithm developers is a niche .. ¢’2_{
= Data scientists and domain experts need higher-level abstractions

L3 Diversity of ML Algorithms & Apps
= Variety of algorithms (batch 1st/2nd, mini-batch DNNs, hybrid) %

= Different parallelization, ML + rules, numerical computing

= Support for feature transformations on 2D frames

L4 Heterogeneous Structured Data ?
A

= Many apps deal with heterogeneous data and various structure



SystemDS Architecture

(An open source ML System for the end-to-end Data Science lifecycle )

https://github.com/tugraz-isds/systemds,
forked from Apache SystemML 1.2 in Sep 2018

SystemDS 0.1 published Aug 31, 2019
SystemDS 0.2 upcoming (next week)

Upcoming merge into Apache SystemML

706.550 Architecture of Machine Learning Systems — 01 Introduction and Overview B ISDS
Matthias Boehm, Graz University of Technology, SS 2020
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SystemDS Vision and Design Gafhe D)
an

= Objectives

= Effective and efficient data preparation, ML, and model debugging at scale

= High-level abstractions for lifecycle tasks (L3/L4) and users (L2)
= #1 Based on DSL for VL Training/Scoring o /

= Hierarchy of abstractions for DS tasks \: r/@';,; t,m]

= ML-based SotA, interleaved, performance H'/'[F e T [j'““;,i%"’:’ Bt Eo
. .

#2 Hybrid Runtime Plans and Optimizing Compiler
= System infrastructure for diversity of algorithm classes
= Different parallelization strategies and new architectures (Federated ML)
= Abstractions = redundancy = automatic optimization

Features
(e.g., sensor readings, flags, categories)

T ST

#3 Data Model: Heterogeneous Tensors - II

= Data integration/prep requires generic data model

(e.g.. production
pipelines, wind
mills, satellites)

706.550 Architecture of Machine Learning Systems — 01 Introduction and Overview .ISDS
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Language Abstractions and APIs, cont.

= Example: Stepwise Linear Regression

User Script Built-in Functions

X
Y

read( ‘features.csv’) I m_steplm = function(...) {
read( ‘labels.csv’) / while( continue ) {

[B,S] = steplm(X, Y, parfor( i in 1:n ) {

m_1mCG = function(...) {
while( i<maxi&nr2>tgt ) {
q = (t(X) %*% (X %*% p))

I
I
icpt=0, reg=0.001) I if( !fixed[1,i] ) { + lambda * p
write(B, ‘model.txt’) 7 : Xi = cbind(Xg, X[,1]) beta = ... }
| B[,i] = Im(Xi, y, ...) } 7
! # add best to Xg .
| # (AIC) m_1m = function(...)
! - if( ncol(X) > 1024 ) Linear
1 B = lmCG(X, y e )
, elee Algebra
! Feature B = ImDS(X, y, ...) | Programs
! Selection ) 7
efge [ . [ I \
Facilitates optimization ; ML m_1mDS = function(...) {
across data science ! Algorithms | 1 = matrix(reg,ncol(X),1)
. : A = t(X) %*% X + diag(1l)
lifecycle tasks ! b = t(X) %*% y
1 beta = solve(A, b) ...
; eta ve( ) } 7
706.550 Architecture of Machine Learning Systems — 01 Introduction and Overview .ISDS
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System Architecture

@ Ap1s ( Comumand IMLC ML Context) (@ Ak
Line Language Bindings

( Parser/Language (syntactic/semantic) > Optimizations

(e.g., IPA, rewrites,
Bl ( High-Level Operators (HOPs) > operator ordering,
operator selection,

Functions for

entire Lifecycle ( Low-Level Operators (LOPs) > codegen)
ParFor Parameter
4 6 Control Program ) 9 <Optimizer /Runtime>< Server )
< Recompiler ) Runtime
Program
CcP GPU Spark

Buffer Pool
TensorBlock Library
MeIr;l(éFS Co;d/egen ]i.) /F(‘)S (single /multi-threaded, different value types,
homogeneous/heterogeneous tensors)

706.550 Architecture of Machine Learning Systems — 01 Introduction and Overview .ISDS
Matthias Boehm, Graz University of Technology, SS 2020
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Lineage and Reuse

= Problem

= Exploratory data science (data preprocessing, model configurations)
= Reproducibility and explainability of trained models (data, parameters, prep)

=» Lineage as Key Enabling Technique
. COLUMBUS HELIX
= Model versioning, data reuse, [SIGMOD’14] (PVLDB'18]
incremental maintenance, auto diff, KeystoneML .= PRETZEL
debugging (e.g., queries over lineage) [ICDE’17] [0SDI'18]
MISTIQUE A. Meadow
[SIGMOD’18] [SIGMOD’19]

= a) Efficient Fine-Grained Lineage Tracing
® Tracing of inputs, literals, and non-determinism

= Trace lineage of logical operations for all live variables, store along outputs,
program/output reconstruction possible:

X = eval(deserialize(serialize(lineage(X))))

= Proactive deduplication of lineage traces for loops, (and functions)

706.550 Architecture of Machine Learning Systems — 01 Introduction and Overview B ISDS
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Preliminary Results: Lineage Tracing and Reuse
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Lineage and Reuse, cont.

= b) Full Reuse of Intermediates

= Before executing instruction,
probe output lineage in cache
Map<Lineage, MatrixBlock>

= Cost-based/heuristic caching
and eviction decisions (compiler-assisted)

= ¢) Partial Reuse of Intermediates
= Problem: Often partial result overlap

= Reuse partial results via dedicated rewrites
(compensation plans)

= Example: steplm

m>>n

L

706.550 Architecture of Machine Learning Systems — 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2020

O(k(mn2+n3)) 2 O(mn?+kn3)

for( i in 1:numModels )
R[,i] = Im(X, y, lambdal[i,],
\

)

m_1mDS = function(...) {

1 = matrix(reg,ncol(X),1)
A = t(X) %*% X + diag(l)
b=1t(X) %*% y

beta = solve(A, b) ...}

4
I\

m_steplm = function(...) {
while( continue ) {
parfor( i in 1:n ) {
if( !fixed[1,i] ) {
Xi = cbind(Xg, X[,1])

B[,i] = Im(Xi, vy, ...
>}
# add best to Xg
# (AIC)

}}

)

4

O(n?(mn?+n3)) = O(n?(mn+n3))

"ISDS
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Experiments (Hyper-Param Opt)

= Baselines
(TF1.13)

400

300

200

100

Execution Time [s]

Dense, 100K x 1K Sparse, 100K x 1K
TF = SysDS = 500 — TF @ Julia

@ Julia =
= 300 —
)
= 200
§ 100 — sparsity(X) = 0.1
)

e i m e A R e
1 10 20 30 40 50 60 70 I 10 20 30 40 50 60 70
Number of Models k Number of Models k

TF <+ SysDS erSOO _| = TF
# TF-G -4 SysDS-B g =+ TF-G
- SysDS w/ reuse = 1000 | SysDS
Eg -4 SysDS w/reuse
"2 500
<
=
O —
[ I | [ I [ I I [ | I [ I
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Preliminary Results: Lineage Tracing and Reuse
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Experiments (Cross Validation)

= Full Reuse (TF2.0)

Dense, 100K x 1K

Sparse, 1M x 1K

IM x 1K, sp=0.1

TF <+ SysDS
& TF—G -4 SysDS w/ reuse

7 500 = TF < SysDS ?%ggg —~
QE’ 400 _': TF-G -« SysDS—B QE) S00
= SysDS w/ reuse =
= 300 7 = 200 —
£ 500 - 100K x 1K, sp=1.0 S 100 —
2 5 50 -
% 100 — 2 50
2 4 8 16 32
Number of Folds k

I I I I I

2 4 8 16 32
Number of Folds k

#1 Competitive baseline performance ML training (dense, sparse)

#2 Large improvements due to fine-grained redundancy elimination
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Preliminary Results: Federated ML -ErLa!.

€Xyra = Basic approach: Federated ML + ML over raw data

Federated ML

[Keith Bonawitz et al.: Towards
Federated Learning at Scale:

= Motivation Federated ML System Design. SysML 2019] W AW

= Model training w/o central data consolidation I

= Data Ownership = Federated ML in the enterprise l '

(machine vendor — middle-person — customer equipment) '
= Federated ML Architecture CP 2
: , CP 1*
= Multiple control programs w/ single master F‘ ,m
|

= Federated tensors (metadata handles) X <\ cp3

® Federated linear algebra and parameter server m

= PET integration (MPC, homomorphic encryption)
= ExDRa Project (Exploratory Data Science over Raw Data) SIEMENS

\
\

= System infra, integration, data org & reuse, Exp DB, geo-dist. \ .m

"= Bundesministerium Gefordert im Programm "IKT der Zukunft"

erkehr, Innovation

g Iecl“nologie}FFG vom Bundesministerium fur Verkehr, ﬁGrazn v ”
Forschung wirkt.

Innovation, und Technologie (BMVIT)

\
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Conclusions
= Summary: SystemML is dead, long live SystemDS —> Apache
= Vision and system architecture of SystemDS SystemDS

= Selected research directions and preliminary results (Mar 2020

= #1 Support for data science lifecycle tasks (data prep, training, debugging),
users w/ different expertise (ML researcher, data scientist, domain expert)

= #2 Support for local, distributed, and federated ML, exdra
optimizing compiler and parallelization strategies
=10 [DFKH
* #3 Underlying data model of heterogeneous tensors SIEMENS

w/ native support for lineage tracing and exploitation,
and automatic data reorganization and specialization

w,we're

= We’re open: early adopters, comparisons, collaborations OPEN-’
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